1
|
Patro AK, Panigrahi GK, Majumder S, Das R, Sahoo A. Nonsense-mediated mRNA decay: Physiological significance, mechanistic insights and future implications. Pathol Res Pract 2024; 264:155677. [PMID: 39486251 DOI: 10.1016/j.prp.2024.155677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and degrades premature aberrant transcripts and importantly, it also takes part in gene expression regulation by regulating the endogenous transcripts. NMD distinguishes aberrant and non-aberrant transcript by looking after the NMD signatures such as long 3' UTR. NMD modulates cellular surveillance and eliminates the plausible synthesis of truncated proteins as because if the aberrant mRNA escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. NMD involves multiple proteins and any alteration or mutation within these proteins results in various pathophysiological consequences. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. In this review, we have shed light on the core and associated proteins of NMD, further summarized the mechanism of the NMD pathway and also described the implications of mutations in NMD factors resulting in severe pathological conditions including neurodevelopmental disorder, effects on male sterility and cancer. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases. This review summarizes the current understanding of NMD and its role in controlling various cellular processes in both development and disease.
Collapse
Affiliation(s)
- Asish Kumar Patro
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India.
| | - Sanjoy Majumder
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Annapurna Sahoo
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India.
| |
Collapse
|
2
|
Smith AM, Li Y, Velarde A, Cheng Y, Frankel AD. The HIV-1 Nuclear Export Complex Reveals the Role of RNA in Crm1 Cargo Recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614349. [PMID: 39345625 PMCID: PMC11430062 DOI: 10.1101/2024.09.22.614349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Crm1 is a highly conserved nuclear exportin that transports >1000 human proteins including ribonucleoprotein (RNP) complexes. The interface between Crm1 and RNP cargos is unknown. The HIV regulatory protein, Rev, was one of the first identified cargos for Crm1 and contains a prototypic nuclear export sequence (NES). We present the cryo-electron microscopy structure of the HIV-1 nuclear export complex (Crm1/Ran-GTP and the Rev/RRE RNP). Rev binds at a previously unseen protein-protein binding site that stabilizes a unique Crm1 dimer and positions two NESs within the Crm1 dimer. The orientation of Rev binding positions the RRE within a charged pocket on the inside of the Crm1 toroid, mediating direct RNA-Ran-GTP contacts, highlighting the significant role of the RRE in the interaction. Structure based mutations, combined with cell-based assays, show that Crm1 has multiple distinct cargo recognition sites and explains how Crm1 can recognize a diverse range of protein and RNP cargos.
Collapse
|
3
|
Sumioka A, Usuki F, Fujimura M. Development of a sensor to detect methylmercury toxicity. Sci Rep 2024; 14:21832. [PMID: 39294331 PMCID: PMC11411131 DOI: 10.1038/s41598-024-72788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant that induces various cellular functions depending on cellular- and developmental-specific vulnerabilities. MeHg has a high affinity for selenol and thiol groups, thus impairing the antioxidant system. Such affinity characteristics of MeHg led us to develop sensor vectors to assess MeHg toxicity. In this study, MeHg-mediated defects in selenocysteine (Sec) incorporation were demonstrated using thioredoxin reductase 1 cDNA fused with the hemagglutinin tag sequence at the C-terminus. Taking advantage of such MeHg-mediated defects in Sec incorporation, a cDNA encoding luciferase with a Sec substituted for cysteine-491 was constructed. This construct showed MeHg-induced decreases in signaling in a dose-dependent manner. To directly detect truncated luciferase under MeHg exposure, we further constructed a new sensor vector fused with a target for proteasomal degradation. However, this construct was inadequate because of the low rate of Sec insertion, even in the absence of MeHg. Finally, a Krab transcriptional suppressor fused with Sec was constructed and assessed to demonstrate MeHg-dependent increases in signal intensity. We confirmed that the vector responded specifically and in a dose-dependent manner to MeHg in cultured cerebellar granule cells. This vector is expected to allow monitoring of MeHg-specific toxicity via spatial and temporal imaging.
Collapse
Affiliation(s)
- Akio Sumioka
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto, 867-0008, Japan.
| | - Fusako Usuki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto, 867-0008, Japan
| |
Collapse
|
4
|
Clarke BP, Angelos AE, Mei M, Hill PS, Xie Y, Ren Y. Cryo-EM structure of the CBC-ALYREF complex. eLife 2024; 12:RP91432. [PMID: 39282949 PMCID: PMC11405014 DOI: 10.7554/elife.91432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5' end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5' end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.
Collapse
Affiliation(s)
- Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Alexia E Angelos
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Menghan Mei
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
- Center for Structural Biology, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| |
Collapse
|
5
|
Behera A, Panigrahi GK, Sahoo A. Nonsense-Mediated mRNA Decay in Human Health and Diseases: Current Understanding, Regulatory Mechanisms and Future Perspectives. Mol Biotechnol 2024:10.1007/s12033-024-01267-7. [PMID: 39264527 DOI: 10.1007/s12033-024-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that is conserved across all eukaryotes ensuring the quality of transcripts by targeting messenger RNA (mRNA) harbouring premature stop codons. It regulates the gene expression by targeting aberrant mRNA carrying pre-termination codons (PTCs) and eliminates C-terminal truncated proteins. NMD distinguishes aberrant and non-aberrant transcript by looking after long 3' UTRs and exon-junction complex (EJC) downstream of stop codon that indicate the presence of PTC. Therefore, NMD modulates cellular surveillance and eliminates the truncated proteins but if the PTC escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. The alternative splicing also contributes in formation of NMD-sensitive isoforms by introducing PTC. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. This mechanism augmented in the development of new therapeutics by PTC read-through mechanism and personalized medicine. Detailed studies on NMD surveillance will possibly lead towards development of strategies for improving human health aligning with United Nations sustainable development goals (SDG 3: Good health and well-being). The potential therapeutic applications of NMD pose a challenge in terms of safe and effective modulation. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases.
Collapse
Affiliation(s)
- Amrita Behera
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| | - Annapurna Sahoo
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
6
|
Clarke BP, Angelos AE, Mei M, Hill PS, Xie Y, Ren Y. Cryo-EM structure of the CBC-ALYREF complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.01.559959. [PMID: 37873070 PMCID: PMC10592852 DOI: 10.1101/2023.10.01.559959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5' end with a 7-methylguanosine (m 7 G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5' end of mRNA. However, the molecular mechanism for CBC mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.
Collapse
|
7
|
Bonnet C, Dian AL, Espie-Caullet T, Fabbri L, Lagadec L, Pivron T, Dutertre M, Luco R, Navickas A, Vagner S, Verga D, Uguen P. Post-transcriptional gene regulation: From mechanisms to RNA chemistry and therapeutics. Bull Cancer 2024; 111:782-790. [PMID: 38824069 DOI: 10.1016/j.bulcan.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 06/03/2024]
Abstract
A better understanding of the RNA biology and chemistry is necessary to then develop new RNA therapeutic strategies. This review is the synthesis of a series of conferences that took place during the 6th international course on post-transcriptional gene regulation at Institut Curie. This year, the course made a special focus on RNA chemistry.
Collapse
Affiliation(s)
- Clara Bonnet
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Ana Luisa Dian
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Tristan Espie-Caullet
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Lucilla Fabbri
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Lucie Lagadec
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Thibaud Pivron
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Martin Dutertre
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Reini Luco
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Albertas Navickas
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Stephan Vagner
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Daniela Verga
- CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, Institut Curie, université Paris-Saclay, 91405 Orsay, France
| | - Patricia Uguen
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France.
| |
Collapse
|
8
|
Kolakada D, Campbell AE, Galvis LB, Li Z, Lore M, Jagannathan S. A system of reporters for comparative investigation of EJC-independent and EJC-enhanced nonsense-mediated mRNA decay. Nucleic Acids Res 2024; 52:e34. [PMID: 38375914 PMCID: PMC11014337 DOI: 10.1093/nar/gkae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/05/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a network of pathways that degrades transcripts that undergo premature translation termination. In mammals, NMD can be divided into the exon junction complex (EJC)-enhanced and EJC-independent branches. Fluorescence- and luminescence-based reporters have long been effective tools to investigate NMD, yet existing reporters largely focus on the EJC-enhanced pathway. Here, we present a system of reporters for comparative studies of EJC-independent and EJC-enhanced NMD. This system also enables the study of NMD-associated outcomes such as premature termination codon (PTC) readthrough and truncated protein degradation. These reporters are compatible with fluorescence or luminescence-based readouts via transient transfection or stable integration. Using this reporter system, we show that EJC-enhanced NMD RNA levels are reduced by 2- or 9-fold and protein levels are reduced by 7- or 12-fold compared to EJC-independent NMD, depending on the reporter gene used. Additionally, the extent of readthrough induced by G418 and an NMD inhibitor (SMG1i), alone and in combination, varies across NMD substrates. When combined, G418 and SMG1i increase readthrough product levels in an additive manner for EJC-independent reporters, while EJC-enhanced reporters show a synergistic effect. We present these reporters as a valuable toolkit to deepen our understanding of NMD and its associated mechanisms.
Collapse
Affiliation(s)
- Divya Kolakada
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy E Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongyou Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mlana Lore
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
He PC, He C. mRNA accessibility within mRNPs as a determinant of gene expression. Trends Biochem Sci 2024; 49:199-207. [PMID: 38071089 PMCID: PMC10939938 DOI: 10.1016/j.tibs.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 01/31/2024]
Abstract
Gene expression is a complex process requiring many control mechanisms to achieve a desired phenotype. DNA accessibility within chromatin is well established as an important determinant of gene expression. By contrast, while mRNA also associates with a complement of proteins, the exact nature of messenger ribonucleoprotein (mRNP) packaging and its functional relevance is not as clear. Recent reports indicate that exon junction complex (EJC)-mediated mRNP packaging renders exon junction-proximal regions inaccessible for m6A methylation, and that EJCs reside within the inaccessible interior of globular transcription and export (TREX) complex-associated nuclear mRNPs. We propose that 'mRNA accessibility' within mRNPs is an important determinant of gene expression that may modulate the specificity of a broad array of regulatory processes including but not limited to m6A methylation.
Collapse
Affiliation(s)
- P Cody He
- Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Benslimane N, Loret C, Chazelas P, Favreau F, Faye PA, Lejeune F, Lia AS. Readthrough Activators and Nonsense-Mediated mRNA Decay Inhibitor Molecules: Real Potential in Many Genetic Diseases Harboring Premature Termination Codons. Pharmaceuticals (Basel) 2024; 17:314. [PMID: 38543100 PMCID: PMC10975577 DOI: 10.3390/ph17030314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 11/12/2024] Open
Abstract
Nonsense mutations that generate a premature termination codon (PTC) can induce both the accelerated degradation of mutated mRNA compared with the wild type version of the mRNA or the production of a truncated protein. One of the considered therapeutic strategies to bypass PTCs is their "readthrough" based on small-molecule drugs. These molecules promote the incorporation of a near-cognate tRNA at the PTC position through the native polypeptide chain. In this review, we detailed the various existing strategies organized according to pharmacological molecule types through their different mechanisms. The positive results that followed readthrough molecule testing in multiple neuromuscular disorder models indicate the potential of this approach in peripheral neuropathies.
Collapse
Affiliation(s)
- Nesrine Benslimane
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
| | - Camille Loret
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
| | - Pauline Chazelas
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Frédéric Favreau
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Fabrice Lejeune
- University of Lille, Centre National de la Recherche Scientifique, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Anne-Sophie Lia
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Bioinformatics, F-87000 Limoges, France
| |
Collapse
|
11
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2024:10.1007/s12033-024-01062-4. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
12
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
13
|
Palazzo AF, Qiu Y, Kang YM. mRNA nuclear export: how mRNA identity features distinguish functional RNAs from junk transcripts. RNA Biol 2024; 21:1-12. [PMID: 38091265 PMCID: PMC10732640 DOI: 10.1080/15476286.2023.2293339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The division of the cellular space into nucleoplasm and cytoplasm promotes quality control mechanisms that prevent misprocessed mRNAs and junk RNAs from gaining access to the translational machinery. Here, we explore how properly processed mRNAs are distinguished from both misprocessed mRNAs and junk RNAs by the presence or absence of various 'identity features'.
Collapse
Affiliation(s)
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Zavileyskiy LG, Pervouchine DD. Post-transcriptional Regulation of Gene Expression via Unproductive Splicing. Acta Naturae 2024; 16:4-13. [PMID: 38698955 PMCID: PMC11062102 DOI: 10.32607/actanaturae.27337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/01/2024] [Indexed: 05/05/2024] Open
Abstract
Unproductive splicing is a mechanism of post-transcriptional gene expression control in which premature stop codons are inserted into protein-coding transcripts as a result of regulated alternative splicing, leading to their degradation via the nonsense-mediated decay pathway. This mechanism is especially characteristic of RNA-binding proteins, which regulate each other's expression levels and those of other genes in multiple auto- and cross-regulatory loops. Deregulation of unproductive splicing is a cause of serious human diseases, including cancers, and is increasingly being considered as a prominent therapeutic target. This review discusses the types of unproductive splicing events, the mechanisms of auto- and cross-regulation, nonsense-mediated decay escape, and problems in identifying unproductive splice isoforms. It also provides examples of deregulation of unproductive splicing in human diseases and discusses therapeutic strategies for its correction using antisense oligonucleotides and small molecules.
Collapse
Affiliation(s)
- L. G. Zavileyskiy
- Lomonosov Moscow State University, Moscow, 119192 Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
| | - D. D. Pervouchine
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
| |
Collapse
|
15
|
Burkart V, Kowalski K, Disch A, Hilfiker-Kleiner D, Lal S, Dos Remedios C, Perrot A, Zeug A, Ponimaskin E, Kosanke M, Dittrich-Breiholz O, Kraft T, Montag J. Nonsense mediated decay factor UPF3B is associated with cMyBP-C haploinsufficiency in hypertrophic cardiomyopathy patients. J Mol Cell Cardiol 2023; 185:26-37. [PMID: 37797718 DOI: 10.1016/j.yjmcc.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiac disease. Up to 40% of cases are associated with heterozygous mutations in myosin binding protein C (cMyBP-C, MYBPC3). Most of these mutations lead to premature termination codons (PTC) and patients show reduction of functional cMyBP-C. This so-called haploinsufficiency most likely contributes to disease development. We analyzed mechanisms underlying haploinsufficiency using cardiac tissue from HCM-patients with truncation mutations in MYBPC3 (MYBPC3trunc). We compared transcriptional activity, mRNA and protein expression to donor controls. To differentiate between HCM-specific and general hypertrophy-induced mechanisms we used patients with left ventricular hypertrophy due to aortic stenosis (AS) as an additional control. We show that cMyBP-C haploinsufficiency starts at the mRNA level, despite hypertrophy-induced increased transcriptional activity. Gene set enrichment analysis (GSEA) of RNA-sequencing data revealed an increased expression of NMD-components. Among them, Up-frameshift protein UPF3B, a regulator of NMD was upregulated in MYBPC3trunc patients and not in AS-patients. Strikingly, we show that in sarcomeres UPF3B but not UPF1 and UPF2 are localized to the Z-discs, the presumed location of sarcomeric protein translation. Our data suggest that cMyBP-C haploinsufficiency in HCM-patients is established by UPF3B-dependent NMD during the initial translation round at the Z-disc.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Alina Disch
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | | | - Sean Lal
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Cristobal Dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Andreas Perrot
- Charité - Universitätsmedizin Berlin, Experimental & Clinical Research Center, Berlin, Germany
| | - Andre Zeug
- Institute of Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Institute of Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | | | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Kolakada D, Campbell AE, Baquero Galvis L, Li Z, Lore M, Jagannathan S. A system of reporters for comparative investigation of EJC-independent and EJC-enhanced nonsense-mediated mRNA decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567061. [PMID: 38014198 PMCID: PMC10680754 DOI: 10.1101/2023.11.14.567061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a network of pathways that degrades transcripts that undergo premature translation termination. In mammals, NMD can be divided into the exon junction complex (EJC)-enhanced and EJC-independent branches. Fluorescence- and luminescence-based reporters have long been effective tools to investigate NMD, yet existing reporters largely focus on the EJC-enhanced pathway. Here, we present a system of reporters for comparative studies of EJC-independent and EJC-enhanced NMD. This system also enables the study of NMD-associated outcomes such as premature termination codon (PTC) readthrough and truncated protein degradation. These reporters are compatible with fluorescence or luminescence-based readouts via transient transfection or stable integration. Using this reporter system, we show that EJC-enhanced NMD RNA levels are reduced by 2- or 9-fold and protein levels are reduced by 7- or 12-fold compared to EJC-independent NMD, depending on the reporter gene used. Additionally, the extent of readthrough induced by G418 and SMG1i, alone and in combination, varies across NMD substrates. When combined, G418 and SMG1i increase readthrough product levels in an additive manner for EJC-independent reporters, while EJC-enhanced reporters show a synergistic effect. We present these reporters as a valuable toolkit to deepen our understanding of NMD and its associated mechanisms.
Collapse
Affiliation(s)
- Divya Kolakada
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy E. Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongyou Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mlana Lore
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Chang J, Shin MK, Park J, Hwang HJ, Locker N, Ahn J, Kim D, Baek D, Park Y, Lee Y, Boo SH, Kim HI, Kim YK. An interaction between eIF4A3 and eIF3g drives the internal initiation of translation. Nucleic Acids Res 2023; 51:10950-10969. [PMID: 37811880 PMCID: PMC10639049 DOI: 10.1093/nar/gkad763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
An RNA structure or modified RNA sequences can provide a platform for ribosome loading and internal translation initiation. The functional significance of internal translation has recently been highlighted by the discovery that a subset of circular RNAs (circRNAs) is internally translated. However, the molecular mechanisms underlying the internal initiation of translation in circRNAs remain unclear. Here, we identify eIF3g (a subunit of eIF3 complex) as a binding partner of eIF4A3, a core component of the exon-junction complex (EJC) that is deposited onto spliced mRNAs and plays multiple roles in the regulation of gene expression. The direct interaction between eIF4A3-eIF3g serves as a molecular linker between the eIF4A3 and eIF3 complex, thereby facilitating internal ribosomal entry. Protein synthesis from in vitro-synthesized circRNA demonstrates eIF4A3-driven internal translation, which relies on the eIF4A3-eIF3g interaction. Furthermore, our transcriptome-wide analysis shows that efficient polysomal association of endogenous circRNAs requires eIF4A3. Notably, a subset of endogenous circRNAs can express a full-length intact protein, such as β-catenin, in an eIF4A3-dependent manner. Collectively, our results expand the understanding of the protein-coding potential of the human transcriptome, including circRNAs.
Collapse
Affiliation(s)
- Jeeyoon Chang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min-Kyung Shin
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Joori Park
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nicolas Locker
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford GU2 7HX, UK
| | - Junhak Ahn
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Doyeon Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonkyoung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yujin Lee
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ho Boo
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyeong-In Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Morillo L, Paternina T, Alasseur Q, Genovesio A, Schwartz S, Le Hir H. Comprehensive mapping of exon junction complex binding sites reveals universal EJC deposition in Drosophila. BMC Biol 2023; 21:246. [PMID: 37936138 PMCID: PMC10630996 DOI: 10.1186/s12915-023-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The exon junction complex (EJC) is involved in most steps of the mRNA life cycle, ranging from splicing to nonsense-mediated mRNA decay (NMD). It is assembled by the splicing machinery onto mRNA in a sequence-independent manner. A fundamental open question is whether the EJC is deposited onto all exon‒exon junctions or only on a subset of them. Several previous studies have made observations supportive of the latter, yet these have been limited by methodological constraints. RESULTS In this study, we sought to overcome these limitations via the integration of two different approaches for transcriptome-wide mapping of EJCs. Our results revealed that nearly all, if not all, internal exons consistently harbor an EJC in Drosophila, demonstrating that EJC presence is an inherent consequence of the splicing reaction. Furthermore, our study underscores the limitations of eCLIP methods in fully elucidating the landscape of RBP binding sites. Our findings highlight how highly specific (low false positive) methodologies can lead to erroneous interpretations due to partial sensitivity (high false negatives). CONCLUSIONS This study contributes to our understanding of EJC deposition and its association with pre-mRNA splicing. The universal presence of EJC on internal exons underscores its significance in ensuring proper mRNA processing. Additionally, our observations highlight the need to consider both specificity and sensitivity in RBP mapping methodologies.
Collapse
Affiliation(s)
- Lucía Morillo
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Toni Paternina
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Quentin Alasseur
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Auguste Genovesio
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Hervé Le Hir
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France.
| |
Collapse
|
19
|
Elizalde MJ, Gorelick DA. Mechanistic toxicology in light of genetic compensation. Toxicol Sci 2023; 197:kfad113. [PMID: 37941503 PMCID: PMC10823772 DOI: 10.1093/toxsci/kfad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Mechanistic toxicology seeks to identify the molecular and cellular mechanisms by which toxicants exert their deleterious effects. One powerful approach is to generate mutations in genes that respond to a particular toxicant, and then test how such mutations change the effects of the toxicant. CRISPR is a rapid and versatile approach to generate mutations in cultured cells and in animal models. Many studies use CRISPR to generate short insertions or deletions in a target gene and then assume that the resulting mutation, such as a premature termination codon, causes a loss of functional protein. However, recent studies demonstrate that this assumption is flawed. Cells can compensate for short insertion and deletion mutations, leading toxicologists to draw erroneous conclusions from mutant studies. In this review, we will discuss mechanisms by which a mutation in one gene may be rescued by compensatory activity. We will discuss how CRISPR insertion and deletion mutations are susceptible to compensation by transcriptional adaptation, alternative splicing, and rescue by maternally derived gene products. We will review evidence that measuring levels of messenger RNA transcribed from a mutated gene is an unreliable indicator of the severity of the mutation. Finally, we provide guidelines for using CRISPR to generate mutations that avoid compensation.
Collapse
Affiliation(s)
- Mary Jane Elizalde
- Department of Molecular & Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, United States
| | - Daniel A Gorelick
- Department of Molecular & Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
20
|
Lin HH, Chang CY, Huang YR, Shen CH, Wu YC, Chang KL, Lee YC, Lin YC, Ting WC, Chien HJ, Zheng YF, Lai CC, Hsiao KY. Exon Junction Complex Mediates the Cap-Independent Translation of Circular RNA. Mol Cancer Res 2023; 21:1220-1233. [PMID: 37527157 DOI: 10.1158/1541-7786.mcr-22-0877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Evidence that circular RNAs (circRNA) serve as protein template is accumulating. However, how the cap-independent translation is controlled remains largely uncharacterized. Here, we show that the presence of intron and thus splicing promote cap-independent translation. By acquiring the exon junction complex (EJC) after splicing, the interaction between circRNA and ribosomes was promoted, thereby facilitating translation. Prevention of splicing by treatment with spliceosome inhibitor or mutating splicing signal hindered cap-independent translation of circRNA. Moreover, EJC-tethering using Cas13 technology reconstituted EJC-dependent circRNA translation. Finally, the level of a coding circRNA from succinate dehydrogenase assembly factor 2 (circSDHAF2) was found to be elevated in the tumorous tissues from patients with colorectal cancer, and shown to be critical in tumorigenesis of colorectal cancer in both cell and murine models. These findings reveal that EJC-dependent control of circSDHAF2 translation is involved in the regulation of oncogenic pathways. IMPLICATIONS EJC-mediated cap-independent translation of circRNA is implicated in the tumorigenesis of colorectal cancer.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chiu-Yuan Chang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ren Huang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Che-Hung Shen
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yu-Chen Wu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kai-Li Chang
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Chi Lin
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Wen-Chien Ting
- Division of Colorectal Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Han-Ju Chien
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuei-Yang Hsiao
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung
| |
Collapse
|
21
|
Monaghan L, Longman D, Cáceres JF. Translation-coupled mRNA quality control mechanisms. EMBO J 2023; 42:e114378. [PMID: 37605642 PMCID: PMC10548175 DOI: 10.15252/embj.2023114378] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
mRNA surveillance pathways are essential for accurate gene expression and to maintain translation homeostasis, ensuring the production of fully functional proteins. Future insights into mRNA quality control pathways will enable us to understand how cellular mRNA levels are controlled, how defective or unwanted mRNAs can be eliminated, and how dysregulation of these can contribute to human disease. Here we review translation-coupled mRNA quality control mechanisms, including the non-stop and no-go mRNA decay pathways, describing their mechanisms, shared trans-acting factors, and differences. We also describe advances in our understanding of the nonsense-mediated mRNA decay (NMD) pathway, highlighting recent mechanistic findings, the discovery of novel factors, as well as the role of NMD in cellular physiology and its impact on human disease.
Collapse
Affiliation(s)
- Laura Monaghan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
22
|
Klonowski J, Liang Q, Coban-Akdemir Z, Lo C, Kostka D. aenmd: annotating escape from nonsense-mediated decay for transcripts with protein-truncating variants. Bioinformatics 2023; 39:btad556. [PMID: 37688563 PMCID: PMC10534055 DOI: 10.1093/bioinformatics/btad556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
SUMMARY DNA changes that cause premature termination codons (PTCs) represent a large fraction of clinically relevant pathogenic genomic variation. Typically, PTCs induce transcript degradation by nonsense-mediated mRNA decay (NMD) and render such changes loss-of-function alleles. However, certain PTC-containing transcripts escape NMD and can exert dominant-negative or gain-of-function (DN/GOF) effects. Therefore, systematic identification of human PTC-causing variants and their susceptibility to NMD contributes to the investigation of the role of DN/GOF alleles in human disease. Here we present aenmd, a software for annotating PTC-containing transcript-variant pairs for predicted escape from NMD. aenmd is user-friendly and self-contained. It offers functionality not currently available in other methods and is based on established and experimentally validated rules for NMD escape; the software is designed to work at scale, and to integrate seamlessly with existing analysis workflows. We applied aenmd to variants in the gnomAD, Clinvar, and GWAS catalog databases and report the prevalence of human PTC-causing variants in these databases, and the subset of these variants that could exert DN/GOF effects via NMD escape. AVAILABILITY AND IMPLEMENTATION aenmd is implemented in the R programming language. Code is available on GitHub as an R-package (github.com/kostkalab/aenmd.git), and as a containerized command-line interface (github.com/kostkalab/aenmd_cli.git).
Collapse
Affiliation(s)
- Jonathan Klonowski
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Qianqian Liang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Zeynep Coban-Akdemir
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, United States
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
- Department of Computational & Systems Biology and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260,United States
| |
Collapse
|
23
|
Rademacher DJ, Bello AI, May JP. CASC3 Biomolecular Condensates Restrict Turnip Crinkle Virus by Limiting Host Factor Availability. J Mol Biol 2023; 435:167956. [PMID: 36642157 PMCID: PMC10338645 DOI: 10.1016/j.jmb.2023.167956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The exon-junction complex (EJC) plays a role in post-transcriptional gene regulation and exerts antiviral activity towards several positive-strand RNA viruses. However, the spectrum of RNA viruses that are targeted by the EJC or the underlying mechanisms are not well understood. EJC components from Arabidopsis thaliana were screened for antiviral activity towards Turnip crinkle virus (TCV, Tombusviridae). Overexpression of the accessory EJC component CASC3 inhibited TCV accumulation > 10-fold in Nicotiana benthamiana while knock-down of endogenous CASC3 resulted in a > 4-fold increase in TCV accumulation. CASC3 forms cytoplasmic condensates and deletion of the conserved SELOR domain reduced condensate size 7-fold and significantly decreased antiviral activity towards TCV. Mass spectrometry of CASC3 complexes did not identify endogenous stress granule or P-body markers and CASC3 failed to co-localize with an aggresome-specific dye suggesting that CASC3 condensates are distinct from well-established membraneless compartments. Mass spectrometry and bimolecular fluorescence complementation assays revealed that CASC3 sequesters Heat shock protein 70 (Hsp70-1) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), two host factors with roles in tombusvirus replication. Overexpression of Hsp70-1 or GAPDH reduced the antiviral activity of CASC3 2.1-fold and 2.8-fold, respectively, and suggests that CASC3 inhibits TCV by limiting host factor availability. Unrelated Tobacco mosaic virus (TMV) also depends on Hsp70-1 and CASC3 overexpression restricted TMV accumulation 4-fold and demonstrates that CASC3 antiviral activity is not TCV-specific. Like CASC3, Auxin response factor 19 (ARF19) forms poorly dynamic condensates but ARF19 overexpression failed to inhibit TCV accumulation and suggests that CASC3 has antiviral activities that are not ubiquitous among cytoplasmic condensates.
Collapse
Affiliation(s)
- Dana J Rademacher
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Abudu I Bello
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Jared P May
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA.
| |
Collapse
|
24
|
Valcarce DG, Riesco MF, Cuesta-Martín L, Esteve-Codina A, Martínez-Vázquez JM, Robles V. Stress decreases spermatozoa quality and induces molecular alterations in zebrafish progeny. BMC Biol 2023; 21:70. [PMID: 37013516 PMCID: PMC10071778 DOI: 10.1186/s12915-023-01570-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Chronic stress can produce a severe negative impact on health not only in the exposed individuals but also in their offspring. Indeed, chronic stress may be contributing to the current worldwide scenario of increasing infertility and decreasing gamete quality in human populations. Here, we evaluate the effect of chronic stress on behavior and male reproductive parameters in zebrafish. Our goal is to provide information on the impact that chronic stress has at molecular, histological, and physiological level in a vertebrate model species. RESULTS We evaluated the effects of a 21-day chronic stress protocol covering around three full waves of spermatogenesis in Danio rerio adult males. The induction of chronic stress produced anxiety-like behavior in stressed males as assessed by a novel tank test. At a molecular level, the induction of chronic stress consistently resulted in the overexpression of two genes related to endoplasmic reticulum (ER) stress in the brain. Gene set enrichment analysis (GSEA) of testes suggested a dysregulation of the nonsense-mediated decay (NMD) pathway, which was also confirmed on qPCR analysis. Histological analysis of the testicle did not show significant differences in terms of the relative proportions of each germ-cell type; however, the quality of sperm from stressed males was compromised in terms of motility. RNA-seq analysis in stress-derived larval progenies revealed molecular alterations, including those predicted to affect translation initiation, DNA repair, cell cycle control, and response to stress. CONCLUSIONS Induction of chronic stress during a few cycles of spermatogenesis in the vertebrate zebrafish model affects behavior, gonadal gene expression, final gamete quality, and progeny. The NMD surveillance pathway (a key cellular mechanism that regulates the stability of both normal and mutant transcripts) is severely affected in the testes by chronic stress and therefore the control and regulation of RNAs during spermatogenesis may be affected altering the molecular status in the progeny.
Collapse
Affiliation(s)
- David G Valcarce
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16. 39004, Santander, Spain
| | - Marta F Riesco
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Leyre Cuesta-Martín
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan Manuel Martínez-Vázquez
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16. 39004, Santander, Spain
| | - Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
25
|
Pacheco-Fiallos B, Vorländer MK, Riabov-Bassat D, Fin L, O'Reilly FJ, Ayala FI, Schellhaas U, Rappsilber J, Plaschka C. mRNA recognition and packaging by the human transcription-export complex. Nature 2023; 616:828-835. [PMID: 37020021 PMCID: PMC7614608 DOI: 10.1038/s41586-023-05904-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Newly made mRNAs are processed and packaged into mature ribonucleoprotein complexes (mRNPs) and are recognized by the essential transcription-export complex (TREX) for nuclear export1,2. However, the mechanisms of mRNP recognition and three-dimensional mRNP organization are poorly understood3. Here we report cryo-electron microscopy and tomography structures of reconstituted and endogenous human mRNPs bound to the 2-MDa TREX complex. We show that mRNPs are recognized through multivalent interactions between the TREX subunit ALYREF and mRNP-bound exon junction complexes. Exon junction complexes can multimerize through ALYREF, which suggests a mechanism for mRNP organization. Endogenous mRNPs form compact globules that are coated by multiple TREX complexes. These results reveal how TREX may simultaneously recognize, compact and protect mRNAs to promote their packaging for nuclear export. The organization of mRNP globules provides a framework to understand how mRNP architecture facilitates mRNA biogenesis and export.
Collapse
Affiliation(s)
- Belén Pacheco-Fiallos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Matthias K Vorländer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Daria Riabov-Bassat
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Laura Fin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Francis J O'Reilly
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Farja I Ayala
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ulla Schellhaas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
26
|
Wagner RN, Wießner M, Friedrich A, Zandanell J, Breitenbach-Koller H, Bauer JW. Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond. Int J Mol Sci 2023; 24:6101. [PMID: 37047074 PMCID: PMC10093890 DOI: 10.3390/ijms24076101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Andreas Friedrich
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
27
|
Klonowski J, Liang Q, Coban-Akdemir Z, Lo C, Kostka D. aenmd: Annotating escape from nonsense-mediated decay for transcripts with protein-truncating variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533185. [PMID: 36993377 PMCID: PMC10055276 DOI: 10.1101/2023.03.17.533185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
DNA changes that cause premature termination codons (PTCs) represent a large fraction of clinically relevant pathogenic genomic variation. Typically, PTCs induce a transcript's degradation by nonsense-mediated mRNA decay (NMD) and render such changes loss-of-function alleles. However, certain PTC-containing transcripts escape NMD and can exert dominant-negative or gain-of-function (DN/GOF) effects. Therefore, systematic identification of human PTC-causing variants and their susceptibility to NMD contributes to the investigation of the role of DN/GOF alleles in human disease. Here we present aenmd, a software for annotating PTC-containing transcript-variant pairs for predicted escape from NMD. aenmd is user-friendly and self-contained. It offers functionality not currently available in other methods and is based on established and experimentally validated rules for NMD escape; the software is designed to work at scale, and to integrate seamlessly with existing analysis workflows. We applied aenmd to variants in the gnomAD, Clinvar, and GWAS catalog databases and report the prevalence of human PTC-causing variants in these databases, and the subset of these that could exert DN/GOF effects via NMD escape. Availability and implementation: aenmd is implemented in the R programming language. Code is available on GitHub as an R package (github.com/kostkalab/aenmd.git), and as a containerized command-line interface (github.com/kostkalab/aenmd_cli.git).
Collapse
Affiliation(s)
- Jonathan Klonowski
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qianqian Liang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeynep Coban-Akdemir
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational & Systems Biology and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Sun L, Mailliot J, Schaffitzel C. Nonsense-Mediated mRNA Decay Factor Functions in Human Health and Disease. Biomedicines 2023; 11:722. [PMID: 36979701 PMCID: PMC10045457 DOI: 10.3390/biomedicines11030722] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular surveillance mechanism that degrades mRNAs with a premature stop codon, avoiding the synthesis of C-terminally truncated proteins. In addition to faulty mRNAs, NMD recognises ~10% of endogenous transcripts in human cells and downregulates their expression. The up-frameshift proteins are core NMD factors and are conserved from yeast to human in structure and function. In mammals, NMD diversified into different pathways that target different mRNAs employing additional NMD factors. Here, we review our current understanding of molecular mechanisms and cellular roles of NMD pathways and the involvement of more specialised NMD factors. We describe the consequences of mutations in NMD factors leading to neurodevelopmental diseases, and the role of NMD in cancer. We highlight strategies of RNA viruses to evade recognition and decay by the NMD machinery.
Collapse
Affiliation(s)
- Lingling Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Bristol Engineering Biology Centre BrisEngBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
29
|
He PC, Wei J, Dou X, Harada BT, Zhang Z, Ge R, Liu C, Zhang LS, Yu X, Wang S, Lyu R, Zou Z, Chen M, He C. Exon architecture controls mRNA m 6A suppression and gene expression. Science 2023; 379:677-682. [PMID: 36705538 PMCID: PMC9990141 DOI: 10.1126/science.abj9090] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant messenger RNA (mRNA) modification and plays crucial roles in diverse physiological processes. Using a massively parallel assay for m6A (MPm6A), we discover that m6A specificity is globally regulated by suppressors that prevent m6A deposition in unmethylated transcriptome regions. We identify exon junction complexes (EJCs) as m6A suppressors that protect exon junction-proximal RNA within coding sequences from methylation and regulate mRNA stability through m6A suppression. EJC suppression of m6A underlies multiple global characteristics of mRNA m6A specificity, with the local range of EJC protection sufficient to suppress m6A deposition in average-length internal exons but not in long internal and terminal exons. EJC-suppressed methylation sites colocalize with EJC-suppressed splice sites, which suggests that exon architecture broadly determines local mRNA accessibility to regulatory complexes.
Collapse
Affiliation(s)
- P. Cody He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Bryan T. Harada
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Ruiqi Ge
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Li-Sheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xianbin Yu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shuai Wang
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Ruitu Lyu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Mengjie Chen
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Temporal-iCLIP captures co-transcriptional RNA-protein interactions. Nat Commun 2023; 14:696. [PMID: 36755023 PMCID: PMC9908952 DOI: 10.1038/s41467-023-36345-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Dynamic RNA-protein interactions govern the co-transcriptional packaging of RNA polymerase II (RNAPII)-derived transcripts. Yet, our current understanding of this process in vivo primarily stems from steady state analysis. To remedy this, we here conduct temporal-iCLIP (tiCLIP), combining RNAPII transcriptional synchronisation with UV cross-linking of RNA-protein complexes at serial timepoints. We apply tiCLIP to the RNA export adaptor, ALYREF; a component of the Nuclear Exosome Targeting (NEXT) complex, RBM7; and the nuclear cap binding complex (CBC). Regardless of function, all tested factors interact with nascent RNA as it exits RNAPII. Moreover, we demonstrate that the two transesterification steps of pre-mRNA splicing temporally separate ALYREF and RBM7 binding to splicing intermediates, and that exon-exon junction density drives RNA 5'end binding of ALYREF. Finally, we identify underappreciated steps in snoRNA 3'end processing performed by RBM7. Altogether, our data provide a temporal view of RNA-protein interactions during the early phases of transcription.
Collapse
|
31
|
Rozman B, Fisher T, Stern-Ginossar N. Translation-A tug of war during viral infection. Mol Cell 2023; 83:481-495. [PMID: 36334591 DOI: 10.1016/j.molcel.2022.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Viral reproduction is contingent on viral protein synthesis that relies on the host ribosomes. As such, viruses have evolved remarkable strategies to hijack the host translational apparatus in order to favor viral protein production and to interfere with cellular innate defenses. Here, we describe the approaches viruses use to exploit the translation machinery, focusing on commonalities across diverse viral families, and discuss the functional relevance of this process. We illustrate the complementary strategies host cells utilize to block viral protein production and consider how cells ensure an efficient antiviral response that relies on translation during this tug of war over the ribosome. Finally, we highlight potential roles mRNA modifications and ribosome quality control play in translational regulation and innate immunity. We address these topics in the context of the COVID-19 pandemic and focus on the gaps in our current knowledge of these mechanisms, specifically in viruses with pandemic potential.
Collapse
Affiliation(s)
- Batsheva Rozman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Fisher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
32
|
Mitra R, Rehman A, Singh KK, Jaganathan BG. Multifaceted roles of MAGOH Proteins. Mol Biol Rep 2023; 50:1931-1941. [PMID: 36396768 DOI: 10.1007/s11033-022-07904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/14/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
MAGOH and MAGOHB are paralog proteins that can substitute each other in the exon junction complex (EJC). The EJC is formed of core components EIF4A3, RBM8A, and MAGOH/MAGOHB. As a part of the EJC, MAGOH proteins are required for mRNA splicing, export, translation and nonsense-mediated mRNA decay (NMD). MAGOH is also essential for embryonic development and normal cellular functioning. The haploinsufficiency of MAGOH results in disorders such as microcephaly and cancer. The present review discusses the discovery of MAGOH, its paralog MAGOHB, their roles in cellular function as part of the EJC, and other cellular roles that are not directly associated with mRNA processing. We also discuss how MAGOH haploinsufficiency in cancer cells can be exploited to develop a novel targeted cancer treatment.
Collapse
Affiliation(s)
- Rumela Mitra
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Ayushi Rehman
- RNA-Binding Proteins (RBPs) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Kusum Kumari Singh
- RNA-Binding Proteins (RBPs) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| |
Collapse
|
33
|
Nonsense-Mediated mRNA Decay as a Mediator of Tumorigenesis. Genes (Basel) 2023; 14:genes14020357. [PMID: 36833284 PMCID: PMC9956241 DOI: 10.3390/genes14020357] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved and well-characterized biological mechanism that ensures the fidelity and regulation of gene expression. Initially, NMD was described as a cellular surveillance or quality control process to promote selective recognition and rapid degradation of erroneous transcripts harboring a premature translation-termination codon (PTC). As estimated, one-third of mutated and disease-causing mRNAs were reported to be targeted and degraded by NMD, suggesting the significance of this intricate mechanism in maintaining cellular integrity. It was later revealed that NMD also elicits down-regulation of many endogenous mRNAs without mutations (~10% of the human transcriptome). Therefore, NMD modulates gene expression to evade the generation of aberrant truncated proteins with detrimental functions, compromised activities, or dominant-negative effects, as well as by controlling the abundance of endogenous mRNAs. By regulating gene expression, NMD promotes diverse biological functions during development and differentiation, and facilitates cellular responses to adaptation, physiological changes, stresses, environmental insults, etc. Mutations or alterations (such as abnormal expression, degradation, post-translational modification, etc.) that impair the function or expression of proteins associated with the NMD pathway can be deleterious to cells and may cause pathological consequences, as implicated in developmental and intellectual disabilities, genetic defects, and cancer. Growing evidence in past decades has highlighted NMD as a critical driver of tumorigenesis. Advances in sequencing technologies provided the opportunity to identify many NMD substrate mRNAs in tumor samples compared to matched normal tissues. Interestingly, many of these changes are tumor-specific and are often fine-tuned in a tumor-specific manner, suggesting the complex regulation of NMD in cancer. Tumor cells differentially exploit NMD for survival benefits. Some tumors promote NMD to degrade a subset of mRNAs, such as those encoding tumor suppressors, stress response proteins, signaling proteins, RNA binding proteins, splicing factors, and immunogenic neoantigens. In contrast, some tumors suppress NMD to facilitate the expression of oncoproteins or other proteins beneficial for tumor growth and progression. In this review, we discuss how NMD is regulated as a critical mediator of oncogenesis to promote the development and progression of tumor cells. Understanding how NMD affects tumorigenesis differentially will pave the way for the development of more effective and less toxic, targeted therapeutic opportunities in the era of personalized medicine.
Collapse
|
34
|
Dantsuji S, Ohno M, Taniguchi I. The hnRNP C tetramer binds to CBC on mRNA and impedes PHAX recruitment for the classification of RNA polymerase II transcripts. Nucleic Acids Res 2023; 51:1393-1408. [PMID: 36620872 PMCID: PMC9943658 DOI: 10.1093/nar/gkac1250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
In eukaryotic cells, various classes of RNAs are exported to the cytoplasm by class-specific factors. Accumulating evidence has shown that export factors affect the fate of RNA, demonstrating the importance of proper RNA classification upon export. We previously reported that RNA polymerase II transcripts were classified after synthesis depending on their length, and identified heterogeneous nuclear ribonucleoprotein (hnRNP) C as the key classification factor. HnRNP C inhibits the recruitment of PHAX, an adapter protein for spliceosomal U snRNA export, to long transcripts, navigating these RNAs to the mRNA export pathway. However, the mechanisms by which hnRNP C inhibits PHAX recruitment to mRNA remain unknown. We showed that the cap-binding complex, a bridging factor between m7G-capped RNA and PHAX, directly interacted with hnRNP C on mRNA. Additionally, we revealed that the tetramer-forming activity of hnRNP C and its strong RNA-binding activity were crucial for the inhibition of PHAX binding to longer RNAs. These results suggest that mRNA is wrapped around the hnRNP C tetramer without a gap from the cap, thereby impeding the recruitment of PHAX. The results obtained on the mode of length-specific RNA classification by the hnRNP C tetramer will provide mechanistic insights into hnRNP C-mediated RNA biogenesis.
Collapse
Affiliation(s)
- Sayaka Dantsuji
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Mutsuhito Ohno
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | | |
Collapse
|
35
|
Palo A, Patel SA, Sahoo B, Chowdary TK, Dixit M. FRG1 is a direct transcriptional regulator of nonsense-mediated mRNA decay genes. Genomics 2023; 115:110539. [PMID: 36521634 DOI: 10.1016/j.ygeno.2022.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
FRG1 is the primary candidate gene for Fascioscapulohumeral Muscular Dystrophy. So far, its role has been reported in muscle development, vasculogenesis, angiogenesis, and tumorigenesis. Mechanistically studies suggest FRG1's role in RNA biogenesis which may have implications in multiple physiological processes and diseases, including tumorigenesis. Its probable role as hnRNP and association with NMD-related genes prompted us to look into FRG1's effect on NMD gene expression and the mechanism. Using microarray profiling in cell lines, we found that FRG1 altered the mRNA surveillance pathway and associated pathways, such as RNA transport and spliceosome machinery molecules. Multiple sequence alignment of core factors, namely, UPF1, UPF3B, and SMG1, showed conserved stretches of nucleotide sequence 'CTGGG'. Structural modeling followed by EMSA, ChIP-qPCR, and luciferase reporter assays showed 'CTGGG' as a FRG1 binding site. Analysis of the publicly available datasets showed that the expression of FRG1 correlates with NMD genes in different tissue types. We validated the effect of FRG1 on NMD gene transcription by qRT-PCR. Overall, FRG1 might be a transcriptional regulator of NMD genes.
Collapse
Affiliation(s)
- Ananya Palo
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saket Awadhesbhai Patel
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Bibekananda Sahoo
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tirumala Kumar Chowdary
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Manjusha Dixit
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
36
|
Qi Y, Wang M, Jiang Q. PABPC1--mRNA stability, protein translation and tumorigenesis. Front Oncol 2022; 12:1025291. [PMID: 36531055 PMCID: PMC9753129 DOI: 10.3389/fonc.2022.1025291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Mammalian poly A-binding proteins (PABPs) are highly conserved multifunctional RNA-binding proteins primarily involved in the regulation of mRNA translation and stability, of which PABPC1 is considered a central regulator of cytoplasmic mRNA homing and is involved in a wide range of physiological and pathological processes by regulating almost every aspect of RNA metabolism. Alterations in its expression and function disrupt intra-tissue homeostasis and contribute to the development of various tumors. There is increasing evidence that PABPC1 is aberrantly expressed in a variety of tumor tissues and cancers such as lung, gastric, breast, liver, and esophageal cancers, and PABPC1 might be used as a potential biomarker for tumor diagnosis, treatment, and clinical application in the future. In this paper, we review the abnormal expression, functional role, and molecular mechanism of PABPC1 in tumorigenesis and provide directions for further understanding the regulatory role of PABPC1 in tumor cells.
Collapse
Affiliation(s)
- Ya Qi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Qi Jiang
- Second Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
37
|
Schwarz JD, Lukassen S, Bhandare P, Eing L, Snaebjörnsson MT, García YC, Kisker JP, Schulze A, Wolf E. The glycolytic enzyme ALDOA and the exon junction complex protein RBM8A are regulators of ribosomal biogenesis. Front Cell Dev Biol 2022; 10:954358. [PMID: 36187487 PMCID: PMC9515781 DOI: 10.3389/fcell.2022.954358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cellular growth is a fundamental process of life and must be precisely controlled in multicellular organisms. Growth is crucially controlled by the number of functional ribosomes available in cells. The production of new ribosomes depends critically on the activity of RNA polymerase (RNAP) II in addition to the activity of RNAP I and III, which produce ribosomal RNAs. Indeed, the expression of both, ribosomal proteins and proteins required for ribosome assembly (ribosomal biogenesis factors), is considered rate-limiting for ribosome synthesis. Here, we used genetic screening to identify novel transcriptional regulators of cell growth genes by fusing promoters from a ribosomal protein gene (Rpl18) and from a ribosomal biogenesis factor (Fbl) with fluorescent protein genes (RFP, GFP) as reporters. Subsequently, both reporters were stably integrated into immortalized mouse fibroblasts, which were then transduced with a genome-wide sgRNA-CRISPR knockout library. Subsequently, cells with altered reporter activity were isolated by FACS and the causative sgRNAs were identified. Interestingly, we identified two novel regulators of growth genes. Firstly, the exon junction complex protein RBM8A controls transcript levels of the intronless reporters used here. By acute depletion of RBM8A protein using the auxin degron system combined with the genome-wide analysis of nascent transcription, we showed that RBM8A is an important global regulator of ribosomal protein transcripts. Secondly, we unexpectedly observed that the glycolytic enzyme aldolase A (ALDOA) regulates the expression of ribosomal biogenesis factors. Consistent with published observations that a fraction of this protein is located in the nucleus, this may be a mechanism linking transcription of growth genes to metabolic processes and possibly to metabolite availability.
Collapse
Affiliation(s)
- Jessica Denise Schwarz
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Lorenz Eing
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | | | - Yiliam Cruz García
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Jan Philipp Kisker
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Almut Schulze
- Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- *Correspondence: Elmar Wolf,
| |
Collapse
|
38
|
Martin H, Rupkey J, Asthana S, Yoon J, Patel S, Mott J, Pei Z, Mao Y. Diverse Roles of the Exon Junction Complex Factors in the Cell Cycle, Cancer, and Neurodevelopmental Disorders-Potential for Therapeutic Targeting. Int J Mol Sci 2022; 23:ijms231810375. [PMID: 36142288 PMCID: PMC9499366 DOI: 10.3390/ijms231810375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) plays a crucial role in regulating gene expression at the levels of alternative splicing, translation, mRNA localization, and nonsense-mediated decay (NMD). The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (eIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), in addition to other peripheral factors whose structural integration is activity-dependent. The physiological and mechanistic roles of the EJC in contribution to molecular, cellular, and organismal level function continue to be explored for potential insights into genetic or pathological dysfunction. The EJC’s specific role in the cell cycle and its implications in cancer and neurodevelopmental disorders prompt enhanced investigation of the EJC as a potential target for these diseases. In this review, we highlight the current understanding of the EJC’s position in the cell cycle, its relation to cancer and developmental diseases, and potential avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Hannah Martin
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Julian Rupkey
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shray Patel
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence:
| |
Collapse
|
39
|
Molecular cloning, expression and generation of a polyclonal antibody specific for RNPS1. Mol Biol Rep 2022; 49:9095-9100. [PMID: 35939184 DOI: 10.1007/s11033-022-07676-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND RNA-binding protein with serine-rich domain 1 (RNPS1) is a member of a splicing-dependent mega Dalton protein complex or exon junction complex (EJC). During splicing, RNPS1 acts as a protector of global transcriptome integrity by suppressing the usage of cryptic splice sites. Additionally, RNPS1 functions in almost all stages of mRNA metabolism, including constitutive splicing, alternative splicing, translation and nonsense-mediated mRNA decay (NMD). The aim of the present study was to generate a highly specific polyclonal antibody against human RNPS1. METHODS AND RESULTS A plasmid, pHis-TEV-RNPS1, has been constructed to overexpress recombinant RNPS1 (22-305 amino acids) by cloning the nucleotide sequence downstream of an N-terminal His-tag in the parent plasmid pHis-TEV. The recombinant plasmid was then transformed into Rosetta and expression was induced using IPTG. The His-tagged RNPS1 protein was purified using Ni-NTA affinity chromatography. The rabbit antiserum was then obtained by immunizing rabbits with the purified recombinant RNPS1 protein. The antiserum was further purified by antigen-immunoaffinity chromatography. The sensitivity and the specificity of the polyclonal antibody were assessed by enzyme-linked immunosorbent assay (ELISA) and knockdown assay. ELISA demonstrated that the antibody has a high binding affinity for RNPS1 and the usable titre is 1:2000. CONCLUSION The antibody detected RNPS1 in human, mouse cell lines and rat tissue in Western blot. Importantly, the antibody efficiently detected the decrease in RNPS1 expression in siRNA induced knockdown assay, indicating the specificity of the antibody. The polyclonal antibody against RNPS1 will be a useful tool for performing further functional studies on RNPS1.
Collapse
|
40
|
Lombardi S, Testa MF, Pinotti M, Branchini A. Translation termination codons in protein synthesis and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:1-48. [PMID: 36088072 DOI: 10.1016/bs.apcsb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense as well as stop codons (UGA, UAG, UAA), which are usually localized at the 3' of mRNA and drive the release of the polypeptide chain. However, either natural (NTCs) or premature (PTCs) termination codons, the latter arising from nucleotide changes, can undergo a recoding process named ribosome or translational readthrough, which insert specific amino acids (NTCs) or subset(s) depending on the stop codon type (PTCs). This process is particularly relevant for nonsense mutations, a relatively frequent cause of genetic disorders, which impair gene expression at different levels by potentially leading to mRNA degradation and/or synthesis of truncated proteins. As a matter of fact, many efforts have been made to develop efficient and safe readthrough-inducing compounds, which have been challenged in several models of human disease to provide with a therapy. In this view, the dissection of the molecular determinants shaping the outcome of readthrough, namely nucleotide and protein contexts as well as their interplay and impact on protein structure/function, is crucial to identify responsive nonsense mutations resulting in functional full-length proteins. The interpretation of experimental and mechanistic findings is also important to define a possibly clear picture of potential readthrough-favorable features useful to achieve rescue profiles compatible with therapeutic thresholds typical of each targeted disorder, which is of primary importance for the potential translatability of readthrough into a personalized and mutation-specific, and thus patient-oriented, therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Francesca Testa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
41
|
Molecular mechanisms of Cystic Fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42:231430. [PMID: 35707985 PMCID: PMC9251585 DOI: 10.1042/bsr20212006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis, the most common autosomal recessive disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated chloride and bicarbonate channel that regulates ion and water transport in secretory epithelia. Although all mutations lead to the lack or reduction in channel function, the mechanisms through which this occurs are diverse – ranging from lack of full-length mRNA, reduced mRNA levels, impaired folding and trafficking, targeting to degradation, decreased gating or conductance, and reduced protein levels to decreased half-life at the plasma membrane. Here, we review the different molecular mechanisms that cause cystic fibrosis and detail how these differences identify theratypes that can inform the use of directed therapies aiming at correcting the basic defect. In summary, we travel through CFTR life cycle from the gene to function, identifying what can go wrong and what can be targeted in terms of the different types of therapeutic approaches.
Collapse
|
42
|
Fritz SE, Ranganathan S, Wang CD, Hogg JR. An alternative UPF1 isoform drives conditional remodeling of nonsense-mediated mRNA decay. EMBO J 2022; 41:e108898. [PMID: 35403729 PMCID: PMC9108617 DOI: 10.15252/embj.2021108898] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway monitors translation termination in order to degrade transcripts with premature stop codons and regulate thousands of human genes. Here, we show that an alternative mammalian-specific isoform of the core NMD factor UPF1, termed UPF1LL , enables condition-dependent remodeling of NMD specificity. Previous studies indicate that the extension of a conserved regulatory loop in the UPF1LL helicase core confers a decreased propensity to dissociate from RNA upon ATP hydrolysis relative to UPF1SL , the major UPF1 isoform. Using biochemical and transcriptome-wide approaches, we find that UPF1LL can circumvent the protective RNA binding proteins PTBP1 and hnRNP L to preferentially bind and down-regulate transcripts with long 3'UTRs normally shielded from NMD. Unexpectedly, UPF1LL supports induction of NMD on new populations of substrate mRNAs in response to activation of the integrated stress response and impaired translation efficiency. Thus, while canonical NMD is abolished by moderate translational repression, UPF1LL activity is enhanced, offering the possibility to rapidly rewire NMD specificity in response to cellular stress.
Collapse
Affiliation(s)
- Sarah E Fritz
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Soumya Ranganathan
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Clara D Wang
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - J Robert Hogg
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
43
|
Hernández-Elvira M, Sunnerhagen P. Post-transcriptional regulation during stress. FEMS Yeast Res 2022; 22:6585650. [PMID: 35561747 PMCID: PMC9246287 DOI: 10.1093/femsyr/foac025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
To remain competitive, cells exposed to stress of varying duration, rapidity of onset, and intensity, have to balance their expenditure on growth and proliferation versus stress protection. To a large degree dependent on the time scale of stress exposure, the different levels of gene expression control: transcriptional, post-transcriptional and post-translational, will be engaged in stress responses. The post-transcriptional level is appropriate for minute-scale responses to transient stress, and for recovery upon return to normal conditions. The turnover rate, translational activity, covalent modifications, and subcellular localisation of RNA species are regulated under stress by multiple cellular pathways. The interplay between these pathways is required to achieve the appropriate signalling intensity and prevent undue triggering of stress-activated pathways at low stress levels, avoid overshoot, and down-regulate the response in a timely fashion. As much of our understanding of post-transcriptional regulation has been gained in yeast, this review is written with a yeast bias, but attempts to generalise to other eukaryotes. It summarises aspects of how post-transcriptional events in eukaryotes mitigate short-term environmental stresses, and how different pathways interact to optimise the stress response under shifting external conditions.
Collapse
Affiliation(s)
- Mariana Hernández-Elvira
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
44
|
Mailliot J, Vivoli-Vega M, Schaffitzel C. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Biochem J 2022; 479:973-993. [PMID: 35551602 PMCID: PMC9162471 DOI: 10.1042/bcj20210556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.
Collapse
Affiliation(s)
- Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Mirella Vivoli-Vega
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| |
Collapse
|
45
|
Wallmeroth D, Lackmann JW, Kueckelmann S, Altmüller J, Dieterich C, Boehm V, Gehring NH. Human UPF3A and UPF3B enable fault-tolerant activation of nonsense-mediated mRNA decay. EMBO J 2022; 41:e109191. [PMID: 35451084 PMCID: PMC9108619 DOI: 10.15252/embj.2021109191] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
The paralogous human proteins UPF3A and UPF3B are involved in recognizing mRNAs targeted by nonsense‐mediated mRNA decay (NMD). UPF3B has been demonstrated to support NMD, presumably by bridging an exon junction complex (EJC) to the NMD factor UPF2. The role of UPF3A has been described either as a weak NMD activator or an NMD inhibitor. Here, we present a comprehensive functional analysis of UPF3A and UPF3B in human cells using combinatory experimental approaches. Overexpression or knockout of UPF3A as well as knockout of UPF3B did not substantially change global NMD activity. In contrast, the co‐depletion of UPF3A and UPF3B resulted in a marked NMD inhibition and a transcriptome‐wide upregulation of NMD substrates, demonstrating a functional redundancy between both NMD factors. In rescue experiments, UPF2 or EJC binding‐deficient UPF3B largely retained NMD activity. However, combinations of different mutants, including deletion of the middle domain, showed additive or synergistic effects and therefore failed to maintain NMD. Collectively, UPF3A and UPF3B emerge as fault‐tolerant, functionally redundant NMD activators in human cells.
Collapse
Affiliation(s)
- Damaris Wallmeroth
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Sabrina Kueckelmann
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
The Physiological Roles of the Exon Junction Complex in Development and Diseases. Cells 2022; 11:cells11071192. [PMID: 35406756 PMCID: PMC8997533 DOI: 10.3390/cells11071192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 01/12/2023] Open
Abstract
The exon junction complex (EJC) becomes an increasingly important regulator of early gene expression in the central nervous system (CNS) and other tissues. The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (EIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), together with various auxiliary factors. The EJC is assembled specifically at exon-exon junctions on mRNAs, hence the name of the complex. The EJC regulates multiple levels of gene expression, from splicing to translation and mRNA degradation. The functional roles of the EJC have been established as crucial to the normal progress of embryonic and neurological development, with wide ranging implications on molecular, cellular, and organism level function. Dysfunction of the EJC has been implicated in multiple developmental and neurological diseases. In this review, we discuss recent progress on the EJC’s physiological roles.
Collapse
|
47
|
Udy DB, Bradley RK. Nonsense-mediated mRNA decay uses complementary mechanisms to suppress mRNA and protein accumulation. Life Sci Alliance 2022; 5:e202101217. [PMID: 34880103 PMCID: PMC8711849 DOI: 10.26508/lsa.202101217] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential, highly conserved quality control pathway that detects and degrades mRNAs containing premature termination codons. Although the essentiality of NMD is frequently ascribed to its prevention of truncated protein accumulation, the extent to which NMD actually suppresses proteins encoded by NMD-sensitive transcripts is less well-understood than NMD-mediated suppression of mRNA. Here, we describe a reporter system that permits accurate quantification of both mRNA and protein levels via stable integration of paired reporters encoding NMD-sensitive and NMD-insensitive transcripts into the AAVS1 safe harbor loci in human cells. We use this system to demonstrate that NMD suppresses proteins encoded by NMD-sensitive transcripts by up to eightfold more than the mRNA itself. Our data indicate that NMD limits the accumulation of proteins encoded by NMD substrates by mechanisms beyond mRNA degradation, such that even when NMD-sensitive mRNAs escape destruction, their encoded proteins are still effectively suppressed.
Collapse
Affiliation(s)
- Dylan B Udy
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
48
|
Inoue AH, Domingues PF, Serpeloni M, Hiraiwa PM, Vidal NM, Butterfield ER, Del Pino RC, Ludwig A, Boehm C, Field MC, Ávila AR. Proteomics Uncovers Novel Components of an Interactive Protein Network Supporting RNA Export in Trypanosomes. Mol Cell Proteomics 2022; 21:100208. [PMID: 35091090 PMCID: PMC8938319 DOI: 10.1016/j.mcpro.2022.100208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022] Open
Abstract
In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.
Collapse
Affiliation(s)
| | | | | | | | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Adriana Ludwig
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Paraná, Brazil
| | - Cordula Boehm
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK; Biology Centre, University of South Bohemia, České Budějovice, Czech Republic.
| | | |
Collapse
|
49
|
Mesa-Perez M, Hamilton PT, Miranda A, Brodie N, O’Sullivan C, Christie J, Ryan B, Chow R, Goodlett D, Nelson C, Howard P. Cytoplasmic switch of ARS2 isoforms promotes nonsense-mediated mRNA decay and arsenic sensitivity. Nucleic Acids Res 2022; 50:1620-1638. [PMID: 35104878 PMCID: PMC8860587 DOI: 10.1093/nar/gkac033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
The life of RNA polymerase II (RNAPII) transcripts is shaped by the dynamic formation of mutually exclusive ribonucleoprotein complexes (RNPs) that direct transcript biogenesis and turnover. A key regulator of RNA metabolism in the nucleus is the scaffold protein ARS2 (arsenic resistance protein 2), bound to the cap binding complex (CBC). We report here that alternative splicing of ARS2's intron 5, generates cytoplasmic isoforms that lack 270 amino acids from the N-terminal of the protein and are functionally distinct from nuclear ARS2. Switching of ARS2 isoforms within the CBC in the cytoplasm has dramatic functional consequences, changing ARS2 from a NMD inhibitor to a NMD promoter that enhances the binding of UPF1 to NCBP1 and ERF1, favouring SURF complex formation, SMG7 recruitment and transcript degradation. ARS2 isoform exchange is also relevant during arsenic stress, where cytoplasmic ARS2 promotes a global response to arsenic in a CBC-independent manner. We propose that ARS2 isoform switching promotes the proper recruitment of RNP complexes during NMD and the cellular response to arsenic stress. The existence of non-redundant ARS2 isoforms is relevant for cell homeostasis, and stress response.
Collapse
Affiliation(s)
- Monica Mesa-Perez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | | - Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | - Nicholas Brodie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC V8Z 7X8, Canada
| | - Connor O’Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jennifer Christie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Bridget C Ryan
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - David Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC V8Z 7X8, Canada
| | - Christopher J Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Perry L Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
50
|
Lejeune F. Nonsense-Mediated mRNA Decay, a Finely Regulated Mechanism. Biomedicines 2022; 10:biomedicines10010141. [PMID: 35052820 PMCID: PMC8773229 DOI: 10.3390/biomedicines10010141] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is both a mechanism for rapidly eliminating mRNAs carrying a premature termination codon and a pathway that regulates many genes. This implies that NMD must be subject to regulation in order to allow, under certain physiological conditions, the expression of genes that are normally repressed by NMD. Therapeutically, it might be interesting to express certain NMD-repressed genes or to allow the synthesis of functional truncated proteins. Developing such approaches will require a good understanding of NMD regulation. This review describes the different levels of this regulation in human cells.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
- Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|