1
|
Gebert JT, Scribano FJ, Engevik KA, Huleatt EM, Eledge MR, Dorn LE, Philip AA, Kawagishi T, Greenberg HB, Patton JT, Hyser JM. Viroporin activity is necessary for intercellular calcium signals that contribute to viral pathogenesis. SCIENCE ADVANCES 2025; 11:eadq8115. [PMID: 39823322 PMCID: PMC11740935 DOI: 10.1126/sciadv.adq8115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, NSP4, induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea. This implicates nonstructural protein 4 (NSP4) as a virulence factor and provides mechanistic insight into its mode of action. Critically, this signaling induces a transcriptional signature characteristic of interferon-independent innate immune activation, which is not observed in response to a mutant NSP4 that does not conduct calcium. This implicates calcium dysregulation as a means of pathogen recognition, a theme broadly applicable to calcium-altering pathogens beyond rotavirus.
Collapse
Affiliation(s)
- J. Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca J. Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan M. Huleatt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael R. Eledge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E. Dorn
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Asha A. Philip
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Takahiro Kawagishi
- Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Gebert JT, Scribano FJ, Engevik KA, Philip AA, Kawagishi T, Greenberg HB, Patton JT, Hyser JM. Viroporin activity from rotavirus nonstructural protein 4 induces intercellular calcium waves that contribute to pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592929. [PMID: 38765992 PMCID: PMC11100692 DOI: 10.1101/2024.05.07.592929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acute gastroenteritis remains the second leading cause of death among children under the age of 5 worldwide. While enteric viruses are the most common etiology, the drivers of their virulence remain incompletely understood. We recently found that cells infected with rotavirus, the most prevalent enteric virus in infants and young children, initiate hundreds of intercellular calcium waves that enhance both fluid secretion and viral spread. Understanding how rotavirus triggers intercellular calcium waves may allow us to design safer, more effective vaccines and therapeutics, but we still lack a mechanistic understanding of this process. In this study, we used existing virulent and attenuated rotavirus strains, as well as reverse engineered recombinants, to investigate the role of rotavirus nonstructural protein 4 (NSP4) in intercellular calcium wave induction using in vitro , organoid, and in vivo model systems. We found that the capacity to induce purinergic intercellular calcium waves (ICWs) segregated with NSP4 in both simian and murine-like rotavirus backgrounds, and NSP4 expression alone was sufficient to induce ICWs. NSP4's ability to function as a viroporin, which conducts calcium out of the endoplasmic reticulum, was necessary for ICW induction. Furthermore, viroporin activity and the resulting ICWs drove transcriptional changes indicative of innate immune activation, which were lost upon attenuation of viroporin function. Multiple aspects of RV disease severity in vivo correlated with the generation of ICWs, identifying a critical link between viroporin function, intercellular calcium waves, and enteric viral virulence.
Collapse
|
3
|
Vetter J, Lee M, Eichwald C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024; 16:668. [PMID: 38793550 PMCID: PMC11125917 DOI: 10.3390/v16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
Collapse
Affiliation(s)
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.L.)
| |
Collapse
|
4
|
Deza Leon M, Otto WR, Danziger-Isakov L, Kumar A, Scaggs Huang F. Infectious Diseases Evaluation of the Child With Suspected Hemophagocytic Lymphohistiocytosis. J Pediatric Infect Dis Soc 2024; 13:220-227. [PMID: 38263470 DOI: 10.1093/jpids/piae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of excessive and maladaptive inflammation. In this review, we discuss how the clinical and laboratory features of HLH overlap with infection and propose a diagnostic and treatment strategy to identify patients with infections mimicking HLH.
Collapse
Affiliation(s)
- Maria Deza Leon
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - William R Otto
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lara Danziger-Isakov
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashish Kumar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Felicia Scaggs Huang
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Xia X, Cheng A, Wang M, Ou X, Sun D, Mao S, Huang J, Yang Q, Wu Y, Chen S, Zhang S, Zhu D, Jia R, Liu M, Zhao XX, Gao Q, Tian B. Functions of Viroporins in the Viral Life Cycle and Their Regulation of Host Cell Responses. Front Immunol 2022; 13:890549. [PMID: 35720341 PMCID: PMC9202500 DOI: 10.3389/fimmu.2022.890549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.
Collapse
Affiliation(s)
- Xiaoyan Xia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
6
|
Griffin BD, Corredor JC, Pei Y, Nagy É. Downregulation of Cell Surface Major Histocompatibility Complex Class I Expression Is Mediated by the Left-End Transcription Unit of Fowl Adenovirus 9. Viruses 2021; 13:v13112211. [PMID: 34835017 PMCID: PMC8619926 DOI: 10.3390/v13112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/16/2023] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules play a critical role in the host’s antiviral response by presenting virus-derived antigenic peptides to cytotoxic T lymphocytes (CTLs), enabling the clearance of virus-infected cells. Human adenoviruses evade CTL-mediated cell lysis, in part, by interfering directly with the MHC-I antigen presentation pathway through the expression of E3-19K, which binds both MHC-I and the transporter associated with antigen processing protein and sequestering MHC-I within the endoplasmic reticulum. Fowl adenoviruses have no homologues of E3-19K. Here, we show that representative virus isolates of the species Fowl aviadenovirus C, Fowl aviadenovirus D, and Fowl aviadenovirus E downregulate the cell surface expression of MHC-I in chicken hepatoma cells, resulting in 71%, 11%, and 14% of the baseline expression level, respectively, at 12 h post-infection. Furthermore, this work reports that FAdV-9 downregulates cell surface MHC-I through a minimum of two separate mechanisms—a lysosomal-independent mechanism that requires the presence of the fowl adenovirus early 1 (FE1) transcription unit located within the left terminal genomic region between nts 1 and 6131 and a lysosomal-dependent mechanism that does not require the presence of FE1. These results establish a new functional role for the FE1 transcription unit in immune evasion. These studies provide important new information about the immune evasion of FAdVs and will enhance our understanding of the pathogenesis of inclusion body hepatitis and advance the progress made in next-generation FAdV-based vectors.
Collapse
Affiliation(s)
| | | | | | - Éva Nagy
- Correspondence: ; Tel.: +1-519-824-4120
| |
Collapse
|
7
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
8
|
Kumar D, Singh A, Kumar P, Uversky VN, Rao CD, Giri R. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome. Int J Biol Macromol 2020; 144:892-908. [PMID: 31739058 PMCID: PMC7112477 DOI: 10.1016/j.ijbiomac.2019.09.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major cause of severe acute gastroenteritis in the infants and young children. The past decade has evidenced the role of intrinsically disordered proteins/regions (IDPs)/(IDPRs) in viral and other diseases. In general, (IDPs)/(IDPRs) are considered as dynamic conformational ensembles that devoid of a specific 3D structure, being associated with various important biological phenomena. Viruses utilize IDPs/IDPRs to survive in harsh environments, to evade the host immune system, and to highjack and manipulate host cellular proteins. The role of IDPs/IDPRs in Rotavirus biology and pathogenicity are not assessed so far, therefore, we have designed this study to deeply look at the penetrance of intrinsic disorder in rotavirus proteome consisting 12 proteins encoded by 11 segments of viral genome. Also, for all human rotaviral proteins, we have deciphered molecular recognition features (MoRFs), which are disorder based binding sites in proteins. Our study shows the wide spread of intrinsic disorder in several rotavirus proteins, primarily the nonstructural proteins NSP3, NSP4, and NSP5 that are involved in viral replication, translation, viroplasm formation and/or maturation. This study may serve as a primer for understanding the role of IDPs/MoRFs in rotavirus biology, design of alternative therapeutic strategies, and development of disorder-based drugs.
Collapse
Affiliation(s)
- Deepak Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Ankur Singh
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Prateek Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - C Durga Rao
- SRM University, AP - Amaravati, Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522502, India.
| | - Rajanish Giri
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
9
|
COPII Vesicle Transport Is Required for Rotavirus NSP4 Interaction with the Autophagy Protein LC3 II and Trafficking to Viroplasms. J Virol 2019; 94:JVI.01341-19. [PMID: 31597778 DOI: 10.1128/jvi.01341-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
Many viruses that replicate in the cytoplasm dramatically remodel and stimulate the accumulation of host cell membranes for efficient replication by poorly understood mechanisms. For rotavirus, a critical step in virion assembly requires the accumulation of membranes adjacent to virus replication centers called viroplasms. Early electron microscopy studies describe viroplasm-associated membranes as "swollen" endoplasmic reticulum (ER). We previously demonstrated that rotavirus infection initiates cellular autophagy and that membranes containing the autophagy marker protein LC3 and the rotavirus ER-synthesized transmembrane glycoprotein NSP4 traffic to viroplasms, suggesting that NSP4 must exit the ER. This study aimed to address the mechanism of NSP4 exit from the ER and determine whether the viroplasm-associated membranes are ER derived. We report that (i) NSP4 exits the ER in COPII vesicles, resulting in disrupted COPII vesicle transport and ER exit sites; (ii) COPII vesicles are hijacked by LC3 II, which interacts with NSP4; and (iii) NSP4/LC3 II-containing membranes accumulate adjacent to viroplasms. In addition, the ER transmembrane proteins SERCA and calnexin were not detected in viroplasm-associated membranes, providing evidence that the rotavirus maturation process of "budding" occurs through autophagy-hijacked COPII vesicle membranes. These findings reveal a new mechanism for rotavirus maturation dependent on intracellular host protein transport and autophagy for the accumulation of membranes required for virus replication.IMPORTANCE In a morphogenic step that is exceedingly rare for nonenveloped viruses, immature rotavirus particles assemble in replication centers called viroplasms, and bud through cytoplasmic cellular membranes to acquire the outer capsid proteins for infectious particle assembly. Historically, the intracellular membranes used for particle budding were thought to be endoplasmic reticulum (ER) because the rotavirus nonstructural protein NSP4, which interacts with the immature particles to trigger budding, is synthesized as an ER transmembrane protein. This present study shows that NSP4 exits the ER in COPII vesicles and that the NSP4-containing COPII vesicles are hijacked by the cellular autophagy machinery, which mediates the trafficking of NSP4 to viroplasms. Changing the paradigm for rotavirus maturation, we propose that the cellular membranes required for immature rotavirus particle budding are not an extension of the ER but are COPII-derived autophagy isolation membranes.
Collapse
|
10
|
Abstract
The gap junctions (GJs), which form intercellular communicating channels between two apposing cells or form hemichannel with extracellular environment, perform crucial functions to maintain small molecule homeostasis. The central nervous system (CNS) GJs are important for maintenance of myelin sheath and neuronal activity. Connexin (Cx) proteins are building blocks of GJs. Recent cell-biological investigations show that amongst the CNS specific Cxs, the most abundant Cx protein, Cx43 and its oligodendrocytic coupling partner Cx47 primarily important for maintenance of CNS myelin. Recent investigations elucidate that the expression of Cx43 and Cx47 is very important to maintain K+ buffering and nutrient homeostasis in oligodendrocytes, CNS myelin and oligodendrocyte function. The investigations on Multiple Sclerosis (MS) patient samples and EAE hypothesized that the functional loss of Cx43/Cx47 could be associated with spread of chronic MS lesions. Exploring the mechanism of initial GJ alteration and its effect on demyelination in this model of MS might play a primary role to understand the basis of altered CNS homeostasis, observed during MS. In this review, we mainly discuss the role of CNS GJs, specifically the Cx43/Cx47 axis in the perspective of demyelination.
Collapse
|
11
|
Basu R, Sarma JDAS. Connexin 43/47 channels are important for astrocyte/ oligodendrocyte cross-talk in myelination and demyelination. J Biosci 2018; 43:1055-1068. [PMID: 30541963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
The gap junctions (GJs), which form intercellular communicating channels between two apposing cells or form hemichannel with extracellular environment, perform crucial functions to maintain small molecule homeostasis. The central nervous system (CNS) GJs are important for maintenance of myelin sheath and neuronal activity. Connexin (Cx) proteins are building blocks of GJs. Recent cell-biological investigations show that amongst the CNS specific Cxs, the most abundant Cx protein, Cx43 and its oligodendrocytic coupling partner Cx47 primarily important for maintenance of CNS myelin. Recent investigations elucidate that the expression of Cx43 and Cx47 is very important to maintain K? buffering and nutrient homeostasis in oligodendrocytes, CNS myelin and oligodendrocyte function. The investigations on Multiple Sclerosis (MS) patient samples and EAE hypothesized that the functional loss of Cx43/Cx47 could be associated with spread of chronic MS lesions. Exploring the mechanism of initial GJ alteration and its effect on demyelination in this model of MS might play a primary role to understand the basis of altered CNS homeostasis, observed during MS. In this review, we mainly discuss the role of CNS GJs, specifically the Cx43/Cx47 axis in the perspective of demyelination.
Collapse
Affiliation(s)
- Rahul Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | | |
Collapse
|
12
|
Cytoplasmic Relocalization and Colocalization with Viroplasms of Host Cell Proteins, and Their Role in Rotavirus Infection. J Virol 2018; 92:JVI.00612-18. [PMID: 29769336 DOI: 10.1128/jvi.00612-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Rotavirus replicates in the cytoplasm of infected cells in unique virus-induced cytoplasmic inclusion bodies called viroplasms (VMs), which are nucleated by two essential viral nonstructural proteins, NSP2 and NSP5. However, the precise composition of the VM, the intracellular localization of host proteins during virus infection, and their association with VMs or role in rotavirus growth remained largely unexplored. Mass spectrometry analyses revealed the presence of several host heterogeneous nuclear ribonucleoproteins (hnRNPs), AU-rich element-binding proteins (ARE-BPs), and cytoplasmic proteins from uninfected MA104 cell extracts in the pulldown (PD) complexes of the purified viroplasmic proteins NSP2 and NSP5. Immunoblot analyses of PD complexes from RNase-treated and untreated cell extracts, analyses of coimmunoprecipitation complexes using RNase-treated infected cell lysates, and direct binding assays using purified recombinant proteins further demonstrated that the interactions of the majority of the hnRNPs and ARE-BPs with viroplasmic proteins are RNA independent. Time course immunoblot analysis of the nuclear and cytoplasmic fractions from rotavirus-infected and mock-infected cells and immunofluorescence confocal microscopy analyses of virus-infected cells revealed a surprising sequestration of the majority of the relocalized host proteins in viroplasms. Analyses of ectopic overexpression and small interfering RNA (siRNA)-mediated downregulation of expression revealed that host proteins either promote or inhibit viral protein expression and progeny virus production in virus-infected cells. This study demonstrates that rotavirus induces the cytoplasmic relocalization and sequestration of a large number of nuclear and cytoplasmic proteins in viroplasms, subverting essential cellular processes in both compartments to promote rapid virus growth, and reveals that the composition of rotavirus viroplasms is much more complex than is currently understood.IMPORTANCE Rotavirus replicates exclusively in the cytoplasm. Knowledge on the relocalization of nuclear proteins to the cytoplasm or the role(s) of host proteins in rotavirus infection is very limited. In this study, it is demonstrated that rotavirus infection induces the cytoplasmic relocalization of a large number of nuclear RNA-binding proteins (hnRNPs and AU-rich element-binding proteins). Except for a few, most nuclear hnRNPs and ARE-BPs, nuclear transport proteins, and some cytoplasmic proteins directly interact with the viroplasmic proteins NSP2 and NSP5 in an RNA-independent manner and become sequestered in the viroplasms of infected cells. The host proteins differentially affected viral gene expression and virus growth. This study demonstrates that rotavirus induces the relocalization and sequestration of a large number of host proteins in viroplasms, affecting host processes in both compartments and generating conditions conducive for virus growth in the cytoplasm of infected cells.
Collapse
|
13
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
14
|
Kumar S, Ramappa R, Pamidimukkala K, Rao CD, Suguna K. New tetrameric forms of the rotavirus NSP4 with antiparallel helices. Arch Virol 2018; 163:1531-1547. [DOI: 10.1007/s00705-018-3753-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/13/2018] [Indexed: 01/05/2023]
|
15
|
Lee SH, Park MS, Lee JG, Song JH, Chung KS, Jung JY, Kim EY, Kim YS, Kim SK, Chang J, Paik HC, Kim SY. Rare causes of hyperbilirubinemia after lung transplantation: our experience at a single center. J Thorac Dis 2017; 9:5030-5039. [PMID: 29312707 DOI: 10.21037/jtd.2017.11.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Lung transplantation is the last treatment option for end-stage lung disease, and the number of lung transplantations has been steadily increasing. Hyperbilirubinemia is a rare complication after lung transplantation. The aim of this study was to review rare causes of hyperbilirubinemia after lung transplantation at our center. Methods In this single-center study, we retrospectively reviewed the records of 116 consecutive lung transplantation patients who underwent lung transplantation at Severance Hospital and Gangnam Severance Hospital of Yonsei University College of Medicine in South Korea between December 22, 2010 and January 1, 2016. Hyperbilirubinemia was defined as a total bilirubin level exceeding 5 mg/dL for at least 3 days after lung transplantation. Results Hyperbilirubinemia occurred in 33 patients (28.4%) who received lung transplants at our institution. Twenty-four cases involved common causes such as drug toxicity, biliary tract stone, sepsis, and bleeding. However, rare causes of hyperbilirubinemia including hemophagocytic lymphohistiocytosis (HLH), thrombotic microangiopathy (TMA), and ischemic cholangiopathy were observed in 9 (7.8%) patients during the study period. All patients with hyperbilirubinemia due to a rare cause died despite aggressive treatment. Conclusion Causes of hyperbilirubinemia after lung transplantation are varied, and the prognosis of patients with hyperbilirubinemia arising from rare causes was poor. Therefore, early evaluation and management of hyperbilirubinemia after lung transplantation is important to improve patient outcomes.
Collapse
Affiliation(s)
- Su Hwan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.,Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo Han Song
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Soo Chung
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Ye Jung
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Kyu Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Chang
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Chae Paik
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Brisse E, Wouters CH, Andrei G, Matthys P. How Viruses Contribute to the Pathogenesis of Hemophagocytic Lymphohistiocytosis. Front Immunol 2017; 8:1102. [PMID: 28936212 PMCID: PMC5594061 DOI: 10.3389/fimmu.2017.01102] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/22/2017] [Indexed: 11/23/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening, hyperinflammatory syndrome, characterized by the uncontrolled activation of macrophages and T cells, eliciting key symptoms such as persistent fever, hepatosplenomegaly, pancytopenia, hemophagocytosis, hyperferritinemia, and coagulopathy. Viral infections are frequently implicated in the onset of active HLH episodes, both in primary, genetic HLH as in the secondary, acquired form. Infections with herpesviruses such as Epstein-Barr virus and cytomegalovirus are the most common. In autoimmune diseases, a link between viral infections and autoreactive immune responses has been recognized for a considerable time. However, the mechanisms by which viruses contribute to HLH pathogenesis remain to be clarified. In this viewpoint, different factors that may come into play are discussed. Viruses, particularly larger DNA viruses such as herpesviruses, are potent modulators of the immune response. By evading immune recognition, interfering with cytokine balances and inhibiting apoptotic pathways, viruses may increase the host's susceptibility to HLH development. In particular cases, a direct connection between the viral infection and inhibition of natural killer cell or T cell cytotoxicity was reported, indicating that viruses may create immunological deficiencies reminiscent of primary HLH.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine H. Wouters
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
- University Hospital Gasthuisberg, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Basu R, Bose A, Thomas D, Das Sarma J. Microtubule-assisted altered trafficking of astrocytic gap junction protein connexin 43 is associated with depletion of connexin 47 during mouse hepatitis virus infection. J Biol Chem 2017; 292:14747-14763. [PMID: 28566289 DOI: 10.1074/jbc.m117.786491] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Gap junctions (GJs) are important for maintenance of CNS homeostasis. GJ proteins, connexin 43 (Cx43) and connexin 47 (Cx47), play a crucial role in production and maintenance of CNS myelin. Cx43 is mainly expressed by astrocytes in the CNS and forms gap junction intercellular communications between astrocytes-astrocytes (Cx43-Cx43) and between astrocytes-oligodendrocytes (Cx43-Cx47). Mutations of these connexin (Cx) proteins cause dysmyelinating diseases in humans. Previously, it has been shown that Cx43 localization and expression is altered due to mouse hepatitis virus (MHV)-A59 infection both in vivo and in vitro; however, its mechanism and association with loss of myelin protein was not elaborated. Thus, we explored potential mechanisms by which MHV-A59 infection alters Cx43 localization and examined the effects of viral infection on Cx47 expression and its association with loss of the myelin marker proteolipid protein. Immunofluorescence and total internal reflection fluorescence microscopy confirmed that MHV-A59 used microtubules (MTs) as a conduit to reach the cell surface and restricted MT-mediated Cx43 delivery to the cell membrane. Co-immunoprecipitation experiments demonstrated that Cx43-β-tubulin molecular interaction was depleted due to protein-protein interaction between viral particles and MTs. During acute MHV-A59 infection, oligodendrocytic Cx47, which is mainly stabilized by Cx43 in vivo, was down-regulated, and its characteristic staining remained disrupted even at chronic phase. The loss of Cx47 was associated with loss of proteolipid protein at the chronic stage of MHV-A59 infection.
Collapse
Affiliation(s)
- Rahul Basu
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Abhishek Bose
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Deepthi Thomas
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Jayasri Das Sarma
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| |
Collapse
|
18
|
Tian G, Liang X, Chen D, Mao X, Yu J, Zheng P, He J, Huang Z, Yu B. Vitamin D3 supplementation alleviates rotavirus infection in pigs and IPEC-J2 cells via regulating the autophagy signaling pathway. J Steroid Biochem Mol Biol 2016; 163:157-63. [PMID: 27174720 DOI: 10.1016/j.jsbmb.2016.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022]
Abstract
Vitamin D had an anti-infection effect and benefited to the intestinal health. Autophagy signaling pathway was regulated by vitamin D3 to inhibit the infection of human immunodeficiency virus type-1. Rotavirus (RV) was a major cause of the severe diarrheal disease in young children and young animals. Although evidence suggested that vitamin D3 attenuates the negative effects of RV infection via the retinoic acid-inducible gene I signaling pathway, little is known of its antiviral effect whether through the regulation of autophagy. The present study was performed to investigate whether vitamin D3 alleviates RV infection in pig and porcine small intestinal epithelial cell line (IPEC-J2) models via regulating the autophagy signaling pathway. RV administration increased the Beclin 1 mRNA abundance in porcine jejunum and ileum. 5000 IU/kg dietary vitamin D3 supplementation greatly up-regulated LC3-II/LC3-I ratios and PR-39 mRNA expression under the condition of RV challenged. The viability of IPEC-J2 was significantly inhibited by RV infection. Incubation with 25-hydroxyvitamin D3 significantly decreased the concentrations of RV antigen and non-structural protein 4 (NSP4), and up-regulated the mRNA expression of Beclin 1 and PR-39 in the RV-infected IPEC-J2 cells. And then, based on the 25-hydroxyvitamin D3 treatment and RV infection, LC3-II mRNA expression in cells was inhibited by an autophagy inhibitor 3-methyladenine (3-MA). Bafilomycin A1 (Baf A1, a class of inhibitors of membrane ATPases, inhibits maturation of autophagic vacuoles) treatment numerically enhanced the LC3-II mRNA abundance, but had no effect on NSP4 concentration. Furthermore, 25-hydroxyvitamin D3 decreased the p62 mRNA expression and increased porcine cathelicidins (PMAP23, PG1-5 and PR-39) mRNA expression in the RV-infected cells. Taken together, these results indicated that vitamin D3 attenuates RV infection through regulating autophagic maturation and porcine cathelicidin genes expression.
Collapse
Affiliation(s)
- Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xiaofang Liang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| |
Collapse
|
19
|
Perry JL, Ramachandran NK, Utama B, Hyser JM. Use of genetically-encoded calcium indicators for live cell calcium imaging and localization in virus-infected cells. Methods 2015; 90:28-38. [PMID: 26344758 PMCID: PMC4655165 DOI: 10.1016/j.ymeth.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023] Open
Abstract
Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections.
Collapse
Affiliation(s)
- Jacob L Perry
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, United States
| | - Nina K Ramachandran
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, United States
| | - Budi Utama
- Shared Equipment Authority, Rice University, Houston, TX 77030, United States
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
20
|
Viral Membrane Channels: Role and Function in the Virus Life Cycle. Viruses 2015; 7:3261-84. [PMID: 26110585 PMCID: PMC4488738 DOI: 10.3390/v7062771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/20/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022] Open
Abstract
Viroporins are small, hydrophobic trans-membrane viral proteins that oligomerize to form hydrophilic pores in the host cell membranes. These proteins are crucial for the pathogenicity and replication of viruses as they aid in various stages of the viral life cycle, from genome uncoating to viral release. In addition, the ion channel activity of viroporin causes disruption in the cellular ion homeostasis, in particular the calcium ion. Fluctuation in the calcium level triggers the activation of the host defensive programmed cell death pathways as well as the inflammasome, which in turn are being subverted for the viruses’ replication benefits. This review article summarizes recent developments in the functional investigation of viroporins from various viruses and their contributions to viral replication and virulence.
Collapse
|
21
|
Yakshe KA, Franklin ZD, Ball JM. Rotaviruses: Extraction and Isolation of RNA, Reassortant Strains, and NSP4 Protein. ACTA ACUST UNITED AC 2015; 37:15C.6.1-44. [PMID: 26344218 DOI: 10.1002/9780471729259.mc15c06s37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rotavirus (RV) contains 11 double-stranded RNA segments that encode for twelve structural and nonstructural proteins. The separation and isolation of viral RNA is a necessary precursor for many experimental techniques and can be useful for rapid RV RNA typing and sequencing of different rotavirus strains. The segmented genome enables RV to recombine easily. These recombinant viruses are essential for many purposes, including generation of potential vaccine strains. Rotavirus gene 10 expresses the viral enterotoxin, NSP4, which has been the focus of several studies due to the influence of NSP4 on rotavirus replication, morphogenesis, and pathogenesis. This unit will describe the isolation and separation of viral RNAs, the production characterization of recombinant RV in culture, and the expression and isolation of NSP4 in mammalian and insect cells.
Collapse
Affiliation(s)
- Krystle A Yakshe
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Zachary D Franklin
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Judith M Ball
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
22
|
Janka GE, Lehmberg K. Hemophagocytic syndromes--an update. Blood Rev 2014; 28:135-42. [PMID: 24792320 DOI: 10.1016/j.blre.2014.03.002] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/11/2014] [Indexed: 12/12/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome and not an independent disease. HLH represents the extreme end of a severe uncontrolled hyperinflammatory reaction that can occur in many underlying conditions. Genetic forms of HLHs are due to defects in transport, processing and function of cytotoxic granules in natural killer cells and cytotoxic T lymphocytes, and are not restricted to manifestation in childhood. Acquired forms of HLH are encountered in infections, autoinflammatory and autoimmune diseases, malignancies, acquired immune deficiency. Functional tests allow for differentiation between genetic and acquired HLH. Treatment aims at suppressing hypercytokinemia and eliminating activated and infected cells. It includes immunomodulatory and immunosuppressive agents, cytostatics, T-cell and cytokine antibodies. In genetic HLH cure can only be achieved with hematopoietic stem cell transplantation. Reduced-intensity conditioning regimens have considerably improved survival.
Collapse
Affiliation(s)
- Gritta E Janka
- Pediatric Hematology and Oncology, University Medical Center Eppendorf, Hamburg, Germany.
| | - Kai Lehmberg
- Pediatric Hematology and Oncology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Ball JM, Schroeder ME, Williams CV, Schroeder F, Parr RD. Mutational analysis of the rotavirus NSP4 enterotoxic domain that binds to caveolin-1. Virol J 2013; 10:336. [PMID: 24220211 PMCID: PMC3924327 DOI: 10.1186/1743-422x-10-336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/22/2013] [Indexed: 01/11/2023] Open
Abstract
Background Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction. Methods A panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct binding assays. The charged residues of the NSP4 amphipathic helix were changed to alanine (NSP446-175-ala6); and three residues in the hydrophobic face were altered to charged amino acids (NSP446-175-HydroMut). In total, twelve mutants of NSP4 were generated to define the cav-1 binding site. Synthetic peptides corresponding to the hydrophobic and charged faces of NSP4 were examined for structural changes by circular dichroism (CD) and diarrhea induction by a neonatal mouse study. Results Mutations of the hydrophilic face (NSP446-175-Ala6) bound cav-1 akin to wild type NSP4. In contrast, disruption of the hydrophobic face (NSP446-175-HydroMut) failed to bind cav-1. These data suggest NSP4 and cav-1 associate via a hydrophobic interaction. Analyses of mutant synthetic peptides in which the hydrophobic residues in the enterotoxic domain of NSP4 were altered suggested a critical hydrophobic residue. Both NSP4HydroMut112-140, that contains three charged amino acids (aa113, 124, 131) changed from the original hydrophobic residues and NSP4AlaAcidic112-140 that contained three alanine residues substituted for negatively charged (aa114, 125, 132) amino acids failed to induce diarrhea. Whereas peptides NSP4wild type 112−140 and NSP4AlaBasic112-140 that contained three alanine substituted for positively charged (aa115, 119, 133) amino acids, induced diarrhea. Conclusions These data show that the cav-1 binding domain is within the hydrophobic face of the NSP4 amphipathic helix. The integrity of the helical structure is important for both cav-1 binding and diarrhea induction implying a connection between NSP4 functional and binding activities.
Collapse
Affiliation(s)
- Judith M Ball
- Department of Pathobiology, Texas A&M University, TVMC, College Station, Texas 77843-4467, USA.
| | | | | | | | | |
Collapse
|
24
|
González-Ochoa G, Menchaca GE, Hernández CE, Rodríguez C, Tamez RS, Contreras JF. Mutation distribution in the NSP4 protein in rotaviruses isolated from Mexican children with moderate to severe gastroenteritis. Viruses 2013; 5:792-805. [PMID: 23478638 PMCID: PMC3705296 DOI: 10.3390/v5030792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/08/2023] Open
Abstract
The NSP4 protein is a multifunctional protein that plays a role in the morphogenesis and pathogenesis of the rotavirus. Although NSP4 is considered an enterotoxin, the relationship between gastroenteritis severity and amino acid variations in NSP4 of the human rotavirus remains unclear. In this study, we analyzed the sequence diversity of NSP4 and the severity of gastroenteritis of children with moderate to severe gastroenteritis. The rotavirus-infected children were hospitalized before the rotavirus vaccine program in Mexico. All children had diarrhea within 1-4 days, 44 (88%) were vomiting and 35 (70%) had fevers. The severity analysis showed that 13 (26%) cases had mild gastroenteritis, 23 (46%) moderate gastroenteritis and 14 (28%) severe. NSP4 phylogenetic analysis showed three clusters within the genotype E1. Sequence analysis revealed similar mutations inside each cluster, and an uncommon variation in residue 144 was found in five of the Mexican NSP4 sequences. Most of the amino acid variations were located in the VP4 and VP6 binding site domains, with no relationship to different grades of gastroenteritis. This finding indicates that severe gastroenteritis caused by the rotavirus appears to be related to diverse viral or cellular factors instead of NSP4 activity as a unique pathogenic factor.
Collapse
Affiliation(s)
- Guadalupe González-Ochoa
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, CP. 66451, Mexico.
| | | | | | | | | | | |
Collapse
|
25
|
Chacko AR, Zwart PH, Read RJ, Dodson EJ, Rao CD, Suguna K. Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicate the refinement of a pentameric coiled-coil structure of NSP4 of rotavirus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1541-8. [DOI: 10.1107/s090744491203836x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022]
Abstract
The crystal structure of the region spanning residues 95–146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 was determined at a resolution of 2.5 Å. Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicated the refinement of this structure. A systematic explanation confirming the crystal pathologies and describing how the structure was successfully refined is given in this report.
Collapse
|
26
|
Zambrano JL, Sorondo O, Alcala A, Vizzi E, Diaz Y, Ruiz MC, Michelangeli F, Liprandi F, Ludert JE. Rotavirus infection of cells in culture induces activation of RhoA and changes in the actin and tubulin cytoskeleton. PLoS One 2012; 7:e47612. [PMID: 23082182 PMCID: PMC3474729 DOI: 10.1371/journal.pone.0047612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022] Open
Abstract
Rotavirus infection induces an increase in [Ca2+]cyto, which in turn may affect the distribution of the cytoskeleton proteins in the infected cell. Changes in microfilaments, including the formation of stress fibers, were observed starting at 0.5 h.p.i. using fluorescent phalloidin. Western blot analysis indicated that RhoA is activated between 0.5 and 1 h.p.i. Neither the phosphorylation of RhoA nor the formation of stress fibers were observed in cells infected with virions pre-treated with an anti-VP5* non-neutralizing mAb, suggesting that RhoA activation is stimulated by the interaction of the virus with integrins forming the cell receptor complex. In addition, the structure of the tubulin cytoskeleton was also studied. Alterations of the microtubules were evident starting at 3 h.p.i. and by 7 h.p.i. when microtubules were markedly displaced toward the periphery of the cell cytoplasm. Loading of rotavirus-infected cells with either a Ca2+ chelator (BAPTA) or transfection with siRNAs to silence NSP4, reversed the changes observed in both the microfilaments and microtubules distribution, but not the appearance of stress fibers. These results indicate that alterations in the distribution of actin microfilaments are initiated early during infection by the activation of RhoA, and that latter changes in the Ca2+ homeostasis promoted by NSP4 during infection may be responsible for other alterations in the actin and tubulin cytoskeleton.
Collapse
Affiliation(s)
- Jose Luis Zambrano
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
- * E-mail: (JLZ); (JL)
| | - Orlando Sorondo
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
- Escuela de Biología, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Ana Alcala
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
| | - Esmeralda Vizzi
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
| | - Yuleima Diaz
- University of Bergen Thormøhlensgate 55, Bergen, Norway
| | - Marie Christine Ruiz
- Instituto Venezolano de Investigaciones Científicas (IVIC), CBB. Caracas, Venezuela
| | - Fabian Michelangeli
- Instituto Venezolano de Investigaciones Científicas (IVIC), CBB. Caracas, Venezuela
| | - Ferdinando Liprandi
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
| | - Juan E. Ludert
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
- * E-mail: (JLZ); (JL)
| |
Collapse
|
27
|
Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BVV. Rotavirus non-structural proteins: structure and function. Curr Opin Virol 2012; 2:380-8. [PMID: 22789743 DOI: 10.1016/j.coviro.2012.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
The replication of rotavirus is a complex process that is orchestrated by an exquisite interplay between the rotavirus non-structural and structural proteins. Subsequent to particle entry and genome transcription, the non-structural proteins coordinate and regulate viral mRNA translation and the formation of electron-dense viroplasms that serve as exclusive compartments for genome replication, genome encapsidation and capsid assembly. In addition, non-structural proteins are involved in antagonizing the antiviral host response and in subverting important cellular processes to enable successful virus replication. Although far from complete, new structural studies, together with functional studies, provide substantial insight into how the non-structural proteins coordinate rotavirus replication. This brief review highlights our current knowledge of the structure-function relationships of the rotavirus non-structural proteins, as well as fascinating questions that remain to be understood.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | | | | | | | |
Collapse
|
28
|
Elucidation of the Rotavirus NSP4-Caveolin-1 and -Cholesterol Interactions Using Synthetic Peptides. JOURNAL OF AMINO ACIDS 2012; 2012:575180. [PMID: 22500212 PMCID: PMC3303745 DOI: 10.1155/2012/575180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/16/2011] [Indexed: 01/19/2023]
Abstract
Rotavirus (RV) NSP4, the first described viral enterotoxin, is a multifunctional glycoprotein that contributes to viral pathogenesis, morphogenesis, and replication. NSP4 binds both termini of caveolin-1 and is isolated from caveolae fractions that are rich in anionic phospholipids and cholesterol. These interactions indicate that cholesterol/caveolin-1 plays a role in NSP4 transport to the cell surface, which is essential to its enterotoxic activity. Synthetic peptides were utilized to identify target(s) of intervention by exploring the NSP4-caveolin-1 and -cholesterol interactions. NSP4112–140 that overlaps the caveolin-1 binding domain and a cholesterol recognition amino acid consensus (CRAC) motif and both termini of caveolin-1 (N-caveolin-12–20, 19–40 and C-caveolin-1161–180) were synthesized. Direct fluorescence-binding assays were employed to determine binding affinities of the NSP4-caveolin-1 peptides and cholesterol. Intracellular cholesterol alteration revealed a redistribution of NSP4 and disintegration of viroplasms. These data further imply interruption of NSP4112–140-N-caveolin-119–40 and cholesterol interactions may block NSP4 intracellular transport, hence enterotoxicity.
Collapse
|
29
|
Chacko AR, Jeyakanthan J, Ueno G, Sekar K, Rao CD, Dodson EJ, Suguna K, Read RJ. A new pentameric structure of rotavirus NSP4 revealed by molecular replacement. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:57-61. [DOI: 10.1107/s0907444911049705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022]
|
30
|
Sastri NP, Pamidimukkala K, Marathahalli JR, Kaza S, Rao CD. Conformational Differences Unfold a Wide Range of Enterotoxigenic Abilities Exhibited by rNSP4 Peptides from Different Rotavirus Strains. Open Virol J 2011; 5:124-35. [PMID: 22253650 PMCID: PMC3256577 DOI: 10.2174/1874357901105010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022] Open
Abstract
NSP4 has been recognized as the rotavirus-encoded enterotoxin. However, a few studies failed to support its diarrheagenic activity. As recombinant NSP4 (rNSP4) peptides of different lengths were used in the limited number of studies, a comparison of relative diarrheagenic potential of NSP4 from different strains could not be possible. To better understand the diarrheagenic potential of NSP4 from different strains, in this report we have evaluated the enterotoxigenic activity of the deletion mutant ΔN72 that lacks the N-terminal 72 residues and the biologically relevant ΔN112 peptide which when derived from SA11 rotavirus strain were previously shown to be highly diarrheagenic in newborn mice. Detailed comparative analysis of biochemical and biophysical properties and diarrheagenic activity of the recombinant ΔN72 peptides from seventeen different strains under identical conditions revealed wide differences among themselves in their resistance to trypsin cleavage, thioflavin T (ThT) binding, multimerization and conformation without any correlation with their diarrhea inducing abilities. These results support our previously proposed concept for the requirement of a unique conformation for optimal biological functions conferred by cooperation between the N- and C-terminal regions of the cytoplasmic tail.
Collapse
|
31
|
Yang W, McCrae MA. The rotavirus enterotoxin (NSP4) promotes re-modeling of the intracellular microtubule network. Virus Res 2011; 163:269-74. [PMID: 22036730 DOI: 10.1016/j.virusres.2011.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 01/07/2023]
Abstract
Expression of the rotavirus enterotoxin (NSP4) in transfected monkey kidney cells was found to result in a dramatic re-modeling of the microtubule (MT) network. This important centrosome organized cytoskeletal element was dissolved by expression of NSP4 and re-formed in a ring array at the periphery of the cell, similar to that seen following normal virus infection. Site directed mutagenesis of the N-linked glycosylation sites in NSP4 was employed to show that glycosylation of NSP4 was not required for it to promote changes in the MT network. This result together with experiments using conventional inhibitors indicated that NSP4's ability to cause elevation of intracellular calcium levels was also not necessary to effect the changes in the MT network. Use of the centrosome function inhibitor nocodazole demonstrated that NSP4 based remodeling of the MT network was dominant over the normal organizational role of the centrosome. Finally the remodeling of the MT network was shown not to be linked to cellular apoptosis or necrosis. The potential importance of this newly recognised role for NSP4 in the overall process of intracellular pathogenesis by rotaviruses is discussed.
Collapse
Affiliation(s)
- Weiming Yang
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
32
|
Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4. J Virol 2011; 85:12721-32. [PMID: 21917949 DOI: 10.1128/jvi.00349-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3:NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the ΔN72 and ΔN94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of ΔN94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion- and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. ΔN72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.
Collapse
|
33
|
Zambrano JL, Ettayebi K, Maaty WS, Faunce NR, Bothner B, Hardy ME. Rotavirus infection activates the UPR but modulates its activity. Virol J 2011; 8:359. [PMID: 21774819 PMCID: PMC3149005 DOI: 10.1186/1743-422x-8-359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/20/2011] [Indexed: 12/15/2022] Open
Abstract
Background Rotaviruses are known to modulate the innate antiviral defense response driven by IFN. The purpose of this study was to identify changes in the cellular proteome in response to rotavirus infection in the context of the IFN response. We also sought to identify proteins outside the IFN induction and signaling pathway that were modulated by rotavirus infection. Methods 2D-DIGE and image analysis were used to identify cellular proteins that changed in levels of expression in response to rotavirus infection, IFN treatment, or IFN treatment prior to infection. Immunofluorescence microscopy was used to determine the subcellular localization of proteins associated with the unfolded protein response (UPR). Results The data show changes in the levels of multiple proteins associated with cellular stress in infected cells, including levels of ER chaperones GRP78 and GRP94. Further investigations showed that GRP78, GRP94 and other proteins with roles in the ER-initiated UPR including PERK, CHOP and GADD34, were localized to viroplasms in infected cells. Conclusions Together the results suggest rotavirus infection activates the UPR, but modulates its effects by sequestering sensor, transcription factor, and effector proteins in viroplasms. The data consequently also suggest that viroplasms may directly or indirectly play a fundamental role in regulating signaling pathways associated with cellular defense responses.
Collapse
Affiliation(s)
- Jose Luis Zambrano
- Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718, USA
| | | | | | | | | | | |
Collapse
|
34
|
Gibbons TF, Storey SM, Williams CV, McIntosh A, Mitchel DM, Parr RD, Schroeder ME, Schroeder F, Ball JM. Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells. Virol J 2011; 8:278. [PMID: 21645398 PMCID: PMC3129587 DOI: 10.1186/1743-422x-8-278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types. Methods Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab)2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls. Results Only full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells. Conclusions The intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.
Collapse
Affiliation(s)
- Thomas F Gibbons
- Department of Pathobiology Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The cellular secretory pathway, composed of the endoplasmic reticulum, Golgi apparatus, and cellular vesicles, mediates the intracellular trafficking of proteins and lipids. Gastrointestinal pathogens frequently affect the functions of enterocytes, the differentiated cells involved in secretion and absorption of extracellular molecules. Microbial pathogenesis can be enhanced by altering the trafficking of key molecules such as brush border enzymes, soluble immune mediators such as cytokines and chemokines, and MHC Class I molecules, all of which rely on the secretory pathway for their appropriate cellular localization. This review focuses on our current understanding of the distinct mechanisms employed by enteric pathogens to antagonize the secretory pathway. RECENT FINDINGS Many pathogens encode individual or multiple proteins to antagonize the secretory pathway, including disrupting the trafficking of vesicles between the endoplasmic reticulum, Golgi, and plasma membrane. This antagonism allows for increased pathogenesis and can assist, directly or indirectly, in microbial replication. Virtually all arms of the secretory pathway are targeted by intestinal pathogens, supporting the pathogenic significance of shutting this pathway down. SUMMARY This review summarizes the mechanisms utilized by gut pathogens to disrupt the cellular secretory pathway and addresses potential therapeutic targets to combat these highly prevalent and burdensome microbes.
Collapse
Affiliation(s)
- Tyler M Sharp
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
36
|
Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol 2010; 155:1453-61. [DOI: 10.1007/s00705-010-0728-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 06/12/2010] [Indexed: 01/05/2023]
|
37
|
Sequestration of free tubulin molecules by the viral protein NSP2 induces microtubule depolymerization during rotavirus infection. J Virol 2009; 84:2522-32. [PMID: 20032187 DOI: 10.1128/jvi.01883-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Microtubules, components of the cell cytoskeleton, play a central role in cellular trafficking. Here we show that rotavirus infection leads to a remodeling of the microtubule network together with the formation of tubulin granules. While most microtubules surrounding the nucleus depolymerize, others appear packed at the cell periphery. In microtubule depolymerization areas, tubulin granules are observed; they colocalize with viroplasms, viral compartments formed by interactions between rotavirus proteins NSP2 and NSP5. With purified proteins, we show that tubulin directly interacts in vitro with NSP2 but not with NSP5. The binding of NSP2 to tubulin is independent of its phosphatase activity. The comparison of three-dimensional (3-D) reconstructions of NSP2 octamers alone or associated with tubulin reveals electron densities in the positively charged grooves of NSP2 that we attribute to tubulin. Site-directed mutagenesis of NSP2 and competition assays between RNA and tubulin for NSP2 binding confirm that tubulin binds to these charged grooves of NSP2. Although the tubulin position within NSP2 grooves cannot be precisely determined, the tubulin C-terminal H12 alpha-helix could be involved in the interaction. NSP2 overexpression and rotavirus infection produce similar effects on the microtubule network. NSP2 depolymerizes microtubules and leads to tubulin granule formation. Our results demonstrate that tubulin is a viroplasm component and reveal an original mechanism. Tubulin sequestration by NSP2 induces microtubule depolymerization. This depolymerization probably reroutes the cell machinery by inhibiting trafficking and functions potentially involved in defenses to viral infections.
Collapse
|
38
|
Abstract
Studies on the molecular biology of rotavirus, the major etiologic agent of gastroenteritis in infants and young children worldwide, have so far led to a large but not exhaustive knowledge of the mechanisms by which rotavirus replicates in the host cell. While the role of rotavirus structural proteins in the replication cycle is well defined, the functions of nonstructural proteins remain poorly understood. Recent experiments of RNA interference have clearly indicated the phases of the replication cycle for which the nonstructural proteins are essentially required. In addition, biochemical studies of their interactions with other viral proteins, together with immunofluorescence experiments on cells expressing recombinant proteins in different combinations, are providing new indications of their functions. This article contains a critical collection of the most recent achievements and the current hypotheses about the roles of nonstructural proteins in virus replication.
Collapse
Affiliation(s)
- Francesca Arnoldi
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy
| | - Oscar R Burrone
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy
| |
Collapse
|
39
|
Rajasekaran D, Sastri NP, Marathahalli JR, Indi SS, Pamidimukkala K, Suguna K, Rao CD. The flexible C terminus of the rotavirus non-structural protein NSP4 is an important determinant of its biological properties. J Gen Virol 2008; 89:1485-1496. [PMID: 18474565 DOI: 10.1099/vir.0.83617-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The rotavirus non-structural protein NSP4 functions as the viral enterotoxin and intracellular receptor for the double-layered particles (DLP). The full-length protein cannot be expressed and/or purified to homogeneity from bacterial or insect cells. However, a bacterially expressed and purified mutant lacking the N-terminal 72 aa (DeltaN72) was recently obtained from strains Hg18 and SA11 exhibiting approximately 17-20-, 150-200- and 13166-15800-fold lower DD50 (50% diarrhoea-inducing dose) values in suckling mice compared with that reported for the partially pure, full-length protein, a C-terminal M175I mutant and a synthetic peptide comprising aa 114-135, respectively, suggesting the requirement for a unique conformation for optimal functions of the purified protein. The stretch of approximately 40 aa from the C terminus of the cytoplasmic tail of the endoplasmic reticulum-anchored NSP4 is highly flexible and exhibits high sequence variation compared with the other regions, the significance of which in diarrhoea induction remain unresolved. Here, it was shown that every amino acid substitution or deletion in the flexible C terminus resulted in altered conformation, multimerization, trypsin resistance and thioflavin T (ThT) binding, and affected DLP binding and the diarrhoea-inducing ability of the highly diarrhoeagenic SA11 and Hg18 DeltaN72 in suckling mice. These studies further revealed that high ThT fluorescence correlated with efficient diarrhoea induction, suggesting the importance of an optimal ThT-recognizable conformation in diarrhoea induction by purified NSP4. These results based on biological properties provide a possible conformational basis for understanding the influence of primary sequence variations on diarrhoea induction in newborn mice by purified NSP4s that cannot be explained by extensive sequence analyses.
Collapse
Affiliation(s)
- Deepa Rajasekaran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.,Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Narayan P Sastri
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Shanthinath S Indi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - C Durga Rao
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
40
|
Integrins alpha1beta1 and alpha2beta1 are receptors for the rotavirus enterotoxin. Proc Natl Acad Sci U S A 2008; 105:8811-8. [PMID: 18587047 DOI: 10.1073/pnas.0803934105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rotavirus NSP4 is a viral enterotoxin capable of causing diarrhea in neonatal mice. This process is initiated by the binding of extracellular NSP4 to target molecule(s) on the cell surface that triggers a signaling cascade leading to diarrhea. We now report that the integrins alpha1beta1 and alpha2beta1 are receptors for NSP4. NSP4 specifically binds to the alpha1 and alpha2 I domains with apparent K(d) = 1-2.7 muM. Binding is mediated by the I domain metal ion-dependent adhesion site motif, requires Mg(2+) or Mn(2+), is abolished with EDTA, and an NSP4 point mutant, E(120)A, fails to bind alpha2 integrin I domain. NSP4 has two distinct integrin interaction domains. NSP4 amino acids 114-130 are essential for binding to the I domain, and NSP4 peptide 114-135 blocks binding of the natural ligand, collagen I, to integrin alpha2. NSP4 amino acids 131-140 are not associated with the initial binding to the I domain, but elicit signaling that leads to the spreading of attached C2C12-alpha2 cells, mouse myoblast cells stably expressing the human alpha2 integrin. NSP4 colocalizes with integrin alpha2 on the basolateral surface of rotavirus-infected polarized intestinal epithelial (Caco-2) cells as well as surrounding noninfected cells. NSP4 mutants that fail to bind or signal through integrin alpha2 were attenuated in diarrhea induction in neonatal mice. These results indicate that NSP4 interaction with integrin alpha1 and alpha2 is an important component of enterotoxin function and rotavirus pathogenesis, further distinguishing this viral virulence factor from other microbial enterotoxins.
Collapse
|
41
|
Hyser JM, Zeng CQY, Beharry Z, Palzkill T, Estes MK. Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4. Virology 2007; 373:211-28. [PMID: 18164740 DOI: 10.1016/j.virol.2007.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/14/2007] [Accepted: 11/20/2007] [Indexed: 12/30/2022]
Abstract
Rotavirus (RV) is the leading cause of infantile gastroenteritis worldwide. RV nonstructural protein 4 (NSP4), the first characterized viral enterotoxin, is a 28-kDa glycoprotein that has pleiotropic functions in RV infection and pathogenesis. NSP4 has multiple forms enabling it to perform its different functions. Dissecting such functions could be facilitated by use of epitope-specific antibodies. This work mapped the epitopes for the monoclonal antibody B4-2/55 and three polyclonal antisera generated against synthetic SA11 NSP4 peptides corresponding to residues 114-135, 120-147, and 150-175. The epitope for B4-2/55 mapped to residues 100-118, wherein residues E105, R108 and E111 are critical for antibody binding. Antiserum generated to two peptides (aa114-135 and aa120-147) with enterotoxin activity each recognize a single but distinct epitope. The epitope for the peptide antiserum to aa114-135 was mapped to residues 114-125 with highly conserved residues T117/T118, E120, and E122 being critical for antibody binding. The peptide antiserum to aa120-147 binds to NSP4 at residues 130-140 and residues Q137-T138 are critical for this epitope. Finally, the epitope for the antiserum to peptide aa150-175 mapped to residues 155-170, wherein residues E160 and E170 are critical for antibody binding. Knowledge of the binding sites of domain-specific antibodies can aid in further characterizing different functions of NSP4. To demonstrate this, we characterized the interaction between NSP4 and VP5() [K(D)=0.47 microM] and show that binding of NSP4 to VP5* is blocked by antibody to NSP4 aa114-135 and aa120-147, but not aa150-175. The use of single epitope-specific antibodies to differentially block functions of NSP4 is a feasible approach to determine the functional domain structure of this important RV virulence factor.
Collapse
Affiliation(s)
- Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
42
|
Storey SM, Gibbons TF, Williams CV, Parr RD, Schroeder F, Ball JM. Full-length, glycosylated NSP4 is localized to plasma membrane caveolae by a novel raft isolation technique. J Virol 2007; 81:5472-83. [PMID: 17376898 PMCID: PMC1900257 DOI: 10.1128/jvi.01862-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 03/16/2007] [Indexed: 12/12/2022] Open
Abstract
Rotavirus NSP4, initially characterized as an endoplasmic reticulum intracellular receptor, is a multifunctional viral enterotoxin that induces diarrhea in murine pups. There have been recent reports of the secretion of a cleaved NSP4 fragment (residues 112 to 175) and of the association of NSP4 with LC3-positive autophagosomes, raft membranes, and microtubules. To determine if NSP4 traffics to a specific subset of rafts at the plasma membrane, we isolated caveolae from plasma membrane-enriched material that yielded caveola membranes free of endoplasmic reticulum and nonraft plasma membrane markers. Analyses of the newly isolated caveolae from rotavirus-infected MDCK cells revealed full-length, high-mannose glycosylated NSP4. The lack of Golgi network-specific processing of the caveolar NSP4 glycans supports studies showing that NSP4 bypasses the Golgi apparatus. Confocal imaging showed the colocalization of NSP4 with caveolin-1 early and late in infection, elucidating the temporal and spatial NSP4-caveolin-1 association during infection. These data were extended with fluorescent resonance energy transfer analyses that confirmed the NSP4 and caveolin-1 interaction in that the specific fluorescently tagged antibodies were within 10 nm of each other during infection. Cells transfected with NSP4 showed patterns of staining and colocalization with caveolin-1 similar to those of infected cells. This study presents an endoplasmic reticulum contaminant-free caveola isolation protocol; describes the presence of full-length, endoglycosidase H-sensitive NSP4 in plasma membrane caveolae; provides confirmation of the NSP4-caveolin interaction in the presence and absence of other viral proteins; and provides a final plasma membrane destination for Golgi network-bypassing NSP4 transport.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Pathobiology, TVMC, Texas A and M University, TAMU 4467, College Station, TX 77843-4467, USA
| | | | | | | | | | | |
Collapse
|
43
|
Cabral-Romero C, Padilla-Noriega L. Association of rotavirus viroplasms with microtubules through NSP2 and NSP5. Mem Inst Oswaldo Cruz 2007; 101:603-11. [PMID: 17072471 DOI: 10.1590/s0074-02762006000600006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 04/10/2006] [Indexed: 11/22/2022] Open
Abstract
Rotavirus replication and virus assembly take place in electrodense spherical structures known as viroplasms whose main components are the viral proteins NSP2 and NSP5. The viroplasms are produced since early times after infection and seem to grow by stepwise addition of viral proteins and by fusion, however, the mechanism of viropIasms formation is unknown. In this study we found that the viroplasms surface colocalized with microtubules, and seem to be caged by a microtubule network. Moreover inhibition of microtubule assembly with nocodazole interfered with viroplasms growth in rotavirus infected cells. We searched for a physical link between viroplasms and microtubules by co-immunoprecipitation assays, and we found that the proteins NSP2 and NSP5 were co-immunoprecipitated with anti-tubulin in rotavirus infected cells and also when they were transiently co-expressed or individually expressed. These results indicate that a functional microtubule network is needed for viroplasm growth presumably due to the association of viroplasms with microtubules via NSP2 and NSP5.
Collapse
Affiliation(s)
- Claudio Cabral-Romero
- Departamento de Biología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, DF 04510, México
| | | |
Collapse
|
44
|
Mir KD, Parr RD, Schroeder F, Ball JM. Rotavirus NSP4 interacts with both the amino- and carboxyl-termini of caveolin-1. Virus Res 2007; 126:106-15. [PMID: 17379346 PMCID: PMC1978065 DOI: 10.1016/j.virusres.2007.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/29/2007] [Accepted: 02/05/2007] [Indexed: 11/25/2022]
Abstract
Rotavirus NSP4 plays multiple roles in viral pathogenesis, morphogenesis and replication. We previously reported a direct interaction between full-length NSP4 and the enterotoxic peptide composed of NSP4 residues 114-135 with full-length caveolin-1, the structural protein of caveolae. Caveolin-1 forms a hairpin loop in the cytoplasmic leaflet of plasma membrane caveolae. This unique orientation results in both termini of caveolin-1 exposed to the cytoplasm. The goal of this study was to map the caveolin-1 residues that interact with NSP4 to obtain a more complete picture of this binding event. Utilizing reverse yeast two-hybrid analyses and direct peptide binding assays, the NSP4 binding site was localized to caveolin-1 residues 2-22 and 161-178, at the amino- and carboxyl-termini, respectively. However, NSP4 binding to one of the termini was sufficient for the interaction.
Collapse
Affiliation(s)
- Kiran D. Mir
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843
| | - Rebecca D. Parr
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843
| | - Friedhelm Schroeder
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Physiology and Pharmacology, College Station, TX 77843
| | - Judith M. Ball
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843
- *corresponding author Phone: (979) 845-9710, Fax: (979) 845-9231, , Texas A&M University, TVMC, TAMU 4467, College Station, TX 77843
| |
Collapse
|
45
|
Beau I, Berger A, Servin AL. Rotavirus impairs the biosynthesis of brush-border-associated dipeptidyl peptidase IV in human enterocyte-like Caco-2/TC7 cells. Cell Microbiol 2007; 9:779-89. [PMID: 17081193 DOI: 10.1111/j.1462-5822.2006.00827.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rotavirus is the leading cause of severe dehydrating diarrhoea in infants and young children worldwide. This virus infects mature enterocytes in the small intestine, and induces structural and functional damage. In the present study, we have identified a new mechanism by which rotavirus impairs a brush border-associated intestinal protein. We show that infection of enterocyte-like Caco-2/TC7 cells by rhesus monkey rotavirus (RRV) impairs the biosynthesis of dipeptidyl peptidase IV (DPP IV), an important hydrolase in the digestion of dietary proline-rich proteins. We show that the enzyme activity of DPP IV was reduced, and that rearrangements of the protein occurred at the apical domain of the RRV-infected cells. Using pulse-chase experiments and cell surface immunoprecipitation, we have demonstrated that RRV infection did not affect the stability or apical targeting of DPP IV, but did induce a dramatic decrease in its biosynthesis. Using quantitative RT-PCR, we showed that RRV had no effect on the level of expression of DPP IV mRNA, suggesting that the observed decrease in the biosynthesis of the protein is related to an effect of the virus at the translational level.
Collapse
Affiliation(s)
- Isabelle Beau
- Institut National de la Santé et de la Recherche Médicale, Université Paris XI, UMR-S 756, Signalisation et Physiopathologie des Cellules Epithéliales, Faculté de Pharmacie, Châtenay-Malabry, F-92296 France
| | | | | |
Collapse
|
46
|
Deepa R, Durga Rao C, Suguna K. Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4. Arch Virol 2007; 152:847-59. [PMID: 17265103 DOI: 10.1007/s00705-006-0921-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Rotavirus nonstructural protein 4 (NSP4) is a multidomainal and multifunctional protein and is recognized as the first virus-encoded enterotoxin. Extensive efforts to crystallize the complete cytoplasmic tail (CT), which exhibits all the known biological functions, have been unsuccessful, and to date, the structure of only a synthetic peptide corresponding to amino acids (aa) 95-137 has been reported. Recent studies indicate that the interspecies-variable domain (ISVD) from aa 135 to 141 as well as the extreme C-terminus are critical determinants of virus virulence and the diarrhea-inducing ability of the protein. Among the five NSP4 genotypes identified, those belonging to genotypes A1, B and C possess either a proline at position 138 or a glycine at 140, while those of A2, D and E lack these residues in the ISVD, suggesting conformational differences in this region among different NSP4s. Here, we examined the crystallization properties of several deletion mutants and report the structure of a recombinant mutant, NSP4:95-146, lacking the N-terminal 94 and C-terminal 29 aa, from SA11 (A1) and I321 (A2) at 1.67 and 2.7 A, respectively. In spite of the high resolution of one of the structures, electron density for the C-terminal 9 residues could not be seen for either of the mutants, and the crystal packing resulted in the creation of a clear empty space for this region. Extension of the unstructured C-terminus beyond aa 146 hindered crystallization under the experimental conditions. The present structure revealed significant differences from that of the synthetic peptide in the conformation of amino acids at the end of the helix as well as the crystal packing owing to the additional space required to accommodate the un structured virulence-determining region. The crystal structure and secondary structure prediction of the NSP4:95-146 mutants from different genotypes suggest that the region C-terminal to aa 137 in all the NSP4 proteins is likely to be unstructured, and this might be of structural and biological functional significance.
Collapse
Affiliation(s)
- R Deepa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
47
|
Bugarcic A, Taylor JA. Rotavirus nonstructural glycoprotein NSP4 is secreted from the apical surfaces of polarized epithelial cells. J Virol 2006; 80:12343-9. [PMID: 17035333 PMCID: PMC1676281 DOI: 10.1128/jvi.01378-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NSP4, a nonstructural glycoprotein encoded by rotavirus, is involved in the morphogenesis of virus particles in the endoplasmic reticulum of infected cells. NSP4 is also implicated in the pathophysiology of rotavirus-induced diarrhea by acting as an enterotoxin. To mediate enterotoxic effects in vivo, NSP4 must be secreted or released from rotavirus-infected cells in a soluble form; however, previous studies have indicated that NSP4 is a transmembrane glycoprotein localized within endomembrane compartments in infected cells. In this study, we examined the fate of NSP4 synthesized in Caco-2 cells infected with bovine rotavirus. Our studies reveal that NSP4 is actively secreted into the culture medium, preferentially from the infected-cell apical surface. The secretion of NSP4 is dramatically inhibited by brefeldin A and monensin, suggesting that a Golgi-dependent pathway is involved in release of the protein. In agreement with the proposed involvement of the Golgi apparatus during secretion, secreted NSP4 appears to undergo additional posttranslational modification compared to its cell-associated counterpart and is partially resistant to deglycosylation by endoglycosidase H. Our experiments identify a novel, soluble form of NSP4 secreted from virus-infected cells with the potential to carry out the enterotoxigenic role previously attributed to recombinant forms of the protein.
Collapse
Affiliation(s)
- Andrea Bugarcic
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
48
|
Berkova Z, Crawford SE, Trugnan G, Yoshimori T, Morris AP, Estes MK. Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J Virol 2006; 80:6061-71. [PMID: 16731945 PMCID: PMC1472611 DOI: 10.1128/jvi.02167-05] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rotavirus is a major cause of infantile viral gastroenteritis. Rotavirus nonstructural protein 4 (NSP4) has pleiotropic properties and functions in viral morphogenesis as well as pathogenesis. Recent reports show that the inhibition of NSP4 expression by small interfering RNAs leads to alteration of the production and distribution of other viral proteins and mRNA synthesis, suggesting that NSP4 also affects virus replication by unknown mechanisms. This report describes studies aimed at correlating the localization of intracellular NSP4 in cells with its functions. To be able to follow the localization of NSP4, we fused the C terminus of full-length NSP4 with the enhanced green fluorescent protein (EGFP) and expressed this fusion protein inducibly in a HEK 293-based cell line to avoid possible cytotoxicity. NSP4-EGFP was initially localized in the endoplasmic reticulum (ER) as documented by Endo H-sensitive glycosylation and colocalization with ER marker proteins. Only a small fraction of NSP4-EGFP colocalized with the ER-Golgi intermediate compartment (ERGIC) marker ERGIC-53. NSP4-EGFP did not enter the Golgi apparatus, in agreement with the Endo H sensitivity and a previous report that secretion of an NSP4 cleavage product generated in rotavirus-infected cells is not inhibited by brefeldin A. A significant population of expressed NSP4-EGFP was distributed in novel vesicular structures throughout the cytoplasm, not colocalizing with ER, ERGIC, Golgi, endosomal, or lysosomal markers, thus diverging from known biosynthetic pathways. The appearance of vesicular NSP4-EGFP was dependent on intracellular calcium levels, and vesicular NSP4-EGFP colocalized with the autophagosomal marker LC3. In rotavirus-infected cells, NSP4 colocalized with LC3 in cap-like structures associated with viroplasms, the site of nascent viral RNA replication, suggesting a possible new mechanism for the involvement of NSP4 in virus replication.
Collapse
Affiliation(s)
- Z Berkova
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030-3404, USA
| | | | | | | | | | | |
Collapse
|
49
|
Jensen HL. Herpes simplex virus type 1 morphogenesis and virus-cell interactions: significance of cytoskeleton and methodological aspects. APMIS 2006:7-55. [PMID: 16930175 DOI: 10.1111/j.1600-0463.2006.apm_v114_s119.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Cuadras MA, Bordier BB, Zambrano JL, Ludert JE, Greenberg HB. Dissecting rotavirus particle-raft interaction with small interfering RNAs: insights into rotavirus transit through the secretory pathway. J Virol 2006; 80:3935-46. [PMID: 16571810 PMCID: PMC1440455 DOI: 10.1128/jvi.80.8.3935-3946.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Studies of rotavirus morphogenesis, transport, and release have shown that although these viruses are released from the apical surface of polarized intestinal cells before cellular lysis, they do not follow the classic exocytic pathway. Furthermore, increasing evidence suggests that lipid rafts actively participate in the exit of rotavirus from the infected cell. In this study, we silenced the expression of VP4, VP7, and NSP4 by using small interfering RNAs (siRNAs) and evaluated the effect of shutting down the expression of these proteins on rotavirus-raft interactions. Silencing of VP4 and NSP4 reduced the association of rotavirus particles with rafts; in contrast, inhibition of VP7 synthesis slightly affected the migration of virions into rafts. We found that inhibition of rotavirus migration into lipid rafts, by either siRNAs or tunicamycin, also specifically blocked the targeting of VP4 to rafts, suggesting that the association of VP4 with rafts is mostly mediated by the formation of viral particles in the endoplasmic reticulum (ER). We showed that two populations of VP4 exist, one small population that is independently targeted to rafts and a second large pool of VP4 whose association with rafts is mediated by particle formation in the ER. We also present evidence to support the hypothesis that assembly of VP4 into mature virions takes place in the late stages of transit through the ER. Finally, we analyzed the progression of rotavirus proteins in the exocytic pathway and found that VP4 and virion-assembled VP7 colocalized with ERGIC-53, suggesting that rotavirus particles transit through the intermediate compartment between the ER and the Golgi complex.
Collapse
Affiliation(s)
- Mariela A Cuadras
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | |
Collapse
|