1
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Karabağ C, Jones ML, Peddie CJ, Weston AE, Collinson LM, Reyes-Aldasoro CC. Semantic segmentation of HeLa cells: An objective comparison between one traditional algorithm and four deep-learning architectures. PLoS One 2020; 15:e0230605. [PMID: 33006963 PMCID: PMC7531863 DOI: 10.1371/journal.pone.0230605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022] Open
Abstract
The quantitative study of cell morphology is of great importance as the structure and condition of cells and their structures can be related to conditions of health or disease. The first step towards that, is the accurate segmentation of cell structures. In this work, we compare five approaches, one traditional and four deep-learning, for the semantic segmentation of the nuclear envelope of cervical cancer cells commonly known as HeLa cells. Images of a HeLa cancer cell were semantically segmented with one traditional image-processing algorithm and four three deep learning architectures: VGG16, ResNet18, Inception-ResNet-v2, and U-Net. Three hundred slices, each 2000 × 2000 pixels, of a HeLa Cell were acquired with Serial Block Face Scanning Electron Microscopy. The first three deep learning architectures were pre-trained with ImageNet and then fine-tuned with transfer learning. The U-Net architecture was trained from scratch with 36, 000 training images and labels of size 128 × 128. The image-processing algorithm followed a pipeline of several traditional steps like edge detection, dilation and morphological operators. The algorithms were compared by measuring pixel-based segmentation accuracy and Jaccard index against a labelled ground truth. The results indicated a superior performance of the traditional algorithm (Accuracy = 99%, Jaccard = 93%) over the deep learning architectures: VGG16 (93%, 90%), ResNet18 (94%, 88%), Inception-ResNet-v2 (94%, 89%), and U-Net (92%, 56%).
Collapse
Affiliation(s)
- Cefa Karabağ
- Research Centre for Biomedical Engineering School of Mathematics, Computer Science and Engineering, Department of Electrical & Electronic Engineering, City, University of London, London, United Kingdom
| | - Martin L. Jones
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Christopher J. Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Anne E. Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Constantino Carlos Reyes-Aldasoro
- giCentre, Department of Computer Science, School of Mathematics, Computer Science and Engineering, City, University of London, London, United Kingdom
| |
Collapse
|
3
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
4
|
Liokatis S, Edlich C, Soupsana K, Giannios I, Panagiotidou P, Tripsianes K, Sattler M, Georgatos SD, Politou AS. Solution structure and molecular interactions of lamin B receptor Tudor domain. J Biol Chem 2012; 287:1032-42. [PMID: 22052904 PMCID: PMC3256899 DOI: 10.1074/jbc.m111.281303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 11/02/2011] [Indexed: 11/06/2022] Open
Abstract
Lamin B receptor (LBR) is a polytopic protein of the nuclear envelope thought to connect the inner nuclear membrane with the underlying nuclear lamina and peripheral heterochromatin. To better understand the function of this protein, we have examined in detail its nucleoplasmic region, which is predicted to harbor a Tudor domain (LBR-TD). Structural analysis by multidimensional NMR spectroscopy establishes that LBR-TD indeed adopts a classical β-barrel Tudor fold in solution, which, however, features an incomplete aromatic cage. Removal of LBR-TD renders LBR more mobile at the plane of the nuclear envelope, but the isolated module does not bind to nuclear lamins, heterochromatin proteins (MeCP2), and nucleosomes, nor does it associate with methylated Arg/Lys residues through its aromatic cage. Instead, LBR-TD exhibits tight and stoichiometric binding to the "histone-fold" region of unassembled, free histone H3, suggesting an interesting role in histone assembly. Consistent with such a role, robust binding to native nucleosomes is observed when LBR-TD is extended toward its carboxyl terminus, to include an area rich in Ser-Arg residues. The Ser-Arg region, alone or in combination with LBR-TD, binds both unassembled and assembled H3/H4 histones, suggesting that the TD/RS interface may operate as a "histone chaperone-like platform."
Collapse
Affiliation(s)
| | - Christian Edlich
- the Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69012 Heidelberg, Germany
| | - Katerina Soupsana
- Biology, School of Medicine, University of Ioannina, GR-45110 Ioannina, Greece
- the Biomedical Research Institute, Foundation for Research and Technology (BRI-FORTH), GR-45110 Ioannina, Greece
| | - Ioannis Giannios
- Biology, School of Medicine, University of Ioannina, GR-45110 Ioannina, Greece
- the Biomedical Research Institute, Foundation for Research and Technology (BRI-FORTH), GR-45110 Ioannina, Greece
| | | | - Konstantinos Tripsianes
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany, and
- the Department Chemie, Munich Center for Integrated Protein Science (CiPSM),Technische Universität München, 85747 Garching, Germany
| | - Michael Sattler
- the Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69012 Heidelberg, Germany
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany, and
- the Department Chemie, Munich Center for Integrated Protein Science (CiPSM),Technische Universität München, 85747 Garching, Germany
| | - Spyros D. Georgatos
- Biology, School of Medicine, University of Ioannina, GR-45110 Ioannina, Greece
- the Biomedical Research Institute, Foundation for Research and Technology (BRI-FORTH), GR-45110 Ioannina, Greece
| | - Anastasia S. Politou
- From the Laboratories of Biological Chemistry and
- the Biomedical Research Institute, Foundation for Research and Technology (BRI-FORTH), GR-45110 Ioannina, Greece
| |
Collapse
|
5
|
Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J 2011; 278:570-86. [DOI: 10.1111/j.1742-4658.2010.07987.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95. Exp Cell Res 2008; 314:1519-28. [DOI: 10.1016/j.yexcr.2008.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/21/2007] [Accepted: 01/11/2008] [Indexed: 02/06/2023]
|
7
|
Nikolakaki E, Drosou V, Sanidas I, Peidis P, Papamarcaki T, Iakoucheva LM, Giannakouros T. RNA association or phosphorylation of the RS domain prevents aggregation of RS domain-containing proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:214-25. [PMID: 18022399 DOI: 10.1016/j.bbagen.2007.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/11/2007] [Accepted: 10/18/2007] [Indexed: 01/23/2023]
Abstract
Domains rich in alternating arginine and serine residues (RS domains) are found in a large number of eukaryotic proteins involved in several cellular processes. According to the prevailing view RS domains function as protein interaction domains, thereby promoting the assembly of higher-order cellular structures. Furthermore, recent data demonstrated that the RS regions of several SR splicing factors directly contact the pre-mRNA in a nonsequence specific but functionally important fashion. Using a variety of biochemical approaches, we now demonstrate that the RS domains of three proteins, not directly associated with the splicing reaction, such as lamin b receptor, acinus and peroxisome proliferator-activated receptor gamma coactivator-1 alpha, associate mainly with nuclear RNA and that this association is conducive in retaining the proteins in a soluble form. Phosphorylation by SRPK1 prevents RNA association, yet it greatly increases the fraction of the proteins recovered in soluble form, thereby mimicking the RNA effect. Based on these results we propose that the tendency to self-associate and form aggregates is a general property of RS domain-containing proteins and could be attributed to their disordered structure. RNA binding or SRPK1-mediated phosphorylation prevents aggregation and may serve to modulate the RS domain interaction modes.
Collapse
Affiliation(s)
- Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, The Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
8
|
Ji JY, Lee RT, Vergnes L, Fong LG, Stewart CL, Reue K, Young SG, Zhang Q, Shanahan CM, Lammerding J. Cell nuclei spin in the absence of lamin b1. J Biol Chem 2007; 282:20015-26. [PMID: 17488709 DOI: 10.1074/jbc.m611094200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mutations of the nuclear lamins cause a wide range of human diseases, including Emery-Dreifuss muscular dystrophy and Hutchinson-Gilford progeria syndrome. Defects in A-type lamins reduce nuclear structural integrity and affect transcriptional regulation, but few data exist on the biological role of B-type lamins. To assess the functional importance of lamin B1, we examined nuclear dynamics in fibroblasts from Lmnb1(Delta/Delta) and wild-type littermate embryos by time-lapse videomicroscopy. Here, we report that Lmnb1(Delta/Delta) cells displayed striking nuclear rotation, with approximately 90% of Lmnb1(Delta/Delta) nuclei rotating at least 90 degrees during an 8-h period. The rotation involved the nuclear interior as well as the nuclear envelope. The rotation of nuclei required an intact cytoskeletal network and was eliminated by expressing lamin B1 in cells. Nuclear rotation could also be abolished by expressing larger nesprin isoforms with long spectrin repeats. These findings demonstrate that lamin B1 serves a fundamental role within the nuclear envelope: anchoring the nucleus to the cytoskeleton.
Collapse
Affiliation(s)
- Julie Y Ji
- Cardiovascular Division, Brigham and Women's Hospital, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Olsson I, Berrez JM, Leipus A, Ostlund C, Mutvei A. The arginine methyltransferase Rmt2 is enriched in the nucleus and co-purifies with the nuclear porins Nup49, Nup57 and Nup100. Exp Cell Res 2007; 313:1778-89. [PMID: 17448464 DOI: 10.1016/j.yexcr.2007.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
Arginine methylation is a post-translational modification of proteins implicated in RNA processing, protein compartmentalization, signal transduction, transcriptional regulation and DNA repair. In a screen for proteins associated with the nuclear envelope in the yeast Saccharomyces cerevisiae, we have identified the arginine methyltransferase Rmt2, previously shown to methylate the ribosomal protein L12. By indirect immunofluorescence and subcellular fractionations we demonstrate here that Rmt2 has nuclear and cytoplasmic localizations. Biochemical analysis of a fraction enriched in nuclei reveals that nuclear Rmt2 is resistant to extractions with salt and detergent, indicating an association with structural components. This was supported by affinity purification experiments with TAP-tagged Rmt2. Rmt2 was found to co-purify with the nucleoporins Nup49, Nup57 and Nup100, revealing a novel link between arginine methyltransferases and the nuclear pore complex. In addition, a genome-wide transcription study of the rmt2Delta mutant shows significant downregulation of the transcription of MYO1, encoding the Type II myosin heavy chain required for cytokinesis and cell separation.
Collapse
Affiliation(s)
- Ida Olsson
- School of Life Sciences, Södertörns Högskola, SE-141 89 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
10
|
Sanna E, Miotti S, Mazzi M, De Santis G, Canevari S, Tomassetti A. Binding of nuclear caveolin-1 to promoter elements of growth-associated genes in ovarian carcinoma cells. Exp Cell Res 2007; 313:1307-17. [PMID: 17359972 DOI: 10.1016/j.yexcr.2007.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 01/18/2007] [Accepted: 02/05/2007] [Indexed: 11/26/2022]
Abstract
Caveolin-1 (cav-1), a member of a protein family associated mainly with cell membrane microdomains in many cell types, acts as a tumor suppressor in ovarian carcinoma cells. Biochemical analyses demonstrated that cav-1 was also localized in the nuclei of ovarian carcinoma cells, endogenously (SKOV3) or ectopically (IGtC3) expressing cav-1. By confocal analyses, the same cell lines as well as IGROV1 and SKOV3 cells transiently transfected with green fluorescent protein-cav-1 fusion protein showed nuclear punctate speckled pattern. Subnuclear distribution analysis revealed cav-1 mainly associated with the nuclear matrix, but also slightly with chromatin. Cav-1 was found in nuclear high-molecular weight complexes and by confocal analysis was found to co-localized with the inner nuclear membrane protein emerin. Cyclin D1 and folate receptor promoters were modulated by cav-1 in SKOV3 cells as demonstrated by transient transfection with or silencing of cav-1. Chromatin immunoprecipitation and supershift assays indicated that nuclear cav-1 can bind in vitro and in vivo to promoter sequences of both cyclin D1 and folate receptor genes. These data suggest that in ovarian carcinoma cells cav-1, localized in transcriptionally inactive chromatin, exerts a functional activity mediated, at least in part, by directly binding to sequences of genes involved in proliferation.
Collapse
Affiliation(s)
- Elena Sanna
- Unit of Molecular Therapies, Department of Experimental Oncology, Istituto Nazionale Tumori, 20133, Milan, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Hofemeister H, O'Hare P. Analysis of the localization and topology of nurim, a polytopic protein tightly associated with the inner nuclear membrane. J Biol Chem 2004; 280:2512-21. [PMID: 15542857 DOI: 10.1074/jbc.m410504200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nurim is an inner nuclear membrane (INM) protein that was first isolated in a visual screen for nuclear envelope-localizing proteins. Nurim lacks an N-terminal domain characteristic of other INM proteins examined to date and may represent a class of proteins that localize to the INM by a distinct mechanism. To further characterize this protein, we constructed nurim-green fluorescent protein fusions and analyzed aspects of localization, biochemistry, and membrane topology. Results from immunoprobing and protease protection assays together with other analyses indicate that nurim (total length of 262 residues) is a six transmembrane-spanning protein and contains a hairpin turn in its C-terminal transmembrane domain, resulting in the N and C termini residing on the same side of the membrane. A loop region between the fourth and fifth transmembrane domains is exposed toward the nucleoplasm and contains a region accessible for site-specific endoproteinase cleavage. In biochemical fractionation, nurim remained extremely tightly bound to nuclear fractions and was released in significant quantities only in the presence of 4 m urea. Under conditions in which nuclear lamins were completely extracted, a significant population of nurim remained resistant to solubilization. This tight binding requires the C-terminal region of the protein. DNase treatment only marginally influenced its retention characteristics in nuclei. Results from consideration of sequence alignments and identification of specific topological features of nurim indicate that it may possess enzymic function. These results are discussed with reference to the retention mechanism and possible nuclear function of nurim.
Collapse
Affiliation(s)
- Helmut Hofemeister
- Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom
| | | |
Collapse
|
12
|
Makatsori D, Kourmouli N, Polioudaki H, Shultz LD, McLean K, Theodoropoulos PA, Singh PB, Georgatos SD. The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 2004; 279:25567-73. [PMID: 15056654 DOI: 10.1074/jbc.m313606200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Using heterochromatin-enriched fractions, we have detected specific binding of mononucleosomes to the N-terminal domain of the inner nuclear membrane protein lamin B receptor. Mass spectrometric analysis reveals that LBR-associated particles contain complex patterns of methylated/acetylated histones and are devoid of "euchromatic" epigenetic marks. LBR binds heterochromatin as a higher oligomer and forms distinct nuclear envelope microdomains in vivo. The organization of these membrane assemblies is affected significantly in heterozygous ic (ichthyosis) mutants, resulting in a variety of structural abnormalities and nuclear defects.
Collapse
Affiliation(s)
- Dimitra Makatsori
- Laboratory of Biology, The University of Ioannina, School of Medicine, 45 110 Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hodzic DM, Yeater DB, Bengtsson L, Otto H, Stahl PD. Sun2 Is a Novel Mammalian Inner Nuclear Membrane Protein. J Biol Chem 2004; 279:25805-12. [PMID: 15082709 DOI: 10.1074/jbc.m313157200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sun protein (Sun1 and Sun2) cDNAs were previously cloned based on the homology of their C-terminal regions (SUN (Sad1 and UNC) domain) with the Caenorhabditis elegans protein UNC-84 whose mutation disrupts nuclear migration/positioning. In this study, we raised an anti-Sun2 serum and identified Sun2 in mammalian cells. In HeLa cells, Sun2 displays a nuclear rim-like pattern typical for a nuclear envelope protein. The Sun2 antibody signal co-localizes with nuclear pore and INM markers signals. The rim-like pattern was also observed with the recombinant full-length Sun2 protein fused to either EGFP or V5 epitopes. In addition, we found that a recombinant truncated form of Sun2, extending from amino acids 26 to 339, is sufficient to specify the nuclear envelope localization. Biochemical analyses show that Sun2 is an 85-kDa protein that is partially insoluble in detergent with high salt concentration and in chaotropic agents. Furthermore, Sun2 is enriched in purified HeLa cell nuclei. Electron microscopy analysis shows that Sun2 localizes in the nuclear envelope with a sub-population present in small clusters. Additionally, we show that the SUN domain of Sun2 is localized to the periplasmic space between the inner and the outer nuclear membranes. From our data, we conclude that Sun2 is a new mammalian inner nuclear membrane protein. Because the SUN domain is conserved from fission yeast to mammals, we suggest that Sun2 belongs to a new class of nuclear envelope proteins with potential relevance to nuclear membrane function in the context of the involvement of its components in an increasing spectrum of human diseases.
Collapse
Affiliation(s)
- Didier M Hodzic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Polioudaki H, Markaki Y, Kourmouli N, Dialynas G, Theodoropoulos PA, Singh PB, Georgatos SD. Mitotic phosphorylation of histone H3 at threonine 3. FEBS Lett 2004; 560:39-44. [PMID: 14987995 DOI: 10.1016/s0014-5793(04)00060-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 01/14/2004] [Accepted: 01/14/2004] [Indexed: 11/16/2022]
Abstract
Nuclear envelope-peripheral heterochromatin fractions contain multiple histone kinase activities. In vitro assays and amino-terminal sequencing show that one of these activities co-isolates with heterochromatin protein 1 (HP1) and phosphorylates histone H3 at threonine 3. Antibodies recognizing this post-translational modification reveal that in vivo phosphorylation at threonine 3 commences at early prophase in the vicinity of the nuclear envelope, spreads to pericentromeric chromatin during prometaphase and is fully reversed by late anaphase. This spatio-temporal pattern is distinct from H3 phosphorylation at serine 10, which also occurs during cell division, suggesting segregation of differentially phosphorylated chromatin to different regions of mitotic chromosomes.
Collapse
Affiliation(s)
- Hara Polioudaki
- Department of Basic Sciences, The University of Crete, School of Medicine, 95110 Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
15
|
Tartakoff AM, Matera AG, Pimplikar SW, Weimbs T. Regulation of nuclear functions – nucleocytoplasmic transport in context. Eur J Cell Biol 2004; 83:185-92. [PMID: 15346808 DOI: 10.1078/0171-9335-00386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alan M Tartakoff
- Case Western Reserve School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
16
|
Tollefson AE, Scaria A, Ying B, Wold WSM. Mutations within the ADP (E3-11.6K) protein alter processing and localization of ADP and the kinetics of cell lysis of adenovirus-infected cells. J Virol 2003; 77:7764-78. [PMID: 12829816 PMCID: PMC161948 DOI: 10.1128/jvi.77.14.7764-7778.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ADP (also known as E3-11.6K protein) is synthesized abundantly in late adenovirus infection and is required for efficient lysis of infected cells and release of viral progeny at the end of the viral replication cycle. ADP is a type III bitopic N(endo)C(exo) nuclear membrane and Golgi glycoprotein that is produced at high levels in late adenovirus infection (>24 h postinfection). We show pulse-chase and other studies indicating that ADP undergoes a complex process of N- and O-linked glycosylation and proteolytic cleavage. In order to further characterize ADP, a series of 23 deletion and point mutations has been constructed in the adenovirus serotype 2 adp gene and then built into a wild-type adenovirus background. These mutants were analyzed for processing and intracellular localization of ADP. Mutation of the single predicted N glycosylation site eliminated N glycosylation. Deletion of a region in ADP rich in serine and threonine residues reduced O glycosylation. In general, mutations within the lumenal domain of ADP resulted in lower protein stability; immunofluorescence assays indicated that these ADPs were primarily present in the Golgi apparatus. Viruses with mutations within the cytoplasmic-nucleoplasmic domain of ADP showed normal glycosylation patterns and protein abundance for ADP, but the protein was often found throughout cellular membranes rather than being localized specifically to the nuclear membrane and Golgi apparatus. The ADP virus mutants were analyzed by cell viability assays to determine the kinetics of cell lysis following infection of human A549 cells. In general, viruses with mutations within the lumenal domain of ADP display greatly reduced efficiencies of cell lysis. Viruses with large deletions in the cytoplasmic-nucleoplasmic domain of ADP retain much of their ability to lyse infected cells.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, 1402 S. Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
17
|
Beilharz T, Egan B, Silver PA, Hofmann K, Lithgow T. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J Biol Chem 2003; 278:8219-23. [PMID: 12514182 DOI: 10.1074/jbc.m212725200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tail-anchored proteins have an NH(2)-terminal cytosolic domain anchored to intracellular membranes by a single, COOH-terminal, transmembrane segment. Sequence analysis identified 55 tail-anchored proteins in Saccharomyces cerevisiae, with several novel proteins, including Prm3, which we find is required for karyogamy and is tail-anchored in the nuclear envelope. A total of six tail-anchored proteins are present in the mitochondrial outer membrane and have relatively hydrophilic transmembrane segments that serve as targeting signals. The rest, by far the majority, localize via a bipartite system of signals: uniformly hydrophobic tail anchors are first inserted into the endoplasmic reticulum, and additional segments within the cytosolic domain of each protein can dictate subsequent sorting to a precise destination within the cell.
Collapse
Affiliation(s)
- Traude Beilharz
- Russell Grimwade School of Biochemistry & Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | |
Collapse
|
18
|
Abstract
Chromosomes occupy distinct territories in the interphase cell nucleus. These chromosome territories are non-randomly arranged within the nuclear space. We are only just uncovering how chromosome territories are organized, what determines their position and how their spatial organization affects the expression of genes and genomes. Here, we discuss emerging models of non-random nuclear chromosome organization and consider the functional implications of chromosome positioning for gene expression and genome stability.
Collapse
Affiliation(s)
- Luis Parada
- National Cancer Inst., NIH, 20892, Bethesda, MD, USA
| | | |
Collapse
|
19
|
Tolstonog GV, Sabasch M, Traub P. Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol 2002; 21:213-39. [PMID: 12015898 DOI: 10.1089/10445490252925459] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tight association of cytoplasmic intermediate filaments (cIFs) with the nucleus and the isolation of crosslinkage products of vimentin with genomic DNA fragments, including nuclear matrix attachment regions (MARs) from proliferating fibroblasts, point to a participation of cIFs in nuclear activities. To test the possibility that cIFs are complementary nuclear matrix elements, the nuclei of a series of cultured cells were subjected to the Li-diiodosalicylate (LIS) extraction protocol developed for the preparation of nuclear matrices and analyzed by immunofluorescence microscopy and immunoblotting with antibodies directed against lamin B and cIF proteins. When nuclei released from hypotonically swollen L929 suspension cells in the presence of digitonin or Triton X-100 were exposed to such strong shearing forces that a considerable number were totally disrupted, a thin, discontinuous layer of vimentin IFs remained tenaciously adhering to still intact nuclei, in apparent coalignment with the nuclear lamina. Even in broken nuclei, the distribution of vimentin followed that of lamin B in areas where the lamina still appeared intact. The same retention of vimentin together with desmin and glial IFs was observed on the nuclei isolated from differentiating C2C12 myoblast and U333 glioma cells, respectively. Nuclei from epithelial cells shed their residual perinuclear IF layers as coherent cytoskeletal ghosts, except for small fractions of vimentin and cytokeratin IFs, which remained in a dot-to cap-like arrangement on the nuclear surface, in apparent codistribution with lamin B. LIS extraction did not bring about a reduction in the cIF protein contents of such nuclei upon their transformation into nuclear matrices. Moreover, in whole mount preparations of mouse embryo fibroblasts, DNA/chromatin emerging from nuclei during LIS extraction mechanically and chemically cleaned the nuclear surface and perinuclear area from loosely anchored cytoplasmic material with the production of broad, IF-free annular spaces, but left substantial fractions of the vimentin IFs in tight association with the nuclear surface. Accordingly, double-immunogold electron microscopy of fixed and permeabilized fibroblasts disclosed a close neighborhood of vimentin IFs and lamin B, with a minimal distance between the nanogold particles of ca. 30 nm. These data indicate an extremely solid interconnection of cIFs with structural elements of the nuclear matrix, and make them, together with their susceptibility to crosslinkage to MARs and other genomic DNA sequences under native conditions, complementary or even integral constituents of the karyoskeleton.
Collapse
|
20
|
Abstract
When many cells divide, the nuclear envelope poses a problem: the spindle microtubules can't access the chromosomes. Two recent papers in Cell describe how the spindle solves this problem by literally pulling open the nucleus at the beginning of mitosis.
Collapse
Affiliation(s)
- John D Aitchison
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, USA
| | | |
Collapse
|
21
|
Gilchrist JSC, Abrenica B, DiMario PJ, Czubryt MP, Pierce GN. Nucleolin is a calcium-binding protein. J Cell Biochem 2002; 85:268-78. [PMID: 11948683 DOI: 10.1002/jcb.10121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have purified a prominent 110-kDa protein (p110) from 1.6 M NaCl extracts of rat liver nuclei that appears to bind Ca2+. p110 was originally identified by prominent blue staining with 'Stains-All' in sodium dodecyl sulfate-polyacrylamide gels and was observed to specifically bind ruthenium red and 45Ca2+ in nitrocellulose blot overlays. In spin-dialysis studies, purified p110 saturably bound approximately 75 nmol Ca2+/mg protein at a concentration of 1 mM total Ca2+ with half-maximal binding observed at 105 microM Ca2+. With purification, p110 became increasingly susceptible to proteolytic (likely autolytic) fragmentation, although most intermediary peptides between 40 and 90 kDa retained "Stains-All", ruthenium red, and 45Ca2+ binding. N-terminal sequencing of intact p110 and a 70-kDa autolytic peptide fragment revealed a strong homology to nucleolin. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/IEF revealed autolysis produced increasingly acidic peptide fragments ranging in apparent pI's from 5.5 for intact p110 to 3.5 for a 40 kDa peptide fragment. Intact p110 and several peptide fragments were immunostained with a highly specific anti-nucleolin antibody, R2D2, thus confirming the identity of this protein with nucleolin. These annexin-like Ca2+-binding characteristics of nucleolin are likely contributed by its highly acidic argyrophilic N-terminus with autolysis apparently resulting in largely selective removal of its basic C-terminal domain. Although the Ca2+-dependent functions of nucleolin are unknown, we discuss the possibility that like the structurally analogous HMG-1, its Ca2+-dependent actions may regulate chromatin structure, possibly during apoptosis.
Collapse
Affiliation(s)
- James S C Gilchrist
- Department of Oral Biology and Physiology, Division of Stroke and Vascular Disease, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
22
|
Matzke M, Aufsatz W, Gregor W, van Der Winden J, Papp I, Matzke AJ. Ion transporters in the nucleus? PLANT PHYSIOLOGY 2001; 127:10-13. [PMID: 11553729 PMCID: PMC1540138 DOI: 10.1104/pp.127.1.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- M Matzke
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|
23
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|