1
|
Transfection of Sponge Cells and Intracellular Localization of Cancer-Related MYC, RRAS2, and DRG1 Proteins. Mar Drugs 2023; 21:md21020119. [PMID: 36827160 PMCID: PMC9964533 DOI: 10.3390/md21020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The determination of the protein's intracellular localization is essential for understanding its biological function. Protein localization studies are mainly performed on primary and secondary vertebrate cell lines for which most protocols have been optimized. In spite of experimental difficulties, studies on invertebrate cells, including basal Metazoa, have greatly advanced. In recent years, the interest in studying human diseases from an evolutionary perspective has significantly increased. Sponges, placed at the base of the animal tree, are simple animals without true tissues and organs but with a complex genome containing many genes whose human homologs have been implicated in human diseases, including cancer. Therefore, sponges are an innovative model for elucidating the fundamental role of the proteins involved in cancer. In this study, we overexpressed human cancer-related proteins and their sponge homologs in human cancer cells, human fibroblasts, and sponge cells. We demonstrated that human and sponge MYC proteins localize in the nucleus, the RRAS2 in the plasma membrane, the membranes of the endolysosomal vesicles, and the DRG1 in the cell's cytosol. Despite the very low transfection efficiency of sponge cells, we observed an identical localization of human proteins and their sponge homologs, indicating their similar cellular functions.
Collapse
|
2
|
Clavaín L, Fernández-Pisonero I, Movilla N, Lorenzo-Martín LF, Nieto B, Abad A, García-Navas R, Llorente-González C, Sánchez-Martín M, Vicente-Manzanares M, Santos E, Alarcón B, García-Aznar JM, Dosil M, Bustelo XR. Characterization of mutant versions of the R-RAS2/TC21 GTPase found in tumors. Oncogene 2023; 42:389-405. [PMID: 36476833 PMCID: PMC9883167 DOI: 10.1038/s41388-022-02563-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
The R-RAS2 GTP hydrolase (GTPase) (also known as TC21) has been traditionally considered quite similar to classical RAS proteins at the regulatory and signaling levels. Recently, a long-tail hotspot mutation targeting the R-RAS2/TC21 Gln72 residue (Q72L) was identified as a potent oncogenic driver. Additional point mutations were also found in other tumors at low frequencies. Despite this, little information is available regarding the transforming role of these mutant versions and their relevance for the tumorigenic properties of already-transformed cancer cells. Here, we report that many of the RRAS2 mutations found in human cancers are highly transforming when expressed in immortalized cell lines. Moreover, the expression of endogenous R-RAS2Q72L is important for maintaining optimal levels of PI3K and ERK activities as well as for the adhesion, invasiveness, proliferation, and mitochondrial respiration of ovarian and breast cancer cell lines. Endogenous R-RAS2Q72L also regulates gene expression programs linked to both cell adhesion and inflammatory/immune-related responses. Endogenous R-RAS2Q72L is also quite relevant for the in vivo tumorigenic activity of these cells. This dependency is observed even though these cancer cell lines bear concurrent gain-of-function mutations in genes encoding RAS signaling elements. Finally, we show that endogenous R-RAS2, unlike the case of classical RAS proteins, specifically localizes in focal adhesions. Collectively, these results indicate that gain-of-function mutations of R-RAS2/TC21 play roles in tumor initiation and maintenance that are not fully redundant with those regulated by classical RAS oncoproteins.
Collapse
Affiliation(s)
- Laura Clavaín
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Isabel Fernández-Pisonero
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Nieves Movilla
- grid.11205.370000 0001 2152 8769Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - L. Francisco Lorenzo-Martín
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Blanca Nieto
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Antonio Abad
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Rósula García-Navas
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Clara Llorente-González
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Manuel Sánchez-Martín
- grid.11762.330000 0001 2180 1817Transgenesis Facility and Nucleus Platform for Research Services, University of Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Eugenio Santos
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Balbino Alarcón
- grid.5515.40000000119578126Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José M. García-Aznar
- grid.11205.370000 0001 2152 8769Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Mercedes Dosil
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors. Cell Rep 2022; 38:110522. [PMID: 35294890 DOI: 10.1016/j.celrep.2022.110522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 12/20/2022] Open
Abstract
A missense change in RRAS2 (Gln72 to Leu), analogous to the Gln61-to-Leu mutation of RAS oncoproteins, has been identified as a long-tail hotspot mutation in cancer and Noonan syndrome. However, the relevance of this mutation for in vivo tumorigenesis remains understudied. Here we show, using an inducible knockin mouse model, that R-Ras2Q72L triggers rapid development of a wide spectrum of tumors when somatically expressed in adult tissues. These tumors show limited overlap with those originated by classical Ras oncogenes. R-Ras2Q72L-driven tumors can be classified into different subtypes according to therapeutic susceptibility. Importantly, the most relevant R-Ras2Q72L-driven tumors are dependent on mTORC1 but independent of phosphatidylinositol 3-kinase-, MEK-, and Ral guanosine diphosphate (GDP) dissociation stimulator. This pharmacological vulnerability is due to the extensive rewiring by R-Ras2Q72L of pathways that orthogonally stimulate mTORC1 signaling. These findings demonstrate that RRAS2Q72L is a bona fide oncogenic driver and unveil therapeutic strategies for patients with cancer and Noonan syndrome bearing RRAS2 mutations.
Collapse
|
4
|
Weber SM, Brossier NM, Prechtl A, Barnes S, Wilson LS, Brosius SN, Longo JF, Carroll SL. R-Ras subfamily proteins elicit distinct physiologic effects and phosphoproteome alterations in neurofibromin-null MPNST cells. Cell Commun Signal 2021; 19:95. [PMID: 34530870 PMCID: PMC8447793 DOI: 10.1186/s12964-021-00773-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/31/2021] [Indexed: 12/31/2022] Open
Abstract
Background Loss of the Ras GTPase-activating protein neurofibromin promotes nervous system tumor pathogenesis in patients with neurofibromatosis type 1 (NF1). Neurofibromin loss potentially hyperactivates classic Ras (H-Ras, N-Ras, K-Ras), M-Ras, and R-Ras (R-Ras, R-Ras2/TC21) subfamily proteins. We have shown that classic Ras proteins promote proliferation and survival, but not migration, in malignant peripheral nerve sheath tumor (MPNST) cells. However, it is unclear whether R-Ras, R-Ras2 and M-Ras are expressed and hyperactivated in MPNSTs and, if so, whether they contribute to MPNST pathogenesis. We assessed the expression and activation of these proteins in MPNST cells and inhibited them to determine the effect this had on proliferation, migration, invasion, survival and the phosphoproteome. Methods NF1-associated (ST88-14, 90-8, NMS2, NMS-PC, S462, T265-2c) and sporadic (STS-26T, YST-1) MPNST lines were used. Cells were transfected with doxycycline-inducible vectors expressing either a pan-inhibitor of the R-Ras subfamily [dominant negative (DN) R-Ras] or enhanced green fluorescent protein (eGFP). Methodologies used included immunoblotting, immunocytochemistry, PCR, Transwell migration, 3H-thymidine incorporation, calcein cleavage assays and shRNA knockdowns. Proteins in cells with or without DN R-Ras expression were differentially labeled with SILAC and mass spectrometry was used to identify phosphoproteins and determine their relative quantities in the presence and absence of DN R-Ras. Validation of R-Ras and R-Ras2 action and R-Ras regulated networks was performed using genetic and/or pharmacologic approaches. Results R-Ras2 was uniformly expressed in MPNST cells, with R-Ras present in a major subset. Both proteins were activated in neurofibromin-null MPNST cells. Consistent with classical Ras inhibition, DN R-Ras and R-Ras2 knockdown inhibited proliferation. However, DN R-Ras inhibition impaired migration and invasion but not survival. Mass spectrometry-based phosphoproteomics identified thirteen protein networks distinctly regulated by DN R-Ras, including multiple networks regulating cellular movement and morphology. ROCK1 was a prominent mediator in these networks. DN R-Ras expression and RRAS and RRAS2 knockdown inhibited migration and ROCK1 phosphorylation; ROCK1 inhibition similarly impaired migration and invasion, altered cellular morphology and triggered the accumulation of large intracellular vesicles. Conclusions R-Ras proteins function distinctly from classic Ras proteins by regulating distinct signaling pathways that promote MPNST tumorigenesis by mediating migration and invasion. Plain English Summary Mutations of the NF1 gene potentially results in the activation of multiple Ras proteins, which are key regulators of many biologic effects. The protein encoded by the NF1 gene, neurofibromin, acts as an inhibitor of both classic Ras and R-Ras proteins; loss of neurofibromin could cause these Ras proteins to become persistently active, leading to the development of cancer. We have previously shown that three related Ras proteins (the classic Ras proteins) are highly activated in malignant peripheral nerve sheath tumor (MPNST) cells with neurofibromin loss and that they drive cancer cell proliferation and survival by activating multiple cellular signaling pathways. Here, we examined the expression, activation and action of R-Ras proteins in MPNST cells that have lost neurofibromin. Both R-Ras and R-Ras2 are expressed in MPNST cells and activated. Inhibition of R-Ras action inhibited proliferation, migration and invasion but not survival. We examined the activation of cytoplasmic signaling pathways in the presence and absence of R-Ras signaling and found that R-Ras proteins regulated 13 signaling pathways distinct from those regulated by classic Ras proteins. Closer study of an R-Ras regulated pathway containing the signaling protein ROCK1 showed that inhibition of either R-Ras, R-Ras2 or ROCK1 similarly impaired cellular migration and invasion and altered cellular morphology. Inhibition of R-Ras/R-Ras2 and ROCK1 signaling also triggered the accumulation of abnormal intracellular vesicles, indicating that these signaling molecules regulate the movement of proteins and other molecules in the cellular interior. Video Abstract
![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00773-4.
Collapse
Affiliation(s)
- Shannon M Weber
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nicole M Brossier
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Pediatrics, St. Louis Children's Hospital, St. Louis, USA
| | - Amanda Prechtl
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stephen Barnes
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Landon S Wilson
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stephanie N Brosius
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA. .,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA. .,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Ras2, the TC21/R-Ras2 Drosophila homologue, contributes to insulin signalling but is not required for organism viability. Dev Biol 2020; 461:172-183. [DOI: 10.1016/j.ydbio.2020.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
6
|
Wang K, Peng K. RRAS2 knockdown suppresses osteosarcoma progression by inactivating the MEK/ERK signaling pathway. Anticancer Drugs 2019; 30:933-939. [PMID: 31517733 DOI: 10.1097/cad.0000000000000799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant function of RRAS2 drives malignant transformation in a various of cancers. However, little information exists on the function of RRAS2 in tumorigenesis of osteosarcoma. In this study, we investigated the effect of RRAS2 on osteosarcoma progression and its underlying mechanism. The gene expression level and prognostic power of RRAS2 in osteosarcoma were first investigated using the data from the Gene Expression Omnibus database. Then RNA interference was performed to silence the expression of RRAS2 in osteosarcoma cells. Quantitative real-time-PCR and western blot were used to examine the gene and protein expressions of RRAS2 in osteosarcoma cells. In-vitro cancer proliferation and migration were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolum bromide solution and wound-healing assays, respectively. We found that RRAS2 was significantly upregulated in osteosarcoma cells and high expression of RRAS2 was associated with a poor prognosis for patients with osteosarcoma. RNA interference decreased the gene and protein expression of RRAS2, reduced in-vitro the proliferation and migration of osteosarcoma cells, and suppressed the activation of the MEK/ERK signaling pathway. RRAS2 as an adverse prognostic factor promoted cell proliferation and migration by activating the MEK/ERK signaling pathway, and may provide new therapeutic value for osteosarcoma.
Collapse
Affiliation(s)
- Kejun Wang
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou
| | - Kan Peng
- Department of Trauma Orthopaedics, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
7
|
Janapati S, Wurtzel J, Dangelmaier C, Manne BK, Bhavanasi D, Kostyak JC, Kim S, Holinstat M, Kunapuli SP, Goldfinger LE. TC21/RRas2 regulates glycoprotein VI-FcRγ-mediated platelet activation and thrombus stability. J Thromb Haemost 2018; 16:S1538-7836(22)02217-6. [PMID: 29883056 PMCID: PMC6286703 DOI: 10.1111/jth.14197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/27/2022]
Abstract
Essentials RAS proteins are expressed in platelets but their functions are largely uncharacterized. TC21/RRas2 is required for glycoprotein VI-induced platelet responses and for thrombus stability in vivo. TC21 regulates platelet aggregation by control of αIIb β3 integrin activation, via crosstalk with Rap1b. This is the first indication of functional importance of a proto-oncogenic RAS protein in platelets. SUMMARY Background Many RAS family small GTPases are expressed in platelets, including RAC, RHOA, RAP, and HRAS/NRAS/RRAS1, but most of their signaling and cellular functions remain poorly understood. Like RRAS1, TC21/RRAS2 reverses HRAS-induced suppression of integrin activation in CHO cells. However, a role for TC21 in platelets has not been explored. Objectives To determine TC21 expression in platelets, TC21 activation in response to platelet agonists, and roles of TC21 in platelet function in in vitro and in vivo thrombosis. Results We demonstrate that TC21 is expressed in human and murine platelets, and is activated in response to agonists for the glycoprotein (GP) VI-FcRγ immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor, in an Src-dependent manner. GPVI-induced platelet aggregation, integrin αIIb β3 activation, and α-granule and dense granule secretion, as well as phosphorylation of Syk, phospholipase Cγ2, AKT, and extracellular signal-regulated kinase, were inhibited in TC21-deficient platelets ex vivo. In contrast, these responses were normal in TC21-deficient platelets following stimulation with P2Y, protease-activated receptor 4 and C-type lectin receptor 2 receptor agonists, indicating that the function of TC21 in platelets is GPVI-FcRγ-ITAM-specific. TC21 was required for GPVI-induced activation of Rap1b. TC21-deficient mice did not show a significant delay in injury-induced thrombosis as compared with wild-type controls; however, thrombi were unstable. Hemostatic responses showed similar effects. Conclusions TC21 is essential for GPVI-FcRγ-mediated platelet activation and for thrombus stability in vivo via control of Rap1b and integrins.
Collapse
Affiliation(s)
- S Janapati
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - J Wurtzel
- The Sol Sherry Thrombosis Research Center and Department of Anatomy & Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - C Dangelmaier
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - B K Manne
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - D Bhavanasi
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - J C Kostyak
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - S Kim
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - M Holinstat
- Department of Pharmacology, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - S P Kunapuli
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - L E Goldfinger
- The Sol Sherry Thrombosis Research Center and Department of Anatomy & Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
8
|
Mendoza P, Martínez-Martín N, Bovolenta ER, Reyes-Garau D, Hernansanz-Agustín P, Delgado P, Diaz-Muñoz MD, Oeste CL, Fernández-Pisonero I, Castellano E, Martínez-Ruiz A, Alonso-Lopez D, Santos E, Bustelo XR, Kurosaki T, Alarcón B. R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes. Sci Signal 2018; 11:11/532/eaal1506. [DOI: 10.1126/scisignal.aal1506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System. J Neurosci 2018; 38:5096-5110. [PMID: 29720552 DOI: 10.1523/jneurosci.3364-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/14/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.
Collapse
|
10
|
Zhang X, Spiegelman NA, Nelson OD, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. eLife 2017; 6. [PMID: 28406396 PMCID: PMC5391209 DOI: 10.7554/elife.25158] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
The Ras family of GTPases are important in cell signaling and frequently mutated in human tumors. Understanding their regulation is thus important for studying biology and human diseases. Here, we report that a novel posttranslational mechanism, reversible lysine fatty acylation, regulates R-Ras2, a member of the Ras family. SIRT6, a sirtuin with established tumor suppressor function, regulates the lysine fatty acylation of R-Ras2. In mouse embryonic fibroblasts (MEFs), Sirt6 knockout (KO) increased R-Ras2 lysine fatty acylation. Lysine fatty acylation promotes the plasma membrane localization of R-Ras2 and its interaction with phosphatidylinositol 3-kinase PI3K, leading to activated Akt and increased cell proliferation. Our study establishes lysine fatty acylation as a previously unknown mechanism that regulates the Ras family of GTPases and provides an important mechanism by which SIRT6 functions as a tumor suppressor. DOI:http://dx.doi.org/10.7554/eLife.25158.001 Cancer is one of the leading causes of death worldwide. Proteins that cause and promote cancer are called oncoproteins. Other proteins, called tumor suppressors, counteract the oncoproteins but are frequently inactive or not present in cancer cells. SIRT6 is a tumor suppressor protein that has been studied in many different types of cancer. In 2013, researchers found that SIRT6 can remove chemical groups known as fatty acyl groups from the lysine residues of proteins. However, it was unclear whether and how this activity of SIRT6 contributes to its role as a tumor suppressor. Zhang et al. – who are part of the research group who performed the 2013 study – have now compared mouse cells that lack SIRT6 with normal mouse cells to find out which proteins SIRT6 removes fatty acyl groups from. A biochemical technique that makes use of synthetic fatty acids, which get incorporated into the mouse cells, showed that SIRT6 removes fatty acyl groups from a protein called R-Ras2. This protein is part of a large family of oncoproteins. Zhang et al. discovered that when R-Ras2 is tagged with the fatty acyl group it moves to the cell’s membrane and causes the cell to divide more rapidly. Hence, this promotes the growth and spread of cancerous tumors. SIRT6 acts as an eraser, removing the fatty acyl group, and therefore slows down the growth of cancer cells. Future experiments will aim to find out whether fatty acyl groups also control the activity of other oncoproteins that are similar to R-Ras2. If that is the case, drugs that can regulate the removal of fatty acyl groups from oncoproteins may eventually form new cancer treatment options. DOI:http://dx.doi.org/10.7554/eLife.25158.002
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Nicole A Spiegelman
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Ornella D Nelson
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Hui Jing
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Hening Lin
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, United States
| |
Collapse
|
11
|
Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 2015; 34:155-63. [PMID: 26619011 PMCID: PMC4744099 DOI: 10.1038/nbt.3391] [Citation(s) in RCA: 552] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022]
Abstract
Mutational hotspots indicate selective pressure across a population of tumor samples, but their prevalence within and across cancer types is incompletely characterized. An approach to detect significantly mutated residues, rather than methods that identify recurrently mutated genes, may uncover new biologically and therapeutically relevant driver mutations. Here we developed a statistical algorithm to identify recurrently mutated residues in tumour samples. We applied the algorithm to 11,119 human tumors, spanning 41 cancer types, and identified 470 hotspot somatic substitutions in 275 genes. We find that half of all human tumors possess one or more mutational hotspots with widespread lineage-, position-, and mutant allele-specific differences, many of which are likely functional. In total, 243 hotspots were novel and appeared to affect a broad spectrum of molecular function, including hotspots at paralogous residues of Ras-related small GTPases RAC1 and RRAS2. Redefining hotspots at mutant amino acid resolution will help elucidate the allele-specific differences in their function and could have important therapeutic implications.
Collapse
|
12
|
Spivak JL, Considine M, Williams DM, Talbot CC, Rogers O, Moliterno AR, Jie C, Ochs MF. Two clinical phenotypes in polycythemia vera. N Engl J Med 2014; 371:808-17. [PMID: 25162887 PMCID: PMC4211877 DOI: 10.1056/nejmoa1403141] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Polycythemia vera is the ultimate phenotypic consequence of the V617F mutation in Janus kinase 2 (encoded by JAK2), but the extent to which this mutation influences the behavior of the involved CD34+ hematopoietic stem cells is unknown. METHODS We analyzed gene expression in CD34+ peripheral-blood cells from 19 patients with polycythemia vera, using oligonucleotide microarray technology after correcting for potential confounding by sex, since the phenotypic features of the disease differ between men and women. RESULTS Men with polycythemia vera had twice as many up-regulated or down-regulated genes as women with polycythemia vera, in a comparison of gene expression in the patients and in healthy persons of the same sex, but there were 102 genes with differential regulation that was concordant in men and women. When these genes were used for class discovery by means of unsupervised hierarchical clustering, the 19 patients could be divided into two groups that did not differ significantly with respect to age, neutrophil JAK2 V617F allele burden, white-cell count, platelet count, or clonal dominance. However, they did differ significantly with respect to disease duration; hemoglobin level; frequency of thromboembolic events, palpable splenomegaly, and splenectomy; chemotherapy exposure; leukemic transformation; and survival. The unsupervised clustering was confirmed by a supervised approach with the use of a top-scoring-pair classifier that segregated the 19 patients into the same two phenotypic groups with 100% accuracy. CONCLUSIONS Removing sex as a potential confounder, we identified an accurate molecular method for classifying patients with polycythemia vera according to disease behavior, independently of their JAK2 V617F allele burden, and identified previously unrecognized molecular pathways in polycythemia vera outside the canonical JAK2 pathway that may be amenable to targeted therapy. (Funded by the Department of Defense and the National Institutes of Health.).
Collapse
Affiliation(s)
- Jerry L Spivak
- From the Division of Hematology, Department of Medicine (J.L.S., D.M.W., O.R., A.R.M.), Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center (M.C.), and the Basic Science Institute (C.C.T.), Johns Hopkins University School of Medicine, Baltimore; the Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago (C.J.); and the Department of Mathematics and Statistics, College of New Jersey, Ewing (M.F.O.)
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Larive RM, Moriggi G, Menacho-Márquez M, Cañamero M, de Álava E, Alarcón B, Dosil M, Bustelo XR. Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease. Nat Commun 2014; 5:3881. [PMID: 24826867 DOI: 10.1038/ncomms4881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/14/2014] [Indexed: 02/07/2023] Open
Abstract
R-Ras2 is a transforming GTPase that shares downstream effectors with Ras subfamily proteins. However, little information exists about the function of this protein in tumorigenesis and its signalling overlap with classical Ras GTPases. Here we show, by combining loss- and gain-of-function studies in breast cancer cells, mammary epithelial cells and mouse models, that endogenous R-Ras2 has a role in both primary breast tumorigenesis and the late metastatic steps of cancer cells in the lung parenchyma. R-Ras2 drives tumorigenesis in a phosphatidylinostiol-3 kinase (PI3K)-dependent and signalling autonomous manner. By contrast, its prometastatic role requires other priming oncogenic signals and the engagement of several downstream elements. R-Ras2 function is required even in cancer cells exhibiting constitutive activation of classical Ras proteins, indicating that these GTPases are not functionally redundant. Our results also suggest that application of long-term R-Ras2 therapies will result in the development of compensatory mechanisms in breast tumours.
Collapse
Affiliation(s)
- Romain M Larive
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [3]
| | - Giulia Moriggi
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Mauricio Menacho-Márquez
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Marta Cañamero
- Centro Nacional de Investigaciones Oncológicas (CNIO), 3 Fernández Almagro Street, 28029 Madrid, Spain
| | - Enrique de Álava
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [3] Hospital Universitario Virgen del Rocío, Manuel Suriot Avenue, 41013 Sevilla, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular "Severo Ochoa", CSIC-Madrid Autonomous University, 1 Nicolás Cabrera Street, 28049 Madrid, Spain
| | - Mercedes Dosil
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [3] Departamento de Bioquímica y Biología Molecular, University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Xosé R Bustelo
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| |
Collapse
|
14
|
Abstract
Activating mutations and overexpression of classical Ras subfamily members (K-Ras, N-Ras and H-Ras) have been widely investigated as key events in the development of human cancers. The role in cancer of its closest relatives, the Ras-related (RRas) subfamily members, has been less studied despite the fact that one of its members (TC21 or RRas2) is strongly transforming in vitro. Nevertheless, and in spite the paucity of publications, several studies have shown that wild type TC21 is overexpressed in different types of carcinomas and lymphomas. If the study of RRas members in cancer is still in its infancy, their role in physiological functions is even behind. For instance, T and B cell immunologists still use the vague term "Ras activation" without indication of what Ras family molecule is indeed intervening. In this view, we discuss the participation of TC21 in the specific process of T cell antigen receptor internalization from the immunological synapse and acquisition of membrane fragments from the antigen presenting cells by phagocytosis.
Collapse
Affiliation(s)
- Balbino Alarcón
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
15
|
Satija NK, Sharma D, Afrin F, Tripathi RP, Gangenahalli G. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage. PLoS One 2013; 8:e55769. [PMID: 23383279 PMCID: PMC3559497 DOI: 10.1371/journal.pone.0055769] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 01/04/2013] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) present in the bone marrow are the precursors of osteoblasts, chondrocytes and adipocytes, and hold tremendous potential for osteoregenerative therapy. However, achieving directed differentiation into osteoblasts has been a major concern. The use of lithium for enhancing osteogenic differentiation has been documented in animal models but its effect in humans is not clear. We, therefore, performed high throughput transcriptome analysis of lithium-treated hMSCs to identify altered gene expression and its relevance to osteogenic differentiation. Our results show suppression of proliferation and enhancement of alkaline phosphatase (ALP) activity upon lithium treatment of hMSCs under non-osteogenic conditions. Microarray profiling of lithium-stimulated hMSC revealed decreased expression of adipogenic genes (CEBPA, CMKLR1, HSD11B1) and genes involved in lipid biosynthesis. Interestingly, osteoclastogenic factors and immune responsive genes (IL7, IL8, CXCL1, CXCL12, CCL20) were also downregulated. Negative transcriptional regulators of the osteogenic program (TWIST1 and PBX1) were suppressed while genes involved in mineralization like CLEC3B and ATF4 were induced. Gene ontology analysis revealed enrichment of upregulated genes related to mesenchymal cell differentiation and signal transduction. Lithium priming led to enhanced collagen 1 synthesis and osteogenic induction of lithium pretreated MSCs resulted in enhanced expression of Runx2, ALP and bone sialoprotein. However, siRNA-mediated knockdown of RRAD, CLEC3B and ATF4 attenuated lithium-induced osteogenic priming, identifying a role for RRAD, a member of small GTP binding protein family, in osteoblast differentiation. In conclusion, our data highlight the transcriptome reprogramming potential of lithium resulting in higher propensity of lithium "primed" MSCs for osteoblastic differentiation.
Collapse
Affiliation(s)
- Neeraj Kumar Satija
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Brig. S K Mazumdar Marg, Timarpur, Delhi, India
| | - Deepa Sharma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Brig. S K Mazumdar Marg, Timarpur, Delhi, India
| | - Farhat Afrin
- Department of Biotechnology, Hamdard University, Hamdard Nagar, New Delhi, India
| | - Rajendra P. Tripathi
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Brig. S K Mazumdar Marg, Timarpur, Delhi, India
| | - Gurudutta Gangenahalli
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Brig. S K Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
16
|
Hasan MR, Chauhan SS, Sharma R, Ralhan R. siRNA-mediated downregulation of TC21 sensitizes esophageal cancer cells to cisplatin. World J Gastroenterol 2012; 18:4127-35. [PMID: 22919244 PMCID: PMC3422792 DOI: 10.3748/wjg.v18.i31.4127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/07/2012] [Accepted: 05/26/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the functional significance of TC21 in esophageal squamous cell carcinoma (ESCC).
METHODS: TC21 siRNA transfection was carried out using Hyperfectamine to knock down TC21, and transcripts were analyzed by reverse transcription-polymerase chain reaction and protein by Western blotting. We demonstrated the effect of TC21 downregulation of cell signaling in esophageal cancer cells by assessing the phosphorylation status of its downstream targets, phosphoinositide 3-kinase (PI3K), phosphatase and tensin homolog (PTEN), protein kinase B (pAkt), nuclear factor-κB (NF-κB) and cyclinD1 using specific antibodies. Cell survival analysis after cisplatin treatment was carried out by cell viability assay and cell cycle analysis using flow cytometry.
RESULTS: TC21 knockdown in human ESCC cell line TE13 cells, showed only a marginal increase (14.2%) in cell death compared with control cells. The expressions of the signaling proteins PI3K and pAkt, transcription factor NF-κB, and cell cycle protein cyclin D1 were markedly decreased in response to TC21 downregulation, whereas the level of pPTEN, an antagonist of PI3K, was increased. In addition, we evaluated the potential of TC21 as a putative target for sensitizing ESCC cells to the chemotherapeutic agent cisplatin. Increased cell death (38.4%) was observed in cells treated with cisplatin after TC21 knockdown compared with cells which were treated with cisplatin alone (20% cell death).
CONCLUSION: Results suggest that TC21 mediates its effects via the PI3K-Akt pathway, NF-κB and cyclin D1, and enhances chemoresistance in esophageal cancer cells.
Collapse
|
17
|
Larive RM, Abad A, Cardaba CM, Hernández T, Cañamero M, de Álava E, Santos E, Alarcón B, Bustelo XR. The Ras-like protein R-Ras2/TC21 is important for proper mammary gland development. Mol Biol Cell 2012; 23:2373-87. [PMID: 22535521 PMCID: PMC3374755 DOI: 10.1091/mbc.e12-01-0060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
R-Ras2/TC21 is a GTPase with high sequence and signaling similarity with Ras subfamily members. Although it has been extensively studied using overexpression studies in cell lines, its physiological role remains poorly characterized. Here we used RRas2-knockout mice expressing β-galactosidase under the regulation of the endogenous RRas2 promoter to investigate the function of this GTPase in vivo. Despite its expression in tissues critical for organismal viability, RRas2(-/-) mice show no major alterations in viability, growth rates, cardiovascular parameters, or fertility. By contrast, they display a marked and specific defect in the development of the mammary gland during puberty. In the absence of R-Ras2/TC21, this gland forms reduced numbers of terminal end buds (TEBs) and ductal branches, leading to a temporal delay in the extension and arborization of the gland tree in mammary fat pads. This phenotype is linked to cell-autonomous proliferative defects of epithelial cells present in TEBs. These cells also show reduced Erk activation but wild type-like levels of phosphorylated Akt. Using compound RRas2-, HRas-, and NRas-knockout mice, we demonstrate that these GTPases act in a nonsynergistic and nonadditive manner during this morphogenic process.
Collapse
Affiliation(s)
- Romain M Larive
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, E37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Macha MA, Matta A, Sriram U, Thakkar A, Shukla NK, Datta Gupta S, Ralhan R. Clinical significance of TC21 overexpression in oral cancer. J Oral Pathol Med 2009; 39:477-85. [DOI: 10.1111/j.1600-0714.2009.00854.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Calvo F, Crespo P. Structural and spatial determinants regulating TC21 activation by RasGRF family nucleotide exchange factors. Mol Biol Cell 2009; 20:4289-302. [PMID: 19692568 DOI: 10.1091/mbc.e09-03-0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RasGRF family guanine nucleotide exchange factors (GEFs) promote guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange on several Ras GTPases, including H-Ras and TC21. Although the mechanisms controlling RasGRF function as an H-Ras exchange factor are relatively well characterized, little is known about how TC21 activation is regulated. Here, we have studied the structural and spatial requirements involved in RasGRF 1/2 exchange activity on TC21. We show that RasGRF GEFs can activate TC21 in all of its sublocalizations except at the Golgi complex. We also demonstrate that TC21 susceptibility to activation by RasGRF GEFs depends on its posttranslational modifications: farnesylated TC21 can be activated by both RasGRF1 and RasGRF2, whereas geranylgeranylated TC21 is unresponsive to RasGRF2. Importantly, we show that RasGRF GEFs ability to catalyze exchange on farnesylated TC21 resides in its pleckstrin homology 1 domain, by a mechanism independent of localization and of its ability to associate to membranes. Finally, our data indicate that Cdc42-GDP can inhibit TC21 activation by RasGRF GEFs, demonstrating that Cdc42 negatively affects the functions of RasGRF GEFs irrespective of the GTPase being targeted.
Collapse
Affiliation(s)
- Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas - IDICAN - Universidad de Cantabria, Departamento de Biología Molecular, Facultad de Medicina, Santander, 39011 Cantabria, Spain
| | | |
Collapse
|
20
|
Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nat Immunol 2009; 10:880-8. [PMID: 19561613 DOI: 10.1038/ni.1749] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/12/2009] [Indexed: 12/11/2022]
Abstract
T cell antigen receptors (TCRs) and B cell antigen receptors (BCRs) transmit low-grade signals necessary for the survival and maintenance of mature cell pools. We show here that TC21, a small GTPase encoded by Rras2, interacted constitutively with both kinds of receptors. Expression of a dominant negative TC21 mutant in T cells produced a rapid decrease in cell viability, and Rras2(-/-) mice were lymphopenic, possibly as a result of diminished homeostatic proliferation and impaired T cell and B cell survival. In contrast, TC21 was overexpressed in several human lymphoid malignancies. Finally, the p110delta catalytic subunit of phosphatidylinositol-3-OH kinase (PI(3)K) was recruited to the TCR and BCR in a TC21-dependent way. Consequently, we propose TC21 directly links antigen receptors to PI(3)K-mediated survival pathways.
Collapse
|
21
|
Rokavec M, Schroth W, Amaral SM, Fritz P, Antoniadou L, Glavač D, Simon W, Schwab M, Eichelbaum M, Brauch H. A Polymorphism in the TC21 Promoter Associates with an Unfavorable Tamoxifen Treatment Outcome in Breast Cancer. Cancer Res 2008; 68:9799-808. [DOI: 10.1158/0008-5472.can-08-0247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
M-Ras evolved independently of R-Ras and its neural function is conserved between mammalian and ascidian, which lacks classical Ras. Gene 2008; 429:49-58. [PMID: 18977283 DOI: 10.1016/j.gene.2008.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/26/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Abstract
The Ras family small GTPases play a variety of essential roles in eukaryotes. Among them, classical Ras (H-Ras, K-Ras, and N-Ras) and its orthologues are conserved from yeast to human. In ascidians, which phylogenetically exist between invertebrates and vertebrates, the fibroblast growth factor (FGF)-Ras-MAP kinase signaling is required for the induction of neural system, notochord, and mesenchyme. Analyses of DNA databases revealed that no gene encoding classical Ras is present in the ascidians, Ciona intestinalis and Halocynthia roretzi, despite the presence of classical Ras-orthologous genes in nematode, fly, amphioxus, and fish. By contrast, both the ascidians contain single genes orthologous to Mras, Rras, Ral, Rap1, and Rap2. A single Mras orthologue exists from nematode to mammalian. Thus, Mras evolved in metazoans independently of other Ras family genes such as Rras. Whole-mount in situ hybridization showed that C. intestinalis Mras orthologue (Ci-Mras) was expressed in the neural complex of the ascidian juveniles after metamorphosis. Knockdown of Ci-Mras with morpholino antisense oligonucleotides in the embryos and larvae resulted in undeveloped tails and neuronal pigment cells, abrogation of the notochord marker brachyury expression, and perturbation of the neural marker Otx expression, as has been shown in the experiments of the FGF-Ras-MAP kinase signaling inhibition. Mammalian Ras and M-Ras mediate nerve growth factor-induced neuronal differentiation in rat PC12 cells by activating the ERK/MAP kinase pathway transiently and sustainedly, respectively. Activated Ci-M-Ras bound to target proteins of mammalian M-Ras and Ras. Exogenous expression of an activated Ci-M-Ras in PC12 cells caused ERK activation and induced neuritogenesis via the ERK pathway as do mammalian M-Ras and Ras. These results suggest that the ascidian M-Ras orthologue compensates for lacked classical Ras and plays essential roles in neurogenesis in the ascidian.
Collapse
|
23
|
Erdogan M, Pozzi A, Bhowmick N, Moses HL, Zent R. Transforming growth factor-beta (TGF-beta) and TGF-beta-associated kinase 1 are required for R-Ras-mediated transformation of mammary epithelial cells. Cancer Res 2008; 68:6224-31. [PMID: 18676846 DOI: 10.1158/0008-5472.can-08-0513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-beta (TGF-beta) cooperates with oncogenic members of the Ras superfamily to promote cellular transformation and tumor progression. Apart from the classic (H-, K-, and N-) Ras GTPases, only the R-Ras subfamily (R-Ras, R-Ras2/TC21, and R-Ras3/M-Ras) has significant oncogenic potential. In this study, we show that oncogenic R-Ras transformation of EpH4 cells requires TGF-beta signaling. When murine EpH4 cells were stably transfected with a constitutively active R-Ras(G38V) mutant, they were no longer sensitive to TGF-beta-mediated growth inhibition and showed increased proliferation and transformation in response to exogenous TGF-beta. R-Ras/EpH4 cells require TGF-beta signaling for transformation to occur and they produce significantly elevated levels of endogenous TGF-beta, which signals in an autocrine fashion. The effects of TGF-beta are independent of Smad2/3 activity and require activation of TGF-beta-associated kinase 1 (TAK1) and its downstream effectors c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase as well as the phosphoinositide 3-kinase/Akt and mammalian target of rapamycin pathways. Thus, TAK1 is a novel link between TGF-beta signaling and oncogenic R-Ras in the promotion of tumorigenesis.
Collapse
Affiliation(s)
- Mete Erdogan
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
24
|
Rosário M, Franke R, Bednarski C, Birchmeier W. The neurite outgrowth multiadaptor RhoGAP, NOMA-GAP, regulates neurite extension through SHP2 and Cdc42. ACTA ACUST UNITED AC 2007; 178:503-16. [PMID: 17664338 PMCID: PMC2064841 DOI: 10.1083/jcb.200609146] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal differentiation involves the formation and extension of neuronal processes. We have identified a novel regulator of neurite formation and extension, the neurite outgrowth multiadaptor, NOMA-GAP, which belongs to a new family of multiadaptor proteins with RhoGAP activity. We show that NOMA-GAP is essential for NGF-stimulated neuronal differentiation and for the regulation of the ERK5 MAP kinase and the Cdc42 signaling pathways downstream of NGF. NOMA-GAP binds directly to the NGF receptor, TrkA, and becomes tyrosine phosphorylated upon receptor activation, thus enabling recruitment and activation of the tyrosine phosphatase SHP2. Recruitment of SHP2 is required for the stimulation of neuronal process extension and for sustained activation of ERK5 downstream of NOMA-GAP. In addition, we show that NOMA-GAP promotes neurite outgrowth by tempering activation of the Cdc42/PAK signaling pathway in response to NGF. NOMA-GAP, through its dual function as a multiadaptor and RhoGAP protein, thus plays an essential role downstream of NGF in promoting neurite outgrowth and extension.
Collapse
Affiliation(s)
- Marta Rosário
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | |
Collapse
|
25
|
Erdogan M, Pozzi A, Bhowmick N, Moses HL, Zent R. Signaling pathways regulating TC21-induced tumorigenesis. J Biol Chem 2007; 282:27713-20. [PMID: 17656362 DOI: 10.1074/jbc.m703037200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TC21(R-Ras2), a Ras-related GTPase with transforming potential similar to H-, K- and N-Ras, is implicated in the pathogenesis of human cancers. Transforming growth factor beta (TGF-beta), a cytokine that plays a significant role in modulating tumorigenesis, normally prevents uncontrolled cell proliferation but paradoxically induces proliferation in H-Ras-transformed cancer cells. Although TC21 activates some pathways that mediate cellular transformation by the classical Ras proteins, the mechanisms through which TC21 induces tumor formation and how TGF-beta regulates TC21 transformed cells is not known. To better understand the role of TC21 in cancer progression, we overexpressed an activated G23V mutant of TC21 in a nontumorigenic murine mammary epithelial (EpH4) cell line. Mutant TC21-expressing cells were significantly more oncogenic than cells expressing activated G12V H-Ras both in vivo and in vitro. TC21-induced transformation and proliferation required activation of p38 MAPK, mTOR (the mammalian target of rapamycin), and phosphoinositide 3-kinase but not Akt/PKB. Transformation by TC21 rendered EpH4 cells insensitive to the growth inhibitory effects of TGF-beta, and the soft agar growth of these cells was increased upon TGF-beta stimulation. Despite losing responsiveness to TGF-beta-mediated growth inhibition, both Smad-dependent and independent pathways remained intact in TC21-transformed cells. Thus, overexpression of active TC21 in EpH4 cells induces tumorigenicity through the phosphoinositide 3-kinase, p38 MAPK, and mTOR pathways, and these cells lose their sensitivity to the normal growth inhibitory role of TGF-beta.
Collapse
Affiliation(s)
- Mete Erdogan
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
26
|
Pozzi A, Coffa S, Bulus N, Zhu W, Chen D, Chen X, Mernaugh G, Su Y, Cai S, Singh A, Brissova M, Zent R. H-Ras, R-Ras, and TC21 differentially regulate ureteric bud cell branching morphogenesis. Mol Biol Cell 2006; 17:2046-56. [PMID: 16467383 PMCID: PMC1415315 DOI: 10.1091/mbc.e05-08-0800] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The collecting system of the kidney, derived from the ureteric bud (UB), undergoes repetitive bifid branching events during early development followed by a phase of tubular growth and elongation. Although members of the Ras GTPase family control cell growth, differentiation, proliferation, and migration, their role in development of the collecting system of the kidney is unexplored. In this study, we demonstrate that members of the R-Ras family of proteins, R-Ras and TC21, are expressed in the murine collecting system at E13.5, whereas H-Ras is only detected at day E17.5. Using murine UB cells expressing activated H-Ras, R-Ras, and TC21, we demonstrate that R-Ras-expressing cells show increased branching morphogenesis and cell growth, TC21-expressing cells branch excessively but lose their ability to migrate, whereas H-Ras-expressing cells migrated the most and formed long unbranched tubules. These differences in branching morphogenesis are mediated by differential regulation/activation of the Rho family of GTPases and mitogen-activated protein kinases. Because most branching of the UB occurs early in development, it is conceivable that R-Ras and TC-21 play a role in facilitating branching and growth in early UB development, whereas H-Ras might favor cell migration and elongation of tubules, events that occur later in development.
Collapse
Affiliation(s)
- Ambra Pozzi
- Department of Research Medicine, Veterans Affairs Hospital, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rong R, Montalbano J, Jin W, Zhang J, Garling M, Sheikh MS, Huang Y. Oncogenic Ras-mediated downregulation of Gadd153/CHOP is required for Ras-induced cellular transformation. Oncogene 2005; 24:4867-72. [PMID: 15870698 DOI: 10.1038/sj.onc.1208660] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oncogenic Ras proteins transform cells via multiple downstream signaling cascades that are important for cell proliferation and survival. Gadd153, also known as CHOP, is a growth inhibitory and proapoptotic protein and its expression is upregulated by many agents that induce apoptosis. Here, we report our novel findings that oncogenic Ras downregulates Gadd153 expression at both protein and mRNA levels and that such downregulation occurs, at least in part, via decreases in GADD153 mRNA stability. Gadd153 downregulation is specific to oncogenic Ras since another oncogenic family member R-Ras2/TC21 does not downregulate Gadd153. We further demonstrate that the expression of exogenous Gadd153 interferes with Ras-induced oncogenic transformation, which suggests that downregulation of Gadd153 appears to be an important mechanism by which oncogenic Ras promotes cellular transformation. Thus, oncogenic Ras-mediated cellular transformation also involves downmodulation of important molecules such as Gadd153 that negatively regulate cell growth and survival.
Collapse
Affiliation(s)
- Rong Rong
- Department of Pharmacology, State University of New York, Upstate Medical University, 750 E Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The tumor oncoproteins HRAS, KRAS, and NRAS are the founding members of a larger family of at least 35 related human proteins. Using a somewhat broader definition of sequence similarity reveals a more extended superfamily of more than 170 RAS-related proteins. The RAS superfamily of GTP (guanosine triphosphate) hydrolysis-coupled signal transduction relay proteins can be subclassified into RAS, RHO, RAB, and ARF families, as well as the closely related Galpha family. The members of each family can, in turn, be arranged into evolutionarily conserved branches. These groupings reflect structural, biochemical, and functional conservation. Recent findings have provided insights into the signaling characteristics of representative members of most RAS superfamily branches. The analysis presented here may serve as a guide for predicting the function of numerous uncharacterized superfamily members. Also described are guanosine triphosphatases (GTPases) distinct from members of the RAS superfamily. These related proteins employ GTP binding and GTPase domains in diverse structural contexts, expanding the scope of their function in humans.
Collapse
|
29
|
Rodriguez-Viciana P, Sabatier C, McCormick F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol Cell Biol 2004; 24:4943-54. [PMID: 15143186 PMCID: PMC416418 DOI: 10.1128/mcb.24.11.4943-4954.2004] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ras family GTPases (RFGs) regulate signaling pathways that control multiple biological processes. How signaling specificity among the closely related family members is achieved is poorly understood. We have taken a proteomics approach to signaling by RFGs, and we have analyzed interactions of a panel of RFGs with a comprehensive group of known and potential effectors. We have found remarkable differences in the ability of RFGs to regulate the various isoforms of known effector families. We have also identified several proteins as novel effectors of RFGs with differential binding specificities to the various RFGs. We propose that specificity among RFGs is achieved by the differential regulation of combinations of effector families as well as by the selective regulation of different isoforms within an effector family. An understanding of this new level of complexity in the signaling pathways regulated by RFGs is necessary to understand how they carry out their many cellular functions. It will also likely have critical implications in the treatment of human diseases such as cancer.
Collapse
Affiliation(s)
- Pablo Rodriguez-Viciana
- Cancer Research Institute and Comprehensive Cancer Center, University of California, San Francisco, 2340 Sutter St., San Francisco, CA 94143, USA
| | | | | |
Collapse
|
30
|
Coleman ML, Marshall CJ, Olson MF. RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 2004; 5:355-66. [PMID: 15122349 DOI: 10.1038/nrm1365] [Citation(s) in RCA: 268] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mathew L Coleman
- Abramson Family Cancer Research Institute, BRB II/III, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | |
Collapse
|
31
|
Liu W, Shen X, Yang Y, Yin X, Xie J, Yan J, Jiang J, Liu W, Wang H, Sun M, Zheng Y, Gu J. Trihydrophobin 1 Is a New Negative Regulator of A-Raf Kinase. J Biol Chem 2004; 279:10167-75. [PMID: 14684750 DOI: 10.1074/jbc.m307994200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous work indicated that instead of binding to B-Raf or C-Raf, trihydrophobin 1 (TH1) specifically binds to A-Raf kinase both in vitro and in vivo. In this work, we investigated its function further. Using confocal microscopy, we found that TH1 colocalizes with A-Raf, which confirms our former results. The region of TH1 responsible for the interaction with A-Raf is mapped to amino acids 1-372. Coimmunoprecipitation experiments demonstrate that TH1 is associated with A-Raf in both quiescent and serum-stimulated cells. Wild type A-Raf binds increasingly to TH1 when it is activated by serum and/or upstream oncogenic Ras/Src compared with that of "kinase-dead" A-Raf. The latter can still bind to TH1 under the same experimental condition. The binding pattern of A-Raf implies that this interaction is mediated in part by the A-Raf kinase activity. As indicated by Raf protein kinase assays, TH1 inhibits A-Raf kinase, whereas neither B-Raf nor C-Raf kinase activity is influenced. Furthermore, we observed that TH1 inhibited cell cycle progression in TH1 stably transfected 7721 cells compared with mock cells, and flow cell cytometry analysis suggested that the TH1 stably transfected 7721 cells were G(0)/G(1) phase-arrested. Taken together, our data provide a clue to understanding the cellular function of TH1 on Raf isoform-specific regulation.
Collapse
Affiliation(s)
- Weicheng Liu
- State Key laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang Y, Rangwala F, Fulkerson PC, Ling B, Reed E, Cox AD, Kamholz J, Ratner N. Role of TC21/R-Ras2 in enhanced migration of neurofibromin-deficient Schwann cells. Oncogene 2004; 23:368-78. [PMID: 14724565 PMCID: PMC2854497 DOI: 10.1038/sj.onc.1207075] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurofibromatosis type 1 tumor suppressor protein neurofibromin, is a GTPase activating protein for H-, N-, K-, R-Ras and TC21/R-Ras2 proteins. We demonstrate that Schwann cells derived from Nf1-null mice have enhanced chemokinetic and chemotactic migration in comparison to wild-type controls. Surprisingly, this migratory phenotype is not inhibited by a farnesyltransferase inhibitor or dominant-negative (dn) (N17)H-Ras (which inhibits H-, N-, and K-Ras activation). We postulated that increased activity of R-Ras and/or TC21/R-Ras2, due to loss of Nf1, contributes to increased migration. Mouse Schwann cells (MSCs) express R-Ras and TC21/R-Ras2 and their specific guanine exchange factors, C3G and AND-34. Infection of Nf1-null MSCs with a dn(43N)R-Ras adenovirus (to inhibit both R-Ras and TC21/R-Ras2 activation) decreases migration by approximately 50%. Conversely, expression of activated (72L)TC21/R-Ras2, but not activated (38V)R-Ras, increases migration, suggesting a role of TC21/R-Ras2 activation in the migration of neurofibromin-deficient Schwann cells. TC21/R-Ras2 preferentially couples to the phosphatidylinositol 3-kinase (PI3-kinase) and MAP kinase pathways. Treatment with a PI3-kinase or MAP kinase inhibitor reduces Nf1-null Schwann cell migration, implicating these TC21 effectors in Schwann cell migration. These data reveal a key role for neurofibromin regulation of TC21/R-Ras2 in Schwann cells, a cell type critical to NF1 tumor pathogenesis.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Fatima Rangwala
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Patricia C Fulkerson
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Bo Ling
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Erin Reed
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Adrienne D Cox
- Departments of Radiation Oncology and Pharmacology, CB7512, Lineberger Cancer Center, UNC-CH, Chapel Hill, NC 27599, USA
| | - John Kamholz
- Department of Neurology, Wayne State University, Elliman Building 3206, 421 East Canfield, Detroit, MI 48201, USA
| | - Nancy Ratner
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
- Correspondence: N Ratner;
| |
Collapse
|
33
|
Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17:1263-93. [PMID: 12835716 DOI: 10.1038/sj.leu.2402945] [Citation(s) in RCA: 521] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) cascade couples signals from cell surface receptors to transcription factors, which regulate gene expression. Depending upon the stimulus and cell type, this pathway can transmit signals, which result in the prevention or induction of apoptosis or cell cycle progression. Thus, it is an appropriate pathway to target for therapeutic intervention. This pathway becomes more complex daily, as there are multiple members of the kinase and transcription factor families, which can be activated or inactivated by protein phosphorylation. The diversity of signals transduced by this pathway is increased, as different family members heterodimerize to transmit different signals. Furthermore, additional signal transduction pathways interact with the Raf/MEK/ERK pathway to regulate positively or negatively its activity, or to alter the phosphorylation status of downstream targets. Abnormal activation of this pathway occurs in leukemia because of mutations at Ras as well as genes in other pathways (eg PI3K, PTEN, Akt), which serve to regulate its activity. Dysregulation of this pathway can result in autocrine transformation of hematopoietic cells since cytokine genes such as interleukin-3 and granulocyte/macrophage colony-stimulating factor contain the transacting binding sites for the transcription factors regulated by this pathway. Inhibitors of Ras, Raf, MEK and some downstream targets have been developed and many are currently in clinical trials. This review will summarize our current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors. The prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.
Collapse
Affiliation(s)
- F Chang
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as a mutational target. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1653:25-40. [PMID: 12781369 DOI: 10.1016/s0304-419x(03)00016-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recent report has shown that activating mutations in the BRAF gene are present in a large percentage of human malignant melanomas and in a proportion of colon cancers. The vast majority of these mutations represent a single nucleotide change of T-A at nucleotide 1796 resulting in a valine to glutamic acid change at residue 599 within the activation segment of B-Raf. This exciting new discovery is the first time that a direct association between any RAF gene and human cancer has been reported. Raf proteins are also indirectly associated with cancer as effectors of activated Ras proteins, oncogenic forms of which are present in approximately one-third of all human cancers. BRAF and RAS mutations are rarely both present in the same cancers but the cancer types with BRAF mutations are similar to those with RAS mutations. This has been taken as evidence that the inappropriate regulation of the downstream ERKs (the p42/p44 MAP kinases) is a major contributing factor in the development of these cancers. Recent studies in mice with targeted mutations of the raf genes have confirmed that B-Raf is a far stronger activator of ERKs than its better studied Raf-1 homologue, even in cell types in which the protein is barely expressed. The explanation for this lies in a number of key differences in the regulation of B-Raf and Raf-1 activity. Constitutive phosphorylation of serine 445 of B-Raf leads to this protein having a higher basal kinase activity than Raf-1. Phosphorylation of threonine 598 and serine 601 within the activation loop of B-Raf at the plasma membrane also regulates its activity. The V599E mutation is thought to mimic these phosphorylations, resulting in a protein with high activity, leading to constitutive ERK activation. B-Raf now provides a critical new target to which drugs for treating malignant melanoma can be developed and, with this in mind, it is now important to gain clear insight into the biochemical properties of this relatively little characterised protein.
Collapse
Affiliation(s)
- Kathryn E Mercer
- Department of Biochemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | | |
Collapse
|
35
|
Takahashi K, Mitsui K, Yamanaka S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 2003; 423:541-5. [PMID: 12774123 DOI: 10.1038/nature01646] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 04/01/2003] [Indexed: 01/09/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells derived from early mammalian embryos. Their immortality and rapid growth make them attractive sources for stem cell therapies; however, they produce tumours (teratomas) when transplanted, which could preclude their therapeutic usage. Why ES cells, which lack chromosomal abnormalities, possess tumour-like properties is largely unknown. Here we show that mouse ES cells specifically express a Ras-like gene, which we have named ERas. We show that human HRasp, which is a recognized pseudogene, does not contain reported base substitutions and instead encodes the human orthologue of ERas. This protein contains amino-acid residues identical to those present in active mutants of Ras and causes oncogenic transformation in NIH 3T3 cells. ERas interacts with phosphatidylinositol-3-OH kinase but not with Raf. ERas-null ES cells maintain pluripotency but show significantly reduced growth and tumorigenicity, which are rescued by expression of ERas complementary DNA or by activated phosphatidylinositol-3-OH kinase. We conclude that the transforming oncogene ERas is important in the tumour-like growth properties of ES cells.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Laboratory of Animal Molecular Technology, Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
36
|
Ehrhardt A, Ehrhardt GRA, Guo X, Schrader JW. Ras and relatives--job sharing and networking keep an old family together. Exp Hematol 2002; 30:1089-106. [PMID: 12384139 DOI: 10.1016/s0301-472x(02)00904-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many members of the Ras superfamily of GTPases have been implicated in the regulation of hematopoietic cells, with roles in growth, survival, differentiation, cytokine production, chemotaxis, vesicle-trafficking, and phagocytosis. The well-known p21 Ras proteins H-Ras, N-Ras, K-Ras 4A, and K-Ras 4B are also frequently mutated in human cancer and leukemia. Besides the four p21 Ras proteins, the Ras subfamily of the Ras superfamily includes R-Ras, TC21 (R-Ras2), M-Ras (R-Ras3), Rap1A, Rap1B, Rap2A, Rap2B, RalA, and RalB. They exhibit remarkable overall amino acid identities, especially in the regions interacting with the guanine nucleotide exchange factors that catalyze their activation. In addition, there is considerable sharing of various downstream effectors through which they transmit signals and of GTPase activating proteins that downregulate their activity, resulting in overlap in their regulation and effector function. Relatively little is known about the physiological functions of individual Ras family members, although the presence of well-conserved orthologs in Caenorhabditis elegans suggests that their individual roles are both specific and vital. The structural and functional similarities have meant that commonly used research tools fail to discriminate between the different family members, and functions previously attributed to one family member may be shared with other members of the Ras family. Here we discuss similarities and differences in activation, effector usage, and functions of different members of the Ras subfamily. We also review the possibility that the differential localization of Ras proteins in different parts of the cell membrane may govern their responses to activation of cell surface receptors.
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
37
|
Edme N, Downward J, Thiery JP, Boyer B. Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. J Cell Sci 2002; 115:2591-601. [PMID: 12045229 DOI: 10.1242/jcs.115.12.2591] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell dissociation and cell migration are the two main components of epithelium-mesenchyme transitions (EMT). We previously demonstrated that Ras is required for the accomplishment of both of these processes during the EGF-induced EMT of the NBT-II rat carcinoma cell line in vitro. In this study,we examined the downstream targets of Ras that are responsible for the dissociation and motility of NBT-II cells. Overexpression of activated forms of c-Raf and MEK1 (a component of the mitogen-activated protein kinase pathway, MAPK) led to cell dissociation, as inferred by the loss of desmosomes from the cell periphery. By contrast, active PI3K, RalA and RalB did not induce desmosome breakdown. The MEK1 inhibitor PD098059 inhibited EGF- and Ras-induced cell dispersion, whereas the PI3K inhibitor LY294002 had no effect. Accordingly, among the partial loss-of-function mutants of Ras(RasV12) that were used to distinguish between downstream targets of Ras, we found that the Raf-specific Ras mutants RasV12S35 and RasV12E38 induced cell dissociation. The PI3K- and RalGDS-activating Ras mutants had, in contrast, no effect on cell dispersion. However, MEK1 was unable to promote cell motility,whereas RasV12S35 and RasV12E38 induced cell migration, suggesting that another Ras effector was responsible for cell motility. We found that the small GTPase Rac is necessary for EGF-mediated cell dispersion since overexpression of a dominant-negative mutant of Rac1 (Rac1N17) inhibited EGF-induced NBT-II cell migration. All stimuli that promoted cell migration also induced Rac activation. Finally, coexpression of active Rac1 and active MEK1 induced the motility of NBT-II cells, suggesting that Ras mediates NBT-II cell scattering through the coordinate activation of Rac and the Raf/MAPK pathway.
Collapse
Affiliation(s)
- Natacha Edme
- Laboratoire de Régulations Cellulaires et Oncogénése UMR146, Institut Curie Section de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay, France
| | | | | | | |
Collapse
|
38
|
Murphy GA, Graham SM, Morita S, Reks SE, Rogers-Graham K, Vojtek A, Kelley GG, Der CJ. Involvement of phosphatidylinositol 3-kinase, but not RalGDS, in TC21/R-Ras2-mediated transformation. J Biol Chem 2002; 277:9966-75. [PMID: 11788587 DOI: 10.1074/jbc.m109059200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oncogenic Ras and activated forms of the Ras-related protein TC21/R-Ras2 share similar abilities to alter cell proliferation. However, in contrast to Ras, we found previously that TC21 fails to activate the Raf-1 serine/threonine kinase. Thus, TC21 must utilize non-Raf effectors to regulate cell function. In this study, we determined that TC21 interacts strongly with some (RalGDS, RGL, RGL2/Rlf, AF6, and the phosphatidylinositol 3-kinase (PI3K) catalytic subunit p110delta), and weakly with other Ras small middle dotGTP-binding proteins. In addition, library screening identified novel TC21-interacting proteins. We also determined that TC21, similar to Ras, mediates activation of phospholipase Cepsilon. We then examined if RalGDS, a RalA guanine nucleotide exchange factor, or PI3K are effectors for TC21-mediated signaling and cell proliferation in murine fibroblasts. We found that overexpression of full-length RalGDS reduced the focus forming activity of activated TC21. Furthermore, expression of activated Ras, but not TC21, enhanced GTP loading on RalA. In fact, TC21 attenuated insulin-stimulated RalA small middle dotGTP formation. In contrast, like Ras, expression of activated TC21 resulted in membrane translocation and an increase in the PI3K-dependent phosphorylation of Akt, and inhibition of PI3K activity interfered with TC21 focus formation. Finally, unlike Ras, TC21 did not activate the Rac small GTPase, indicating that Ras may not activate Rac by PI3K. Taken together, these results suggest that PI3K, but not RalGDS, is an important mediator of cell proliferation by TC21.
Collapse
Affiliation(s)
- Gretchen A Murphy
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rong R, He Q, Liu Y, Sheikh MS, Huang Y. TC21 mediates transformation and cell survival via activation of phosphatidylinositol 3-kinase/Akt and NF-kappaB signaling pathway. Oncogene 2002; 21:1062-70. [PMID: 11850823 DOI: 10.1038/sj.onc.1205154] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 10/25/2001] [Accepted: 10/31/2001] [Indexed: 11/09/2022]
Abstract
The signaling pathways of TC21-mediated transformation and cell survival are not well-established. In this study, we have investigated the role of PI3-K/Akt signaling pathway in oncogenic-TC21-mediated transformation and cell survival. We found that oncogenic-TC21 stimulated the PI3-K activity. This was associated with the activation of Akt, a key component of PI3-K signaling pathway. We also found that TC21 interacted and formed complex with PI3-K. Mutations in the GTP-binding region of TC21, which enhanced GTP-binding potential of this protein, also stimulated its association with PI3-K, suggesting that PI3-K may preferentially interact with the GTP-bound form. Suppression of PI3-K and Akt by specific inhibitors LY294002 and Wortmannin reversed TC21-induced transformation. Likewise, inhibition of PI3-K activity by the PI3-K phosphotase PTEN reduced TC21-mediated focus formation in NIH3T3 cells. Investigation of TC21's effect on cell survival revealed that mutant-TC21 expressing cells were more resistant to etoposide- and cisplatin-induced cell death, and this was associated with the activation of anti-apoptotic protein NF-kappaB, a downstream target of Akt. Treatment of PI3-K inhibitor LY294002 significantly suppressed TC21-mediated NF-kappaB activation. In conclusion, we have identified PI3-K as an effector of TC21 and demonstrated that the PI3-K/Akt signaling pathway plays important roles in TC21-mediated transformation and cell survival.
Collapse
Affiliation(s)
- Rong Rong
- Department of Pharmacology, State University of New York, Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
40
|
Graham SM, Rogers-Graham K, Figueroa C, Der CJ, Vojtek AB. Analyses of TC21/R-Ras2 signaling and biological activity. Methods Enzymol 2001; 333:203-16. [PMID: 11400337 DOI: 10.1016/s0076-6879(01)33057-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- S M Graham
- Zoological Institute, Zurich University, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH. MAP kinases. Chem Rev 2001; 101:2449-76. [PMID: 11749383 DOI: 10.1021/cr000241p] [Citation(s) in RCA: 696] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Z Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chang F, McCubrey JA. P21(Cip1) induced by Raf is associated with increased Cdk4 activity in hematopoietic cells. Oncogene 2001; 20:4354-64. [PMID: 11466616 DOI: 10.1038/sj.onc.1204564] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Revised: 04/04/2001] [Accepted: 04/19/2001] [Indexed: 01/01/2023]
Abstract
To investigate the functions of the different Raf genes in hematopoietic cell proliferation, the capacities of beta-estradiol-regulated Delta Raf:ER genes to induce cell cycle regulatory gene expression and cell cycle progression in FDC-P1 cells were examined. Raf activation increased the expression of Cdk2, Cdk4, cyclin A, cyclin D, cyclin E, p21(Cip1) and c-Myc and decreased the expression of p27(Kip1) which are associated with G(1) progression. However only the cell clones with moderate Raf activation, i.e. FD/Delta Raf-1:ER and FD/Delta A-Raf:ER, successfully underwent cell proliferation. The cell clones with the highest Delta Raf activity, FD/Delta B-Raf:ER, underwent apoptosis before cell proliferation. p21(Cip1) induced by Raf activation specifically bound with Cdk4/cyclin D complexes but not Cdk2/cyclin E complexes and this binding was associated with the increased Cdk4 activity. However, no binding of p27(Kip1) with either Cdk2/cyclin E or Cdk4/cyclin D was observed. Thus Raf mediated growth was associated with elevated p21(Cip1) expression, which may specifically bind with and activate Cdk4/cyclin D complexes and with decreased p27(Kip1) expression.
Collapse
Affiliation(s)
- F Chang
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, NC 27858, USA
| | | |
Collapse
|
43
|
Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K, Kurokawa K, Mayer BJ, Maki K, Miyazaki JI, Matsuda M. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J 2001; 20:3333-41. [PMID: 11432821 PMCID: PMC125518 DOI: 10.1093/emboj/20.13.3333] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
C3G is a guanine nucleotide exchange factor (GEF) for Rap1, and is activated via Crk adaptor protein. To understand the physiological role of C3G, we generated C3G knockout mice. C3G(-/-) homozygous mice died before embryonic day 7.5. The lethality was rescued by the expression of the human C3G transgene, which could be excised upon the expression of Cre recombinase. From the embryo of this mouse, we prepared fibroblast cell lines, MEF-hC3G. Expression of Cre abolished the expression of C3G in MEF-hC3G and inhibited cell adhesion-induced activation of Rap1. The Cre-expressing MEF-hC3G showed impaired cell adhesion, delayed cell spreading and accelerated cell migration. The accelerated cell migration was suppressed by the expression of active Rap1, Rap2 and R-Ras. Expression of Epac and CalDAG-GEFI, GEFs for Rap1, also suppressed the accelerated migration of the C3G-deficient cells. This observation indicated that Rap1 activation was sufficient to complement the C3G deficiency. In conclusion, C3G-dependent activation of Rap1 is required for adhesion and spreading of embryonic fibroblasts and for the early embryogenesis of the mouse.
Collapse
Affiliation(s)
| | - Koichi Ikuta
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871,
Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Departmtent of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Laboratory of Molecular and Cellular Pathology, Department of Neuroscience, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA Corresponding author e-mail:
| | - Atsuo Ogura
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871,
Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Departmtent of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Laboratory of Molecular and Cellular Pathology, Department of Neuroscience, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA Corresponding author e-mail:
| | - Junichiro Matsuda
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871,
Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Departmtent of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Laboratory of Molecular and Cellular Pathology, Department of Neuroscience, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA Corresponding author e-mail:
| | - Naoki Mochizuki
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871,
Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Departmtent of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Laboratory of Molecular and Cellular Pathology, Department of Neuroscience, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA Corresponding author e-mail:
| | - Kazuo Nagashima
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871,
Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Departmtent of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Laboratory of Molecular and Cellular Pathology, Department of Neuroscience, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA Corresponding author e-mail:
| | | | - Bruce J. Mayer
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871,
Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Departmtent of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Laboratory of Molecular and Cellular Pathology, Department of Neuroscience, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA Corresponding author e-mail:
| | - Kazushige Maki
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871,
Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Departmtent of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Laboratory of Molecular and Cellular Pathology, Department of Neuroscience, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA Corresponding author e-mail:
| | - Jun-ichi Miyazaki
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871,
Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Departmtent of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Laboratory of Molecular and Cellular Pathology, Department of Neuroscience, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA Corresponding author e-mail:
| | - Michiyuki Matsuda
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871,
Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Departmtent of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Laboratory of Molecular and Cellular Pathology, Department of Neuroscience, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA Corresponding author e-mail:
| |
Collapse
|
44
|
Rosário M, Paterson HF, Marshall CJ. Activation of the Ral and phosphatidylinositol 3' kinase signaling pathways by the ras-related protein TC21. Mol Cell Biol 2001; 21:3750-62. [PMID: 11340168 PMCID: PMC87018 DOI: 10.1128/mcb.21.11.3750-3762.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TC21 is a member of the Ras superfamily of small GTP-binding proteins that, like Ras, has been implicated in the regulation of growth-stimulating pathways. We have previously identified the Raf/mitogen-activated protein kinase pathway as a direct TC21 effector pathway required for TC21-induced transformation (M. Rosário, H. F. Paterson, and C. J. Marshall, EMBO J. 18:1270-1279, 1999). In this study we have identified two further effector pathways for TC21, which contribute to TC21-stimulated transformation: the phosphatidylinositol 3' kinase (PI-3K) and Ral signaling pathways. Expression of constitutively active TC21 leads to the activation of Ral A and the PI-3K-dependent activation of Akt/protein kinase B. Strong activation of the PI-3K/Akt pathway is seen even with very low levels of TC21 expression, suggesting that TC21 may be a key small GTPase-regulator of PI-3K. TC21-induced alterations in cellular morphology in NIH 3T3 and PC12 cells are also PI-3K dependent. On the other hand, activation of the Ral pathway by TC21 is required for TC21-stimulated DNA synthesis but not transformed morphology. We show that inhibition of Ral signaling blocks DNA synthesis in human tumor cell lines containing activating mutations in TC21, demonstrating for the first time that this pathway is required for the proliferation of human tumor cells. Finally, we provide mechanisms for the activation of these pathways, namely, the direct in vivo interaction of TC21 with guanine nucleotide exchange factors for Ral, resulting in their translocation to the plasma membrane, and the direct interaction of TC21 with PI-3K. In both cases, the effector domain region of TC21 is required since point mutations in this region can interfere with activation of downstream signaling.
Collapse
Affiliation(s)
- M Rosário
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | | | |
Collapse
|
45
|
Hüser M, Luckett J, Chiloeches A, Mercer K, Iwobi M, Giblett S, Sun XM, Brown J, Marais R, Pritchard C. MEK kinase activity is not necessary for Raf-1 function. EMBO J 2001; 20:1940-51. [PMID: 11296227 PMCID: PMC125235 DOI: 10.1093/emboj/20.8.1940] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Raf-1 protein kinase has been identified as an integral component of the Ras/Raf/MEK/ERK signalling pathway in mammals. Activation of Raf-1 is achieved by RAS:GTP binding and other events at the plasma membrane including tyrosine phosphorylation at residues 340/341. We have used gene targeting to generate a 'knockout' of the raf-1 gene in mice as well as a rafFF mutant version of endogenous Raf-1 with Y340FY341F mutations. Raf-1(-/-) mice die in embryogenesis and show vascular defects in the yolk sac and placenta as well as increased apoptosis of embryonic tissues. Cell proliferation is not affected. Raf-1 from cells derived from raf-1(FF/FF) mice has no detectable activity towards MEK in vitro, and yet raf-1(FF/FF) mice survive to adulthood, are fertile and have an apparently normal phenotype. In cells derived from both the raf-1(-/-) and raf-1(FF/FF) mice, ERK activation is normal. These results strongly argue that MEK kinase activity of Raf-1 is not essential for normal mouse development and that Raf-1 plays a key role in preventing apoptosis.
Collapse
Affiliation(s)
| | | | - Antonio Chiloeches
- Department of Biochemistry,
MRC Toxicology Unit and Division of Biomedical Services, University of Leicester, University Road, Leicester LE1 7RH and Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK Corresponding author e-mail:
M.Hüser, J.Luckett and A.Chiloeches contributed equally to this work
| | | | | | | | - Xiao-Ming Sun
- Department of Biochemistry,
MRC Toxicology Unit and Division of Biomedical Services, University of Leicester, University Road, Leicester LE1 7RH and Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK Corresponding author e-mail:
M.Hüser, J.Luckett and A.Chiloeches contributed equally to this work
| | - Jane Brown
- Department of Biochemistry,
MRC Toxicology Unit and Division of Biomedical Services, University of Leicester, University Road, Leicester LE1 7RH and Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK Corresponding author e-mail:
M.Hüser, J.Luckett and A.Chiloeches contributed equally to this work
| | - Richard Marais
- Department of Biochemistry,
MRC Toxicology Unit and Division of Biomedical Services, University of Leicester, University Road, Leicester LE1 7RH and Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK Corresponding author e-mail:
M.Hüser, J.Luckett and A.Chiloeches contributed equally to this work
| | - Catrin Pritchard
- Department of Biochemistry,
MRC Toxicology Unit and Division of Biomedical Services, University of Leicester, University Road, Leicester LE1 7RH and Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK Corresponding author e-mail:
M.Hüser, J.Luckett and A.Chiloeches contributed equally to this work
| |
Collapse
|
46
|
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22:153-83. [PMID: 11294822 DOI: 10.1210/edrv.22.2.0428] [Citation(s) in RCA: 1318] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.
Collapse
Affiliation(s)
- G Pearson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2001. [PMID: 11023813 DOI: 10.1042/0264-6021: 3510289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.
Collapse
|
48
|
Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2001. [PMID: 11023813 DOI: 10.1042/0264-6021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.
Collapse
|
49
|
Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2001. [PMID: 11023813 DOI: 10.1042/0264-6021:3510289] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.
Collapse
|
50
|
Abstract
Small GTP-binding proteins (G proteins) exist in eukaryotes from yeast to human and constitute a superfamily consisting of more than 100 members. This superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Sar1/Arf, and Ran families. They regulate a wide variety of cell functions as biological timers (biotimers) that initiate and terminate specific cell functions and determine the periods of time for the continuation of the specific cell functions. They furthermore play key roles in not only temporal but also spatial determination of specific cell functions. The Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. Many upstream regulators and downstream effectors of small G proteins have been isolated, and their modes of activation and action have gradually been elucidated. Cascades and cross-talks of small G proteins have also been clarified. In this review, functions of small G proteins and their modes of activation and action are described.
Collapse
Affiliation(s)
- Y Takai
- Department of Molecular Biology, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Japan.
| | | | | |
Collapse
|