1
|
Jin G, Porello EAL, Zhang J, Lim B. Heterogeneous Sox2 transcriptional dynamics mediate pluripotency maintenance in mESCs in response to LIF signaling perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643751. [PMID: 40166162 PMCID: PMC11957043 DOI: 10.1101/2025.03.17.643751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The LIF signaling pathway and its regulation of internal factors like Sox2 is crucial for maintaining self-renewal and pluripotency in mESCs. However, the direct impact of LIF signaling on Sox2 transcriptional dynamics at the single-cell level remains elusive. Here, we employ PP7/PCP-mediated live imaging to analyze the transcriptional dynamics of Sox2 under perturbation of the LIF signaling pathway at single-cell resolution. Removal of the LIF ligand or addition of a JAK inhibitor heterogeneously affects the cell population, reducing the number of Sox2-active cells, rather than completely abolishing Sox2 expression. Moreover, Sox2-active cells under LIF perturbation exhibit significant reductions in mRNA production per cell. This reduction is characterized by decreased size and frequency of transcriptional bursting, resulting in shorter duration of Sox2 activity. Notably, cells with reduced or absent Sox2 expression demonstrate a significant loss in pluripotency, indicating that a reduction in Sox2 transcription (rather than a complete loss) is sufficient to trigger the transition from embryonic to an early differentiated state. In LIF-perturbed cells with Sox2 expression reduced to about 50% of non-perturbed levels, we observe a binary behavior, with cells either retaining or losing pluripotency-associated traits. Lastly, we find Sox2 expression is transcriptionally inherited across cell cycles, with Sox2-active mother cells more likely to reactivate Sox2 after mitosis compared to Sox2-inactive cells. This robust transcriptional memory is observed independent of LIF signaling perturbation. Our findings provide new insights into the transcriptional regulation of Sox2, advancing our understanding of the quantitative thresholds of gene expression required for pluripotency maintenance and highlighting the power of single-cell approaches to unravel dynamic regulatory mechanisms.
Collapse
|
2
|
Athanasouli P, Vanhessche T, Lluis F. Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination. Life Sci Alliance 2025; 8:e202403091. [PMID: 39779220 PMCID: PMC11711469 DOI: 10.26508/lsa.202403091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac. The formation of EPI and PE as molecularly and morphologically distinct lineages is the final step of a multistage process, which begins when bipotent progenitor cells diverge into separate fates. Despite advances in uncovering the molecular mechanisms underlying the differential transcriptional patterns that dictate how apparently identical cells make fate decisions and how lineage integrity is maintained, a detailed overview of these mechanisms is still lacking. In this review, we dissect the EPI and PE formation process into four stages (initiation, specification, segregation, and maintenance) and we provide a comprehensive understanding of the molecular mechanisms involved in lineage establishment in the mouse. In addition, we discuss the conservation of key processes in humans, based on the most recent findings.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tijs Vanhessche
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Ma Z, Tan S, Lu R, Chen P, Hu Y, Yang T, Wu H, Zhu Z, Guo J, Chen X, Yang J, Zhang W, Ye Y. Interplay of chromatin remodeling BAF complexes in mouse embryonic and epiblast stem cell conversion and maintenance. J Biol Chem 2025; 301:108140. [PMID: 39730061 PMCID: PMC11791114 DOI: 10.1016/j.jbc.2024.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024] Open
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from preimplantation and postimplantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BRG1/BRM-associated factor (BAF) chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear. This study demonstrates that the LIF/STAT3 and Wnt signaling pathways, in conjunction with canonical BAF (cBAF) and polycomb repressive complex two complexes, inhibit EpiSC gene expression, thereby preventing ESCs from converting to EpiSCs. Upon removal of LIF, the reduced LIF/STAT3 signaling lifts this inhibition, increasing TGF/nodal pathway activity. Subsequently, the cBAF complex facilitates ESC to EpiSC conversion by promoting EpiSC gene expression. Furthermore, unlike cBAF, inhibition of the ncBAF complex downregulates TGF-β signaling, thereby hindering both ESC to EpiSC conversion and EpiSC maintenance. Moreover, this study revealed the dual mechanisms, methylating histone or non-histone protein STAT3, by which polycomb repressive complex two components participate in the regulation of ESCs to EpiSCs. This research elucidates the interplay between distinct BAF complexes and specific signaling pathways in regulating the conversion and maintenance of ESCs and EpiSCs.
Collapse
Affiliation(s)
- Zhaoru Ma
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Shuping Tan
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Yukun Hu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tenghui Yang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Hao Wu
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Zhexin Zhu
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Heifei, China
| | - Jiayi Guo
- Research Center of Medical Science and Technology, Ningxia Medical University, Yinchuan, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
| | - Ying Ye
- Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, China.
| |
Collapse
|
4
|
Manoharan S, Perumal E. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights. Fitoterapia 2024; 179:106265. [PMID: 39437855 DOI: 10.1016/j.fitote.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Cancer remains a significant global health concern. The dysregulation of signaling networks in tumor cells greatly affects their functions. This review intends to explore phytochemicals possessing potent anticancer properties that specifically target the STAT3 signaling pathway, elucidating strategies and emphasizing their potential as promising candidates for cancer therapy. The review comprehensively examines various STAT3 inhibitors designed to disrupt the signaling cascade, including those targeting upstream activation, SH2 domain phosphorylation, DNA binding domain (DBD), N-terminal domain (NTD), nuclear translocation, and enhancing endogenous STAT3 negative regulators. A literature review was conducted to identify phytochemicals with anticancer activity targeting the STAT3 signaling pathway. Popular research databases such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, and ResearchGate were searched from the years 1989 - 2023 based on the keywords "Cancer", "STAT3", "Phytochemicals", "Phytochemicals targeting STAT3 signaling", "upstream activation of STAT3", "SH2 domain of STAT3", "DBD of STAT3", "NTD of STAT3, "endogenous negative regulators of STAT3", or "nuclear translocation of STAT3", and their combinations. A total of 264 relevant studies were selected and analyzed based on the mechanisms of action and the efficacy of the phytocompounds. The majority of the discussed phytochemicals primarily focus on inhibiting upstream activation of STAT3. Additionally, flavonoid and terpenoid compounds exhibit multifaceted effects by targeting one or more checkpoints within the STAT3 pathway. Analysis reveals that phytochemicals targeting upstream activation predominantly belong to the classes of flavonoids and terpenoids, which hold significant promise as effective anticancer therapeutics. Future research in this field can be directed towards exploring and developing these scrutinized classes of phytochemicals to achieve desired therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
5
|
Xu L, Ji J, Wang L, Pan J, Xiao M, Zhang C, Gan Y, Xie G, Tan M, Wang X, Wen C, Fan Y, Chin YE. LIF Promotes Sec15b-Mediated STAT3 Exosome Secretion to Maintain Stem Cell Pluripotency in Mouse Embryonic Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407971. [PMID: 39475099 DOI: 10.1002/advs.202407971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/22/2024] [Indexed: 12/28/2024]
Abstract
LIF maintains self-renewal growth in mouse embryonic stem cells (mESC) by activating STAT3, which translocates into nucleus for pluripotent gene induction. However, the ERK signaling pathway activated by LIF at large counteract with pluripotent gene induction during self-renewal growth. Here, it is reported that in mESC STAT3 undergoes multivesicular endosomes (MVEs) translocation and subsequent secretion, LIF-activated STAT3 is acetylated on K177/180 and phosphorylated on Y293 residues within the N-terminal coiled-coil domain, which is responsible for the interaction between STAT3 and Secl5b, an exocyst complex component 6B (EXOC6B). STAT3 translocation into MVEs resulted in the downregulation of T202/Y204-ERK1/2 phosphorylation and up-regulation of S9-GSK3β phosphorylation for maintaining mESC self-renewal growth. STAT3 with K177R/K180R or Y293F substitution fails to execute MVEs translocation and Secl5b-dependent secretion. Mice expressing K177RK180R substitution (STAT3mut/mut) are partially embryonic lethal. In STAT3mut/mut embryos, gene expressions related to hematological system function changed significantly and those living ones carry a series of abnormalities in the hematopoietic system. Furthermore, mice with Secl5b knockout exhibit embryonic lethality. Thus, Secl5b mediated STAT3 MVEs translocation regulates the balance of ERK and GSK3β signaling pathways and maintain mESC self-renewal growth, which is involved in regulating the stability of hematopoietic system.
Collapse
Affiliation(s)
- Li Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Jinjun Ji
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Lingbo Wang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jieli Pan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Mingzhe Xiao
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chenxi Zhang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yihong Gan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Mingdian Tan
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Yongsheng Fan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Y Eugene Chin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
6
|
Park J, Kim J, Shin B, Schöler HR, Kim J, Kim KP. Inducing Pluripotency in Somatic Cells: Historical Perspective and Recent Advances. Int J Stem Cells 2024; 17:363-373. [PMID: 38281813 PMCID: PMC11612216 DOI: 10.15283/ijsc23148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Inducing pluripotency in somatic cells is mediated by the Yamanaka factors Oct4, Sox2, Klf4, and c-Myc. The resulting induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine by virtue of their ability to differentiate into different types of functional cells. Specifically, iPSCs derived directly from patients offer a powerful platform for creating in vitro disease models. This facilitates elucidation of pathological mechanisms underlying human diseases and development of new therapeutic agents mitigating disease phenotypes. Furthermore, genetically and phenotypically corrected patient-derived iPSCs by gene-editing technology or the supply of specific pharmaceutical agents can be used for preclinical and clinical trials to investigate their therapeutic potential. Despite great advances in developing reprogramming methods, the efficiency of iPSC generation remains still low and varies between donor cell types, hampering the potential application of iPSC technology. This paper reviews histological timeline showing important discoveries that have led to iPSC generation and discusses recent advances in iPSC technology by highlighting donor cell types employed for iPSC generation.
Collapse
Affiliation(s)
- Junmyeong Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jueun Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Borami Shin
- Department of General Pediatrics, University of Children’s Hospital Münster, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- The Center for Cardiovascular Regeneration and Immunology, TRON-Translational Oncology, The University Medical Center of The Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany
| | - Kee-Pyo Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Chen B, Jia M, Zhao G, Liu Y, Song Y, Sun M, Chi W, Wang X, Jiang Q, Xin G, Zhang C. STAG2 promotes naive-primed transition via activating Lin28a transcription in mouse embryonic stem cells. J Biol Chem 2024; 300:107958. [PMID: 39510176 PMCID: PMC11635655 DOI: 10.1016/j.jbc.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Mouse embryonic stem cells (mESCs) exist in two distinct pluripotent states: the naive and the primed. Mainly by inducing differentiation of mESCs in vitro, conducting RNA sequencing analyses, and specifying expression of the regulatory genes, we explored the regulatory mechanisms underlying the transition between the naive and primed states. We found that, under the defined differentiation-inducing conditions, the naive state of mESCs shifted to the primed state within 2 days of differentiation induction, during which the cell cycle- and differentiation-related proteins changes significantly. Specifically, we uncovered that the expression of STAG2, a subunit of the Cohesin complex, was upregulated. We further revealed that knockout of STAG2 resulted in upregulation of the naive gene sets and downregulation of the primed gene sets, indicating importance of STAG2 in regulating the naive-primed transition. More importantly, STAG2 knockout led to a reduction in number of the bivalent genes, a decrease in Lin28a transcription, and a reduced cytoplasmic localization of Lin28a. Overexpressing Lin28a or a Lin28a variant lacking the nucleolar localization signal (Lin28aΔNoLS) in STAG2 knockout cells rescued the downregulation of the primed marker genes Dnmt3a/3b. Collectively, we conclude that STAG2 facilitates the naive-primed transition of mESCs by activating Lin28a transcription and that this work may offer a new insight into the regulation of pluripotency in mESCs.
Collapse
Affiliation(s)
- Bo Chen
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Mingkang Jia
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Gan Zhao
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yumin Liu
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yihong Song
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Mengjie Sun
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wangfei Chi
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiangyang Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China.
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
8
|
Kimura-Nagano Y, Kishimoto K, Sekida S, Kawamura K. Stat stimulates histone H3K4 methylation via KDM5 inhibition in adult stem cells of budding tunicates. Dev Dyn 2024. [PMID: 39436036 DOI: 10.1002/dvdy.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND The branchial epithelium is one of the main tissues in which histone H3K4 trimethylation (H3K4me3) occurs in the budding tunicate, Polyandrocarpa misakiensis. It contains proliferating and undifferentiated cell aggregates at the bottom of each pharyngeal cleft, providing the nest for the adult stem cell niche. We examined the sustainable mechanism enabling epigenetic histone methylation in adult stem cells. RESULTS Histone H3K4 demethylase (PmisKdm5) was not co-expressed in vivo with the transcription factor, signal transduction and activator of transcription (PmisStat) in the same cells. PmisStat mRNA, when electroporated into zooids, suppressed the gene expression of PmisKdm5 and facilitated the trimethylation of H3K4. A STAT5 inhibitor blocked the nuclear localization of PmisStat. It stimulated PmisKdm5 gene expression irrespective of PmisStat mRNA. The KDM5 inhibitor, CPI-455, stimulated H3K4me3 similarly to PmisStat mRNA. PmisStat mRNA and CPI-455 both induced the gene expression of PmisAp2 and PmisSp8, which were recently identified as budding/regeneration-related genes. When zooid tissues were treated with both CPI-455 and the STAT5 inhibitor, CPI-455 overwhelmed the effects of the STAT inhibitor on PmisAp2 and PmisSp8. CONCLUSION PmisStat is involved in epigenetic histone methylation at H3K4 through the inhibition of PmisKdm5. H3K4me3 affects downstream gene expression more directly and strongly than PmisStat.
Collapse
Affiliation(s)
- Yuri Kimura-Nagano
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi, Japan
- Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Kochi, Japan
| | - Kanoko Kishimoto
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi, Japan
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Satoko Sekida
- Kuroshio Science Unit, Multidisciplinary Science Cluster, Kochi University, Kochi, Japan
| | - Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi, Japan
| |
Collapse
|
9
|
Monteleone E, Corrieri P, Provero P, Viavattene D, Pulvirenti L, Raggi L, Carbognin E, Bianchi ME, Martello G, Oliviero S, Pandolfi PP, Poli V. STAT3-dependent long non-coding RNA Lncenc1 contributes to mouse ES cells pluripotency via stabilizing Klf4 mRNA. Brief Funct Genomics 2024; 23:651-662. [PMID: 37801430 PMCID: PMC11428181 DOI: 10.1093/bfgp/elad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Embryonic stem cells (ESCs) preserve the unique ability to differentiate into any somatic cell lineage while maintaining their self-renewal potential, relying on a complex interplay of extracellular signals regulating the expression/activity of pluripotency transcription factors and their targets. Leukemia inhibitory factor (LIF)-activated STAT3 drives ESCs' stemness by a number of mechanisms, including the transcriptional induction of pluripotency factors such as Klf4 and the maintenance of a stem-like epigenetic landscape. However, it is unknown if STAT3 directly controls stem-cell specific non-coding RNAs, crucial to balance pluripotency and differentiation. Applying a bioinformatic pipeline, here we identify Lncenc1 in mouse ESCs as an STAT3-dependent long non-coding RNA that supports pluripotency. Lncenc1 acts in the cytoplasm as a positive feedback regulator of the LIF-STAT3 axis by competing for the binding of microRNA-128 to the 3'UTR of the Klf4 core pluripotency factor mRNA, enhancing its expression. Our results unveil a novel non-coding RNA-based mechanism for LIF-STAT3-mediated pluripotency.
Collapse
Affiliation(s)
- Emanuele Monteleone
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Paola Corrieri
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Daniele Viavattene
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Lorenzo Pulvirenti
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Laura Raggi
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | | | | | | | | | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
- William N. Pennington Cancer Institute, Nevada System of Higher Education, Reno, Nevada
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
10
|
Zhu C, Fan F, Li CY, Xiong Y, Liu X. Caspase-3 promotes oncogene-induced malignant transformation via EndoG-dependent Src-STAT3 phosphorylation. Cell Death Dis 2024; 15:486. [PMID: 38977663 PMCID: PMC11231138 DOI: 10.1038/s41419-024-06884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Accumulating evidence suggests that caspase-3 plays critical roles beyond apoptosis, serving pro-survival functions in malignant transformation and tumorigenesis. However, the mechanism of non-apoptotic action of caspase-3 in oncogenic transformation remains unclear. In the present study, we show that caspase-3 is consistently activated in malignant transformation induced by exogenous expression of oncogenic cocktail (c-Myc, p53DD, Oct-4, and H-Ras) in vitro as well as in the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse model of breast cancer. Genetic ablation of caspase-3 significantly attenuated oncogene-induced transformation of mammalian cells and delayed breast cancer progression in MMTV-PyMT transgenic mice. Mechanistically, active caspase-3 triggers the translocation of endonuclease G (EndoG) from mitochondria, which migrates to the nucleus, thereby induces phosphorylation of Src-STAT3 signaling pathway to facilitate oncogenic transformation. Taken together, our data suggest that caspase-3 plays pivotal role in facilitating rather than suppressing oncogene-induced malignant transformation of mammalian cells.
Collapse
Affiliation(s)
- Chenchen Zhu
- Department of Biochemistry, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fushun Fan
- BeBetter Med Inc., Guangzhou, Guangdong, China
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Yan Xiong
- Guangzhou Consen Pharmaceutical Technology Co. Ltd, Guangzhou, Guangdong, China.
| | - Xinjian Liu
- Department of Biochemistry, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Zhao W, Hu X, Chen Z, Li X. Major Facilitator Superfamily Domain Containing 12 Is Overexpressed in Lung Cancer and Exhibits an Oncogenic Role in Lung Adenocarcinoma Cells. DNA Cell Biol 2024; 43:331-340. [PMID: 38687351 DOI: 10.1089/dna.2023.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Major facilitator superfamily domain containing 12 (MFSD12) regulates lysosomal cysteine import and promotes the proliferation and survival of melanoma cells. However, the expression and function of MFSD12 in other cancers, particularly in lung cancer, remain unclear. The expression of MFSD12 across various types of cancers and corresponding control tissues was examined using TIMER. MFSD12 expression in lung adenocarcinoma (LUAD) and its correlation with distinct clinicopathological features of LUAD patients were analyzed with UALCAN. The correlation between MFSD12 expression and survival of LUAD patients was assessed using the R package, survival, and the relationship between MFSD12 expression and immune infiltration status in LUAD was investigated using CIBERSORT. In addition, MFSD12 expression was knocked down in PC9 LUAD cells and their proliferation, capacity for expansion, cell cycle, apoptosis, and migration/invasion were evaluated through CCK-8 assays, colony formation assays, 7-AAD staining, Annexin V/PI staining, and Transwell assays, respectively. The stemness of these PC9 cells was determined through Western blotting, flow cytometry, and tumor sphere formation assays. MFSD12 mRNA levels were significantly elevated in multiple types of cancers, including LUAD. MFSD12 expression was also positively correlated with cancer stage, nodal metastasis, and infiltration of various immune cells in LUAD, and high MFSD12 levels predicted poor survival among LUAD patients. Knockdown of MFSD12 in PC9 cells resulted in decreased proliferation, attenuated colony formation capacity, cell cycle arrest, elevated apoptosis, impaired migration/invasion, and reduced stemness in PC9 cells. MFSD12 is an oncogene in LUAD.
Collapse
Affiliation(s)
- Weijun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xilin Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zixuan Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xinjian Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Razavipour SF, Yoon H, Jang K, Kim M, Nawara HM, Bagheri A, Huang WC, Shin M, Zhao D, Zhou Z, Van Boven D, Briegel K, Morey L, Ince TA, Johnson M, Slingerland JM. C-terminally phosphorylated p27 activates self-renewal driver genes to program cancer stem cell expansion, mammary hyperplasia and cancer. Nat Commun 2024; 15:5152. [PMID: 38886396 PMCID: PMC11183067 DOI: 10.1038/s41467-024-48742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
In many cancers, a stem-like cell subpopulation mediates tumor initiation, dissemination and drug resistance. Here, we report that cancer stem cell (CSC) abundance is transcriptionally regulated by C-terminally phosphorylated p27 (p27pT157pT198). Mechanistically, this arises through p27 co-recruitment with STAT3/CBP to gene regulators of CSC self-renewal including MYC, the Notch ligand JAG1, and ANGPTL4. p27pTpT/STAT3 also recruits a SIN3A/HDAC1 complex to co-repress the Pyk2 inhibitor, PTPN12. Pyk2, in turn, activates STAT3, creating a feed-forward loop increasing stem-like properties in vitro and tumor-initiating stem cells in vivo. The p27-activated gene profile is over-represented in STAT3 activated human breast cancers. Furthermore, mammary transgenic expression of phosphomimetic, cyclin-CDK-binding defective p27 (p27CK-DD) increases mammary duct branching morphogenesis, yielding hyperplasia and microinvasive cancers that can metastasize to liver, further supporting a role for p27pTpT in CSC expansion. Thus, p27pTpT interacts with STAT3, driving transcriptional programs governing stem cell expansion or maintenance in normal and cancer tissues.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Razavipour
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Hyunho Yoon
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon-si, South Korea
| | - Kibeom Jang
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Minsoon Kim
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Hend M Nawara
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Amir Bagheri
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Wei-Chi Huang
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Miyoung Shin
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Dekuang Zhao
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Zhiqun Zhou
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Derek Van Boven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Karoline Briegel
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Lluis Morey
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Tan A Ince
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Johnson
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Joyce M Slingerland
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA.
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA.
| |
Collapse
|
13
|
Wang Z, Gong W, Yao Z, Jin K, Niu Y, Li B, Zuo Q. Mechanisms of Embryonic Stem Cell Pluripotency Maintenance and Their Application in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:1742. [PMID: 38929361 PMCID: PMC11201147 DOI: 10.3390/ani14121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials. However, the technologies for long-term in vitro culture or establishment of cell lines for PSCs in livestock are still immature, and research progress is uneven, which poses challenges for the application of PSCs in various fields. The establishment of a robust in vitro system for these cells is critically dependent on understanding their pluripotency maintenance mechanisms. It is believed that the combined effects of pluripotent transcription factors, pivotal signaling pathways, and epigenetic regulation contribute to maintaining their pluripotent state, forming a comprehensive regulatory network. This article will delve into the primary mechanisms underlying the maintenance of pluripotency in PSCs and elaborate on the applications of PSCs in the field of livestock.
Collapse
Affiliation(s)
- Ziyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Katayama T, Takechi M, Murata Y, Chigi Y, Yamaguchi S, Okamura D. Development of a chemically disclosed serum-free medium for mouse pluripotent stem cells. Front Bioeng Biotechnol 2024; 12:1390386. [PMID: 38812912 PMCID: PMC11134454 DOI: 10.3389/fbioe.2024.1390386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Mouse embryonic stem cells (mESCs) have been widely used as a model system to study the basic biology of pluripotency and to develop cell-based therapies. Traditionally, mESCs have been cultured in a medium supplemented with fetal bovine serum (FBS). However, serum with its inconsistent chemical composition has been problematic for reproducibility and for studying the role of specific components. While some serum-free media have been reported, these media contain commercial additives whose detailed components have not been disclosed. Recently, we developed a serum-free medium, DA-X medium, which can maintain a wide variety of adherent cancer lines. In this study, we modified the DA-X medium and established a novel serum-free condition for both naïve mESCs in which all components are chemically defined and disclosed (DA-X-modified medium for robust growth of pluripotent stem cells: DARP medium). The DARP medium fully supports the normal transcriptome and differentiation potential in teratoma and the establishment of mESCs from blastocysts that retain the developmental potential in all three germ layers, including germ cells in chimeric embryos. Utility of chemically defined DA-X medium for primed mouse epiblast stem cells (mEpiSCs) revealed that an optimal amount of cholesterol is required for the robust growth of naïve-state mESCs, but is dispensable for the maintenance of primed-state mEpiSCs. Thus, this study provides reliable and reproducible culture methods to investigate the role of specific components regulating self-renewal and pluripotency in a wide range of pluripotent states.
Collapse
Affiliation(s)
- Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Marina Takechi
- Stem Cells and Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yamato Murata
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shinpei Yamaguchi
- Stem Cells and Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
15
|
Sobah ML, Liongue C, Ward AC. Stat3 Regulates Developmental Hematopoiesis and Impacts Myeloid Cell Function via Canonical and Non-Canonical Modalities. J Innate Immun 2024; 16:262-282. [PMID: 38643762 PMCID: PMC11249464 DOI: 10.1159/000538364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
INTRODUCTION Signal transducer and activator of transcription (STAT) 3 is extensively involved in the development, homeostasis, and function of immune cells, with STAT3 disruption associated with human immune-related disorders. The roles ascribed to STAT3 have been assumed to be due to its canonical mode of action as an inducible transcription factor downstream of multiple cytokines, although alternative noncanonical functional modalities have also been identified. The relative involvement of each mode was further explored in relevant zebrafish models. METHODS Genome editing with CRISPR/Cas9 was used to generate mutants of the conserved zebrafish Stat3 protein: a loss of function knockout (KO) mutant and a mutant lacking C-terminal sequences including the transactivation domain (ΔTAD). Lines harboring these mutations were analyzed with respect to blood and immune cell development and function in comparison to wild-type zebrafish. RESULTS The Stat3 KO mutant showed perturbation of hematopoietic lineages throughout primitive and early definitive hematopoiesis. Neutrophil numbers did not increase in response to lipopolysaccharide (LPS) or granulocyte colony-stimulating factor (G-CSF) and their migration was significantly diminished, the latter correlating with abrogation of the Cxcl8b/Cxcr2 pathway, with macrophage responses perturbed. Intriguingly, many of these phenotypes were not shared by the Stat3 ΔTAD mutant. Indeed, only neutrophil and macrophage development were disrupted in these mutants with responsiveness to LPS and G-CSF maintained, and neutrophil migration actually increased. CONCLUSION This study has identified roles for zebrafish Stat3 within hematopoietic stem cells impacting multiple lineages throughout primitive and early definitive hematopoiesis, myeloid cell responses to G-CSF and LPS and neutrophil migration. Many of these roles showed conservation, but notably several involved noncanonical modalities, providing additional insights for relevant diseases.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| |
Collapse
|
16
|
Jiang H, Yang J, Li T, Wang X, Fan Z, Ye Q, Du Y. JAK/STAT3 signaling in cardiac fibrosis: a promising therapeutic target. Front Pharmacol 2024; 15:1336102. [PMID: 38495094 PMCID: PMC10940489 DOI: 10.3389/fphar.2024.1336102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiac fibrosis is a serious health problem because it is a common pathological change in almost all forms of cardiovascular diseases. Cardiac fibrosis is characterized by the transdifferentiation of cardiac fibroblasts (CFs) into cardiac myofibroblasts and the excessive deposition of extracellular matrix (ECM) components produced by activated myofibroblasts, which leads to fibrotic scar formation and subsequent cardiac dysfunction. However, there are currently few effective therapeutic strategies protecting against fibrogenesis. This lack is largely because the molecular mechanisms of cardiac fibrosis remain unclear despite extensive research. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling cascade is an extensively present intracellular signal transduction pathway and can regulate a wide range of biological processes, including cell proliferation, migration, differentiation, apoptosis, and immune response. Various upstream mediators such as cytokines, growth factors and hormones can initiate signal transmission via this pathway and play corresponding regulatory roles. STAT3 is a crucial player of the JAK/STAT pathway and its activation is related to inflammation, malignant tumors and autoimmune illnesses. Recently, the JAK/STAT3 signaling has been in the spotlight for its role in the occurrence and development of cardiac fibrosis and its activation can promote the proliferation and activation of CFs and the production of ECM proteins, thus leading to cardiac fibrosis. In this manuscript, we discuss the structure, transactivation and regulation of the JAK/STAT3 signaling pathway and review recent progress on the role of this pathway in cardiac fibrosis. Moreover, we summarize the current challenges and opportunities of targeting the JAK/STAT3 signaling for the treatment of fibrosis. In summary, the information presented in this article is critical for comprehending the role of the JAK/STAT3 pathway in cardiac fibrosis, and will also contribute to future research aimed at the development of effective anti-fibrotic therapeutic strategies targeting the JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Junjie Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanfei Du
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Wang L, Liu H, Liu Y, Guo S, Yan Z, Chen G, Wu Q, Xu S, Zhou Q, Liu L, Peng M, Cheng X, Yan T. Potential markers of cancer stem-like cells in ESCC: a review of the current knowledge. Front Oncol 2024; 13:1324819. [PMID: 38239657 PMCID: PMC10795532 DOI: 10.3389/fonc.2023.1324819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
In patients with esophageal squamous cell carcinoma (ESCC), the incidence and mortality rate of ESCC in our country are also higher than those in the rest of the world. Despite advances in the treatment department method, patient survival rates have not obviously improved, which often leads to treatment obstruction and cancer repeat. ESCC has special cells called cancer stem-like cells (CSLCs) with self-renewal and differentiation ability, which reflect the development process and prognosis of cancer. In this review, we evaluated CSLCs, which are identified from the expression of cell surface markers in ESCC. By inciting EMTs to participate in tumor migration and invasion, stem cells promote tumor redifferentiation. Some factors can inhibit the migration and invasion of ESCC via the EMT-related pathway. We here summarize the research progress on the surface markers of CSLCs, EMT pathway, and the microenvironment in the process of tumor growth. Thus, these data may be more valuable for clinical applications.
Collapse
Affiliation(s)
- Lu Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huijuan Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiqian Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shixing Guo
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhenpeng Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohui Chen
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qinglu Wu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Songrui Xu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qichao Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meilan Peng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
18
|
Streitfeld WS, Dalton AC, Howley BV, Howe PH. PCBP1 regulates LIFR through FAM3C to maintain breast cancer stem cell self-renewal and invasiveness. Cancer Biol Ther 2023; 24:2271638. [PMID: 37927213 PMCID: PMC10629429 DOI: 10.1080/15384047.2023.2271638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
The poly(rC) binding protein 1 gene (PCBP1) encodes the heterogeneous nuclear ribonucleoprotein E1 (hnRNPE1), a nucleic acid-binding protein that plays a tumor-suppressive role in the mammary epithelium by regulating phenotypic plasticity and cell fate. Following the loss of PCBP1 function, the FAM3C gene (encoding the Interleukin-like EMT inducer, or "ILEI" protein) and the leukemia inhibitory factor receptor (LIFR) gene are upregulated. Interaction between FAM3C and LIFR in the extracellular space induces phosphorylation of signal transducer and activator of transcription 3 (pSTAT3). Overexpression and/or hyperactivity of STAT3 has been detected in 40% of breast cancer cases and is associated with a poor prognosis. Herein, we characterize feed-forward regulation of LIFR expression in response to FAM3C/LIFR/STAT3 signaling in mammary epithelial cells. We show that PCBP1 upregulates LIFR transcription through activity at the LIFR promoter, and that FAM3C participates in transcriptional regulation of LIFR. Additionally, our bioinformatic analysis reveals a signature of transcriptional regulation associated with FAM3C/LIFR interaction and identifies the TWIST1 transcription factor as a downstream effector that participates in the maintenance of LIFR expression. Finally, we characterize the effect of LIFR expression in cell-based experiments that demonstrate the promotion of invasion, migration, and self-renewal of breast cancer stem cells (BCSCs), consistent with previous studies linking LIFR expression to tumor initiation and metastasis in mammary epithelial cells.
Collapse
Affiliation(s)
- William S. Streitfeld
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Annamarie C. Dalton
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Breege V. Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H. Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
19
|
Francia MG, Verneri P, Oses C, Vazquez Echegaray C, Garcia MR, Toro A, Levi V, Guberman AS. AKT1 induces Nanog promoter in a SUMOylation-dependent manner in different pluripotent contexts. BMC Res Notes 2023; 16:309. [PMID: 37919788 PMCID: PMC10623886 DOI: 10.1186/s13104-023-06598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
AKT/PKB is a kinase crucial for pluripotency maintenance in pluripotent stem cells. Multiple post-translational modifications modulate its activity. We have previously demonstrated that AKT1 induces the expression of the pluripotency transcription factor Nanog in a SUMOylation-dependent manner in mouse embryonic stem cells. Here, we studied different cellular contexts and main candidates that could mediate this induction. Our results strongly suggest the pluripotency transcription factors OCT4 and SOX2 are not essential mediators. Additionally, we concluded that this induction takes place in different pluripotent contexts but not in terminally differentiated cells. Finally, the cross-matching analysis of ESCs, iPSCs and MEFs transcriptomes and AKT1 phosphorylation targets provided new clues about possible factors that could be involved in the SUMOylation-dependent Nanog induction by AKT.
Collapse
Affiliation(s)
- Marcos Gabriel Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Mora Reneé Garcia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ayelen Toro
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Sonia Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Laboratorio de Regulación Génica en Células Madre (CONICET-UBA), Intendente Guiraldes 2160 Pab. 2, 4to Piso, QB-71, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Okamoto K, Fujita H, Okada Y, Shinkai S, Onami S, Abe K, Fujimoto K, Sasaki K, Shioi G, Watanabe TM. Single-molecule tracking of Nanog and Oct4 in living mouse embryonic stem cells uncovers a feedback mechanism of pluripotency maintenance. EMBO J 2023; 42:e112305. [PMID: 37609947 PMCID: PMC10505915 DOI: 10.15252/embj.2022112305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 08/24/2023] Open
Abstract
Nanog and Oct4 are core transcription factors that form part of a gene regulatory network to regulate hundreds of target genes for pluripotency maintenance in mouse embryonic stem cells (ESCs). To understand their function in the pluripotency maintenance, we visualised and quantified the dynamics of single molecules of Nanog and Oct4 in a mouse ESCs during pluripotency loss. Interestingly, Nanog interacted longer with its target loci upon reduced expression or at the onset of differentiation, suggesting a feedback mechanism to maintain the pluripotent state. The expression level and interaction time of Nanog and Oct4 correlate with their fluctuation and interaction frequency, respectively, which in turn depend on the ESC differentiation status. The DNA viscoelasticity near the Oct4 target locus remained flexible during differentiation, supporting its role either in chromatin opening or a preferred binding to uncondensed chromatin regions. Based on these results, we propose a new negative feedback mechanism for pluripotency maintenance via the DNA condensation state-dependent interplay of Nanog and Oct4.
Collapse
Affiliation(s)
- Kazuko Okamoto
- Laboratory for Comprehensive BioimagingRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Amphibian Research CenterHiroshima UniversityHiroshimaJapan
| | - Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHigashi‐HiroshimaJapan
| | - Yasushi Okada
- Laboratory for Cell Polarity RegulationRIKEN Center for Biosystems Dynamics Research (BDR)OsakaJapan
- Department of Cell BiologyGraduate School of Medicine, The University of TokyoTokyoJapan
- Department of PhysicsUniversal Biology Institute (UBI)Graduate School of Science, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI‐IRCN)Institutes for Advanced Study, The University of TokyoTokyoJapan
| | - Soya Shinkai
- Laboratory for Developmental DynamicsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD)Hiroshima UniversityHiroshimaJapan
| | - Shuichi Onami
- Laboratory for Developmental DynamicsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Genome DynamicsRIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Kenta Fujimoto
- Department of Stem Cell Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHigashi‐HiroshimaJapan
| | - Kensuke Sasaki
- Laboratory for Comprehensive BioimagingRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Go Shioi
- Laboratory for Comprehensive BioimagingRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive BioimagingRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Department of Stem Cell Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
21
|
Zhang H, Yang T, Wu H, Yi W, Dai C, Chen X, Zhang W, Ye Y. MPP8 Governs the Activity of the LIF/STAT3 Pathway and Plays a Crucial Role in the Differentiation of Mouse Embryonic Stem Cells. Cells 2023; 12:2023. [PMID: 37626833 PMCID: PMC10453500 DOI: 10.3390/cells12162023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) possess the remarkable characteristics of unlimited self-renewal and pluripotency, which render them highly valuable for both fundamental research and clinical applications. A comprehensive understanding of the molecular mechanisms underlying mESC function is of the utmost importance. The Human Silence Hub (HUSH) complex, comprising FAM208A, MPP8, and periphilin, constitutes an epigenetic silencing complex involved in suppressing retroviruses and transposons during early embryonic development. However, its precise role in regulating mESC pluripotency and differentiation remains elusive. In this study, we generated homogenous miniIAA7-tagged Mpp8 mouse ES cell lines. Upon induction of MPP8 protein degradation, we observed the impaired proliferation and reduced colony formation ability of mESCs. Furthermore, this study unveils the involvement of MPP8 in regulating the activity of the LIF/STAT3 signaling pathway and Nanog expression in mESCs. Finally, we provide compelling evidence that degradation of the MPP8 protein impairs the differentiation of mESC.
Collapse
Affiliation(s)
- Heyao Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Tenghui Yang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Hao Wu
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Wen Yi
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China (X.C.)
| | - Chunhong Dai
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China (X.C.)
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
- Zhejiang Stem and Ageing Research (Z-StAR) Institute, International Campus, Zhejiang University, Haining 314400, China
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Dinarello A, Betto RM, Diamante L, Tesoriere A, Ghirardo R, Cioccarelli C, Meneghetti G, Peron M, Laquatra C, Tiso N, Martello G, Argenton F. STAT3 and HIF1α cooperatively mediate the transcriptional and physiological responses to hypoxia. Cell Death Discov 2023; 9:226. [PMID: 37407568 DOI: 10.1038/s41420-023-01507-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
STAT3 and HIF1α are two fundamental transcription factors involved in many merging processes, like angiogenesis, metabolism, and cell differentiation. Notably, under pathological conditions, the two factors have been shown to interact genetically, but both the molecular mechanisms underlying such interactions and their relevance under physiological conditions remain unclear. In mouse embryonic stem cells (ESCs) we manage to determine the specific subset of hypoxia-induced genes that need STAT3 to be properly transcribed and, among them, fundamental genes like Vegfa, Hk1, Hk2, Pfkp and Hilpda are worth mentioning. Unexpectedly, we also demonstrated that the absence of STAT3 does not affect the expression of Hif1α mRNA nor the stabilization of HIF1α protein, but the STAT3-driven regulation of the hypoxia-dependent subset of gene could rely on the physical interaction between STAT3 and HIF1α. To further elucidate the physiological roles of this STAT3 non-canonical nuclear activity, we used a CRISPR/Cas9 zebrafish stat3 knock-out line. Notably, hypoxia-related fluorescence of the hypoxia zebrafish reporter line (HRE:mCherry) cannot be induced when Stat3 is not active and, while Stat3 Y705 phosphorylation seems to have a pivotal role in this process, S727 does not affect the Stat3-dependent hypoxia response. Hypoxia is fundamental for vascularization, angiogenesis and immune cells mobilization; all processes that, surprisingly, cannot be induced by low oxygen levels when Stat3 is genetically ablated. All in all, here we report the specific STAT3/HIF1α-dependent subset of genes in vitro and, for the first time with an in vivo model, we determined some of the physiological roles of STAT3-hypoxia crosstalk.
Collapse
Affiliation(s)
| | | | - Linda Diamante
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | - Claudio Laquatra
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | | | | |
Collapse
|
23
|
Saber M, Shekari F, Mousavi SA, Moini A, Miri MS, Esfandiari F. JAK/STAT3 pathway promotes proliferation of ovarian aggregate-derived stem cells in vitro. Exp Cell Res 2023:113689. [PMID: 37355151 DOI: 10.1016/j.yexcr.2023.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND The accurate identification and isolation of ovarian stem cells from mammalian ovaries remain a major challenge because of the lack of specific surface markers and suitable in vitro culture systems. Optimized culture conditions for in vitro expansion of ovarian stem cells would allow for identifying requirements of these stem cells for proliferation and differentiation that would pave the way to uncover role of ovarian stem cells in ovarian pathophysiology. Here, we used three-dimensional (3D) aggregate culture system for enrichment of ovarian stem cells and named them aggregate-derived stem cells (ASCs). We hypothesized that mimicking the ovarian microenvironment in vitro by using an aggregate model of the ovary would provide a suitable niche for the isolation of ovarian stem cells from adult mouse and human ovaries and wanted to find out the main cellular pathway governing the proliferation of these stem cells. RESULTS We showed that ovarian aggregates take an example from ovary microenvironment in terms of expression of ovarian markers, hormone secretion and supporting the viability of the cells. We found that aggregates-derived stem cells proliferate in vitro as long-term while remained expression of germline markers. These ovarian stem cells differentiated to oocyte like cells in vitro spontaneously. Transplantation of these stem cells in to chemotherapy mouse ovary could restore ovarian structure. RNA-sequencing analysis revealed that interleukin6 is upregulated pathway in ovarian aggregate-derived stem cells. Our data showed that JAK/Stat3 signaling pathway which is activated downstream of IL6 is critical for ovarian stem cells proliferation. CONCLUSIONS We developed a platform that is highly reproducible for in vitro propagation of ovarian stem cells. Our study provides a primary insight into cellular pathway governing the proliferation of ovarian stem cells.
Collapse
Affiliation(s)
- Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed-Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Gynecology and Obstetrics, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran; Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh-Sadat Miri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
24
|
Kraunsoe S, Azami T, Pei Y, Martello G, Jones K, Boroviak T, Nichols J. Requirement for STAT3 and its target, TFCP2L1, in self-renewal of naïve pluripotent stem cells in vivo and in vitro. Biol Open 2023; 12:bio059650. [PMID: 36504370 PMCID: PMC9884119 DOI: 10.1242/bio.059650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated gradual loss of epiblast during diapause in embryos lacking components of the LIF/IL6 receptor. Here, we explore the requirement for the downstream signalling transducer andactivator of transcription STAT3 and its target, TFCP2L1, in maintenance of naïve pluripotency. Unlike conventional markers, such as NANOG, which remains high in epiblast until implantation, both STAT3 and TFCP2L1 proteins decline during blastocyst expansion, but intensify in the embryonic region after induction of diapause, as observed visually and confirmed using our image-analysis pipeline, consistent with our previous transcriptional expression data. Embryos lacking STAT3 or TFCP2L1 underwent catastrophic loss of most of the inner cell mass during the first few days of diapause, indicating involvement of signals in addition to LIF/IL6 for sustaining naïve pluripotency in vivo. By blocking MEK/ERK signalling from the morula stage, we could derive embryonic stem cells with high efficiency from STAT3 null embryos, but not those lacking TFCP2L1, suggesting a hitherto unknown additional role for this essential STAT3 target in transition from embryo to embryonic stem cells in vitro. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sophie Kraunsoe
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Department of Biology, University of Padua, Padova 35121, Italy
| | - Takuya Azami
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Yihan Pei
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | | | - Kenneth Jones
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thorsten Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 2022; 12:1023177. [PMID: 36591515 PMCID: PMC9800921 DOI: 10.3389/fonc.2022.1023177] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation. It can activate janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway. As one of the important signal transduction pathways in cells, JAK2/STAT3 signaling pathway plays a critical role in cell proliferation and differentiation by affecting the activation state of downstream effector molecules. The activation of JAK2/STAT3 signaling pathway is involved in tumorigenesis and development. It contributes to the formation of tumor inflammatory microenvironment and is closely related to the occurrence and development of many human tumors. This article focuses on the relationship between IL-6/JAK2/STAT3 signaling pathway and liver cancer, breast cancer, colorectal cancer, gastric cancer, lung cancer, pancreatic cancer and ovarian cancer, hoping to provide references for the research of cancer treatment targeting key molecules in IL-6/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoling Lang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| |
Collapse
|
26
|
Keniry A, Jansz N, Hickey PF, Breslin KA, Iminitoff M, Beck T, Gouil Q, Ritchie ME, Blewitt ME. A method for stabilising the XX karyotype in female mESC cultures. Development 2022; 149:285125. [PMID: 36355065 PMCID: PMC10112917 DOI: 10.1242/dev.200845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.
Collapse
Affiliation(s)
- Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelsey A Breslin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Megan Iminitoff
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Quentin Gouil
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
27
|
Valet M, Narbonne P. Formation of benign tumors by stem cell deregulation. PLoS Genet 2022; 18:e1010434. [PMID: 36301803 PMCID: PMC9612571 DOI: 10.1371/journal.pgen.1010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Within living organisms, stem cells respond to various cues, including to niche signals and growth factors. Niche signals originate from the stem cell's microenvironment and promote the undifferentiated state by preventing differentiation, allowing for stem cell self-renewal. On the other hand, growth factors promote stem cell growth and proliferation, while their sources comprise of a systemic input reflecting the animal's nutritional and metabolic status, and a localized, homeostatic feedback signal from the tissue that the stem cells serve. That homeostatic signal prevents unnecessary stem cell proliferation when the corresponding differentiated tissues already have optimal cell contents. Here, we recapitulate progresses made in our understanding of in vivo stem cell regulation, largely using simple models, and draw the conclusion that 2 types of stem cell deregulations can provoke the formation of benign tumors. Namely, constitutive niche signaling promotes the formation of undifferentiated "stem cell" tumors, while defective homeostatic signaling leads to the formation of differentiated tumors. Finally, we provide evidence that these general principles may be conserved in mammals and as such, may underlie benign tumor formation in humans, while benign tumors can evolve into cancer.
Collapse
Affiliation(s)
- Matthieu Valet
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Patrick Narbonne
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- * E-mail:
| |
Collapse
|
28
|
Sladeček S, Radaszkiewicz KA, Bőhmová M, Gybeľ T, Radaszkiewicz TW, Pacherník J. Dual specificity phosphatase 7 drives the formation of cardiac mesoderm in mouse embryonic stem cells. PLoS One 2022; 17:e0275860. [PMID: 36227898 PMCID: PMC9560500 DOI: 10.1371/journal.pone.0275860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity phosphatase 7 (DUSP7) is a protein belonging to a broad group of phosphatases that can dephosphorylate phosphoserine/phosphothreonine as well as phosphotyrosine residues within the same substrate. DUSP7 has been linked to the negative regulation of mitogen activated protein kinases (MAPK), and in particular to the regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). MAPKs play an important role in embryonic development, where their duration, magnitude, and spatiotemporal activity must be strictly controlled by other proteins, among others by DUSPs. In this study, we focused on the effect of DUSP7 depletion on the in vitro differentiation of mouse embryonic stem (ES) cells. We showed that even though DUSP7 knock-out ES cells do retain some of their basic characteristics, when it comes to differentiation, they preferentially differentiate towards neural cells, while the formation of early cardiac mesoderm is repressed. Therefore, our data indicate that DUSP7 is necessary for the correct formation of neuroectoderm and cardiac mesoderm during the in vitro differentiation of ES cells.
Collapse
Affiliation(s)
- Stanislava Sladeček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Bőhmová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
29
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
30
|
Cheng F, Li M, Thorne RF, Liu G, Yuwei Z, Wu M, Liu L. P21-activated kinase 4 Pak4 maintains embryonic stem cell pluripotency via Akt activation. Stem Cells 2022; 40:892-905. [PMID: 35896382 PMCID: PMC9585903 DOI: 10.1093/stmcls/sxac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Exploiting the pluripotent properties of embryonic stem cells (ESCs) holds great promise for regenerative medicine. Nevertheless, directing ESC differentiation into specialized cell lineages requires intricate control governed by both intrinsic and extrinsic factors along with the actions of specific signaling networks. Here, we reveal the involvement of the p21-activated kinase 4 (Pak4), a serine/threonine kinase, in sustaining murine ESC (mESC) pluripotency. Pak4 is highly expressed in R1 ESC cells compared with embryonic fibroblast cells and its expression is progressively decreased during differentiation. Manipulations using knockdown and overexpression demonstrated a positive relationship between Pak4 expression and the clonogenic potential of mESCs. Moreover, ectopic Pak4 expression increases reprogramming efficiency of Oct4-Klf4-Sox2-Myc-induced pluripotent stem cells (iPSCs) whereas Pak4-knockdown iPSCs were largely incapable of generating teratomas containing mesodermal, ectodermal and endodermal tissues, indicative of a failure in differentiation. We further establish that Pak4 expression in mESCs is transcriptionally driven by the core pluripotency factor Nanog which recognizes specific binding motifs in the Pak4 proximal promoter region. In turn, the increased levels of Pak4 in mESCs fundamentally act as an upstream activator of the Akt pathway. Pak4 directly binds to and phosphorylates Akt at Ser473 with the resulting Akt activation shown to attenuate downstream GSK3β signaling. Thus, our findings indicate that the Nanog-Pak4-Akt signaling axis is essential for maintaining mESC self-renewal potential with further importance shown during somatic cell reprogramming where Pak4 appears indispensable for multi-lineage specification.
Collapse
Affiliation(s)
- Fangyuan Cheng
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China
| | - Mingyue Li
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Guangzhi Liu
- Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Zhang Yuwei
- Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Mian Wu
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China.,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Lianxin Liu
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China
| |
Collapse
|
31
|
Riba A, Oravecz A, Durik M, Jiménez S, Alunni V, Cerciat M, Jung M, Keime C, Keyes WM, Molina N. Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning. Nat Commun 2022; 13:2865. [PMID: 35606383 PMCID: PMC9126911 DOI: 10.1038/s41467-022-30545-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
Despite the fact that the cell cycle is a fundamental process of life, a detailed quantitative understanding of gene regulation dynamics throughout the cell cycle is far from complete. Single-cell RNA-sequencing (scRNA-seq) technology gives access to these dynamics without externally perturbing the cell. Here, by generating scRNA-seq libraries in different cell systems, we observe cycling patterns in the unspliced-spliced RNA space of cell cycle-related genes. Since existing methods to analyze scRNA-seq are not efficient to measure cycling gene dynamics, we propose a deep learning approach (DeepCycle) to fit these patterns and build a high-resolution map of the entire cell cycle transcriptome. Characterizing the cell cycle in embryonic and somatic cells, we identify major waves of transcription during the G1 phase and systematically study the stages of the cell cycle. Our work will facilitate the study of the cell cycle in multiple cellular models and different biological contexts. Single-cell RNA-sequencing technology gives access to cell cycle dynamics without externally perturbing the cell. Here the authors present DeepCycle,a robust deep learning method to infer the cell cycle state in single cells from scRNA-seq data.
Collapse
|
32
|
Park S, Kwon W, Kim HY, Ji YR, Kim D, Kim W, Han JE, Cho GJ, Yun S, Kim MO, Ryoo ZY, Han SH, Park JK, Choi SK. Knockdown of Maged1 inhibits cell cycle progression and causes cell death in mouse embryonic stem cells. Differentiation 2022; 125:18-26. [DOI: 10.1016/j.diff.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
33
|
Gp130-Mediated STAT3 Activation Contributes to the Aggressiveness of Pancreatic Cancer through H19 Long Non-Coding RNA Expression. Cancers (Basel) 2022; 14:cancers14092055. [PMID: 35565185 PMCID: PMC9100112 DOI: 10.3390/cancers14092055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The signal transducer and activator of transcription 3 (STAT3) activation correlate with the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). We demonstrated that the autocrine/paracrine interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway contributes to the maintenance of stemness features and membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, and modulates transforming growth factor (TGF)-β1/Smad signaling-mediated epithelial-mesenchymal transition (EMT) and invasion through regulation of TGFβ-RII expression in PDAC cancer stem cell (CSC)-like cells. Furthermore, we demonstrated that p-STAT3 acts through the IL-6 or LIF/gp130/STAT3 pathway to access the active promoter region of metastasis-related long non-coding RNA H19 and contribute to its transcription in CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells exhibiting H19 expression is considered to be involved in the aggressiveness of PDAC, and inhibition of the gp130/STAT3 pathway is a promising strategy to target CSCs for the elimination of PDAC (146/150). Abstract Signaling pathways involving signal transducer and activator of transcription 3 (STAT3) play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we investigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway and their role in pancreatic CSCs. In PDAC CSC-like cells formed by culturing on a low attachment plate, autocrine/paracrine IL-6 or LIF contributes to gp130/STAT3 pathway activation. Using a gp130 inhibitor, we determined that the gp130/STAT3 pathway contributes to the maintenance of stemness features, the expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), and the invasion of PDAC CSC-like cells. The gp130/STAT3 pathway also modulates the transforming growth factor (TGF)-β1/Smad pathway required for epithelial-mesenchymal transition induction through regulation of TGFβ-RII expression in PDAC CSC-like cells. Furthermore, chromatin immunoprecipitation assays revealed that p-STAT3 can access the active promoter region of H19 to influence this metastasis-related long non-coding RNA and contribute to its transcription in PDAC CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells may eventually facilitate invasion and metastasis, two hallmarks of malignancy. We propose that inhibition of the gp130/STAT3 pathway provides a promising strategy for targeting CSCs for the treatment of PDAC.
Collapse
|
34
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
35
|
Omokehinde T, Jotte A, Johnson RW. gp130 Cytokines Activate Novel Signaling Pathways and Alter Bone Dissemination in ER+ Breast Cancer Cells. J Bone Miner Res 2022; 37:185-201. [PMID: 34477239 PMCID: PMC8828687 DOI: 10.1002/jbmr.4430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/09/2021] [Accepted: 08/29/2021] [Indexed: 02/03/2023]
Abstract
Breast cancer cells frequently home to the bone marrow, where they encounter signals that promote survival and quiescence or stimulate their proliferation. The interleukin-6 (IL-6) cytokines signal through the co-receptor glycoprotein130 (gp130) and are abundantly secreted within the bone microenvironment. Breast cancer cell expression of leukemia inhibitory factor (LIF) receptor (LIFR)/STAT3 signaling promotes tumor dormancy in the bone, but it is unclear which, if any of the cytokines that signal through LIFR, including LIF, oncostatin M (OSM), and ciliary neurotrophic factor (CNTF), promote tumor dormancy and which signaling pathways are induced. We first confirmed that LIF, OSM, and CNTF and their receptor components were expressed across a panel of breast cancer cell lines, although expression was lower in estrogen receptor-negative (ER- ) bone metastatic clones compared with parental cell lines. In estrogen receptor-positive (ER+ ) cells, OSM robustly stimulated phosphorylation of known gp130 signaling targets STAT3, ERK, and AKT, while CNTF activated STAT3 signaling. In ER- breast cancer cells, OSM alone stimulated AKT and ERK signaling. Overexpression of OSM, but not CNTF, reduced dormancy gene expression and increased ER+ breast cancer bone dissemination. Reverse-phase protein array revealed distinct and overlapping pathways stimulated by OSM, LIF, and CNTF with known roles in breast cancer progression and metastasis. In breast cancer patients, downregulation of the cytokines or receptors was associated with reduced relapse-free survival, but OSM was significantly elevated in patients with invasive disease and distant metastasis. Together these data indicate that the gp130 cytokines induce multiple signaling cascades in breast cancer cells, with a potential pro-tumorigenic role for OSM and pro-dormancy role for CNTF. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tolu Omokehinde
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alec Jotte
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
Pedone E, Failli M, Gambardella G, De Cegli R, La Regina A, di Bernardo D, Marucci L. β-catenin perturbations control differentiation programs in mouse embryonic stem cells. iScience 2022; 25:103756. [PMID: 35128356 PMCID: PMC8804270 DOI: 10.1016/j.isci.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Wnt/β-catenin pathway is involved in development, cancer, and embryonic stem cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still controversial. Here, by applying an in vitro system enabling inducible gene expression control, we report that moderate induction of transcriptionally active exogenous β-catenin in β-catenin null mouse ESCs promotes epiblast-like cell (EpiLC) derivation in vitro. Instead, in wild-type cells, moderate chemical pre-activation of the Wnt/β-catenin pathway promotes EpiLC in vitro derivation. Finally, we suggest that moderate β-catenin levels in β-catenin null mouse ESCs favor early stem cell commitment toward mesoderm if the exogenous protein is induced only in the “ground state” of pluripotency condition, or endoderm if the induction is maintained during the differentiation. Overall, our results confirm previous findings about the role of β-catenin in pluripotency and differentiation, while indicating a role for its doses in promoting specific differentiation programs. Moderate β-catenin levels promote EpiLCs derivation in vitro Chemical pre-activation of the Wnt pathway enhances ESC-EpiLC transition β-catenin overexpression tips the balance between mesoderm and endoderm Cell fate is influenced by the extent of β-catenin induction
Collapse
|
37
|
Fukui Y, Hirota Y, Saito-Fujita T, Aikawa S, Hiraoka T, Kaku T, Hirata T, Akaeda S, Matsuo M, Shimizu-Hirota R, Takeda N, Ikawa M, Osuga Y. Uterine Epithelial LIF Receptors Contribute to Implantation Chamber Formation in Blastocyst Attachment. Endocrinology 2021; 162:6353290. [PMID: 34402888 DOI: 10.1210/endocr/bqab169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/28/2022]
Abstract
Recent studies have demonstrated that the formation of an implantation chamber composed of a uterine crypt, an implantation-competent blastocyst, and uterine glands is a critical step in blastocyst implantation in mice. Leukemia inhibitory factor (LIF) activates signal transducer and activator of transcription 3 (STAT3) precursors via uterine LIF receptors (LIFRs), allowing successful blastocyst implantation. Our recent study revealed that the role of epithelial STAT3 is different from that of stromal STAT3. However, both are essential for blastocyst attachment, suggesting the different roles of epithelial and stromal LIFR in blastocyst implantation. However, how epithelial and stromal LIFR regulate the blastocyst implantation process remains unclear. To investigate the roles of LIFR in the uterine epithelium and stroma, we generated Lifr-floxed/lactoferrin (Ltf)-iCre (Lifr eKO) and Lifr-floxed/antimüllerian hormone receptor type 2 (Amhr2)-Cre (Lifr sKO) mice with deleted epithelial and stromal LIFR, respectively. Surprisingly, fertility and blastocyst implantation in the Lifr sKO mice were normal despite stromal STAT3 inactivation. In contrast, blastocyst attachment failed, and no implantation chambers were formed in the Lifr eKO mice with epithelial inactivation of STAT3. In addition, normal responsiveness to ovarian hormones was observed in the peri-implantation uteri of the Lifr eKO mice. These results indicate that the epithelial LIFR-STAT3 pathway initiates the formation of implantation chambers, leading to complete blastocyst attachment, and that stromal STAT3 regulates blastocyst attachment without stromal LIFR control. Thus, uterine epithelial LIFR is critical to implantation chamber formation and blastocyst attachment.
Collapse
Affiliation(s)
- Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
38
|
Labouesse C, Tan BX, Agley CC, Hofer M, Winkel AK, Stirparo GG, Stuart HT, Verstreken CM, Mulas C, Mansfield W, Bertone P, Franze K, Silva JCR, Chalut KJ. StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. Nat Commun 2021; 12:6132. [PMID: 34675200 PMCID: PMC8531294 DOI: 10.1038/s41467-021-26236-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Studies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification.
Collapse
Affiliation(s)
- Céline Labouesse
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Bao Xiu Tan
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Chibeza C Agley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Moritz Hofer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexander K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Giuliano G Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Hannah T Stuart
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christophe M Verstreken
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Carla Mulas
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - William Mansfield
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Paul Bertone
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Medicine, Alpert Medical School, Brown University, Providence, IR, USA
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - José C R Silva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Center for Cell Lineage and Atlas, Guangzhou Laboratory, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong Province, China.
| | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
39
|
Zheng ZV, Chen J, Lyu H, Lam SYE, Lu G, Chan WY, Wong GKC. Novel role of STAT3 in microglia-dependent neuroinflammation after experimental subarachnoid haemorrhage. Stroke Vasc Neurol 2021; 7:62-70. [PMID: 34645687 PMCID: PMC8899684 DOI: 10.1136/svn-2021-001028] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 01/22/2023] Open
Abstract
Background and purpose Signal transducer and activator of transcription 3 (STAT3) may contribute to the proinflammation in the central nervous system diseases by modulating the microglial responses. Thus, this study was intended to investigate the effect of STAT3 on microglia-dependent neuroinflammation and functional outcome after experimental subarachnoid haemorrhage (SAH). Methods The SAH model was established by endovascular perforation in the mouse. Real-time PCR (RtPCR) and western blot were used to examine the dynamic STAT3 signalling pathway responses after SAH. To clarify the role of the STAT3 signalling pathway in the microglia-dependent neuroinflammation after SAH, the microglia-specific STAT3 knockout (KO) mice were generated by the Cre-LoxP system. The neurological functions were assessed by Catwalk and Morris water maze tests. Neuronal loss after SAH was determined by immunohistochemistry staining. Microglial polarisation status after STAT3 KO was then examined by RtPCR and immunofluorescence. Results The STAT3 and Janus kinase-signal transducer 2 activated immediately with the upregulation and phosphorylation after SAH. Downstream factors and related mediators altered dynamically and accordingly. Microglial STAT3 deletion ameliorated the neurological impairment and alleviated the early neuronal loss after SAH. To investigate the underlying mechanism, we examined the microglial reaction after STAT3 KO. STAT3 deletion reversed the increase of microglia after SAH. Loss of STAT3 triggered the early morphological changes of microglia and primed microglia from M1 to M2 polarisation. Functionally, microglial STAT3 deletion suppressed the SAH-induced proinflammation and promoted the anti-inflammation in the early phase. Conclusions STAT3 is closely related to the microglial polarisation transition and modulation of microglia-dependent neuroinflammation. Microglial STAT3 deletion improved neurological function and neuronal survival probably through promoting M2 polarisation and anti-inflammatory responses after SAH. STAT3 may serve as a promising therapeutic target to alleviate early brain injury after SAH.
Collapse
Affiliation(s)
- Zhiyuan Vera Zheng
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Junfan Chen
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hao Lyu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sin Yu Erica Lam
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gang Lu
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wai Yee Chan
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - George K C Wong
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
40
|
Peron M, Dinarello A, Meneghetti G, Martorano L, Betto RM, Facchinello N, Tesoriere A, Tiso N, Martello G, Argenton F. Y705 and S727 are required for the mitochondrial import and transcriptional activities of STAT3, and for regulation of stem cell proliferation. Development 2021; 148:272054. [PMID: 34473253 PMCID: PMC8451946 DOI: 10.1242/dev.199477] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
The STAT3 transcription factor, acting both in the nucleus and mitochondria, maintains embryonic stem cell pluripotency and promotes their proliferation. In this work, using zebrafish, we determined in vivo that mitochondrial STAT3 regulates mtDNA transcription in embryonic and larval stem cell niches and that this activity affects their proliferation rates. As a result, we demonstrated that import of STAT3 inside mitochondria requires Y705 phosphorylation by Jak, whereas its mitochondrial transcriptional activity, as well as its effect on proliferation, depends on the MAPK target S727. These data were confirmed using mouse embryonic stem cells: although the Y705-mutated STAT3 cannot enter mitochondria, the S727 mutation does not affect import into the organelle and is responsible for STAT3-dependent mitochondrial transcription. Surprisingly, STAT3-dependent increase of mitochondrial transcription appears to be independent from STAT3 binding to STAT3-responsive elements. Finally, loss-of-function experiments, with chemical inhibition of the JAK/STAT3 pathway or genetic ablation of stat3 gene, demonstrated that STAT3 is also required for cell proliferation in the intestine of zebrafish. Summary: Mitochondrial import of STAT3 requires Y705 phosphorylation by Jak, whereas STAT3 mitochondrial transcriptional activity and its effect on proliferation depend on the MAPK target S727.
Collapse
Affiliation(s)
- Margherita Peron
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | - Laura Martorano
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Riccardo M Betto
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | | | | | - Natascia Tiso
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | |
Collapse
|
41
|
Francia M, Stortz M, Echegaray CV, Oses C, Verneri P, Petrone MV, Toro A, Waisman A, Miriuka S, Cosentino MS, Levi V, Guberman A. SUMO conjugation susceptibility of Akt/protein kinase B affects the expression of the pluripotency transcription factor Nanog in embryonic stem cells. PLoS One 2021; 16:e0254447. [PMID: 34242346 PMCID: PMC8270172 DOI: 10.1371/journal.pone.0254447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-β and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.
Collapse
Affiliation(s)
- Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Victoria Petrone
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ayelen Toro
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Waisman
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - María Soledad Cosentino
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
42
|
Yadav PS, Feng S, Cong Q, Kim H, Liu Y, Yang Y. Stat3 loss in mesenchymal progenitors causes Job syndrome-like skeletal defects by reducing Wnt/β-catenin signaling. Proc Natl Acad Sci U S A 2021; 118:e2020100118. [PMID: 34172578 PMCID: PMC8256036 DOI: 10.1073/pnas.2020100118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Job syndrome is a rare genetic disorder caused by STAT3 mutations and primarily characterized by immune dysfunction along with comorbid skeleton developmental abnormalities including osteopenia, recurrent fracture of long bones, and scoliosis. So far, there is no definitive cure for the skeletal defects in Job syndrome, and treatments are limited to management of clinical symptoms only. Here, we have investigated the molecular mechanism whereby Stat3 regulates skeletal development and osteoblast differentiation. We showed that removing Stat3 function in the developing limb mesenchyme or osteoprogenitor cells in mice resulted in shortened and bow limbs with multiple fractures in long bones that resembled the skeleton symptoms in the Job Syndrome. However, Stat3 loss did not alter chondrocyte differentiation and hypertrophy in embryonic development, while osteoblast differentiation was severely reduced. Genome-wide transcriptome analyses as well as biochemical and histological studies showed that Stat3 loss resulted in down-regulation of Wnt/β-catenin signaling. Restoration of Wnt/β-catenin signaling by injecting BIO, a small molecule inhibitor of GSK3, or crossing with a Lrp5 gain of function (GOF) allele, rescued the bone reduction phenotypes due to Stat3 loss to a great extent. These studies uncover the essential functions of Stat3 in maintaining Wnt/β-catenin signaling in early mesenchymal or osteoprogenitor cells and provide evidence that bone defects in the Job Syndrome are likely caused by Wnt/β-catenin signaling reduction due to reduced STAT3 activities in bone development. Enhancing Wnt/β-catenin signaling could be a therapeutic approach to reduce bone symptoms of Job syndrome patients.
Collapse
Affiliation(s)
- Prem Swaroop Yadav
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Shuhao Feng
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Hanjun Kim
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115;
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
43
|
Kim K, Park S, Kim H, Min S, Ku S, Seo J, Roh S. Enterococcus faecium L-15 Extract Enhances the Self-Renewal and Proliferation of Mouse Skin-Derived Precursor Cells. Probiotics Antimicrob Proteins 2021; 12:1492-1501. [PMID: 32162154 DOI: 10.1007/s12602-020-09635-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lactic acid bacteria (LAB) in the gastrointestinal tract have beneficial health effects. LAB activate the proliferation of intestinal stem cells and speed the recovery of damaged intestinal cells, but little is known about effect of LAB on other adult stem cells. In this study, a cell-free extract of Enterococcus faecium L-15 (L15) was exposed to mouse skin-derived precursor cells (SKPs), and the changes in characteristics associated with proliferation and self-renewal capacity were investigated. L15 increased the size of the spheres and the proliferation rate of SKPs. Cell cycle analysis revealed that cells in the S-phase increased after treatment with L15. In the L15-treated group, the total number of spheres significantly increased. The expression level of pluripotency marker genes also increased, while the mesenchymal lineage-related differentiation marker genes significantly decreased in the L15-treated group. The PI3K/Akt signaling pathway was activated by L15 in SKPs. These results indicate that L15 enhances proliferation and self-renewal of SKPs and may be used as a supplement for stem cell maintenance or application of stem cell therapy. This is the first report to investigate the functional effects of E. faecium on the proliferation and self-renewal capacity of SKPs.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Sangkyu Park
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea.,Biomedical Research Institute, Neoregen Biotech Co., Ltd., Gyeonggi-do, 16614, South Korea
| | - Hyewon Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jeongmin Seo
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea. .,Biomedical Research Institute, Neoregen Biotech Co., Ltd., Gyeonggi-do, 16614, South Korea.
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea.
| |
Collapse
|
44
|
Soh R, Hardy A, Zur Nieden NI. The FOXO signaling axis displays conjoined functions in redox homeostasis and stemness. Free Radic Biol Med 2021; 169:224-237. [PMID: 33878426 PMCID: PMC9910585 DOI: 10.1016/j.freeradbiomed.2021.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Previous views of reactive oxygen species (ROS) depicted them as harmful byproducts of metabolism as uncontrolled levels of ROS can lead to DNA damage and cell death. However, recent studies have shed light into the key role of ROS in the self-renewal or differentiation of the stem cell. The interplay between ROS levels, metabolism, and the downstream redox signaling pathways influence stem cell fate. In this review we will define ROS, explain how they are generated, and how ROS signaling can influence transcription factors, first and foremost forkhead box-O transcription factors, that shape not only the cellular redox state, but also stem cell fate. Now that studies have illustrated the importance of redox homeostasis and the role of redox signaling, understanding the mechanisms behind this interplay will further shed light into stem cell biology.
Collapse
Affiliation(s)
- Ruthia Soh
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA
| | - Ariana Hardy
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA; Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA.
| |
Collapse
|
45
|
Novel Target Opportunities in Non-Metastatic Castrate Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13102426. [PMID: 34067832 PMCID: PMC8157020 DOI: 10.3390/cancers13102426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023] Open
Abstract
Nearly one third of men will incur biochemical recurrence after treatment for localized prostate cancer. Androgen deprivation therapy (ADT) is the therapeutic mainstay; however, some patients will transition to a castrate resistant state (castrate resistant prostate cancer, CRPC). Subjects with CRPC may develop symptomatic metastatic disease (mCRPC) and incur mortality several years later. Prior to metastatic disease, however, men acquire non-metastatic CRPC (nmCRPC) which lends the unique opportunity for intervention to delay disease progression and symptoms. This review addresses current therapies for nmCRPC, as well as novel therapeutics and pathway strategies targeting men with nmCRPC.
Collapse
|
46
|
Di Giovannantonio LG, Acampora D, Omodei D, Nigro V, Barba P, Barbieri E, Chambers I, Simeone A. Direct repression of Nanog and Oct4 by OTX2 modulates the contribution of epiblast-derived cells to germline and somatic lineage. Development 2021; 148:263923. [PMID: 33999993 DOI: 10.1242/dev.199166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.
Collapse
Affiliation(s)
| | - Dario Acampora
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Daniela Omodei
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Tommaso De Amicis, 95, 80145 Naples, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania 'Luigi Vanvitelli', Via L. De Crecchio, 7, 80138 Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80087 Pozzuoli (NA), Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Elisa Barbieri
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Antonio Simeone
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
47
|
Wulansari N, Sulistio YA, Darsono WHW, Kim CH, Lee SH. LIF maintains mouse embryonic stem cells pluripotency by modulating TET1 and JMJD2 activity in a JAK2-dependent manner. STEM CELLS (DAYTON, OHIO) 2021; 39:750-760. [PMID: 33529470 DOI: 10.1002/stem.3345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022]
Abstract
The LIF-JAK2-STAT3 pathway is the central signal transducer that maintains undifferentiated mouse embryonic stem cells (mESCs), which is achieved by the recruitment of activated STAT3 to the master pluripotency genes and activation of the gene transcriptions. It remains unclear, however, how the epigenetic status required for the master gene transcriptions is built into LIF-treated mESC cultures. In this study, Jak2, but not Stat3, in the LIF canonical pathway, establishes an open epigenetic status in the pluripotency gene promoter regions. Upon LIF activation, cytosolic JAK2 was translocalized into the nucleus of mESCs, and reduced DNA methylation (5mC levels) along with increasing DNA hydroxymethylation (5hmC) in the pluripotent gene (Nanog/Pou5f1) promoter regions. In addition, the repressive histone codes H3K9m3/H3K27m3 were reduced by JAK2. Activated JAK2 directly interacted with the core epigenetic enzymes TET1 and JMJD2, modulating its activity and promotes the DNA and histone demethylation, respectively. The JAK2 effects were attained by tyrosine phosphorylation on the epigenetic enzymes. The effects of JAK2 phosphorylation on the enzymes were diverse, but all were merged to the epigenetic signatures associated with open DNA/chromatin structures. Taken together, these results reveal a previously unrecognized epigenetic regulatory role of JAK2 as an important mediator of mESC maintenance.
Collapse
Affiliation(s)
- Noviana Wulansari
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea.,Hanyang Biomedical Research Institute, Hanyang University, Seoul, South Korea
| | - Yanuar Alan Sulistio
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea.,Hanyang Biomedical Research Institute, Hanyang University, Seoul, South Korea
| | - Wahyu Handoko Wibowo Darsono
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea.,Hanyang Biomedical Research Institute, Hanyang University, Seoul, South Korea.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Chang-Hoon Kim
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, South Korea
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea.,Hanyang Biomedical Research Institute, Hanyang University, Seoul, South Korea.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
48
|
Kilmister EJ, Hansen L, Davis PF, Hall SRR, Tan ST. Cell Populations Expressing Stemness-Associated Markers in Vascular Anomalies. Front Surg 2021; 7:610758. [PMID: 33634164 PMCID: PMC7900499 DOI: 10.3389/fsurg.2020.610758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment of vascular anomalies (VAs) is mostly empirical and, in many instances unsatisfactory, as the pathogeneses of these heterogeneous conditions remain largely unknown. There is emerging evidence of the presence of cell populations expressing stemness-associated markers within many types of vascular tumors and vascular malformations. The presence of these populations in VAs is supported, in part, by the observed clinical effect of the mTOR inhibitor, sirolimus, that regulates differentiation of embryonic stem cells (ESCs). The discovery of the central role of the renin-angiotensin system (RAS) in regulating stem cells in infantile hemangioma (IH) provides a plausible explanation for its spontaneous and accelerated involution induced by β-blockers and ACE inhibitors. Recent work on targeting IH stem cells by inhibiting the transcription factor SOX18 using the stereoisomer R(+) propranolol, independent of β-adrenergic blockade, opens up exciting opportunities for novel treatment of IH without the β-adrenergic blockade-related side effects. Gene mutations have been identified in several VAs, involving mainly the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways. Existing cancer therapies that target these pathways engenders the exciting possibility of repurposing these agents for challenging VAs, with early results demonstrating clinical efficacy. However, there are several shortcomings with this approach, including the treatment cost, side effects, emergence of treatment resistance and unknown long-term effects in young patients. The presence of populations expressing stemness-associated markers, including transcription factors involved in the generation of induced pluripotent stem cells (iPSCs), in different types of VAs, suggests the possible role of stem cell pathways in their pathogenesis. Components of the RAS are expressed by cell populations expressing stemness-associated markers in different types of VAs. The gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways interact with different components of the RAS, which may influence cell populations expressing stemness-associated markers within VAs. The potential of targeting these populations by manipulating the RAS using repurposed, low-cost and commonly available oral medications, warrants further investigation. This review presents the accumulating evidence demonstrating the presence of stemness-associated markers in VAs, their expression of the RAS, and their interaction with gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways, in the pathogenesis of VAs.
Collapse
Affiliation(s)
| | - Lauren Hansen
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Betto RM, Diamante L, Perrera V, Audano M, Rapelli S, Lauria A, Incarnato D, Arboit M, Pedretti S, Rigoni G, Guerineau V, Touboul D, Stirparo GG, Lohoff T, Boroviak T, Grumati P, Soriano ME, Nichols J, Mitro N, Oliviero S, Martello G. Metabolic control of DNA methylation in naive pluripotent cells. Nat Genet 2021; 53:215-229. [PMID: 33526924 PMCID: PMC7116828 DOI: 10.1038/s41588-020-00770-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions.
Collapse
Affiliation(s)
- Riccardo M Betto
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Linda Diamante
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Neuroscience Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Stefania Rapelli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Danny Incarnato
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Mattia Arboit
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Giovanni Rigoni
- Department of Biology, University of Padua, Padua, Italy
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vincent Guerineau
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | | | - Tim Lohoff
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Thorsten Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy.
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
| | - Graziano Martello
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy.
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
50
|
Ye Y, Chen X, Zhang W. Mammalian SWI/SNF Chromatin Remodeling Complexes in Embryonic Stem Cells: Regulating the Balance Between Pluripotency and Differentiation. Front Cell Dev Biol 2021; 8:626383. [PMID: 33537314 PMCID: PMC7848206 DOI: 10.3389/fcell.2020.626383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/04/2022] Open
Abstract
The unique capability of embryonic stem cells (ESCs) to maintain and adjust the equilibrium between self-renewal and multi-lineage cellular differentiation contributes indispensably to the integrity of all developmental processes, leading to the advent of an organism in its adult form. The ESC fate decision to favor self-renewal or differentiation into specific cellular lineages largely depends on transcriptome modulations through gene expression regulations. Chromatin remodeling complexes play instrumental roles to promote chromatin structural changes resulting in gene expression changes that are key to the ESC fate choices governing the equilibrium between pluripotency and differentiation. BAF (Brg/Brahma-associated factors) or mammalian SWI/SNF complexes employ energy generated by ATP hydrolysis to change chromatin states, thereby governing the accessibility of transcriptional regulators that ultimately affect transcriptome and cell fate. Interestingly, the requirement of BAF complex in self-renewal and differentiation of ESCs has been recently shown by genetic studies through gene expression modulations of various BAF components in ESCs, although the precise molecular mechanisms by which BAF complex influences ESC fate choice remain largely underexplored. This review surveys these recent progresses of BAF complex on ESC functions, with a focus on its role of conditioning the pluripotency and differentiation balance of ESCs. A discussion of the mechanistic bases underlying the genetic requirements for BAF in ESC biology as well as the outcomes of its interplays with key transcription factors or other chromatin remodelers in ESCs will be highlighted.
Collapse
Affiliation(s)
- Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| |
Collapse
|