1
|
Blohmer M, Cheek DM, Hung WT, Kessler M, Chatzidimitriou F, Wang J, Hung W, Lee IH, Gorelick AN, Wassenaar EC, Yang CY, Yeh YC, Ho HL, Speiser D, Karsten MM, Lanuti M, Pai SI, Kranenburg O, Lennerz JK, Chou TY, Kloor M, Naxerova K. Quantifying cell divisions along evolutionary lineages in cancer. Nat Genet 2025:10.1038/s41588-025-02078-5. [PMID: 39905260 DOI: 10.1038/s41588-025-02078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Cell division drives somatic evolution but is challenging to quantify. We developed a framework to count cell divisions with DNA replication-related mutations in polyguanine homopolymers. Analyzing 505 samples from 37 patients, we studied the milestones of colorectal cancer evolution. Primary tumors diversify at ~250 divisions from the founder cell, while distant metastasis divergence occurs significantly later, at ~500 divisions. Notably, distant but not lymph node metastases originate from primary tumor regions that have undergone surplus divisions, tying subclonal expansion to metastatic capacity. Then, we analyzed a cohort of 73 multifocal lung cancers and showed that the cell division burden of the tumors' common ancestor distinguishes independent primary tumors from intrapulmonary metastases and correlates with patient survival. In lung cancer too, metastatic capacity is tied to more extensive proliferation. The cell division history of human cancers is easily accessible using our simple framework and contains valuable biological and clinical information.
Collapse
Affiliation(s)
- Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Department of Gynecology with Breast Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - David M Cheek
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Wei-Ting Hung
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Maria Kessler
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Foivos Chatzidimitriou
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Jiahe Wang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - William Hung
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - I-Hsiu Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Alexander N Gorelick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Emma Ce Wassenaar
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ching-Yeuh Yang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dorothee Speiser
- Department of Gynecology with Breast Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maria M Karsten
- Department of Gynecology with Breast Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Sara I Pai
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Onno Kranenburg
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, MA, USA
| | - Teh-Ying Chou
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Haasl RJ, Payseur BA. Fitness landscapes of human microsatellites. PLoS Genet 2024; 20:e1011524. [PMID: 39775235 PMCID: PMC11734926 DOI: 10.1371/journal.pgen.1011524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/15/2025] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites.
Collapse
Affiliation(s)
- Ryan J. Haasl
- Department of Biology, University of Wisconsin-Platteville, Platteville, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Tasnim M, Wahlquist P, Hill JT. Zebrafish: unraveling genetic complexity through duplicated genes. Dev Genes Evol 2024; 234:99-116. [PMID: 39079985 PMCID: PMC11612004 DOI: 10.1007/s00427-024-00720-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 12/06/2024]
Abstract
The zebrafish is an invaluable model organism for genetic, developmental, and disease research. Although its high conservation with humans is often cited as justification for its use, the zebrafish harbors oft-ignored genetic characteristics that may provide unique insights into gene structure and function. Zebrafish, along with other teleost fish, underwent an additional round of whole genome duplication after their split from tetrapods-resulting in an abundance of duplicated genes when compared to other vertebrates. These duplicated genes have evolved in distinct ways over the ensuing 350 million years. Thus, each gene within a duplicated gene pair has nuanced differences that create a unique identity. By investigating both members of the gene pair together, we can elucidate the mechanisms that underly protein structure and function and drive the complex interplay within biological systems, such as signal transduction cascades, genetic regulatory networks, and evolution of tissue and organ function. It is crucial to leverage such studies to explore these molecular dynamics, which could have far-reaching implications for both basic science and therapeutic development. Here, we will review the role of gene duplications and the existing models for gene divergence and retention following these events. We will also highlight examples within each of these models where studies comparing duplicated genes in the zebrafish have yielded key insights into protein structure, function, and regulation.
Collapse
Affiliation(s)
- Maliha Tasnim
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Preston Wahlquist
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA.
| |
Collapse
|
4
|
Burr R, Leshchiner I, Costantino CL, Blohmer M, Sundaresan T, Cha J, Seeger K, Guay S, Danysh BP, Gore I, Jacobs RA, Slowik K, Utro F, Rhrissorrakrai K, Levovitz C, Barth JL, Dubash T, Chirn B, Parida L, Sequist LV, Lennerz JK, Mino-Kenudson M, Maheswaran S, Naxerova K, Getz G, Haber DA. Developmental mosaicism underlying EGFR-mutant lung cancer presenting with multiple primary tumors. NATURE CANCER 2024; 5:1681-1696. [PMID: 39406916 PMCID: PMC11584400 DOI: 10.1038/s43018-024-00840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/10/2024] [Indexed: 10/30/2024]
Abstract
Although the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple tumors at presentation in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. In the present study, we identified ten patients with early stage, resectable, non-small cell lung cancer who presented with multiple, anatomically distinct, EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole-exome sequencing (WES) and hypermutable poly(guanine) (poly(G)) repeat genotyping as orthogonal methods for lineage tracing. In four patients, developmental mosaicism, assessed by WES and poly(G) lineage tracing, indicates a common non-germline cell of origin. In two other patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. Thus, in addition to germline variants, developmental mosaicism defines a distinct mechanism of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for their etiology and clinical management.
Collapse
Affiliation(s)
- Risa Burr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Ignaty Leshchiner
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Boston University, Boston, MA, USA
| | - Christina L Costantino
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tilak Sundaresan
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Justin Cha
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karsen Seeger
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Sara Guay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Brian P Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ira Gore
- Ascension St. Vincent's Birmingham, Birmingham, AL, USA
| | - Raquel A Jacobs
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Slowik
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Brian Chirn
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | | | - Lecia V Sequist
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
5
|
Villanueva CD, Bohunická M, Johansen JR. We are doing it wrong: Putting homology before phylogeny in cyanobacterial taxonomy. JOURNAL OF PHYCOLOGY 2024; 60:1071-1089. [PMID: 39152777 DOI: 10.1111/jpy.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
The rapid expansion of whole genome sequencing in bacterial taxonomy has revealed deep evolutionary relationships and speciation signals, but assembly methods often miss true nucleotide diversity in the ribosomal operons. Though it lacks sufficient phylogenetic signal at the species level, the 16S ribosomal RNA gene is still much used in bacterial taxonomy. In cyanobacterial taxonomy, comparisons of 16S-23S Internal Transcribed Spacer (ITS) regions are used to bridge this information gap. Although ITS rRNA region analyses are routinely being used to identify species, researchers often do not identify orthologous operons, which leads to improper comparisons. No method for delineating orthologous operon copies from paralogous ones has been established. A new method for recognizing orthologous ribosomal operons by quantifying the conserved paired nucleotides in a helical domain of the ITS, has been developed. The D1' Index quantifies differences in the ratio of pyrimidines to purines in paired nucleotide sequences of this helix. Comparing 111 operon sequences from 89 strains of Brasilonema, four orthologous operon types were identified. Plotting D1' Index values against the length of helices produced clear separation of orthologs. Most orthologous operons in this study were observed both with and without tRNA genes present. We hypothesize that genomic rearrangement, not gene duplication, is responsible for the variation among orthologs. This new method will allow cyanobacterial taxonomists to utilize ITS rRNA region data more correctly, preventing erroneous taxonomic hypotheses. Moreover, this work could assist genomicists in identifying and preserving evident sequence variability in ribosomal operons, which is an important proxy for evolution in prokaryotes.
Collapse
Affiliation(s)
- Chelsea D Villanueva
- Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Markéta Bohunická
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| |
Collapse
|
6
|
Pavelescu LA, Enache RM, Roşu OA, Profir M, Creţoiu SM, Gaspar BS. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors. Int J Mol Sci 2024; 25:9659. [PMID: 39273605 PMCID: PMC11395316 DOI: 10.3390/ijms25179659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
7
|
Deng MZ, Liu Q, Cui SJ, Wang YX, Zhu G, Fu H, Gan M, Xu YY, Cai X, Wang S, Sha W, Zhao GP, Fortune SM, Lyu LD. An additional proofreader contributes to DNA replication fidelity in mycobacteria. Proc Natl Acad Sci U S A 2024; 121:e2322938121. [PMID: 39141351 PMCID: PMC11348249 DOI: 10.1073/pnas.2322938121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the β clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.
Collapse
Affiliation(s)
- Ming-Zhi Deng
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Shu-Jun Cui
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Yi-Xin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Guoliang Zhu
- Shanghai Zelixir Biotech Company Ltd., Shanghai200030, China
| | - Han Fu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Chinese Academy of Sciences Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai200032, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Mingyu Gan
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai201102, China
| | - Yuan-Yuan Xu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai200030, China
| | - Wei Sha
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai200433, China
| | - Guo-Ping Zhao
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai200433, China
- Chinese Academy of Sciences Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai200032, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai200433, China
| |
Collapse
|
8
|
Knox MA, Biggs PJ, Garcia-R JC, Hayman DTS. Quantifying Replication Slippage Error in Cryptosporidium Metabarcoding Studies. J Infect Dis 2024; 230:e144-e148. [PMID: 39052741 PMCID: PMC11272095 DOI: 10.1093/infdis/jiae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Genetic variation in Cryptosporidium, a common protozoan gut parasite in humans, is often based on marker genes containing trinucleotide repeats, which differentiate subtypes and track outbreaks. However, repeat regions have high replication slippage rates, making it difficult to discern biological diversity from error. Here, we synthesized Cryptosporidium DNA in clonal plasmid vectors, amplified them in different mock community ratios, and sequenced them using next-generation sequencing to determine the rate of replication slippage with dada2. Our results indicate that slippage rates increase with the length of the repeat region and can contribute to error rates of up to 20%.
Collapse
Affiliation(s)
| | - Patrick J Biggs
- School of Veterinary Science
- School of Natural Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | | | | |
Collapse
|
9
|
Doganay MT, Roman E, Hujer AM, Bonomo RA, Deeks SG, Kuritzkes DR, Draz MS. AMPLON: Amplifying DNA with Multiarm Priming and Looping Optimization of Nucleic Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311634. [PMID: 38657970 PMCID: PMC11239297 DOI: 10.1002/adma.202311634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Nucleic acid amplification, the bedrock of biotechnology and molecular diagnostics, surges in applications-especially isothermal approaches-heightening the demand for advanced and precisely engineered methods. Here, a novel approach for amplifying DNA with multiarm priming and looping optimization of nucleic acid (AMPLON) is presented. AMPLON relies on a novel polymeric material with unique set of multiarm polyethylene glycol-DNA primers for efficient DNA amplification under isothermal conditions. Each arm carries single-stranded DNA complementing the sense or antisense sequence of the target DNA. The amplification reaction begins with antisense arms binding to the target DNA, forming a template for sense-carrying arms to direct multiarm large DNA amplicon synthesis through successive DNA looping and unlooping steps. Using human immunodeficiency virus type 1 (HIV-1) as a model clinical target, AMPLON exhibits high sensitivity, detecting target concentrations as low as 100 copies mL-1. Compared to a quantitative real-time polymerase chain reaction assay using sensitive primers, AMPLON reliably identifies HIV-1 RNA in plasma samples (n = 20) with a significant agreement rate of 95%. With its ability to achieve highly specific and sensitive target amplification within 30 min, AMPLON holds immense potential to transform the field of nucleic acid research and unleashing new possibilities in medicine and biotechnology.
Collapse
Affiliation(s)
- Mert Tunca Doganay
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ethan Roman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Andrea M. Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Daniel R. Kuritzkes
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Mohamed S. Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44106, USA
| |
Collapse
|
10
|
Tanudisastro HA, Deveson IW, Dashnow H, MacArthur DG. Sequencing and characterizing short tandem repeats in the human genome. Nat Rev Genet 2024; 25:460-475. [PMID: 38366034 DOI: 10.1038/s41576-024-00692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
Short tandem repeats (STRs) are highly polymorphic sequences throughout the human genome that are composed of repeated copies of a 1-6-bp motif. Over 1 million variable STR loci are known, some of which regulate gene expression and influence complex traits, such as height. Moreover, variants in at least 60 STR loci cause genetic disorders, including Huntington disease and fragile X syndrome. Accurately identifying and genotyping STR variants is challenging, in particular mapping short reads to repetitive regions and inferring expanded repeat lengths. Recent advances in sequencing technology and computational tools for STR genotyping from sequencing data promise to help overcome this challenge and solve genetically unresolved cases and the 'missing heritability' of polygenic traits. Here, we compare STR genotyping methods, analytical tools and their applications to understand the effect of STR variation on health and disease. We identify emergent opportunities to refine genotyping and quality-control approaches as well as to integrate STRs into variant-calling workflows and large cohort analyses.
Collapse
Affiliation(s)
- Hope A Tanudisastro
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ira W Deveson
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
11
|
Pires GP, Fioresi VS, Canal D, Canal DC, Fernandes M, Brustolini OJB, de Avelar Carpinetti P, Ferreira A, da Silva Ferreira MF. Effects of trimer repeats on Psidium guajava L. gene expression and prospection of functional microsatellite markers. Sci Rep 2024; 14:9811. [PMID: 38684872 PMCID: PMC11059378 DOI: 10.1038/s41598-024-60417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Most research on trinucleotide repeats (TRs) focuses on human diseases, with few on the impact of TR expansions on plant gene expression. This work investigates TRs' effect on global gene expression in Psidium guajava L., a plant species with widespread distribution and significant relevance in the food, pharmacology, and economics sectors. We analyzed TR-containing coding sequences in 1,107 transcripts from 2,256 genes across root, shoot, young leaf, old leaf, and flower bud tissues of the Brazilian guava cultivars Cortibel RM and Paluma. Structural analysis revealed TR sequences with small repeat numbers (5-9) starting with cytosine or guanine or containing these bases. Functional annotation indicated TR-containing genes' involvement in cellular structures and processes (especially cell membranes and signal recognition), stress response, and resistance. Gene expression analysis showed significant variation, with a subset of highly expressed genes in both cultivars. Differential expression highlighted numerous down-regulated genes in Cortibel RM tissues, but not in Paluma, suggesting interplay between tissues and cultivars. Among 72 differentially expressed genes with TRs, 24 form miRNAs, 13 encode transcription factors, and 11 are associated with transposable elements. In addition, a set of 20 SSR-annotated, transcribed, and differentially expressed genes with TRs was selected as phenotypic markers for Psidium guajava and, potentially for closely related species as well.
Collapse
Affiliation(s)
- Giovanna Pinto Pires
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Vinicius Sartori Fioresi
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Drielli Canal
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Dener Cezati Canal
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Miquéias Fernandes
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Otávio José Bernardes Brustolini
- Laboratório Nacional de Computação Científica (LNCC). Av. Getulio Vargas, 333, Petrópolis, Rio de Janeiro, Quitandinha, 25651-076, Brazil
| | - Paola de Avelar Carpinetti
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Adésio Ferreira
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
12
|
Harte AJ, Ghasemian E, Pickering H, Houghton J, Chernet A, Sata E, Yismaw G, Zeru T, Tadesse Z, Callahan EK, Nash SD, Holland MJ. Unravelling Chlamydia trachomatis diversity in Amhara, Ethiopia: MLVA-ompA sequencing as a molecular typing tool for trachoma. PLoS Negl Trop Dis 2024; 18:e0012143. [PMID: 38662795 PMCID: PMC11075894 DOI: 10.1371/journal.pntd.0012143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Trachoma is the leading infectious cause of blindness worldwide and is now largely confined to around 40 low- and middle-income countries. It is caused by Chlamydia trachomatis (Ct), a contagious intracellular bacterium. The World Health Organization recommends mass drug administration (MDA) with azithromycin for treatment and control of ocular Ct infections, alongside improving facial cleanliness and environmental conditions to reduce transmission. To understand the molecular epidemiology of trachoma, especially in the context of MDA and transmission dynamics, the identification of Ct genotypes could be useful. While many studies have used the Ct major outer membrane protein gene (ompA) for genotyping, it has limitations. Our study applies a typing system novel to trachoma, Multiple Loci Variable Number Tandem Repeat Analysis combined with ompA (MLVA-ompA). Ocular swabs were collected post-MDA from four trachoma-endemic zones in Ethiopia between 2011-2017. DNA from 300 children with high Ct polymerase chain reaction (PCR) loads was typed using MLVA-ompA, utilizing 3 variable number tandem repeat (VNTR) loci within the Ct genome. Results show that MLVA-ompA exhibited high discriminatory power (0.981) surpassing the recommended threshold for epidemiological studies. We identified 87 MLVA-ompA variants across 26 districts. No significant associations were found between variants and clinical signs or chlamydial load. Notably, overall Ct diversity significantly decreased after additional MDA rounds, with a higher proportion of serovar A post-MDA. Despite challenges in sequencing one VNTR locus (CT1299), MLVA-ompA demonstrated cost-effectiveness and efficiency relative to whole genome sequencing, providing valuable information for trachoma control programs on local epidemiology. The findings suggest the potential of MLVA-ompA as a reliable tool for typing ocular Ct and understanding transmission dynamics, aiding in the development of targeted interventions for trachoma control.
Collapse
Affiliation(s)
- Anna J. Harte
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ehsan Ghasemian
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harry Pickering
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joanna Houghton
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | - Taye Zeru
- The Amhara Regional Health Bureau, Bahir Dar, Ethiopia
| | | | | | - Scott D. Nash
- The Carter Center, Atlanta, Georgia, United States of America
| | - Martin J. Holland
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
13
|
Wang Y, Wang J, Yan Z, Hou J, Wan L, Yang Y, Liu Y, Yi J, Guo P, Han D. Structural investigation of pathogenic RFC1 AAGGG pentanucleotide repeats reveals a role of G-quadruplex in dysregulated gene expression in CANVAS. Nucleic Acids Res 2024; 52:2698-2710. [PMID: 38266156 PMCID: PMC10954463 DOI: 10.1093/nar/gkae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
An expansion of AAGGG pentanucleotide repeats in the replication factor C subunit 1 (RFC1) gene is the genetic cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), and it also links to several other neurodegenerative diseases including the Parkinson's disease. However, the pathogenic mechanism of RFC1 AAGGG repeat expansion remains enigmatic. Here, we report that the pathogenic RFC1 AAGGG repeats form DNA and RNA parallel G-quadruplex (G4) structures that play a role in impairing biological processes. We determine the first high-resolution nuclear magnetic resonance (NMR) structure of a bimolecular parallel G4 formed by d(AAGGG)2AA and reveal how AAGGG repeats fold into a higher-order structure composed of three G-tetrad layers, and further demonstrate the formation of intramolecular G4s in longer DNA and RNA repeats. The pathogenic AAGGG repeats, but not the nonpathogenic AAAAG repeats, form G4 structures to stall DNA replication and reduce gene expression via impairing the translation process in a repeat-length-dependent manner. Our results provide an unprecedented structural basis for understanding the pathogenic mechanism of AAGGG repeat expansion associated with CANVAS. In addition, the high-resolution structures resolved in this study will facilitate rational design of small-molecule ligands and helicases targeting G4s formed by AAGGG repeats for therapeutic interventions.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Junyan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianing Hou
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liqi Wan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yingquan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Da Han
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
14
|
Wang Y, Li X, Liu M, Zhou Y, Li F. Guide RNA scaffold variants enabled easy cloning of large gRNA cluster for multiplexed gene editing. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:460-471. [PMID: 37816147 PMCID: PMC10826992 DOI: 10.1111/pbi.14198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/20/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023]
Abstract
Cas9 protein-mediated gene editing has revolutionized genetic manipulation in most organisms. There are many cases where multiplexed gene editing is needed. Cas9 is capable of multiplex gene editing when expressed with multiple guide RNAs. Conventional cloning methods for multiplexed gene editing vector is not efficient due to repeated use of a single-guide RNA scaffold and inefficient ligation. In this study, we conducted structure-guided mutagenesis and random mutagenesis on the original sgRNA scaffold and identified a large number of functional sgRNA scaffold variants. With these scaffold variants and different tRNAs, fusion polymerase chain reaction protocol was developed to rapidly synthesize spacer-scaffold-tRNA-spacer units with up to 9 targets. In conjunction with golden gate cloning, gene editing vectors with up to 24 target sites were efficiently cloned in one-step cloning. One such gene editing vector targeting 12 genes in tomato were tested in stable transformation and 10 out of the 12 genes were found mutated in a single transgenic line. To facilitate the application of multiplexed gene editing using these scaffold variants and tRNAs from different species, a webserver was created to generate primer sets and provide template sequences for the synthesis of large sgRNA expression units based on the user-supplied target sequences and species.
Collapse
Affiliation(s)
- Yaqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xiaofei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Minglei Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yingjia Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
15
|
Waters KL, Spratt DE. New Discoveries on Protein Recruitment and Regulation during the Early Stages of the DNA Damage Response Pathways. Int J Mol Sci 2024; 25:1676. [PMID: 38338953 PMCID: PMC10855619 DOI: 10.3390/ijms25031676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.
Collapse
Affiliation(s)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
16
|
Arbel-Groissman M, Menuhin-Gruman I, Yehezkeli H, Naki D, Bergman S, Udi Y, Tuller T. The Causes for Genomic Instability and How to Try and Reduce Them Through Rational Design of Synthetic DNA. Methods Mol Biol 2024; 2760:371-392. [PMID: 38468099 DOI: 10.1007/978-1-0716-3658-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Genetic engineering has revolutionized our ability to manipulate DNA and engineer organisms for various applications. However, this approach can lead to genomic instability, which can result in unwanted effects such as toxicity, mutagenesis, and reduced productivity. To overcome these challenges, smart design of synthetic DNA has emerged as a promising solution. By taking into consideration the intricate relationships between gene expression and cellular metabolism, researchers can design synthetic constructs that minimize metabolic stress on the host cell, reduce mutagenesis, and increase protein yield. In this chapter, we summarize the main challenges of genomic instability in genetic engineering and address the dangers of unknowingly incorporating genomically unstable sequences in synthetic DNA. We also demonstrate the instability of those sequences by the fact that they are selected against conserved sequences in nature. We highlight the benefits of using ESO, a tool for the rational design of DNA for avoiding genetically unstable sequences, and also summarize the main principles and working parameters of the software that allow maximizing its benefits and impact.
Collapse
Affiliation(s)
- Matan Arbel-Groissman
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hader Yehezkeli
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yarin Udi
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Xu X, Chen M, Chen T, Ni X, Fang Z, Fang Y, Zhang L, Zhang X, Huang J. Ultra-high static magnetic field induces a change in the spectrum but not frequency of DNA spontaneous mutations in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1305069. [PMID: 38126008 PMCID: PMC10731980 DOI: 10.3389/fpls.2023.1305069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Biological effects of magnetic fields have been extensively studied in plants, microorganisms and animals, and applications of magnetic fields in regulation of plant growth and phytoprotection is a promising field in sustainable agriculture. However, the effect of magnetic fields especially ultra-high static magnetic field (UHSMF) on genomic stability is largely unclear. Here, we investigated the mutagenicity of 24.5, 30.5 and 33.0 T UHSMFs with the gradient of 150, 95 and 0 T/m, respectively, via whole genome sequencing. Our results showed that 1 h exposure of Arabidopsis dried seeds to UHSMFs has no significant effect on the average rate of DNA mutations including single nucleotide variations and InDels (insertions and deletions) in comparison with the control, but 33.0 T and 24.5 T treatments lead to a significant change in the rate of nucleotide transitions and InDels longer than 3 bp, respectively, suggesting that both strength and gradient of UHSMF impact molecular spectrum of DNA mutations. We also found that the decreased transition rate in UHSMF groups is correlated with the upstream flanking sequences of G and C mutation sites. Furthermore, the germination rate of seeds exposed to 24.5 T SMF with -150 T/m gradient showed a significant decrease at 24 hours after sowing. Overall, our data lay a basis for precisely assessing the potential risk of UHSMF on DNA stability, and for elucidating molecular mechanism underlying gradient SMF-regulated biological processes in the future.
Collapse
Affiliation(s)
- Xiang Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Mengjiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tianli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xinda Ni
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhicai Fang
- Heye Health Industrial Research Institute of Heye Health Technology Co., Ltd., Huzhou, China
| | - Yanwen Fang
- Heye Health Industrial Research Institute of Heye Health Technology Co., Ltd., Huzhou, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
18
|
Mir A, Song Y, Lee H, Montazer‐Zohouri M, Reisi M, Tabatabaiefar MA. A deleterious frameshift insertion mutation in the ZNF142 gene leads to intellectual developmental disorder with impaired speech in three affected siblings: Clinical features and literature review. Mol Genet Genomic Med 2023; 11:e2261. [PMID: 37496384 PMCID: PMC10724506 DOI: 10.1002/mgg3.2261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND ZNF142 gene is a protein-coding gene encoding Zinc Finger Protein 142. ZNF proteins are a vast group of cellular effectors with a wide range of functions such as signal transduction, transcriptional regulation, meiotic recombination, DNA repair, development, and cell migration. Mutations in the ZNF142 gene are related to neurodevelopmental disorder with impaired speech and hyperkinetic movements (NEDISHM). This study on a family with three affected siblings identified a pathogenic frameshift insertion variant. In addition, we conducted a review of the literature on previously reported ZNF142 gene variants and their clinical manifestations. MATERIALS AND METHODS Three affected siblings with severe intellectual developmental disabilities and speech impairments, their parents, and other sibs in the family were included. The patients were studied by the whole exome sequencing. Sanger sequencing, co-segregation analysis, and in silico analysis were carried out to verify candidate variant. The identified variant was interpreted based on the ACMG guideline. RESULTS We identified a frameshift insertion variant in the ZNF142 gene, NM_001379659.1: c.3755dup (NP_001366588.1:p.Arg1253ThrfsTer15), that was related to the clinical features of three patients. The identified variant was found to be pathogenic. CONCLUSION The current study findings expand the existing knowledge of the variant on the ZNF142 gene implicated in the neurodevelopmental disorder, intellectual disability, and impaired speech and it presents a detailed clinical feature associated with related conditions. The data have implications for genetic diagnosis and counseling in families with the same disorders.
Collapse
Affiliation(s)
- Atefeh Mir
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Yongjun Song
- Division of Medical Genetics3Billion IncSeoulSouth Korea
| | - Hane Lee
- Division of Medical Genetics3Billion IncSeoulSouth Korea
| | - Mostafa Montazer‐Zohouri
- Genetics of Non‐Communicable Disease Research CenterZahedan University of Medical SciencesZahedanIran
| | - Marziyeh Reisi
- Department of ImmunologyShahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
- GenTArget Corp (GTAC), Deputy of Research and TechnologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
19
|
Ahmad M, Ríos-Anillo MR, Acosta-López JE, Cervantes-Henríquez ML, Martínez-Banfi M, Pineda-Alhucema W, Puentes-Rozo P, Sánchez-Barros C, Pinzón A, Patel HR, Vélez JI, Villarreal-Camacho JL, Pineda DA, Arcos-Burgos M, Sánchez-Rojas M. Uncovering the Genetic and Molecular Features of Huntington's Disease in Northern Colombia. Int J Mol Sci 2023; 24:16154. [PMID: 38003344 PMCID: PMC10671691 DOI: 10.3390/ijms242216154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Huntington's disease (HD) is a genetic disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene. Juan de Acosta, Atlántico, a city located on the Caribbean coast of Colombia, is home to the world's second-largest HD pedigree. Here, we include 291 descendants of this pedigree with at least one family member with HD. Blood samples were collected, and genomic DNA was extracted. We quantified the HTT CAG expansion using an amplicon sequencing protocol. The genetic heterogeneity was measured as the ratio of the mosaicism allele's read peak and the slippage ratio of the allele's read peak from our sequence data. The statistical and bioinformatic analyses were performed with a significance threshold of p < 0.05. We found that the average HTT CAG repeat length in all participants was 21.91 (SD = 8.92). Of the 291 participants, 33 (11.3%, 18 females) had a positive molecular diagnosis for HD. Most affected individuals were adults, and the most common primary and secondary alleles were 17/7 (CAG/CCG) and 17/10 (CAG/CCG), respectively. The mosaicism increased with age in the participants with HD, while the slippage analyses revealed differences by the HD allele type only for the secondary allele. The slippage tended to increase with the HTT CAG repeat length in the participants with HD, but the increase was not statistically significant. This study analyzed the genetic and molecular features of 291 participants, including 33 with HD. We found that the mosaicism increased with age in the participants with HD, particularly for the secondary allele. The most common haplotype was 17/7_17/10. The slippage for the secondary allele varied by the HD allele type, but there was no significant difference in the slippage by sex. Our findings offer valuable insights into HD and could have implications for future research and clinical management.
Collapse
Affiliation(s)
- Mostapha Ahmad
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Margarita R Ríos-Anillo
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Médica Residente de Neurología, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Johan E Acosta-López
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Martha L Cervantes-Henríquez
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Martha Martínez-Banfi
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Wilmar Pineda-Alhucema
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Pedro Puentes-Rozo
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080001, Colombia
| | - Cristian Sánchez-Barros
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Departamento de Neurofisiología Clínica Palma de Mallorca, Hospital Juaneda Miramar, Islas Baleares, 07011 Palma, Spain
| | - Andrés Pinzón
- Bioinformatics and Systems Biology Laboratory, Institute for Genetics, Universidad Nacional de Colombia, Bogota 111321, Colombia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Jorge I Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - José Luis Villarreal-Camacho
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Barranquilla 081007, Colombia
| | - David A Pineda
- Grupo de Investigación en Neuropsicología y Conducta, Universidad de San Buenaventura, Medellin 050010, Colombia
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin 050010, Colombia
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia
| | - Manuel Sánchez-Rojas
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
20
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
21
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
Affiliation(s)
- Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
22
|
Burr R, Leshchiner I, Costantino CL, Blohmer M, Sundaresan T, Cha J, Seeger K, Guay S, Danysh BP, Gore I, Jacobs RA, Slowik K, Utro F, Rhrissorrakrai K, Levovitz C, Barth JL, Dubash T, Chirn B, Parida L, Sequist LV, Lennerz JK, Mino-Kenudson M, Maheswaran S, Naxerova K, Getz G, Haber DA. Germline mutations and developmental mosaicism underlying EGFR-mutant lung cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.28.23296274. [PMID: 37808694 PMCID: PMC10557804 DOI: 10.1101/2023.09.28.23296274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
While the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple primary tumors in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. We identified ten patients with early-stage, resectable non-small cell lung cancer who presented with multiple anatomically distinct EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole exome sequencing (WES) and hypermutable poly-guanine (poly-G) repeat genotyping, as orthogonal methods for lineage tracing. In two patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. In four other patients, developmental mosaicism is supported by the poly-G lineage tracing and WES, indicating a common non-germline cell-of-origin. Thus, developmental mosaicism and germline variants define two distinct mechanisms of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for understanding their etiology and clinical management.
Collapse
Affiliation(s)
- Risa Burr
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ignaty Leshchiner
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina L Costantino
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Blohmer
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Justin Cha
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karsen Seeger
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Sara Guay
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Brian P Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ira Gore
- St Vincent’s Hospital, Birmingham, AL, USA
| | - Raquel A Jacobs
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Slowik
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Taronish Dubash
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Brian Chirn
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| |
Collapse
|
23
|
Zhou S, Wei N, Jost M, Wanke S, Rees M, Liu Y, Zhou R. The Mitochondrial Genome of the Holoparasitic Plant Thonningia sanguinea Provides Insights into the Evolution of the Multichromosomal Structure. Genome Biol Evol 2023; 15:evad155. [PMID: 37603455 PMCID: PMC10476698 DOI: 10.1093/gbe/evad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Multichromosomal mitochondrial genome (mitogenome) structures have repeatedly evolved in many lineages of angiosperms. However, the underlying mechanism remains unclear. The mitogenomes of three genera of Balanophoraceae, namely Lophophytum, Ombrophytum, and Rhopalocnemis, have already been sequenced and assembled, all showing a highly multichromosomal structure, albeit with different genome and chromosome sizes. It is expected that characterization of additional lineages of this family may expand the knowledge of mitogenome diversity and provide insights into the evolution of the plant mitogenome structure and size. Here, we assembled and characterized the mitogenome of Thonningia sanguinea, which, together with Balanophora, forms a clade sister to the clade comprising Lophophytum, Ombrophytum, and Rhopalocnemis. The mitogenome of T. sanguinea possesses a multichromosomal structure of 18 circular chromosomes of 8.7-19.2 kb, with a total size of 246,247 bp. There are very limited shared regions and poor chromosomal correspondence between T. sanguinea and other Balanophoraceae species, suggesting frequent rearrangements and rapid sequence turnover. Numerous medium- and small-sized repeats were identified in the T. sanguinea mitogenome; however, no repeat-mediated recombination was detected, which was verified by Illumina reads mapping and PCR experiments. Intraspecific mitogenome variations in T. sanguinea are mostly insertions and deletions, some of which can lead to degradation of perfect repeats in one or two accessions. Based on the mitogenome features of T. sanguinea, we propose a mechanism to explain the evolution of a multichromosomal mitogenome from a master circle, which involves mutation in organellar DNA replication, recombination and repair genes, decrease of recombination, and repeat degradation.
Collapse
Affiliation(s)
- Shuaixi Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Mathew Rees
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden, Edinburgh, United Kingdom
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Aguilar Rangel M, Dolan PT, Taguwa S, Xiao Y, Andino R, Frydman J. High-resolution mapping reveals the mechanism and contribution of genome insertions and deletions to RNA virus evolution. Proc Natl Acad Sci U S A 2023; 120:e2304667120. [PMID: 37487061 PMCID: PMC10400975 DOI: 10.1073/pnas.2304667120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
RNA viruses rapidly adapt to selective conditions due to the high intrinsic mutation rates of their RNA-dependent RNA polymerases (RdRps). Insertions and deletions (indels) in viral genomes are major contributors to both deleterious mutational load and evolutionary novelty, but remain understudied. To characterize the mechanistic details of their formation and evolutionary dynamics during infection, we developed a hybrid experimental-bioinformatic approach. This approach, called MultiMatch, extracts insertions and deletions from ultradeep sequencing experiments, including those occurring at extremely low frequencies, allowing us to map their genomic distribution and quantify the rates at which they occur. Mapping indel mutations in adapting poliovirus and dengue virus populations, we determine the rates of indel generation and identify mechanistic and functional constraints shaping indel diversity. Using poliovirus RdRp variants of distinct fidelity and genome recombination rates, we demonstrate tradeoffs between fidelity and Indel generation. Additionally, we show that maintaining translation frame and viral RNA structures constrain the Indel landscape and that, due to these significant fitness effects, Indels exert a significant deleterious load on adapting viral populations. Conversely, we uncover positively selected Indels that modulate RNA structure, generate protein variants, and produce defective interfering genomes in viral populations. Together, our analyses establish the kinetic and mechanistic tradeoffs between misincorporation, recombination, and Indel rates and reveal functional principles defining the central role of Indels in virus evolution, emergence, and the regulation of viral infection.
Collapse
Affiliation(s)
| | - Patrick T. Dolan
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Shuhei Taguwa
- Department of Biology, Stanford University, Stanford, CA94305
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
25
|
Guo LT, Pyle AM. RT-based Sanger sequencing of RNAs containing complex RNA repetitive elements. Methods Enzymol 2023; 691:17-27. [PMID: 37914445 DOI: 10.1016/bs.mie.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Although next-generation sequencing (NGS) technologies have revolutionized our ability to sequence DNA with high-throughput, the chain termination-based Sanger sequencing method remains a widely used approach for DNA sequence analysis due to its simplicity, low cost and high accuracy. In particular, high accuracy makes Sanger sequencing the "gold standard" for sequence validation in basic research and clinical applications. During the early days of Sanger sequencing development, reverse transcriptase (RT)-based RNA sequencing was also explored and showed great promise, but the approach did not acquire popularity over time due to the limited processivity and low template unwinding capability of Avian Myeloblastosis Virus (AMV) RT, and other RT enzymes available at the time. RNA molecules have complex features, often containing repetitive sequences and stable secondary or tertiary structures. While these features are required for RNA biological function, they represent strong obstacles for retroviral RTs. Repetitive sequences and stable structures cause reverse transcription errors and premature primer extension stops, making chain termination-based methods unfeasible. MarathonRT is an ultra-processive RT encoded group II intron that can copy RNA molecules of any sequence and structure in a single cycle, making it an ideal RT enzyme for Sanger RNA sequencing. In this chapter, we upgrade the Sanger RNA sequencing method by replacing AMV RT with MarathonRT, providing a simple, robust method for direct RNA sequence analysis. The guidance for troubleshooting and further optimization are also provided.
Collapse
Affiliation(s)
- Li-Tao Guo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
26
|
Mier P, Andrade-Navarro MA. Evolutionary Study of Protein Short Tandem Repeats in Protein Families. Biomolecules 2023; 13:1116. [PMID: 37509152 PMCID: PMC10377733 DOI: 10.3390/biom13071116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Tandem repeats in proteins are patterns of residues repeated directly adjacent to each other. The evolution of these repeats can be assessed by using groups of homologous sequences, which can help pointing to events of unit duplication or deletion. High pressure in a protein family for variation of a given type of repeat might point to their function. Here, we propose the analysis of protein families to calculate protein short tandem repeats (pSTRs) in each protein sequence and assess their variability within the family in terms of number of units. To facilitate this analysis, we developed the pSTR tool, a method to analyze the evolution of protein short tandem repeats in a given protein family by pairwise comparisons between evolutionarily related protein sequences. We evaluated pSTR unit number variation in protein families of 12 complete metazoan proteomes. We hypothesize that families with more dynamic ensembles of repeats could reflect particular roles of these repeats in processes that require more adaptability.
Collapse
Affiliation(s)
- Pablo Mier
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
27
|
Lei B, Hanks TS, Bao Y, Liu M. Slipped-strand mispairing within a polycytidine tract in transcriptional regulator mga leads to M protein phase variation and Mga length polymorphism in Group A Streptococcus. Front Microbiol 2023; 14:1212149. [PMID: 37434706 PMCID: PMC10330708 DOI: 10.3389/fmicb.2023.1212149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
The M protein, a major virulence factor of Group A Streptococcus (GAS), is regulated by the multigene regulator Mga. An unexplained phenomena frequently occurring with in vitro genetic manipulation or culturing of M1T1 GAS strains is the loss of M protein production. This study was aimed at elucidating the basis for the loss of M protein production. The majority of M protein-negative (M-) variants had one C deletion at a tract of 8 cytidines starting at base 1,571 of the M1 mga gene, which is designated as c.1571C[8]. The C deletion led to a c.1571C[7] mga variant that has an open reading frame shift and encodes a Mga-M protein fusion protein. Transformation with a plasmid containing wild-type mga restored the production of the M protein in the c.1571C[7] mga variant. Isolates producing M protein (M+) were recovered following growth of the c.1571C[7] M protein-negative variant subcutaneously in mice. The majority of the recovered isolates with reestablished M protein production had reverted back from c.1571C[7] to c.1571C[8] tract and some M+ isolates lost another C in the c.1571C[7] tract, leading to a c.1571C[6] variant that encodes a functional Mga with 13 extra amino acid residues at the C-terminus compared with wild-type Mga. The nonfunctional c.1571C[7] and functional c.1571C[6] variants are present in M1, M12, M14, and M23 strains in NCBI genome databases, and a G-to-A nonsense mutation at base 1,657 of M12 c.1574C[7] mga leads to a functional c.1574C[7]/1657A mga variant and is common in clinical M12 isolates. The numbers of the C repeats in this polycytidine tract and the polymorphism at base 1,657 lead to polymorphism in the size of Mga among clinical isolates. These findings demonstrate the slipped-strand mispairing within the c.1574C[8] tract of mga as a reversible switch controlling M protein production phase variation in multiple GAS common M types.
Collapse
Affiliation(s)
- Benfang Lei
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Tracey S. Hanks
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Yunjuan Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Mengyao Liu
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
28
|
Lee Y, Cho CH, Noh C, Yang JH, Park SI, Lee YM, West JA, Bhattacharya D, Jo K, Yoon HS. Origin of minicircular mitochondrial genomes in red algae. Nat Commun 2023; 14:3363. [PMID: 37291154 PMCID: PMC10250338 DOI: 10.1038/s41467-023-39084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Eukaryotic organelle genomes are generally of conserved size and gene content within phylogenetic groups. However, significant variation in genome structure may occur. Here, we report that the Stylonematophyceae red algae contain multipartite circular mitochondrial genomes (i.e., minicircles) which encode one or two genes bounded by a specific cassette and a conserved constant region. These minicircles are visualized using fluorescence microscope and scanning electron microscope, proving the circularity. Mitochondrial gene sets are reduced in these highly divergent mitogenomes. Newly generated chromosome-level nuclear genome assembly of Rhodosorus marinus reveals that most mitochondrial ribosomal subunit genes are transferred to the nuclear genome. Hetero-concatemers that resulted from recombination between minicircles and unique gene inventory that is responsible for mitochondrial genome stability may explain how the transition from typical mitochondrial genome to minicircles occurs. Our results offer inspiration on minicircular organelle genome formation and highlight an extreme case of mitochondrial gene inventory reduction.
Collapse
Affiliation(s)
- Yongsung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chanyoung Noh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yu Min Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 08901, USA
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
29
|
Sakurada-Aono M, Sakamoto T, Kobayashi M, Takiuchi Y, Iwai F, Tada K, Sasanuma H, Hirabayashi S, Murakawa Y, Shirakawa K, Sakamoto C, Shindo K, Yasunaga JI, Matsuoka M, Pommier Y, Takeda S, Takaori-Kondo A. HTLV-1 bZIP factor impairs DNA mismatch repair system. Biochem Biophys Res Commun 2023; 657:43-49. [PMID: 36972660 PMCID: PMC10115849 DOI: 10.1016/j.bbrc.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Adult T-cell leukemia (ATL) is a peripheral T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). Microsatellite instability (MSI) has been observed in ATL cells. Although MSI results from impaired mismatch repair (MMR) pathway, no null mutations in the genes encoding MMR factors are detectable in ATL cells. Thus, it is unclear whether or not impairment of MMR causes the MSI in ATL cells. HTLV-1 bZIP factor (HBZ) protein interacts with numerous host transcription factors and significantly contributes to disease pathogenesis and progression. Here we investigated the effect of HBZ on MMR in normal cells. The ectopic expression of HBZ in MMR-proficient cells induced MSI, and also suppressed the expression of several MMR factors. We then hypothesized that the HBZ compromises MMR by interfering with a transcription factor, nuclear respiratory factor 1 (NRF-1), and identified the consensus NRF-1 binding site at the promoter of the gene encoding MutS homologue 2 (MSH2), an essential MMR factor. The luciferase reporter assay revealed that NRF-1 overexpression enhanced MSH2 promoter activity, while co-expression of HBZ reversed this enhancement. These results supported the idea that HBZ suppresses the transcription of MSH2 by inhibiting NRF-1. Our data demonstrate that HBZ causes impaired MMR, and may imply a novel oncogenesis driven by HTLV-1.
Collapse
Affiliation(s)
- Maki Sakurada-Aono
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masayuki Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoko Takiuchi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumie Iwai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kohei Tada
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shigeki Hirabayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; IFOM ETS-the AIRC Institute of Molecular Oncology, 20139, Milan, MI, Italy
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Chihiro Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keisuke Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Shenzhen University School of Medicine, 1066, Xueyuan BLV, Shenzhen, Guangdong, China
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
30
|
Fletcher A, Wunderlich Z, Enciso G. Shadow enhancers mediate trade-offs between transcriptional noise and fidelity. PLoS Comput Biol 2023; 19:e1011071. [PMID: 37205714 DOI: 10.1371/journal.pcbi.1011071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Enhancers are stretches of regulatory DNA that bind transcription factors (TFs) and regulate the expression of a target gene. Shadow enhancers are two or more enhancers that regulate the same target gene in space and time and are associated with most animal developmental genes. These multi-enhancer systems can drive more consistent transcription than single enhancer systems. Nevertheless, it remains unclear why shadow enhancer TF binding sites are distributed across multiple enhancers rather than within a single large enhancer. Here, we use a computational approach to study systems with varying numbers of TF binding sites and enhancers. We employ chemical reaction networks with stochastic dynamics to determine the trends in transcriptional noise and fidelity, two key performance objectives of enhancers. This reveals that while additive shadow enhancers do not differ in noise and fidelity from their single enhancer counterparts, sub- and superadditive shadow enhancers have noise and fidelity trade-offs not available to single enhancers. We also use our computational approach to compare the duplication and splitting of a single enhancer as mechanisms for the generation of shadow enhancers and find that the duplication of enhancers can decrease noise and increase fidelity, although at the metabolic cost of increased RNA production. A saturation mechanism for enhancer interactions similarly improves on both of these metrics. Taken together, this work highlights that shadow enhancer systems may exist for several reasons: genetic drift or the tuning of key functions of enhancers, including transcription fidelity, noise and output.
Collapse
Affiliation(s)
- Alvaro Fletcher
- Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA, United States of America
| | - Zeba Wunderlich
- Department of Biology, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - German Enciso
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States of America
| |
Collapse
|
31
|
Anuradha A, Undavalli SB, Kumar AJ. DNA mutilation: A telltale sign of cancer inception. J Oral Maxillofac Pathol 2023; 27:374-381. [PMID: 37854902 PMCID: PMC10581300 DOI: 10.4103/jomfp.jomfp_513_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 03/10/2023] [Indexed: 10/20/2023] Open
Abstract
DNA damage is a discrepancy in its chemical structure precipitated by a multitude of factors. Most DNA damages can be repaired efficiently through diverse restorative mechanisms subjective to the type of damage. DNA-damaging agents elicit a medley of cellular retorts like cell cycle arrest, followed by DNA repair mechanisms or apoptosis. An unrepaired DNA damage in a nonreplicating cell does not generally engender mutations but a similar scenario in replicating cell routes to permanent modification of genetic material shrugging to carcinogenesis. DNA mutilation can be allied to disarray in bases, debasement of backbone, or crosslinks. Base damages or backbone damages like single-strand and double-strand DNA breaks are usually produced by reactive oxygen species and ionizing radiation. This substantial DNA damage has broadly been considered to be caused by various exogenous and endogenous agents with variable rates of causality and decrees of risk, sourcing toward cancer or other diseases, necessitating furtherance in diagnostics at sequential points. The purpose of this article is to review in detail the various types of DNA damages, their contributory factors, and recent developments in their identification.
Collapse
Affiliation(s)
- A Anuradha
- Department of Oral and Maxillofacial Pathology, St Joseph Dental College and Hospital, Duggirala, Eluru, Andhra Pradesh, India
| | | | - A Jagadeesh Kumar
- Department of Oral and Maxillofacial Pathology, St Joseph Dental College and Hospital, Duggirala, Eluru, Andhra Pradesh, India
| |
Collapse
|
32
|
Lu TY, Smaruj PN, Fudenberg G, Mancuso N, Chaisson MJP. The motif composition of variable number tandem repeats impacts gene expression. Genome Res 2023; 33:511-524. [PMID: 37037626 PMCID: PMC10234305 DOI: 10.1101/gr.276768.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Understanding the impact of DNA variation on human traits is a fundamental question in human genetics. Variable number tandem repeats (VNTRs) make up ∼3% of the human genome but are often excluded from association analysis owing to poor read mappability or divergent repeat content. Although methods exist to estimate VNTR length from short-read data, it is known that VNTRs vary in both length and repeat (motif) composition. Here, we use a repeat-pangenome graph (RPGG) constructed on 35 haplotype-resolved assemblies to detect variation in both VNTR length and repeat composition. We align population-scale data from the Genotype-Tissue Expression (GTEx) Consortium to examine how variations in sequence composition may be linked to expression, including cases independent of overall VNTR length. We find that 9422 out of 39,125 VNTRs are associated with nearby gene expression through motif variations, of which only 23.4% are accessible from length. Fine-mapping identifies 174 genes to be likely driven by variation in certain VNTR motifs and not overall length. We highlight two genes, CACNA1C and RNF213, that have expression associated with motif variation, showing the utility of RPGG analysis as a new approach for trait association in multiallelic and highly variable loci.
Collapse
Affiliation(s)
- Tsung-Yu Lu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Paulina N Smaruj
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Nicholas Mancuso
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA;
- The Genomic and Epigenomic Regulation Program, USC Norris Cancer Center, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
33
|
Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers (Basel) 2023; 15:cancers15041022. [PMID: 36831367 PMCID: PMC9954007 DOI: 10.3390/cancers15041022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
About 5 to 15% of all colorectal cancers harbor mismatch repair deficient/microsatellite instability-high status (dMMR/MSI-H) that associates with high tumor mutation burden and increased immunogenicity. As a result, and in contrast to other colorectal cancer phenotypes, a significant subset of dMMR/MSI-H cancer patients strongly benefit from immunotherapy. Yet, a large proportion of these tumors remain unresponsive to any immuno-modulating treatment. For this reason, current efforts are focused on the characterization of resistance mechanisms and the identification of predictive biomarkers to guide therapeutic decision-making. Here, we provide an overview on the new advances related to the diagnosis and definition of dMMR/MSI-H status and focus on the distinct clinical, functional, and molecular cues that associate with dMMR/MSI-H colorectal cancer. We review the development of novel predictive factors of response or resistance to immunotherapy and their potential application in the clinical setting. Finally, we discuss current and emerging strategies applied to the treatment of localized and metastatic dMMR/MSI-H colorectal tumors in the neoadjuvant and adjuvant setting.
Collapse
|
34
|
Corcos L, Le Scanf E, Quéré G, Arzur D, Cueff G, Jossic-Corcos CL, Le Maréchal C. Microsatellite Instability and Aberrant Pre-mRNA Splicing: How Intimate Is It? Genes (Basel) 2023; 14:genes14020311. [PMID: 36833239 PMCID: PMC9957390 DOI: 10.3390/genes14020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Cancers that belong to the microsatellite instability (MSI) class can account for up to 15% of all cancers of the digestive tract. These cancers are characterized by inactivation, through the mutation or epigenetic silencing of one or several genes from the DNA MisMatch Repair (MMR) machinery, including MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2 and Exo1. The unrepaired DNA replication errors turn into mutations at several thousand sites that contain repetitive sequences, mainly mono- or dinucleotides, and some of them are related to Lynch syndrome, a predisposition condition linked to a germline mutation in one of these genes. In addition, some mutations shortening the microsatellite (MS) stretch could occur in the 3'-intronic regions, i.e., in the ATM (ATM serine/threonine kinase), MRE11 (MRE11 homolog) or the HSP110 (Heat shock protein family H) genes. In these three cases, aberrant pre-mRNA splicing was observed, and it was characterized by the occurrence of selective exon skipping in mature mRNAs. Because both the ATM and MRE11 genes, which as act as players in the MNR (MRE11/NBS1 (Nibrin)/RAD50 (RAD50 double strand break repair protein) DNA damage repair system, participate in double strand breaks (DSB) repair, their frequent splicing alterations in MSI cancers lead to impaired activity. This reveals the existence of a functional link between the MMR/DSB repair systems and the pre-mRNA splicing machinery, the diverted function of which is the consequence of mutations in the MS sequences.
Collapse
Affiliation(s)
- Laurent Corcos
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
- Correspondence:
| | | | - Gaël Quéré
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
| | | | | | | | - Cédric Le Maréchal
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
| |
Collapse
|
35
|
Schoelmerich MC, Sachdeva R, West-Roberts J, Waldburger L, Banfield JF. Tandem repeats in giant archaeal Borg elements undergo rapid evolution and create new intrinsically disordered regions in proteins. PLoS Biol 2023; 21:e3001980. [PMID: 36701369 PMCID: PMC9879509 DOI: 10.1371/journal.pbio.3001980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023] Open
Abstract
Borgs are huge, linear extrachromosomal elements associated with anaerobic methane-oxidizing archaea. Striking features of Borg genomes are pervasive tandem direct repeat (TR) regions. Here, we present six new Borg genomes and investigate the characteristics of TRs in all ten complete Borg genomes. We find that TR regions are rapidly evolving, recently formed, arise independently, and are virtually absent in host Methanoperedens genomes. Flanking partial repeats and A-enriched character constrain the TR formation mechanism. TRs can be in intergenic regions, where they might serve as regulatory RNAs, or in open reading frames (ORFs). TRs in ORFs are under very strong selective pressure, leading to perfect amino acid TRs (aaTRs) that are commonly intrinsically disordered regions. Proteins with aaTRs are often extracellular or membrane proteins, and functionally similar or homologous proteins often have aaTRs composed of the same amino acids. We propose that Borg aaTR-proteins functionally diversify Methanoperedens and all TRs are crucial for specific Borg-host associations and possibly cospeciation.
Collapse
Affiliation(s)
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- Earth and Planetary Science, University of California, Berkeley, California, United States of America
| | - Jacob West-Roberts
- Earth and Planetary Science, University of California, Berkeley, California, United States of America
| | - Lucas Waldburger
- Bioengineering, University of California, Berkeley, California, United States of America
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- Earth and Planetary Science, University of California, Berkeley, California, United States of America
- Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
36
|
Tingey M, Li Y, Yu W, Young A, Yang W. Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Nucleus 2022; 13:170-193. [PMID: 35593254 PMCID: PMC9132428 DOI: 10.1080/19491034.2022.2076965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
The Nuclear Pore Complex (NPC) represents a critical passage through the nuclear envelope for nuclear import and export that impacts nearly every cellular process at some level. Recent technological advances in the form of Auxin Inducible Degron (AID) strategies and Single-Point Edge-Excitation sub-Diffraction (SPEED) microscopy have enabled us to provide new insight into the distinct functions and roles of nuclear basket nucleoporins (Nups) upon nuclear docking and export for mRNAs. In this paper, we provide a review of our recent findings as well as an assessment of new techniques, updated models, and future perspectives in the studies of mRNA's nuclear export.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Albert Young
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Kosushkin SA, Ustyantsev IG, Borodulina OR, Vassetzky NS, Kramerov DA. Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure. BIOLOGY 2022; 11:biology11101403. [PMID: 36290307 PMCID: PMC9599045 DOI: 10.3390/biology11101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The genomes of higher organisms including humans are invaded by millions of repetitive elements (transposons), which can sometimes be deleterious or beneficial for hosts. Many aspects of the mechanisms underlying the expansion of transposons in the genomes remain unclear. Short retrotransposons (SINEs) are one of the most abundant classes of genomic repeats. Their amplification relies on two major processes: transcription and reverse transcription. Here, short retrotransposons of dogs and other canids called Can SINE were analyzed. Their amplification was extraordinarily active in the wolf and, particularly, dog breeds relative to other canids. We also studied a variation of their transcription mechanism involving the polyadenylation of transcripts. An analysis of specific signals involved in this process allowed us to conclude that Can SINEs could alternate amplification with and without polyadenylation in their evolution. Understanding the mechanisms of transposon replication can shed light on the mechanisms of genome function. Abstract SINEs, non-autonomous short retrotransposons, are widespread in mammalian genomes. Their transcripts are generated by RNA polymerase III (pol III). Transcripts of certain SINEs can be polyadenylated, which requires polyadenylation and pol III termination signals in their sequences. Our sequence analysis divided Can SINEs in canids into four subfamilies, older a1 and a2 and younger b1 and b2. Can_b2 and to a lesser extent Can_b1 remained retrotranspositionally active, while the amplification of Can_a1 and Can_a2 ceased long ago. An extraordinarily high Can amplification was revealed in different dog breeds. Functional polyadenylation signals were analyzed in Can subfamilies, particularly in fractions of recently amplified, i.e., active copies. The transcription of various Can constructs transfected into HeLa cells proposed AATAAA and (TC)n as functional polyadenylation signals. Our analysis indicates that older Can subfamilies (a1, a2, and b1) with an active transcription terminator were amplified by the T+ mechanism (with polyadenylation of pol III transcripts). In the currently active Can_b2 subfamily, the amplification mechanisms with (T+) and without the polyadenylation of pol III transcripts (T−) irregularly alternate. The active transcription terminator tends to shorten, which renders it nonfunctional and favors a switch to the T− retrotransposition. The activity of a truncated terminator is occasionally restored by its elongation, which rehabilitates the T+ retrotransposition for a particular SINE copy.
Collapse
|
38
|
Abstract
Roughly 3% of the human genome consists of microsatellites or tracts of short tandem repeats (STRs). These STRs are often unstable, undergoing high-frequency expansions (increases) or contractions (decreases) in the number of repeat units. Some microsatellite instability (MSI) is seen at multiple STRs within a single cell and is associated with certain types of cancer. A second form of MSI is characterised by expansion of a single gene-specific STR and such expansions are responsible for a group of 40+ human genetic disorders known as the repeat expansion diseases (REDs). While the mismatch repair (MMR) pathway prevents genome-wide MSI, emerging evidence suggests that some MMR factors are directly involved in generating expansions in the REDs. Thus, MMR suppresses some forms of expansion while some MMR factors promote expansion in other contexts. This review will cover what is known about the paradoxical effect of MMR on microsatellite expansion in mammalian cells.
Collapse
|
39
|
Yousuf A, Ahmed N, Qurashi A. Non-canonical DNA/RNA structures associated with the pathogenesis of Fragile X-associated tremor/ataxia syndrome and Fragile X syndrome. Front Genet 2022; 13:866021. [PMID: 36110216 PMCID: PMC9468596 DOI: 10.3389/fgene.2022.866021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X syndrome (FXS) are primary examples of fragile X-related disorders (FXDs) caused by abnormal expansion of CGG repeats above a certain threshold in the 5'-untranslated region of the fragile X mental retardation (FMR1) gene. Both diseases have distinct clinical manifestations and molecular pathogenesis. FXTAS is a late-adult-onset neurodegenerative disorder caused by a premutation (PM) allele (CGG expansion of 55-200 repeats), resulting in FMR1 gene hyperexpression. On the other hand, FXS is a neurodevelopmental disorder that results from a full mutation (FM) allele (CGG expansions of ≥200 repeats) leading to heterochromatization and transcriptional silencing of the FMR1 gene. The main challenge is to determine how CGG repeat expansion affects the fundamentally distinct nature of FMR1 expression in FM and PM ranges. Abnormal CGG repeat expansions form a variety of non-canonical DNA and RNA structures that can disrupt various cellular processes and cause distinct effects in PM and FM alleles. Here, we review these structures and how they are related to underlying mutations and disease pathology in FXS and FXTAS. Finally, as new CGG expansions within the genome have been identified, it will be interesting to determine their implications in disease pathology and treatment.
Collapse
Affiliation(s)
| | | | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
40
|
Savino S, Desmet T, Franceus J. Insertions and deletions in protein evolution and engineering. Biotechnol Adv 2022; 60:108010. [PMID: 35738511 DOI: 10.1016/j.biotechadv.2022.108010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects. This review highlights the evolutionary importance and biotechnological relevance of insertions and deletions (indels). We provide a comprehensive overview of approaches that can be employed to include indels in random, (semi)-rational or computational protein engineering pipelines. Furthermore, we discuss the tolerance to indels at the structural level, address how domain indels can link the function of unrelated proteins, and feature studies that illustrate the surprising and intriguing potential of frameshift mutations.
Collapse
Affiliation(s)
- Simone Savino
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium..
| |
Collapse
|
41
|
Alisoltani A, Jaroszewski L, Iyer M, Iranzadeh A, Godzik A. Increased Frequency of Indels in Hypervariable Regions of SARS-CoV-2 Proteins—A Possible Signature of Adaptive Selection. Front Genet 2022; 13:875406. [PMID: 35719386 PMCID: PMC9201826 DOI: 10.3389/fgene.2022.875406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Most attention in the surveillance of evolving SARS-CoV-2 genome has been centered on nucleotide substitutions in the spike glycoprotein. We show that, as the pandemic extends into its second year, the numbers and ratio of genomes with in-frame insertions and deletions (indels) increases significantly, especially among the variants of concern (VOCs). Monitoring of the SARS-CoV-2 genome evolution shows that co-occurrence (i.e., highly correlated presence) of indels, especially deletions on spike N-terminal domain and non-structural protein 6 (NSP6) is a shared feature in several VOCs such as Alpha, Beta, Delta, and Omicron. Indels distribution is correlated with spike mutations associated with immune escape and growth in the number of genomes with indels coincides with the increasing population resistance due to vaccination and previous infections. Indels occur most frequently in the spike, but also in other proteins, especially those involved in interactions with the host immune system. We also showed that indels concentrate in regions of individual SARS-CoV-2 proteins known as hypervariable regions (HVRs) that are mostly located in specific loop regions. Structural analysis suggests that indels remodel viral proteins’ surfaces at common epitopes and interaction interfaces, affecting the virus’ interactions with host proteins. We hypothesize that the increased frequency of indels, the non-random distribution of them and their independent co-occurrence in several VOCs is another mechanism of response to elevated global population immunity.
Collapse
Affiliation(s)
- Arghavan Alisoltani
- Biosciences Division, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Lukasz Jaroszewski
- Biosciences Division, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Mallika Iyer
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Arash Iranzadeh
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam Godzik
- Biosciences Division, School of Medicine, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Adam Godzik,
| |
Collapse
|
42
|
Kim D, Lee J, Cho CH, Kim EJ, Bhattacharya D, Yoon HS. Group II intron and repeat-rich red algal mitochondrial genomes demonstrate the dynamic recent history of autocatalytic RNAs. BMC Biol 2022; 20:2. [PMID: 34996446 PMCID: PMC8742464 DOI: 10.1186/s12915-021-01200-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Group II introns are mobile genetic elements that can insert at specific target sequences, however, their origins are often challenging to reconstruct because of rapid sequence decay following invasion and spread into different sites. To advance understanding of group II intron spread, we studied the intron-rich mitochondrial genome (mitogenome) in the unicellular red alga, Porphyridium. Results Analysis of mitogenomes in three closely related species in this genus revealed they were 3–6-fold larger in size (56–132 kbp) than in other red algae, that have genomes of size 21–43 kbp. This discrepancy is explained by two factors, group II intron invasion and expansion of repeated sequences in large intergenic regions. Phylogenetic analysis demonstrates that many mitogenome group II intron families are specific to Porphyridium, whereas others are closely related to sequences in fungi and in the red alga-derived plastids of stramenopiles. Network analysis of intron-encoded proteins (IEPs) shows a clear link between plastid and mitochondrial IEPs in distantly related species, with both groups associated with prokaryotic sequences. Conclusion Our analysis of group II introns in Porphyridium mitogenomes demonstrates the dynamic nature of group II intron evolution, strongly supports the lateral movement of group II introns among diverse eukaryotes, and reveals their ability to proliferate, once integrated in mitochondrial DNA. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01200-3.
Collapse
Affiliation(s)
- Dongseok Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu, 41566, South Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Eun Jeung Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
43
|
St Germain C, Zhao H, Sinha V, Sanz LA, Chédin F, Barlow J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2051-2073. [PMID: 35100392 PMCID: PMC8887484 DOI: 10.1093/nar/gkac035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Conflicts between transcription and replication machinery are a potent source of replication stress and genome instability; however, no technique currently exists to identify endogenous genomic locations prone to transcription–replication interactions. Here, we report a novel method to identify genomic loci prone to transcription–replication interactions termed transcription–replication immunoprecipitation on nascent DNA sequencing, TRIPn-Seq. TRIPn-Seq employs the sequential immunoprecipitation of RNA polymerase 2 phosphorylated at serine 5 (RNAP2s5) followed by enrichment of nascent DNA previously labeled with bromodeoxyuridine. Using TRIPn-Seq, we mapped 1009 unique transcription–replication interactions (TRIs) in mouse primary B cells characterized by a bimodal pattern of RNAP2s5, bidirectional transcription, an enrichment of RNA:DNA hybrids, and a high probability of forming G-quadruplexes. TRIs are highly enriched at transcription start sites and map to early replicating regions. TRIs exhibit enhanced Replication Protein A association and TRI-associated genes exhibit higher replication fork termination than control transcription start sites, two marks of replication stress. TRIs colocalize with double-strand DNA breaks, are enriched for deletions, and accumulate mutations in tumors. We propose that replication stress at TRIs induces mutations potentially contributing to age-related disease, as well as tumor formation and development.
Collapse
Affiliation(s)
- Commodore P St Germain
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Vrishti Sinha
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jacqueline H Barlow
- To whom correspondence should be addressed. Tel: +1 530 752 9529; Fax: +1 530 752 9014;
| |
Collapse
|
44
|
The minicircular and extremely heteroplasmic mitogenome of the holoparasitic plant Rhopalocnemis phalloides. Curr Biol 2021; 32:470-479.e5. [PMID: 34906352 DOI: 10.1016/j.cub.2021.11.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
The plastid and nuclear genomes of parasitic plants exhibit deeply altered architectures,1-13 whereas the few examined mitogenomes range from deeply altered to conventional.14-20 To provide further insight on mitogenome evolution in parasitic plants, we report the highly modified mitogenome of Rhopalocnemis phalloides, a holoparasite in Balanophoraceae. Its mitogenome is uniquely arranged in 21 minicircular chromosomes that vary in size from 4,949 to 7,861 bp, with a total length of only 130,713 bp. All chromosomes share an identical 896 bp conserved region, with a large stem-loop that acts as the origin of replication, flanked on each side by hypervariable and semi-conserved regions. Similar minicircular structures with shared and unique regions have been observed in parasitic animals and free-living protists,21-24 suggesting convergent structural evolution. Southern blots confirm both the minicircular structure and the replication origin of the mitochondrial chromosomes. PacBio reads provide evidence for chromosome recombination and rolling-circle replication for the R. phalloides mitogenome. Despite its small size, the mitogenome harbors a typical set of genes and introns within the unique regions of each chromosome, yet introns are the smallest among seed plants and ferns. The mitogenome also exhibits extreme heteroplasmy, predominantly involving short indels and more complex variants, many of which cause potential loss-of-function mutations for some gene copies. All heteroplasmic variants are transcribed, and functional and nonfunctional protein-coding variants are spliced and RNA edited. Our findings offer a unique perspective into how mitogenomes of parasitic plants can be deeply altered and shed light on plant mitogenome replication.
Collapse
|
45
|
The Complexity of the Ovine and Caprine Keratin-Associated Protein Genes. Int J Mol Sci 2021; 22:ijms222312838. [PMID: 34884644 PMCID: PMC8657448 DOI: 10.3390/ijms222312838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
Sheep (Ovis aries) and goats (Capra hircus) have, for more than a millennia, been a source of fibres for human use, be it for use in clothing and furnishings, for insulation, for decorative and ceremonial purposes, or for combinations thereof. While use of these natural fibres has in some respects been superseded by the use of synthetic and plant-based fibres, increased accounting for the carbon and water footprint of these fibres is creating a re-emergence of interest in fibres derived from sheep and goats. The keratin-associated proteins (KAPs) are structural components of wool and hair fibres, where they form a matrix that cross-links with the keratin intermediate filaments (KIFs), the other main structural component of the fibres. Since the first report of a complete KAP protein sequence in the late 1960s, considerable effort has been made to identify the KAP proteins and their genes in mammals, and to ascertain how these genes and proteins control fibre growth and characteristics. This effort is ongoing, with more and more being understood about the structure and function of the genes. This review consolidates that knowledge and suggests future directions for research to further our understanding.
Collapse
|
46
|
Hagihara M, Dohno C, Saito K, Sugimoto K, Hishinuma Y, Sohma Y, Shibata T, Nakatani K. Short Tandem Repeat Contractions during In Vitro DNA Synthesis by Repeat-binding Molecules. CHEM LETT 2021. [DOI: 10.1246/cl.210415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaki Hagihara
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chikara Dohno
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kaoru Saito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Kazuhiro Sugimoto
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yuta Hishinuma
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yuri Sohma
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Tomonori Shibata
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
47
|
Nardi V, Tsuchiya KD, Kim AS, Bean LJH, Halley JG, Long TA, Szelinger S, Vasalos P, Thorson JA, Moyer AM, Moncur JT. Next-Generation Sequencing Somatic and Germline Assay Troubleshooting Guide Derived From Proficiency Testing Data. Arch Pathol Lab Med 2021; 146:451-461. [PMID: 34424952 DOI: 10.5858/arpa.2020-0842-cp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Next-generation sequencing-based assays are increasingly used in clinical molecular laboratories to detect somatic variants in solid tumors and hematologic malignancies and to detect constitutional variants. Proficiency testing data are potential sources of information about challenges in performing these assays. OBJECTIVE.— To examine the most common sources of unacceptable results from the College of American Pathologists Next-Generation Sequencing Bioinformatics, Hematological Malignancies, Solid Tumor, and Germline surveys, and provide recommendations on how to avoid these pitfalls and improve performance. DESIGN.— The College of American Pathologists next-generation sequencing somatic and germline proficiency testing survey results from 2016 to 2019 were analyzed to identify the most common causes of unacceptable results. RESULTS.— On somatic and germline proficiency testing surveys, 95.9% (18 815/19 623) and 97.8% (33 890/34 641) of all variants were correctly identified, respectively. The most common causes of unacceptable results related to sequencing were false-negative errors in genomic regions that were difficult to sequence because of high GC content. False-positive errors occurred in the context of homopolymers and pseudogenes. Recurrent errors in variant annotation were seen for dinucleotide and duplication variants and included unacceptable transcript selection and outdated variant nomenclature. A small percentage of preanalytic or postanalytic errors were attributed to specimen swaps and transcription errors. CONCLUSIONS.— Laboratories demonstrate overall excellent performance for detecting variants in both somatic and germline proficiency testing surveys. Proficiency testing survey results highlight infrequent, but recurrent, analytic and nonanalytic challenges in performing next- generation sequencing-based assays and point to remedies to help laboratories improve performance.
Collapse
Affiliation(s)
- Valentina Nardi
- From the Department of Pathology, Massachusetts General Hospital, Boston (Nardi)
| | - Karen D Tsuchiya
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington (Tsuchiya)
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Kim)
| | - Lora J H Bean
- Department of Pathology, PerkinElmer Genomics, Pittsburgh, Pennsylvania (Bean)
| | - Jaimie G Halley
- Proficiency Testing (Halley, Szelenger, Vasalos), Northfield, Illinois
| | | | | | - Patricia Vasalos
- Proficiency Testing (Halley, Szelenger, Vasalos), Northfield, Illinois
| | - John A Thorson
- College of American Pathologists, Northfield, Illinois; Department of Pathology, UC San Diego, Del Mar, California (Thorson)
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinc, Rochester, Minnesota (Moyer)
| | - Joel T Moncur
- the Office of the Director, The Joint Pathology Center, Silver Spring, Maryland (Moncur)
| |
Collapse
|
48
|
Katerji M, Duerksen-Hughes PJ. DNA damage in cancer development: special implications in viral oncogenesis. Am J Cancer Res 2021; 11:3956-3979. [PMID: 34522461 PMCID: PMC8414375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 06/13/2023] Open
Abstract
DNA lesions arise from a combination of physiological/metabolic sources and exogenous environmental influences. When left unrepaired, these alterations accumulate in the cells and can give rise to mutations that change the function of important proteins (i.e. tumor suppressors, oncoproteins), or cause chromosomal rearrangements (i.e. gene fusions) that also result in the deregulation of key cellular molecules. Progressive acquisition of such genetic changes promotes uncontrolled cell proliferation and evasion of cell death, and hence plays a key role in carcinogenesis. Another less-studied consequence of DNA damage accumulating in the host genome is the integration of oncogenic DNA viruses such as Human papillomavirus, Merkel cell polyomavirus, and Hepatitis B virus. This critical step of viral-induced carcinogenesis is thought to be particularly facilitated by DNA breaks in both viral and host genomes. Therefore, the impact of DNA damage on carcinogenesis is magnified in the case of such oncoviruses via the additional effect of increasing integration frequency. In this review, we briefly present the various endogenous and exogenous factors that cause different types of DNA damage. Next, we discuss the contribution of these lesions in cancer development. Finally, we examine the amplified effect of DNA damage in viral-induced oncogenesis and summarize the limited data existing in the literature related to DNA damage-induced viral integration. To conclude, additional research is needed to assess the DNA damage pathways involved in the transition from viral infection to cancer. Discovering that a certain DNA damaging agent increases the likelihood of viral integration will enable the development of prophylactic and therapeutic strategies designed specifically to prevent such integration, with an ultimate goal of reducing or eliminating these viral-induced malignancies.
Collapse
Affiliation(s)
- Meghri Katerji
- Department of Basic Science, Loma Linda University School of Medicine Loma Linda, CA 92354, USA
| | | |
Collapse
|
49
|
Zyrina NV, Antipova VN. Nonspecific Synthesis in the Reactions of Isothermal Nucleic Acid Amplification. BIOCHEMISTRY (MOSCOW) 2021; 86:887-897. [PMID: 34284713 DOI: 10.1134/s0006297921070099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review focuses on the main factors involved in the formation of nonspecific products in isothermal nucleic acid amplification, such as mispriming, ab initio DNA synthesis, and additional activities of DNA polymerases, and discusses approaches to prevent formation of such nonspecific products in LAMP, RPA, NASBA, RCA, SDA, LSDA, NDA, and EXPAR.
Collapse
Affiliation(s)
- Nadezhda V Zyrina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Valeriya N Antipova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
50
|
Lu TY, Chaisson MJP. Profiling variable-number tandem repeat variation across populations using repeat-pangenome graphs. Nat Commun 2021; 12:4250. [PMID: 34253730 PMCID: PMC8275641 DOI: 10.1038/s41467-021-24378-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Variable number tandem repeats (VNTRs) are composed of consecutive repetitive DNA with hypervariable repeat count and composition. They include protein coding sequences and associations with clinical disorders. It has been difficult to incorporate VNTR analysis in disease studies that use short-read sequencing because the traditional approach of mapping to the human reference is less effective for repetitive and divergent sequences. In this work, we solve VNTR mapping for short reads with a repeat-pangenome graph (RPGG), a data structure that encodes both the population diversity and repeat structure of VNTR loci from multiple haplotype-resolved assemblies. We develop software to build a RPGG, and use the RPGG to estimate VNTR composition with short reads. We use this to discover VNTRs with length stratified by continental population, and expression quantitative trait loci, indicating that RPGG analysis of VNTRs will be critical for future studies of diversity and disease.
Collapse
Affiliation(s)
- Tsung-Yu Lu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|