1
|
Leow CJ, Piller KR. Life in the fastlane? A comparative analysis of gene expression profiles across annual, semi-annual, and non-annual killifishes (Cyprinodontiformes: Nothobranchiidae). PLoS One 2024; 19:e0308855. [PMID: 39255288 PMCID: PMC11386455 DOI: 10.1371/journal.pone.0308855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
The Turquoise Killifish is an important vertebrate for the study of aging and age-related diseases due to its short lifespan. Within Nothobranchiidae, species possess annual, semi-annual, or non-annual life-histories. We took a comparative approach and examined gene expression profiles (QuantSeq) from 62 individuals from eleven nothobranchid species that span three life-histories. Our results show significant differences in differentially expressed genes (DEGs) across life-histories with non-annuals and semi-annuals being most similar, and annuals being the most distinct. At finer scales, we recovered significant differences in DEGs for DNA repair genes and show that non-annual and semi-annuals share similar gene expression profiles, while annuals are distinct. Most of the GO terms enriched in annuals are related to metabolic processes. However, GO terms, including translation, protein transport, and DNA replication initiation also are enriched in annuals. Non-annuals are enriched in Notch signaling pathway genes and downregulated in the canonical Wnt signaling pathway compared to annual species, which suggests that non-annuals have stronger regulation in cellular processes. This study provides support for congruency in DEGs involved in these life-histories and provides strong evidence that a particular set of candidate genes may be worthy of study to investigate their role in the aging process.
Collapse
Affiliation(s)
- Chi Jing Leow
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Kyle R Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| |
Collapse
|
2
|
Zhao H, Feng L, Cheng R, Wu M, Bai X, Fan L, Liu Y. miR-29c-3p acts as a tumor promoter by regulating β-catenin signaling through suppressing DNMT3A, TET1 and HBP1 in ovarian carcinoma. Cell Signal 2024; 113:110936. [PMID: 37925048 DOI: 10.1016/j.cellsig.2023.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Ovarian Carcinoma (OvCa) is characterized by rapid and sustained growth, activated invasion and metastasis. Studies have shown that microRNAs recruit and alter the expression of key regulators to modulate carcinogenesis. Here, we find that miR-29c-3p is increased in benign OvCa and malignant OvCa compared to normal ovary. Univariate and multivariate analyses report that miR-29c-3p overexpression is associated with poor prognosis in OvCa. Furthermore, we investigate that expression of miR-29c-3p is inversely correlated to DNA methyltransferase (DNMT) 3 A and Ten-Eleven-Translocation enzyme TET1. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies confirm that aberrant miR-29c-3p modulates tumorigenesis in OvCa cells, including epithelial-mesenchymal transition (EMT), proliferation, migration, and invasion. This modulation occurs through the regulation of β-catenin signaling by directly targeting 3'UTR of DNMT3A, TET1 and the HMG box transcription factor HBP1 and suppressing their expression. The further 3D spheres assay clearly shows the regulatory effects of miR-29c-3p on OvCa tumorigenesis. Additionally, the receiver operating characteristic (ROC) curve analysis of miR-29c-3p and the clinical detection/diagnostic biomarker CA125 suggests that miR-29c-3p may be conducive for clinical diagnosis or co-diagnosis of OvCa. These findings support miR-29c-3p functions as a tumor promoter by targeting its functional targets, providing new potential biomarker (s) for precision medicine strategies in OvCa.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Lijuan Feng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Rui Cheng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Man Wu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Xiaozhou Bai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, PR China.
| |
Collapse
|
3
|
Jiang F, Du L, Chen ZJ, Wang X, Ge D, Liu N. LNP-miR-155 cy5 Inhibitor Regulates the Copper Transporter via the β-Catenin/TCF4/SLC31A1 Signal for Colorectal Cancer Therapy. Mol Pharm 2023; 20:4138-4152. [PMID: 37358225 DOI: 10.1021/acs.molpharmaceut.3c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Lipid nanoparticle (LNP) delivery systems are widely used in the delivery of small-molecule drugs and nucleic acids. In this study, we prepared LNP-miR-155 by lipid nanomaterial technology and investigated the effects of LNP-miR-155 on β-catenin/transcription factor 4 (TCF4)/solute carrier family 31 member 1/copper transporter 1 (SLC31A1/CTR1) signaling and copper transport in colorectal cancer. For this, we used an LNP-miR-155 cy5 inhibitor and LNP-miR-155 cy5 mimics for the transfection of HT-29/SW480 cells. The transfection efficiency and uptake efficiency were detected by immunofluorescence. Relevant cell assays confirmed that the LNP-miR-155 cy5 inhibitor mediates the regulation of copper transport through the β-catenin/TCF4/SLC31A1 axis. The LNP-miR-155 cy5 inhibitor reduced cell proliferation, migration, and colony formation and promoted cell apoptosis. We also confirmed that miR-155 downregulates HMG box-containing protein 1 (HBP1) and adenomatous polyposis coli (APC) in cells and activates the function of β-catenin/TCF4 signaling. In addition, we found that the copper transporter, SLC31A1, is highly expressed in colorectal cancer cells. Furthermore, we also found that the complex β-catenin/TCF4 promotes the transcription of SLC31A1 by binding to its promoter region, which sustains the transport of copper from the extracellular region to the intracellular region and increases the activities of Cu2+-ATPase and superoxide dismutase (SOD). In summary, the LNP-miR-155 cy5 inhibitor regulates β-catenin/TCF4 by downregulating SLC31A1-mediated copper transport and intracellular copper homeostasis.
Collapse
Affiliation(s)
- Fan Jiang
- Department of the Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Le Du
- Department of Biology, Hainan Medical University, Haikou, Hainan 570100, P. R. China
| | - Zhi-Ju Chen
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Xiang Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Dongsheng Ge
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| |
Collapse
|
4
|
Aydin B, Beklen H, Arga KY, Bayrakli F, Turanli B. Epigenomic and transcriptomic landscaping unraveled candidate repositioned therapeutics for non-functioning pituitary neuroendocrine tumors. J Endocrinol Invest 2023; 46:727-747. [PMID: 36306107 DOI: 10.1007/s40618-022-01923-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE Non-functioning pituitary neuroendocrine tumors are challengingly diagnosed tumors in the clinic. Transsphenoidal surgery remains the first-line treatment. Despite the development of state-of-the-art techniques, no drug therapy is currently approved for the treatment. There are also no randomized controlled trials comparing therapeutic strategies or drug therapy for the management after surgery. Therefore, novel therapeutic interventions for the therapeutically challenging NF-PitNETs are urgently needed. METHODS We integrated epigenome and transcriptome data (both coding and non-coding) that elucidate disease-specific signatures, in addition to biological and pharmacological data, to utilize rational pathway and drug prioritization in NF-PitNETs. We constructed an epigenome- and transcriptome-based PPI network and proposed hub genes. The signature-based drug repositioning based on the integration of multi-omics data was performed. RESULTS The construction of a disease-specific network based on three different biological levels revealed DCC, DLG5, ETS2, FOXO1, HBP1, HMGA2, PCGF3, PSME4, RBPMS, RREB1, SMAD1, SOCS1, SOX2, YAP1, ZFHX3 as hub proteins. Signature-based drug repositioning using hub proteins yielded repositioned drug candidates that were confirmed in silico via molecular docking. As a result of molecular docking simulations, palbociclib, linifanib, trametinib, eplerenone, niguldipine, and zuclopenthixol showed higher binding affinities with hub genes compared to their inhibitors and were proposed as potential repositioned therapeutics for the management of NF-PitNETs. CONCLUSION The proposed systems' biomedicine-oriented multi-omics data integration for drug repurposing to provide promising results for the construction of effective clinical therapeutics. To the best of our knowledge, this is the first study reporting epigenome- and transcriptome-based drug repositioning for NF-PitNETs using in silico confirmations.
Collapse
Affiliation(s)
- B Aydin
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya, Turkey
| | - H Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, RTE Basibuyuk Campus, 34720, Istanbul, Turkey
| | - K Y Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, RTE Basibuyuk Campus, 34720, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| | - F Bayrakli
- Department of Neurosurgery, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - B Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, RTE Basibuyuk Campus, 34720, Istanbul, Turkey.
| |
Collapse
|
5
|
RAB3D/MDM2/β-catenin/c-MYC axis exacerbates the malignant behaviors of acute myeloid leukemia cells in vitro and in vivo. Cancer Gene Ther 2023; 30:335-344. [PMID: 36280757 DOI: 10.1038/s41417-022-00549-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
RAB3D, a small Ras-like GTPase involved in regulating secretory pathway, plays a cancer-promoting role in several solid tumors. However, its role in leukemogenesis remains unknown yet. Acute myeloid leukemia (AML) is a common acute leukemia with a high mortality. Here, we found the higher expression of RAB3D in bone marrow mononuclear cells derived from AML patients (n = 54) versus healthy participants (n = 20). The following loss- and gain-of-function experiments demonstrated that RAB3D promoted growth, enhanced colony formation and accelerated G1/S transition of U937, THP-1 and KG-1 AML cells. RAB3D silencing inhibited tumorigenesis of AML cells in vivo and delayed AML cells-induced death of mice. Interestingly, the expression of RAB3D is positively correlated with that of an oncogene mouse double minute 2 (MDM2) in bone marrow mononuclear cells of AML patients (r = 0.923, p < 0.001). Intracellular MDM2 was conjugated with more ubiquitins and degraded faster when RAB3D was silenced. A commonly therapeutic target of AML, β-catenin signaling, was activated by RAB3D overexpression, but deactivated after MDM2 was silenced. The RAB3D-induced proliferation acceleration and β-catenin activation were abolished by MDM2 knockdown, implying that RAB3D function by stabilizing MDM2. In addition, c-MYC, a β-catenin downstream effector, was recruited directly to the RAB3D gene promoter (-360/-349 and -136/-125 sites) and induced its transcription. Collectively, this study demonstrates that RAB3D may exacerbate the malignant behaviors of AML cells through forming a positive feedback loop with MDM2/β-catenin/c-MYC signaling. RAB3D might be a novel target of clinical AML treatment.
Collapse
|
6
|
Mardones MD, Gupta K. Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:12030. [PMID: 36233336 PMCID: PMC9569502 DOI: 10.3390/ijms231912030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy, pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG), representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and 14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic over the epileptogenic period with early expression of genes representing cell signaling, migration, and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the PIZ and delayed expression after 7-14 days in the EZ. This suggests that critical gene changes occur early in the hippocampal seizure network and that Wnt signaling may play a role within the latent epileptogenic period. These findings may help to identify novel therapeutic targets that could prevent epileptogenesis.
Collapse
Affiliation(s)
- Muriel D Mardones
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kunal Gupta
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Countering Triple Negative Breast Cancer via Impeding Wnt/β-Catenin Signaling, a Phytotherapeutic Approach. PLANTS 2022; 11:plants11172191. [PMID: 36079579 PMCID: PMC9460573 DOI: 10.3390/plants11172191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022]
Abstract
Triple negative breast cancer (TNBC) is characterized as a heterogeneous disease with severe malignancy and high mortality. Aberrant Wnt/β-catenin signaling is responsible for self-renewal and mammosphere generation, metastasis and resistance to apoptosis and chemotherapy in TNBC. Nonetheless, in the absence of a targeted therapy, chemotherapy is regarded as the exclusive treatment strategy for the treatment of TNBC. This review aims to provide an unprecedented overview of the plants and herbal derivatives which repress the progression of TNBC through prohibiting the Wnt/β-catenin pathway. Herbal medicine extracts and bioactive compounds (alkaloids, retinoids. flavonoids, terpenes, carotenoids and lignans) alone, in combination with each other and/or with chemotherapy agents could interrupt the various steps of Wnt/β-catenin signaling, i.e., WNT, FZD, LRP, GSK3β, Dsh, APC, β-catenin and TCF/LEF. These phytotherapy agents diminish proliferation, metastasis, breast cancer stem cell self-renewal and induce apoptosis in cell and animal models of TNBC through the down-expression of the downstream target genes of Wnt signaling. Some of the herbal derivatives simultaneously impede Wnt/β-catenin signaling and other overactive pathways in triple negative breast cancer, including: mTORC1; ER stress and SATB1 signaling. The herbal remedies and their bioactive ingredients perform essential roles in the treatment of the very fatal TNBC via repression of Wnt/β-catenin signaling.
Collapse
|
8
|
Troha K, Ayres JS. Cooperative defenses during enteropathogenic infection. Curr Opin Microbiol 2022; 65:123-130. [PMID: 34847524 PMCID: PMC8818259 DOI: 10.1016/j.mib.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
During their co-evolution with pathogens, hosts acquired defensive health strategies that allow them to maintain their health or promote recovery when challenged with infections. The cooperative defense system is a largely unexplored branch of these evolved defense strategies. Cooperative defenses limit physiological damage and promote health without having a negative impact on a pathogen's ability to survive and replicate within the host. Here, we review recent discoveries in the new field of cooperative defenses using the model pathogens Citrobacter rodentium and Salmonella enterica. We discuss not only host-encoded but also pathogen-encoded mechanisms of cooperative defenses. Cooperative defenses remain an untapped resource in clinical medicine. With a global pandemic exacerbated by a lack of vaccine access and a worldwide rise in antibiotic resistance, the study of cooperative defenses offers an opportunity to safeguard health in the face of pathogenic infection.
Collapse
Affiliation(s)
- Katia Troha
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S. Ayres
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Correspondence:
| |
Collapse
|
9
|
CRISPR interference and activation of the microRNA-3662-HBP1 axis control progression of triple-negative breast cancer. Oncogene 2022; 41:268-279. [PMID: 34728806 PMCID: PMC8781987 DOI: 10.1038/s41388-021-02089-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
Abstract
MicroRNA-3662 (miR-3662) is minimally expressed in normal human tissues but is highly expressed in all types of cancers, including breast cancer. As determined with The Cancer Genome Atlas dataset, miR-3662 expression is higher in triple-negative breast cancers (TNBCs) and African American breast cancers than in other breast cancer types. However, the functional role of miR-3662 remains a topic of debate. Here, we found that inhibition or knockout of endogenous, mature miR-3662 in TNBC cells suppresses proliferation and migration in vitro and tumor growth and metastasis in vivo. Functional analysis revealed that, for TNBC cells, knockout of miR-3662 reduces the activation of Wnt/β-catenin signaling. Furthermore, using CRISPR-mediated miR-3662 activation and repression, dual-luciferase assays, and miRNA/mRNA immunoprecipitation assays, we established that HMG-box transcription factor 1 (HBP-1), a Wnt/β-catenin signaling inhibitor, is a target of miR-3662 and is most likely responsible for miR-3662-mediated TNBC cell proliferation. Our results suggest that miR-3662 has an oncogenic function in tumor progression and metastasis via an miR-3662-HBP1 axis, regulating the Wnt /β-catenin signaling pathway in TNBC cells. Since miR-3662 expression occurs a tumor-specific manner, it is a promising biomarker and therapeutic target for patients who have TNBCs with dysregulation of miR-3662, especially African Americans.
Collapse
|
10
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
11
|
A Warburg-like metabolic program coordinates Wnt, AMPK, and mTOR signaling pathways in epileptogenesis. PLoS One 2021; 16:e0252282. [PMID: 34358226 PMCID: PMC8345866 DOI: 10.1371/journal.pone.0252282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a complex neurological condition characterized by repeated spontaneous seizures and can be induced by initiating seizures known as status epilepticus (SE). Elaborating the critical molecular mechanisms following SE are central to understanding the establishment of chronic seizures. Here, we identify a transient program of molecular and metabolic signaling in the early epileptogenic period, centered on day five following SE in the pre-clinical kainate or pilocarpine models of temporal lobe epilepsy. Our work now elaborates a new molecular mechanism centered around Wnt signaling and a growing network comprised of metabolic reprogramming and mTOR activation. Biochemical, metabolomic, confocal microscopy and mouse genetics experiments all demonstrate coordinated activation of Wnt signaling, predominantly in neurons, and the ensuing induction of an overall aerobic glycolysis (Warburg-like phenomenon) and an altered TCA cycle in early epileptogenesis. A centerpiece of the mechanism is the regulation of pyruvate dehydrogenase (PDH) through its kinase and Wnt target genes PDK4. Intriguingly, PDH is a central gene in certain genetic epilepsies, underscoring the relevance of our elaborated mechanisms. While sharing some features with cancers, the Warburg-like metabolism in early epileptogenesis is uniquely split between neurons and astrocytes to achieve an overall novel metabolic reprogramming. This split Warburg metabolic reprogramming triggers an inhibition of AMPK and subsequent activation of mTOR, which is a signature event of epileptogenesis. Interrogation of the mechanism with the metabolic inhibitor 2-deoxyglucose surprisingly demonstrated that Wnt signaling and the resulting metabolic reprogramming lies upstream of mTOR activation in epileptogenesis. To augment the pre-clinical pilocarpine and kainate models, aspects of the proposed mechanisms were also investigated and correlated in a genetic model of constitutive Wnt signaling (deletion of the transcriptional repressor and Wnt pathway inhibitor HBP1). The results from the HBP1-/- mice provide a genetic evidence that Wnt signaling may set the threshold of acquired seizure susceptibility with a similar molecular framework. Using biochemistry and genetics, this paper outlines a new molecular framework of early epileptogenesis and advances a potential molecular platform for refining therapeutic strategies in attenuating recurrent seizures.
Collapse
|
12
|
Expression of the miR-302/367 microRNA cluster is regulated by a conserved long non-coding host-gene. Sci Rep 2021; 11:11115. [PMID: 34045480 PMCID: PMC8159989 DOI: 10.1038/s41598-021-89080-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/20/2021] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs are important regulators of cellular functions. MiR-302/367 is a polycistronic miRNA cluster that can induce and maintain pluripotency. Here we investigate the transcriptional control and the processing of the miR-302 host-gene in mice. Our results indicate that the mmu-miR-302 host-gene is alternatively spliced, polyadenylated and exported from the nucleus. The regulatory sequences extend at least 2 kb upstream of the transcription start site and contain several conserved binding sites for both transcriptional activators and repressors. The gene structure and regulatory elements are highly conserved between mouse and human. So far, regulating miR-302 expression is the only known function of the miR-302 host-gene. Even though we here only provide one example, regulation of microRNA transcription might be a so far little recognized function of long non-coding RNA genes.
Collapse
|
13
|
Li N, Ouyang Y, Xu X, Yuan Z, Liu C, Zhu Z. MiR-155 promotes colitis-associated intestinal fibrosis by targeting HBP1/Wnt/β-catenin signalling pathway. J Cell Mol Med 2021; 25:4765-4775. [PMID: 33769664 PMCID: PMC8107084 DOI: 10.1111/jcmm.16445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Intestinal fibrosis is the most common complication of Crohn's disease (CD) that is one major disorder of inflammatory bowel disease (IBD), but the precise mechanism remains unclear. MiR-155 has been involved in fibrotic diseases. Here, we determined the role of miR-155 in regulating intestinal fibrosis. MiR-155 levels were significantly up-regulated in CD patients with intestinal stricture CD. The overexpression of miR-155 significantly aggravated TNBS-induced CD-associated intestinal fibrosis. Mechanistically, we identified that HBP1, a negative regulator of the Wnt/β-catenin signalling pathway, is a direct target of miR-155. Moreover, in vitro and in vivo experiments suggested that the miR-155/HBP1 axis activates Wnt/β-catenin signalling pathway to induce intestinal fibrosis. Taken together, we demonstrated that miR-155 directly targets HBP1 to induce CD-associated intestinal fibrosis via Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Nianshuang Li
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Digestive DiseaseThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaobin Ouyang
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xinbo Xu
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhenxiang Yuan
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Chunquan Liu
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhenhua Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Digestive DiseaseThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
14
|
Li K, Zhou Z, Li J, Xiang R. miR-146b Functions as an Oncogene in Oral Squamous Cell Carcinoma by Targeting HBP1. Technol Cancer Res Treat 2020; 19:1533033820959404. [PMID: 33327874 PMCID: PMC7750896 DOI: 10.1177/1533033820959404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents more than 90% of all oral cancer and is the most common oral threat around the world. In this study, we examined the roles of miR-146b in OSCC cells. The miR-146b expression in OSCC tissues and cell lines was evaluated by quantitative real-time PCR (qRT-PCR). MTT assay was used to investigate the impact of miR-146b on the growth of OSCC cells in vitro. Transwell assay was utilized to analyze the effect of miR-146b on the migration and invasion of OSCC cells. Target prediction and luciferase assay were employed to demonstrate the interaction between miR-146b and HMG-Box Transcription Factor 1 (HBP1). Western blot was carried out to investigate the protein expressions of HBP1 related genes. miR-146b expression was significantly higher in OSCC tissues and cells compared with paired normal tissues and normal oral keratinocyte cells. Inhibition of miR-146b decreased cell proliferation, migration, and invasion of OSCC cells. Further studies found that HBP1 was a direct target of miR-146b. Co-inhibition of HBP1 reversed the suppressive impact of miR-146b inhibition on OSCC cell proliferation, migration, and invasion. In conclusion-ourresults reveal that miR-146b potentially regulates the proliferation, migration, and invasion of OSCC cells through binding and downregulating HBP1 expression in OSCC cells.
Collapse
Affiliation(s)
- Kui Li
- Department of Stomatology, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Zheng Zhou
- Department of stomatology, Xiangyang Stomatological Hospital, Xiangyang City, Hubei Province, China
| | - Ju Li
- Department of stomatology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Rui Xiang
- Department of prosthodontics, WuXi Stomatology Hospital, Jiangsu Province, China
| |
Collapse
|
15
|
Lu X, Li Y, Chen H, Pan Y, Lin R, Chen S. miR-335-5P contributes to human osteoarthritis by targeting HBP1. Exp Ther Med 2020; 21:109. [PMID: 33335572 PMCID: PMC7739851 DOI: 10.3892/etm.2020.9541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/09/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNA (miR)-335-5P has the ability to regulate chondrogenic differentiation and promote chondrogenesis in mouse mesenchymal stem cells. It is also abnormally elevated in human osteoarthritic chondrocytes. However, the biological function of miR-335-5P in osteoarthritis (OA) is not well understood. The present study investigated the mechanism of miR-335-5P in the pathogenesis of OA. To investigate the effect of miR-335-5P on the pathogenesis of OA in vitro, a miR-335-5P mimic and inhibitor were transfected into chondrocytes. Cell Counting kit-8 assay and flow cytometry were used to observe the effects of miR-335-5P on chondrocyte apoptosis and the expression of cartilage-specific genes, such as aggrecan, collagen II, matrix metalloproteinase 13 and collagen X, were detected by reverse transcription-quantitative PCR and western blot analysis. Moreover, the current study assessed whether HMG-box transcription factor 1 (HBP1) is a novel target of miR-335-5P with dual luciferase reporter assays. Finally, a rescue experiment was used to prove the regulation between miR-335-5P and HBP1. The results revealed that HBP1 was a novel target of miR-335-5P, and that miR-335-5P mediated the apoptosis of chondrocytes and changes in cartilage-specific genes via targeting HBP1. Overall, the present study revealed that miR-335-5P mediated the development of OA by targeting the HBP1 gene and promoting chondrocyte apoptosis. These data suggested that miR-335-5P may be used to develop novel early-stage diagnostic and therapeutic strategies for OA.
Collapse
Affiliation(s)
- Xiaokun Lu
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Yu Li
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Huimin Chen
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Yuancheng Pan
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Ran Lin
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Shunyou Chen
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
16
|
Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, Weng Y, Wei G, Yin Y, Wen A, Qiao B. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY) 2020; 12:1591-1609. [PMID: 31969494 PMCID: PMC7053639 DOI: 10.18632/aging.102702] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
Islet β cell mass reduction induced by glucose fluctuation is crucial for the development and progression of T2DM. Chikusetsu saponin IVa (CHS) had protective effects against DM and related injuries. Here we aimed to investigate the role of CHS in β cell injuries and its possible mechanism involved. Isolated rat islets, βTC3 cells and T2DM mice were used in this study. The results showed that CHS restored the secretion activity, promoted β cell survival by increasing β cell proliferation and decreasing apoptosis which induced by intermittent high glucose (IHG). In vivo, CHS protected β cell apoptosis to normalize blood glucose and improve insulin sensitivity in DM mice. Further studies showed that CHS activated Wnt3a signaling, inhibited HBP1, promoted β-catenin nuclear translocation, enhanced expressions of TCF7L2, GIPR and GLP-1R, inhibited p53, p27 and p21. The protective effect of CHS was remarkably suppressed by siRNAs against TCF7L2 or XAV-939 (a Wnt/β-catenin antagonist) in vitro and in β-catenin-/- mice. In conclusion, we identified a novel role of CHS in protecting β cell survival and regeneration by mechanisms involving the activation of Wnt3a/β-catenin/TCF7L2 signaling. Our results indicated the potential value of CHS as a possible intervention drug for T2DM.
Collapse
Affiliation(s)
- Jia Cui
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.,Department of Chinese Medicine, School of Life Science, Northwestern University, Xi'an 710032, Shaanxi, China
| | - Jianjie Chu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yi Li
- Department of Pharmacy, Chongqing Dazu District Hospital of Traditional Chinese Medicine, Chongqing 402360, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Boling Qiao
- Department of Chinese Medicine, School of Life Science, Northwestern University, Xi'an 710032, Shaanxi, China
| |
Collapse
|
17
|
Eugenol restricts Cancer Stem Cell population by degradation of β-catenin via N-terminal Ser37 phosphorylation-an in vivo and in vitro experimental evaluation. Chem Biol Interact 2020; 316:108938. [PMID: 31926151 DOI: 10.1016/j.cbi.2020.108938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022]
Abstract
Eugenol a phenylpropanoid, predominantly found in clove is a very common spice in daily cuisine. It already reported to have anti-breast cancer activity. In this study, the effect of eugenol on CSC (Cancer Stem Cell) markers and its main regulator β-catenin both in vivo Ehrlich Ascites Carcinoma (EAC) cell line and in vitro MCF-7 cell line was investigated with that of the untreated group. The therapeutic doses were found to significantly induce apoptosis leaving normal mice and cells unaffected. The in-depth analysis revealed the downregulation of β-catenin thereby facilitating its degradation by N-terminal phosphorylation of Ser37 residue. Significant downregulation of various CSC markers was also observed in vivo after eugenol treatment those are regulated by the intracellular status of β-catenin. These findings were validated by the effect of eugenol on the formation of the secondary sphere in vitro. Notable downregulation of the enriched stemness of secondary mammosphere was detected by the significantly decreased percentage of CD44+/CD24-/low population after eugenol treatment along with their distorted morphology and smaller the number of spheres. The underlying mechanism revealed significant downregulation of β-catenin and the set of CSC markers along with their reduced mRNA expression in secondary sphere culture. Therefore, it can be concluded from the study that eugenol exerts its chemotherapeutic potential by impeding β-catenin nuclear translocation thereby promoting its cytoplasmic degradation as a result stemness is being suppressed potentially even if in the enriched state. Therefore the study contributes to reduce the cancer-induced complications associated with the CSC population. This will ultimately confer the longer and improved patient's life.
Collapse
|
18
|
Li HJ, Ray SK, Pan N, Haigh J, Fritzsch B, Leiter AB. Intestinal Neurod1 expression impairs paneth cell differentiation and promotes enteroendocrine lineage specification. Sci Rep 2019; 9:19489. [PMID: 31862906 PMCID: PMC6925293 DOI: 10.1038/s41598-019-55292-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transcription factor Neurod1 is required for enteroendocrine progenitor differentiation and maturation. Several earlier studies indicated that ectopic expression of Neurod1 converted non- neuronal cells into neurons. However, the functional consequence of ectopic Neurod1 expression has not been examined in the GI tract, and it is not known whether Neurod1 can similarly switch cell fates in the intestine. We generated a mouse line that would enable us to conditionally express Neurod1 in intestinal epithelial cells at different stages of differentiation. Forced expression of Neurod1 throughout intestinal epithelium increased the number of EECs as well as the expression of EE specific transcription factors and hormones. Furthermore, we observed a substantial reduction of Paneth cell marker expression, although the expressions of enterocyte-, tuft- and goblet-cell specific markers are largely not affected. Our earlier study indicated that Neurog3+ progenitor cells give rise to not only EECs but also Goblet and Paneth cells. Here we show that the conditional expression of Neurod1 restricts Neurog3+ progenitors to adopt Paneth cell fate, and promotes more pronounced EE cell differentiation, while such effects are not seen in more differentiated Neurod1+ cells. Together, our data suggest that forced expression of Neurod1 programs intestinal epithelial cells more towards an EE cell fate at the expense of the Paneth cell lineage and the effect ceases as cells mature to EE cells.
Collapse
Affiliation(s)
- Hui Joyce Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Subir K Ray
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Ning Pan
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Decibel Pharmaceutical, Boston, MA, USA
| | - Jody Haigh
- Department of Biomedical, Molecular Biology, Ghent University, Ghent, Belgium
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew B Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
19
|
Gladbach YS, Wiegele L, Hamed M, Merkenschläger AM, Fuellen G, Junghanss C, Maletzki C. Unraveling the Heterogeneous Mutational Signature of Spontaneously Developing Tumors in MLH1 -/- Mice. Cancers (Basel) 2019; 11:cancers11101485. [PMID: 31581674 PMCID: PMC6827043 DOI: 10.3390/cancers11101485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Mismatch repair deficient (MMR-D) tumors exemplify the prototypic hypermutator phenotype. Owing to the high mutation rates, plenty of neo-antigens are present on the tumor cells' surface, ideally shared among different cancer types. The MLH1 knock out mouse represents a preclinical model that resembles features of the human MMR-D counterpart. While these mice develop neoplasias in a sequential twin-peaked manner (lymphomas > gastrointestinal tumors (GIT)) we aimed at identification of underlying molecular mechanisms. Using whole-genome sequencing, we focused on (I) shared and (II) mutually exclusive mutations and describe the process of ongoing mutational events in tumor-derived cell cultures. The landscape of MLH1-/- tumors is heterogeneous with only a few shared mutations being detectable among different tumor entities (ARID1A and IDH2). With respect to coding microsatellite analysis of MMR-D-related target genes, partial overlap was detectable, yet recognizing shared antigens. The present study is the first reporting results of a comparison between spontaneously developing tumors in MMR-D driven tumorigenesis. Additionally to identifying ARID1A as potential causative mutation hotspot, this comprehensive characterization of the mutational landscape may be a good starting point to refine therapeutic concepts.
Collapse
Affiliation(s)
- Yvonne Saara Gladbach
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.
| | - Leonie Wiegele
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Anna-Marie Merkenschläger
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
20
|
Chen H, Liu C, Liu Y, Li H, Cheng B. Transcription factor HBP1: A regulator of senescence and apoptosis of preadipocytes. Biochem Biophys Res Commun 2019; 517:216-220. [PMID: 31331641 DOI: 10.1016/j.bbrc.2019.07.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND /aim: HMG-box protein 1 (HBP1) plays an important role in the senescence and apoptosis of mammalian cells, but its role in chicken cells remains unclear. The aim of this study was to investigate the effects of HBP1 on senescence and apoptosis of chicken preadipocytes. METHODS The immortalized chicken preadipocyte cell line (ICP2) was used as a cell model. Chicken HBP1 knockout and overexpressing preadipocyte cell lines were established using CRISPR/Cas9 gene editing technology and lentiviral infection. Western blotting was used to detect the protein expression of HBP1 and senescence markers p16 and p53. Cell senescence was measured by Sa-β-Gal staining and apoptosis was detected by flow cytometry. RESULTS HBP1 was highly expressed in senescent ICP2 cells compared with young ICP2 cells. After the deletion of HBP1, the degree of senescence, the apoptosis rate and the protein expression levels of p16 and p53 were significantly reduced. After the overexpression of HBP1, the degree of senescence, the apoptosis rate and the protein expression levels of p16 and p53 were significantly increased. CONCLUSION HBP1 promotes the senescence and apoptosis of chicken preadipocytes.
Collapse
Affiliation(s)
- Hongyan Chen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yumeng Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
21
|
van der Laan SW, Siemelink MA, Haitjema S, Foroughi Asl H, Perisic L, Mokry M, van Setten J, Malik R, Dichgans M, Worrall BB, Samani NJ, Schunkert H, Erdmann J, Hedin U, Paulsson-Berne G, Björkegrenn JLM, de Borst GJ, Asselbergs FW, den Ruijter FW, de Bakker PIW, Pasterkamp G. Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002115. [PMID: 30354329 PMCID: PMC7664607 DOI: 10.1161/circgen.118.002115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms. Methods: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression. Results: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10−6 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood. Conclusions: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics.
Collapse
Affiliation(s)
- Sander W van der Laan
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University Utrecht, The Netherlands (S.W.v.d.L., M.A.S., S.H., H.M.d.R., G.P.)
| | - Marten A Siemelink
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University Utrecht, The Netherlands (S.W.v.d.L., M.A.S., S.H., H.M.d.R., G.P.).,Department of Clinical Genetics, University Medical Center Utrecht, University Utrecht, The Netherlands (M.A.S.)
| | - Saskia Haitjema
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University Utrecht, The Netherlands (S.W.v.d.L., M.A.S., S.H., H.M.d.R., G.P.)
| | - Hassan Foroughi Asl
- Cardiovascular Genomics Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A.)
| | - Ljubica Perisic
- Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden (L.P., U.H.)
| | - Michal Mokry
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, University Utrecht, The Netherlands (M.M.).,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, The Netherlands (M.M.)
| | - Jessica van Setten
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, University Utrecht, The Netherlands (F.W.A., J.v.S.)
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany (R.M., M.D.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany (R.M., M.D.).,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Bradford B Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia, Charlottesville (B.B.W.)
| | | | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester (N.J.S.).,NIHR Leicester Biomedical Research Unit Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom (N.J.S.)
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik an der TU München, Munich Heart Alliance (DZHK), Germany (H.S., J.E.)
| | - Jeanette Erdmann
- Deutsches Herzzentrum München, Klinik an der TU München, Munich Heart Alliance (DZHK), Germany (H.S., J.E.)
| | - Ulf Hedin
- Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden (L.P., U.H.)
| | - Gabrielle Paulsson-Berne
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (G.P.-B.)
| | - Johan L M Björkegrenn
- CMM, Karolinska Institutet, Stockholm, Sweden. Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York (J.L.M.B.).,Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (J.L.M.B.).,Clinical Gene Networks AB, Stockholm,Sweden (J.L.M.B.)
| | - Gert J de Borst
- Division of Surgical Specialties, Department of Surgery, University Medical Center Utrecht, University Utrecht, The Netherlands (G.J.d.B.)
| | - Folkert W Asselbergs
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, University Utrecht, The Netherlands (F.W.A., J.v.S.).,Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, University Utrecht, The Netherlands (P.I.W.d.B.).,Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, The Netherlands (P.I.W.d.B.).,Laboratory of Clinical Chemistry and Hematology, Division Laboratories and Pharmacy, University Medical Center Utrecht, University Utrecht, The Netherlands (G.P.).,Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, Utrecht (F.W.A.).,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom (F.W.A.).,Institute of Health Informatics, University College London, London, United Kingdom (F.W.A.)
| | - Folkert W den Ruijter
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, University Utrecht, The Netherlands (F.W.A., J.v.S.)
| | - Paul I W de Bakker
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, University Utrecht, The Netherlands (P.I.W.d.B.).,Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, The Netherlands (P.I.W.d.B.)
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University Utrecht, The Netherlands (S.W.v.d.L., M.A.S., S.H., H.M.d.R., G.P.).,Department of Clinical Genetics, University Medical Center Utrecht, University Utrecht, The Netherlands (M.A.S.).,Laboratory of Clinical Chemistry and Hematology, Division Laboratories and Pharmacy, University Medical Center Utrecht, University Utrecht, The Netherlands (G.P.)
| |
Collapse
|
22
|
Klein JC, Keith A, Rice SJ, Shepherd C, Agarwal V, Loughlin J, Shendure J. Functional testing of thousands of osteoarthritis-associated variants for regulatory activity. Nat Commun 2019; 10:2434. [PMID: 31164647 PMCID: PMC6547687 DOI: 10.1038/s41467-019-10439-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
To date, genome-wide association studies have implicated at least 35 loci in osteoarthritis but, due to linkage disequilibrium, the specific variants underlying these associations and the mechanisms by which they contribute to disease risk have yet to be pinpointed. Here, we functionally test 1,605 single nucleotide variants associated with osteoarthritis for regulatory activity using a massively parallel reporter assay. We identify six single nucleotide polymorphisms (SNPs) with differential regulatory activity between the major and minor alleles. We show that the most significant SNP, rs4730222, exhibits differential nuclear protein binding in electrophoretic mobility shift assays and drives increased expression of an alternative isoform of HBP1 in a heterozygote chondrosarcoma cell line, in a CRISPR-edited osteosarcoma cell line, and in chondrocytes derived from osteoarthritis patients. This study provides a framework for prioritization of GWAS variants and highlights a role of HBP1 and Wnt signaling in osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Jason C Klein
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Aidan Keith
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Sarah J Rice
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Colin Shepherd
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Vikram Agarwal
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - John Loughlin
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
23
|
Bollaert E, de Rocca Serra A, Demoulin JB. The HMG box transcription factor HBP1: a cell cycle inhibitor at the crossroads of cancer signaling pathways. Cell Mol Life Sci 2019; 76:1529-1539. [PMID: 30683982 PMCID: PMC11105191 DOI: 10.1007/s00018-019-03012-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
HMG box protein 1 (HBP1) is a transcription factor and a potent cell cycle inhibitor in normal and cancer cells. HBP1 activates or represses the expression of different cell cycle genes (such as CDKN2A, CDKN1A, and CCND1) through direct DNA binding, cofactor recruitment, chromatin remodeling, or neutralization of other transcription factors. Among these are LEF1, TCF4, and MYC in the WNT/beta-catenin pathway. HBP1 also contributes to oncogenic RAS-induced senescence and terminal cell differentiation. Collectively, these activities suggest a tumor suppressor function. However, HBP1 is not listed among frequently mutated cancer driver genes. Nevertheless, HBP1 expression is lower in several tumor types relative to matched normal tissues. Several micro-RNAs, such as miR-155, miR-17-92, and miR-29a, dampen HBP1 expression in cancer cells of various origins. The phosphatidylinositol-3 kinase (PI3K)/AKT pathway also inhibits HBP1 transcription by preventing FOXO binding to the HBP1 promoter. In addition, AKT directly phosphorylates HBP1, thereby inhibiting its transcriptional activity. Taken together, these findings place HBP1 at the center of a network of micro-RNAs and oncoproteins that control cell proliferation. In this review, we discuss our current understanding of HBP1 function in human physiology and diseases.
Collapse
Affiliation(s)
- Emeline Bollaert
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Audrey de Rocca Serra
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium.
| |
Collapse
|
24
|
Liu H, Pfirrmann T. The Gid-complex: an emerging player in the ubiquitin ligase league. Biol Chem 2019; 400:1429-1441. [DOI: 10.1515/hsz-2019-0139] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Abstract
The Saccharomyces cerevisiae Gid-complex is a highly evolutionary conserved ubiquitin ligase with at least seven protein subunits. Here, we review our knowledge about the yeast Gid-complex as an important regulator of glucose metabolism, specifically targeting key enzymes of gluconeogenesis for degradation. Furthermore, we summarize existing data about the individual subunits, the topology and possible substrate recognition mechanisms and compare the striking similarities, but also differences, between the yeast complex and its vertebrate counterpart. Present data is summarized to give an overview about cellular processes regulated by the vertebrate GID-complex that range from cell cycle regulation, primary cilia function to the regulation of energy homeostasis. In conclusion, the vertebrate GID-complex evolved as a versatile ubiquitin ligase complex with functions beyond the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Huaize Liu
- Martin Luther University Halle-Wittenberg , Institute of Physiological Chemistry , Hollystr. 1 , D-06114 Halle , Germany
| | - Thorsten Pfirrmann
- Martin Luther University Halle-Wittenberg , Institute of Physiological Chemistry , Hollystr. 1 , D-06114 Halle , Germany
| |
Collapse
|
25
|
Ohtsuka T, Kageyama R. Regulation of temporal properties of neural stem cells and transition timing of neurogenesis and gliogenesis during mammalian neocortical development. Semin Cell Dev Biol 2019; 95:4-11. [PMID: 30634047 DOI: 10.1016/j.semcdb.2019.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/05/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
In the developing mammalian neocortex, neural stem cells (NSCs) gradually alter their characteristics as development proceeds. NSCs initially expand the progenitor pool by symmetric proliferative division and then shift to asymmetric neurogenic division to commence neurogenesis. NSCs sequentially give rise to deep layer neurons first and superficial layer neurons later through mid- to late-embryonic stages, followed by shifting to a gliogenic phase at perinatal stages. The precise mechanisms regulating developmental timing of the transition from symmetric to asymmetric division have not been fully elucidated; however, gradual elongation in cell cycle length and concomitant accumulation of determinants that promote neuronal differentiation may function as a biological clock that regulates the onset of asymmetric neurogenic division. On the other hand, epigenetic regulatory systems have been implicated in the regulation of transition timing of neurogenesis and gliogenesis; the polycomb group (PcG) complex and Hmga genes have been found to govern the developmental timing by modulating chromatin structure during neocortical development. Furthermore, we uncovered several factors and mechanisms underlying the regulation of timing of neocortical neurogenesis and gliogenesis. In this review, we discuss recent findings regarding the mechanisms that govern the temporal properties of NSCs and the precise transition timing during neocortical development.
Collapse
Affiliation(s)
- Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan.
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
26
|
Guo X, Qiu W, Wang J, Liu Q, Qian M, Wang S, Zhang Z, Gao X, Chen Z, Guo Q, Xu J, Xue H, Li G. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways. Int J Cancer 2019; 144:3111-3126. [PMID: 30536597 DOI: 10.1002/ijc.32052] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a pivotal role in mediating the formation of an immunosuppressive environment and assisting tumors in evading the host immune response. However, the mechanism through which tumors manipulate the differentiation and function of MDSCs remains unclear. Here, we report that hypoxia-induced glioma cells can stimulate the differentiation of functional MDSCs by transferring exosomal miR-29a and miR-92a to MDSCs. Our results showed that glioma-derived exosomes (GEXs) can enhance the differentiation of functional MDSCs both in vitro and in vivo, and hypoxia-induced GEXs (H-GEXs) demonstrated a stronger MDSCs induction ability than did normoxia-induced GEXs (N-GEXs). A subsequent miRNA sequencing analysis of N-GEXs and H-GEXs revealed that hypoxia-induced exosomal miR-29a and miR-92a expression induced the propagation of MDSCs. miR-29a and miR-92a activated the proliferation and function of MDSCs by targeting high-mobility group box transcription factor 1 (Hbp1) and protein kinase cAMP-dependent type I regulatory subunit alpha (Prkar1a), respectively. Altogether, the results of our study provide new insights into the role of glioma exosomal miRNAs in mediating the formation of immunosuppressive microenvironments in tumors and elucidate the underlying exosomal miR-29a/miR-92a-based regulatory mechanism responsible for the modulation of functional MDSC induction.
Collapse
Affiliation(s)
- Xiaofan Guo
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Wei Qiu
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Jian Wang
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Qinglin Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Mingyu Qian
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shaobo Wang
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Zongpu Zhang
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xiao Gao
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Zihang Chen
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Qindong Guo
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Jianye Xu
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Hao Xue
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Gang Li
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
27
|
|
28
|
Matsushita Y, Furutani Y, Matsuoka R, Furukawa T. Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:319. [PMID: 30514293 PMCID: PMC6280349 DOI: 10.1186/s12906-018-2385-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/26/2018] [Indexed: 02/18/2023]
Abstract
Background Pancreatic cancer is one of the most aggressive human malignancies. The development of a novel drug to treat pancreatic cancer is imperative, and it is thought that complementary and alternative medicine (CAM) could yield such a candidate. Agaricus blazei Murrill is a CAM that has been tested as an anticancer drug, but its efficacy against pancreatic cancer is poorly understood. To study the potential of A. blazei in the treatment of pancreatic cancer, we examined the effects of its hot water extract on the proliferation and global gene expression profile of human pancreatic cancer cells. Methods Three distinct human pancreatic cancer cell lines, MIAPaCa-2, PCI-35, and PK-8, and the immortalized human pancreatic duct-epithelial cell line, HPDE, were employed. The cells were incubated with the appropriate growth medium supplemented with the hot water extract of A. blazei at final concentrations of 0.005, 0.015%, or 0.045%, and cellular proliferation was assessed for five consecutive days using an MTT assay. Apoptosis was examined by using flow cytometry and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Caspase-dependent apoptosis was assayed using immunoblotting. Global gene expression profiles were examined using a whole human genome 44 K microarray, and the microarray results were validated by using real-time reverse transcription PCR. Results The hot water extract of A. blazei significantly inhibited the proliferation of cultured pancreatic cancer cells through the induction of G0/G1 cell cycle arrest and caspase-dependent apoptosis; the effect was the smallest in HPDE cells. Furthermore, significant alterations in the global gene expression profiles of pancreatic cancer cells occurred following treatment with the hot water extract of A. blazei. Genes associated with kinetochore function, spindle formation, and centromere maintenance were particularly affected, as well as cyclins and cyclin-dependent kinases that are essential for cell cycle progression. In addition, proapoptotic genes were upregulated. Conclusions The hot water extract of A. blazei may be useful for the treatment of pancreatic cancer and is a potential candidate for the isolation of novel, active compounds specific for mitotic spindle dysfunction. Electronic supplementary material The online version of this article (10.1186/s12906-018-2385-4) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Lampert F, Stafa D, Goga A, Soste MV, Gilberto S, Olieric N, Picotti P, Stoffel M, Peter M. The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. eLife 2018; 7:35528. [PMID: 29911972 PMCID: PMC6037477 DOI: 10.7554/elife.35528] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022] Open
Abstract
In yeast, the glucose-induced degradation-deficient (GID) E3 ligase selectively degrades superfluous gluconeogenic enzymes. Here, we identified all subunits of the mammalian GID/CTLH complex and provide a comprehensive map of its hierarchical organization and step-wise assembly. Biochemical reconstitution demonstrates that the mammalian complex possesses inherent E3 ubiquitin ligase activity, using Ube2H as its cognate E2. Deletions of multiple GID subunits compromise cell proliferation, and this defect is accompanied by deregulation of critical cell cycle markers such as the retinoblastoma (Rb) tumor suppressor, phospho-Histone H3 and Cyclin A. We identify the negative regulator of pro-proliferative genes Hbp1 as a bonafide GID/CTLH proteolytic substrate. Indeed, Hbp1 accumulates in cells lacking GID/CTLH activity, and Hbp1 physically interacts and is ubiquitinated in vitro by reconstituted GID/CTLH complexes. Our biochemical and cellular analysis thus demonstrates that the GID/CTLH complex prevents cell cycle exit in G1, at least in part by degrading Hbp1.
Collapse
Affiliation(s)
| | - Diana Stafa
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Algera Goga
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | | | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Hawkins LJ, Al-Attar R, Storey KB. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics. PeerJ 2018; 6:e5062. [PMID: 29922517 PMCID: PMC6005171 DOI: 10.7717/peerj.5062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics.
Collapse
Affiliation(s)
- Liam J Hawkins
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Rasha Al-Attar
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
31
|
Song X, Gao X, Lu J, Liang H, Su P, Li Q, Pang Y. High mobility group box transcription factor 1 (HBP1) from Lampetra japonica affects cell cycle regulation. Dev Growth Differ 2018. [PMID: 29520767 DOI: 10.1111/dgd.12426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High mobility group (HMG) box-containing protein 1 (HBP1) is a member of the HMG family of chromosomal proteins. Previous studies have shown that human HBP1 exhibits tumor-suppressor activity. Here, we identified a homologue of HBP1, L-hbp1, in Lampetra japonica. The L-hbp1 gene shared high sequence similarity with its homologues in jawed vertebrates, as shown by bioinformatics analyses. L-hbp1 contains a 1,584-bp open reading frame that encodes 527 amino acids. A pAdenox-L-HBP1 plasmid was constructed and transfected successfully in Raji cells, as revealed by real-time PCR. The overexpression of L-HBP1 reduced cell growth rates, inhibited G1 phase progression, decreased cyclin D1 and c-Myc protein expression, and increased p53 protein expression. Western blot and immunohistochemical assays showed that L-HBP1 was primarily distributed in the heart, kidney, gill and liver of lamprey. Cell cycle analysis revealed that decreased L-HBP1 expression in HBP1 morpholino oligonucleotide-transfected lamprey cells resulted in a decreased fraction of cells in the G1 phase and corresponding increases in the S and G2/M phases. Additionally, treatment of lamprey cardiac cells with pharmacological inhibitors of p38 MAP kinase released the cells from G1 arrest. Together, these results indicated that HBP1 expression in lamprey was correlated with the onset of mitotic arrest in these cells, which have implications for cell cycle regulation.
Collapse
Affiliation(s)
- Xiaoping Song
- College of Life Science, Liaoning Normal University, Dalian, China.,Respiratory Medicine, Affiliated Zhong shan Hospital of Dalian University, Dalian, China
| | - Xingxing Gao
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Hongfang Liang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
32
|
Bollaert E, Johanns M, Herinckx G, de Rocca Serra A, Vandewalle VA, Havelange V, Rider MH, Vertommen D, Demoulin JB. HBP1 phosphorylation by AKT regulates its transcriptional activity and glioblastoma cell proliferation. Cell Signal 2018; 44:158-170. [PMID: 29355710 DOI: 10.1016/j.cellsig.2018.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
The HMG-box protein 1 (HBP1) is a transcriptional regulator and a potential tumor suppressor that controls cell proliferation, differentiation and oncogene-mediated senescence. In a previous study, we showed that AKT activation through the PI3K/AKT/FOXO pathway represses HBP1 expression at the transcriptional level in human fibroblasts as well as in cancer cell lines. In the present study, we investigated whether AKT could also regulate HBP1 directly. First, AKT1 phosphorylated recombinant human HBP1 in vitro on three conserved sites, Ser380, Thr484 and Ser509. In living cells, we confirmed the phosphorylation of HBP1 on residues 380 and 509 using phospho-specific antibodies. HBP1 phosphorylation was induced by growth factors, such as EGF or IGF-1, which activated AKT. Conversely, it was blocked by treatment of cells with an AKT inhibitor (MK-2206) or by AKT knockdown. Next, we observed that HBP1 transcriptional activity was strongly modified by mutating its phosphorylation sites. The regulation of target genes such as DNMT1, P47phox, p16INK4A and cyclin D1 was also affected. HBP1 had previously been shown to limit glioma cell growth. Accordingly, HBP1 silencing by small-hairpin RNA increased human glioblastoma cell proliferation. Conversely, HBP1 overexpression decreased cell growth and foci formation. This effect was amplified by mutations that prevented phosphorylation by AKT, and blunted by mutations that mimicked phosphorylation. In conclusion, our results suggest that HBP1 phosphorylation by AKT blocks its functions as transcriptional regulator and tumor suppressor.
Collapse
Affiliation(s)
- Emeline Bollaert
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Manuel Johanns
- de Duve Institute, Université Catholique de Louvain (UCL), PHOS Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Gaëtan Herinckx
- de Duve Institute, Université Catholique de Louvain (UCL), PHOS Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Audrey de Rocca Serra
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Virginie A Vandewalle
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Violaine Havelange
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Mark H Rider
- de Duve Institute, Université Catholique de Louvain (UCL), PHOS Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain (UCL), PHOS Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Jean-Baptiste Demoulin
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium.
| |
Collapse
|
33
|
HMG-box transcription factor 1: a positive regulator of the G1/S transition through the Cyclin-CDK-CDKI molecular network in nasopharyngeal carcinoma. Cell Death Dis 2018; 9:100. [PMID: 29367693 PMCID: PMC5833394 DOI: 10.1038/s41419-017-0175-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022]
Abstract
HMG-box transcription factor 1 (HBP1) has been reported to be a tumor suppressor in diverse malignant carcinomas. However, our findings provide a conclusion that HBP1 plays a novel role in facilitating nasopharyngeal carcinoma (NPC) growth. The Kaplan-Meier analysis indicates that high expression HBP1 and low miR-29c expression both are negatively correlated with the overall survival rates of NPC patients. HBP1 knockdown inhibits cellular proliferation and growth, and arrested cells in G1 phase rather than affected cell apoptosis via flow cytometry (FCM) analysis. Mechanistically, HBP1 induces the expression of CCND1 and CCND3 levels by binding to their promoters, and binds to CDK4, CDK6 and p16INK4A promoters while not affects their expression levels. CCND1 and CCND3 promote CCND1-CDK4, CCND3-CDK6, and CDK2-CCNE1 complex formation, thus, E2F-1 and DP-1 are activated to accelerate the G1/S transition in the cell cycle. MiR-29c is down-regulated and correlated with NPC tumorigenesis and progression. Luciferase assays confirms that miR-29c binds to the 3' untranslated region (3'-UTR) of HBP1. Introduction of pre-miR-29c decreased HBP1 mRNA and protein levels. Therefore, the high endogenous HBP1 expression might be attributed to the low levels of endogenous miR-29c in NPC. In addition, HBP1 knockdown and miR-29c agomir administration both decrease xenograft growth in nude mice in vivo. It is firstly reported that HBP1 knockdown inhibited the proliferation and metastasis of NPC, which indicates that HBP1 functions as a non-tumor suppressor gene in NPC. This study provides a novel potential target for the prevention of and therapies for NPC.
Collapse
|
34
|
Chan CY, Yu P, Chang FT, Chen ZH, Lee MF, Huang CY. Transcription factor HMG box-containing protein 1 (HBP1) modulates mitotic clonal expansion (MCE) during adipocyte differentiation. J Cell Physiol 2017; 233:4205-4215. [PMID: 29030964 DOI: 10.1002/jcp.26237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/05/2017] [Indexed: 11/10/2022]
Abstract
Transcription factor HMG box-containing protein 1 (HBP1) has been found to be up-regulated in rat adipose tissue and differentiated preadipocyte; however, how HBP1 is involved in adipocyte formation remains unclear. In the present study, we demonstrated that under a standard differentiation protocol HBP1 expression fluctuates with down-regulation in the mitotic clonal expansion (MCE) stage followed by up-regulation in the terminal differentiation stage in both 3T3-L1 and MEF cell models. Also, HBP1 knockdown accelerated cell cycle progression in the MCE stage, but it impaired final adipogenesis. To gain further insight into the role of HBP1 in the MCE stage, we found that the HBP1 expression pattern is reciprocal to that of C/EBPβ, and ectopic expression of HBP1suppresses C/EBPβ expression. These data indicate that HBP1 functions as a negative regulator of MCE. In contrast, when HBP1 expression was gradually elevated along with a concomitant induction of C/EBPα at the end of the MCE, HBP1 knockdown leads to a significant reduction of C/EBPα expression, suggesting that HBP1-mediated C/EBPα expression may be needed for the termination of the cell cycle at the end of MCE for terminal differentiation. All told, our findings show that HBP1 is a key transcription factor in the already complicated regulatory cascade during adipocyte differentiation.
Collapse
Affiliation(s)
- Chien-Yi Chan
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ping Yu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Feng-Tzu Chang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Zih-Hua Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ming-Fen Lee
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
35
|
Sassi Y, Avramopoulos P, Ramanujam D, Grüter L, Werfel S, Giosele S, Brunner AD, Esfandyari D, Papadopoulou AS, De Strooper B, Hübner N, Kumarswamy R, Thum T, Yin X, Mayr M, Laggerbauer B, Engelhardt S. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat Commun 2017; 8:1614. [PMID: 29158499 PMCID: PMC5696364 DOI: 10.1038/s41467-017-01737-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 10/12/2017] [Indexed: 11/10/2022] Open
Abstract
Chronic cardiac stress induces pathologic hypertrophy and fibrosis of the myocardium. The microRNA-29 (miR-29) family has been found to prevent excess collagen expression in various organs, particularly through its function in fibroblasts. Here, we show that miR-29 promotes pathologic hypertrophy of cardiac myocytes and overall cardiac dysfunction. In a mouse model of cardiac pressure overload, global genetic deletion of miR-29 or antimiR-29 infusion prevents cardiac hypertrophy and fibrosis and improves cardiac function. Targeted deletion of miR-29 in cardiac myocytes in vivo also prevents cardiac hypertrophy and fibrosis, indicating that the function of miR-29 in cardiac myocytes dominates over that in non-myocyte cell types. Mechanistically, we found cardiac myocyte miR-29 to de-repress Wnt signaling by directly targeting four pathway factors. Our data suggests that, cell- or tissue-specific antimiR-29 delivery may have therapeutic value for pathological cardiac remodeling and fibrosis. MicroRNA-29 is known to reduce collagen production in fibroblasts thereby inhibiting fibrosis in various organs. Here, Sassi et al. show that miR-29 can also enhance fibrotic signalling and pathological hypertrophy of the heart through its action in cardiomyocytes.
Collapse
Affiliation(s)
- Yassine Sassi
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany.,Mount Sinai, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Petros Avramopoulos
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Laurenz Grüter
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany
| | - Stanislas Werfel
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany
| | - Simon Giosele
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany
| | - Andreas-David Brunner
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany
| | - Dena Esfandyari
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Aikaterini S Papadopoulou
- VIB Center for the Biology of Disease, VIB, 3000, Leuven, Belgium.,Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders (LIND), KU Leuven and Universitaire Ziekenhuizen, 3000, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, VIB, 3000, Leuven, Belgium.,Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders (LIND), KU Leuven and Universitaire Ziekenhuizen, 3000, Leuven, Belgium
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max-Delbrüeck-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10115, Berlin, Germany.,Charité-Universitätsmedizin, 10117, Berlin, Germany
| | - Regalla Kumarswamy
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, SE5 9NU, London, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, SE5 9NU, London, UK
| | - Bernhard Laggerbauer
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), 80802, Munich, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
36
|
Yamada T, Masuda M. Emergence of TNIK inhibitors in cancer therapeutics. Cancer Sci 2017; 108:818-823. [PMID: 28208209 PMCID: PMC5448614 DOI: 10.1111/cas.13203] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
The outcome of patients with metastatic colorectal cancer remains unsatisfactory. To improve patient prognosis, it will be necessary to identify new drug targets based on molecules that are essential for colorectal carcinogenesis, and to develop therapeutics that target such molecules. The great majority of colorectal cancers (>90%) have mutations in at least one Wnt signaling pathway gene. Aberrant activation of Wnt signaling is a major force driving colorectal carcinogenesis. Several therapeutics targeting Wnt pathway molecules, including porcupine, frizzled receptors and tankyrases, have been developed, but none of them have yet been incorporated into clinical practice. Wnt signaling is most frequently activated by loss of function of the adenomatous polyposis coli (APC) tumor suppressor gene. Restoration of APC gene function does not seem to be a realistic therapeutic approach, and, therefore, only Wnt signaling molecules downstream of the APC gene product can be considered as targets for pharmacological intervention. Traf2 and Nck‐interacting protein kinase (TNIK) was identified as a regulatory component of the β‐catenin and T‐cell factor‐4 (TCF‐4) transcriptional complex. Several small‐molecule compounds targeting this protein kinase have been shown to have anti‐tumor effects against various cancers. An anthelmintic agent, mebendazole, was recently identified as a selective inhibitor of TNIK and is under clinical evaluation. TNIK regulates Wnt signaling in the most downstream part of the pathway, and its pharmacological inhibition seems to be a promising therapeutic approach. We demonstrated the feasibility of this approach by developing a small‐molecule TNIK inhibitor, NCB‐0846.
Collapse
Affiliation(s)
- Tesshi Yamada
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Mari Masuda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
37
|
Wen Z, Pan T, Yang S, Liu J, Tao H, Zhao Y, Xu D, Shao W, Wu J, Liu X, Wang Y, Mao J, Zhu Y. Up-regulated NRIP2 in colorectal cancer initiating cells modulates the Wnt pathway by targeting RORβ. Mol Cancer 2017; 16:20. [PMID: 28137278 PMCID: PMC5282884 DOI: 10.1186/s12943-017-0590-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/17/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Colorectal cancer remains one of the most common malignant tumors worldwide. Colorectal cancer initiating cells (CCICs) are a small subpopulation responsible for malignant behaviors of colorectal cancer. Aberrant activation of the Wnt pathways regulates the self-renewal of CCIC. However, the underlying mechanism(s) remain poorly understood. METHODS Via retroviral library screening, we identified Nuclear Receptor-Interacting Protein 2 (NRIP2) as a novel interactor of the Wnt pathway from enriched colorectal cancer colosphere cells. The expression levels of NRIP2 and retinoic acid-related orphan receptor β (RORβ) were further examined by FISH, qRT-PCR, IHC and Western blot. NRIP2 overexpressed and knockdown colorectal cancer cells were produced to study the role of NRIP2 in Wnt pathway. We also verified the binding between NRIP2 and RORβ and investigated the effect of RORβ on CCICs both in vitro and in vivo. Genechip-scanning speculated downstream target HBP1. Western blot, ChIP and luciferase reporter were carried to investigate the interaction between NRIP2, RORβ, and HBP1. RESULTS NRIP2 was significantly up-regulated in CCICs from both cell lines and primary colorectal cancer tissues. Reinforced expression of NRIP2 increased Wnt activity, while silencing of NRIP2 attenuated Wnt activity. The transcription factor RORβ was a key target through which NRIP2 regulated Wnt pathway activity. RORβ was a transcriptional enhancer of inhibitor HBP1 of the Wnt pathway. NRIP2 prevented RORβ to bind with downstream HBP1 promoter regions and reduced the transcription of HBP1. This, in turn, attenuated the HBP1-dependent inhibition of TCF4-mediated transcription. CONCLUSIONS NRIP2 is a novel interactor of the Wnt pathway in colorectal cancer initiating cells. interactions between NRIP2, RORβ, and HBP1 mediate a new mechanism for CCIC self-renewal via the Wnt activity.
Collapse
Affiliation(s)
- Zhenzhen Wen
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China.,Present address: Department of Gastroenterology, Sir Run Run Shaw Hospital of Zhejiang, University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Tianhui Pan
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Saisai Yang
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Jingwen Liu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Haiying Tao
- People's Hospital of Huangyan district, Taizhou, Zhejiang, 318020, China
| | - Yiming Zhao
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Dingting Xu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Wei Shao
- People's Hospital of Putuo district, Zhoushan, Zhejiang, 316100, China
| | - Jia Wu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Xiyong Liu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA, 62232, USA
| | - Yongjiang Wang
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Jianshan Mao
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China. .,Cancer Institute and Education Ministry Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China. .,Cancer Institute and Education Ministry Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
38
|
Haque ZK, Wang DZ. How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci 2016; 74:983-1000. [PMID: 27714411 DOI: 10.1007/s00018-016-2373-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
In the past decades, the cardiovascular community has laid out the fundamental signaling cascades that become awry in the cardiomyocyte during the process of pathologic cardiac remodeling. These pathways are initiated at the cell membrane and work their way to the nucleus to mediate gene expression. Complexity is multiplied as the cardiomyocyte is subjected to cross talk with other cells as well as a barrage of extracellular stimuli and mechanical stresses. In this review, we summarize the signaling cascades that play key roles in cardiac function and then we proceed to describe emerging concepts of how the cardiomyocyte senses the mechanical and environmental stimuli to transition to the deleterious genetic program that defines pathologic cardiac remodeling. As a highlighting example of these processes, we illustrate the transition from a compensated hypertrophied myocardium to a decompensated failing myocardium, which is clinically manifested as decompensated heart failure.
Collapse
Affiliation(s)
- Zaffar K Haque
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 1260 John F. Enders Research Bldg, 320 Longwood Ave, Boston, MA, 02115, USA.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 1260 John F. Enders Research Bldg, 320 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
39
|
Ciribilli Y, Singh P, Spanel R, Inga A, Borlak J. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas. Oncotarget 2016; 6:31569-92. [PMID: 26427040 PMCID: PMC4741625 DOI: 10.18632/oncotarget.5035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/21/2015] [Indexed: 11/25/2022] Open
Abstract
The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays.Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies.
Collapse
Affiliation(s)
- Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Mattarello, Italy
| | - Prashant Singh
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.,Institute of Pathology, 41747 Viersen, Germany
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Mattarello, Italy
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
40
|
Dong Z, Huang M, Liu Z, Xie P, Dong Y, Wu X, Qu Z, Shen B, Huang X, Zhang T, Li J, Liu J, Yanase T, Zhou C, Xu Y. Focused screening of mitochondrial metabolism reveals a crucial role for a tumor suppressor Hbp1 in ovarian reserve. Cell Death Differ 2016; 23:1602-14. [PMID: 27206316 PMCID: PMC5041189 DOI: 10.1038/cdd.2016.47] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 01/23/2023] Open
Abstract
Granulosa cells (GCs) are tightly associated with fertility and the fate of ovarian follicles. Mitochondria are the central executers of apoptosis. However, the genetic basis underlying mitochondrial modulation in GCs during the ovarian development is poorly understood. Here, CRISPR/Cas9-mediated genetic screening was used to identify genes conferring mitochondrial metabolism in human GCs. The results uncovered roles for several tumor suppressors, including HBP1, in the augmentation of mitochondrial function. Focused analysis revealed that high-mobility group (HMG)-box transcription factor 1 (Hbp1) levels regulate mitochondrial biogenesis, which is associated with global changes in transcription including Tfam. The systemic or granulosa-specific but not oocyte-specific ablation of Hbp1 promoted follicle growth and oocyte production, and is associated with the reduced apoptotic signals in mouse GCs. Consistent with increased mitochondrial function and attenuated GC apoptosis, the regulation of Hbp1 conferred substantial protection of ovarian reserve. Thus, the results of the present study provide a critical target to understand the control of the reproductive lifespan.
Collapse
Affiliation(s)
- Z Dong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - M Huang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Z Liu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - P Xie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Y Dong
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - X Wu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Z Qu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - B Shen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - X Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - T Zhang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - J Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - J Liu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - T Yanase
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - C Zhou
- Department of Biochemistry and Molecular Medicine and Comprehensive Cancer Center, Institute for Pediatric Regenerative Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Y Xu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.,Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| |
Collapse
|
41
|
Chen Y, Pan K, Wang P, Cao Z, Wang W, Wang S, Hu N, Xue J, Li H, Jiang W, Li G, Zhang X. HBP1-mediated Regulation of p21 Protein through the Mdm2/p53 and TCF4/EZH2 Pathways and Its Impact on Cell Senescence and Tumorigenesis. J Biol Chem 2016; 291:12688-12705. [PMID: 27129219 PMCID: PMC4933444 DOI: 10.1074/jbc.m116.714147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 01/09/2023] Open
Abstract
The activity of the CDK inhibitor p21 is associated with diverse biological activities, including cell proliferation, senescence, and tumorigenesis. However, the mechanisms governing transcription of p21 need to be extensively studied. In this study, we demonstrate that the high-mobility group box-containing protein 1 (HBP1) transcription factor is a novel activator of p21 that works as part of a complex mechanism during senescence and tumorigenesis. We found that HBP1 activates the p21 gene through enhancing p53 stability by inhibiting Mdm2-mediated ubiquitination of p53, a well known positive regulator of p21. HBP1 was also found to enhance p21 transcription by inhibiting Wnt/β-catenin signaling. We identified histone methyltransferase EZH2, the catalytic subunit of polycomb repressive complex 2, as a target of Wnt/β-catenin signaling. HBP1-mediated repression of EZH2 through Wnt/β-catenin signaling decreased the level of trimethylation of histone H3 at lysine 27 of overall and specific histone on the p21 promoter, resulting in p21 transactivation. Although intricate, the reciprocal partnership of HBP1 and p21 has exceptional importance. HBP1-mediated elevation of p21 through the Mdm2/p53 and TCF4/EZH2 pathways contributes to both cellular senescence and tumor inhibition. Together, our results suggest that the HBP1 transcription factor orchestrates a complex regulation of key genes during cellular senescence and tumorigenesis with an impact on protein ubiquitination and overall histone methylation state.
Collapse
Affiliation(s)
- Yifan Chen
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Kewu Pan
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Pingzhang Wang
- the Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhengyi Cao
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Weibin Wang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Shuya Wang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Ningguang Hu
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Junhui Xue
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Hui Li
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Wei Jiang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Gang Li
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Xiaowei Zhang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and.
| |
Collapse
|
42
|
Lee MF, Hsieh NT, Huang CY, Li CI. AllTrans-Retinoic Acid Mediates MED28/HMG Box-Containing Protein 1 (HBP1)/β-Catenin Signaling in Human Colorectal Cancer Cells. J Cell Physiol 2015; 231:1796-803. [DOI: 10.1002/jcp.25285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ming-Fen Lee
- Department of Nutrition and Health Sciences; Chang Jung Christian University; Tainan Taiwan, R.O.C
| | - Nien-Tsu Hsieh
- Department of Nutrition; China Medical University; Taichung Taiwan, R.O.C
| | - Chun-Yin Huang
- Department of Nutrition; China Medical University; Taichung Taiwan, R.O.C
| | - Chun-I Li
- Department of Nutrition and Health Sciences; Chang Jung Christian University; Tainan Taiwan, R.O.C
| |
Collapse
|
43
|
Yang MY, Fortune JE. Changes in the transcriptome of bovine ovarian cortex during follicle activation in vitro. Physiol Genomics 2015; 47:600-11. [PMID: 26443523 DOI: 10.1152/physiolgenomics.00060.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023] Open
Abstract
The signals that regulate activation, a key transition in ovarian follicular development, are still not well understood, especially in nonrodent species. To gain insight into the regulation of this transition in cattle, we combined a microarray approach with an in vitro system in which ovarian cortical pieces cultured in control medium are enriched for primordial follicles, whereas pieces cultured with insulin are enriched for primary follicles. Total RNA was extracted from cultured cortical pieces, and then transcripts were identified and analyzed using the Affymetrix Bovine Genome GeneChip array. Around 65% of the transcripts in the bovine GeneChip were detected in cultured cortical pieces. Comparison between pieces cultured with or without insulin generated 158 differentially expressed transcripts. Compared with controls, 90 transcripts were upregulated and 68 were downregulated by insulin. These transcripts are involved in many biological processes and functions, but most are associated with cellular growth or cell cycle/cell death. The transcript encoding ubiquitin-conjugating enzyme E2C (UBE2C) was significantly upregulated during follicle activation, and Ingenuity Pathways Analysis revealed that UBE2C can interact with the tumor suppressor phosphatase and tensin homolog (PTEN). Both PTEN mRNA and protein were lower in cortical pieces cultured with insulin than in controls. In addition, FOXO3a, a downstream effector of PTEN signaling, underwent nuclear-cytoplasmic shuttling during primordial to primary follicle development in bovine fetal ovaries, further suggesting the involvement of the PTEN pathway in follicle activation in cattle. Genes and pathways identified in this study provide interesting candidates for further investigation of mechanisms underlying follicle activation.
Collapse
Affiliation(s)
- M Y Yang
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - J E Fortune
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
44
|
Tai J, Rao Y, Fang J, Huang Z, Yu Z, Chen X, Zhou W, Xiao X, Long T, Han Y, Liu Q, Li A, Ni X. Lentivirus‑delivered nemo‑like kinase small interfering RNA inhibits laryngeal cancer cell proliferation in vitro. Mol Med Rep 2015; 12:5619-24. [PMID: 26252054 PMCID: PMC4581764 DOI: 10.3892/mmr.2015.4189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Laryngeal squamous cell carcinoma is the most common form of head and neck squamous cell carcinoma. Multiple approaches have been applied to treat this type of cancer; however, no significant improvement in survival rate has been achieved. In the present study, the role of nemo‑like kinase (NLK) in human laryngeal carcinoma Hep‑2 cells was investigated. NLK has been identified as an important regulator of cell growth, patterning and cell death in a variety of organisms. Lentivirus‑mediated‑shRNA was employed to silence endogenous NLK expression. Downregulation of the expression of NLK following lentivirus infection was confirmed using reverse transcription quantitative polymerase chain reaction and western blot analysis. The effects of NLK downregulation on Hep‑2 cell proliferation and cell cycle progression were analyzed using an MTT assay and flow cytometry, respectively. Downregulation of NLK also inhibited tumorigenesis and regulated the expression of cell cycle protein expression levels. Therefore, it was hypothesized that NLK is necessary for cell survival and tumorigenesis in laryngeal cancer cells. Furthermore, the absence of NLK may lead to cancer cell death. Collectively, the results of the present study demonstrated that the lentivirus‑mediated targeted disruption of NLK may be a promising therapeutic method for the treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Jun Tai
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yuansheng Rao
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Jugao Fang
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Zhigang Huang
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Zhenkun Yu
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Xiaohong Chen
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Weiguo Zhou
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Xiao Xiao
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Ting Long
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yang Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Qiaoyin Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Aidong Li
- Department of Center Laboratory, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Xin Ni
- Department of Otolaryngology Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| |
Collapse
|
45
|
Theodoris CV, Li M, White MP, Liu L, He D, Pollard KS, Bruneau BG, Srivastava D. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 2015; 160:1072-86. [PMID: 25768904 DOI: 10.1016/j.cell.2015.02.035] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 02/18/2015] [Indexed: 11/18/2022]
Abstract
The mechanisms by which transcription factor haploinsufficiency alters the epigenetic and transcriptional landscape in human cells to cause disease are unknown. Here, we utilized human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) to show that heterozygous nonsense mutations in NOTCH1 that cause aortic valve calcification disrupt the epigenetic architecture, resulting in derepression of latent pro-osteogenic and -inflammatory gene networks. Hemodynamic shear stress, which protects valves from calcification in vivo, activated anti-osteogenic and anti-inflammatory networks in NOTCH1(+/+), but not NOTCH1(+/-), iPSC-derived ECs. NOTCH1 haploinsufficiency altered H3K27ac at NOTCH1-bound enhancers, dysregulating downstream transcription of more than 1,000 genes involved in osteogenesis, inflammation, and oxidative stress. Computational predictions of the disrupted NOTCH1-dependent gene network revealed regulatory nodes that, when modulated, restored the network toward the NOTCH1(+/+) state. Our results highlight how alterations in transcription factor dosage affect gene networks leading to human disease and reveal nodes for potential therapeutic intervention.
Collapse
Affiliation(s)
- Christina V Theodoris
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Program in Developmental and Stem Cell Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Molong Li
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Mark P White
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Lei Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Daniel He
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Program in Developmental and Stem Cell Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Program in Developmental and Stem Cell Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
46
|
Abstract
Wnt signaling plays an important role in development and disease. In this review we focus on the role of the canonical Wnt signaling pathway in somatic stem cell biology and its critical role in tissue homeostasis. We present current knowledge how Wnt/β-catenin signaling affects tissue stem cell behavior in various organ systems, including the gut, mammary gland, the hematopoietic and nervous system. We discuss evidence that canonical Wnt signaling can both maintain potency and an undifferentiated state as well as cause differentiation in somatic stem cells, depending on the cellular and environmental context. Based on studies by our lab and others, we will attempt to explain the dichotomous behavior of this signaling pathway in determining cell fate decisions and put special emphasis on the interaction of β-catenin with two highly homologous co-activator proteins, CBP and p300, to shed light on the their differential role in the outcome of Wnt/β-catenin signaling. Furthermore, we review current knowledge regarding the aberrant regulation of Wnt/β-catenin signaling in cancer biology, particularly its pivotal role in the context of cancer stem cells. Finally, we discuss data demonstrating that small molecule modulators of the β-catenin/co-activator interaction can be used to shift the balance between undifferentiated proliferation and differentiation, which potentially presents a promising therapeutic approach to stem cell based disease mechanisms.
Collapse
|
47
|
Rostoker R, Abelson S, Bitton-Worms K, Genkin I, Ben-Shmuel S, Dakwar M, Orr ZS, Caspi A, Tzukerman M, LeRoith D. Highly specific role of the insulin receptor in breast cancer progression. Endocr Relat Cancer 2015; 22:145-57. [PMID: 25694511 PMCID: PMC4362669 DOI: 10.1530/erc-14-0490] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Accumulating evidence from clinical trials indicates that specific targeting of the IGF1 receptor (IGF1R) is not efficient as an anti-breast cancer treatment. One possible reason is that the mitogenic signals from the insulin receptor (IR) can be processed independently or as compensation to inhibition of the IGF1R. In this study, we highlight the role of the IR in mediating breast tumor progression in both WT mice and a hyperinsulinemic MKR mouse model by induction of Ir (Insr) or Igf1r knockdown (KD) in the mammary carcinoma Mvt-1 cell line. By using the specific IR antagonist-S961, we demonstrated that Igf1r-KD induces elevated responses by the IR to IGF1. On the other hand, Ir-KD cells generated significantly smaller tumors in the mammary fat pads of both WT and MKR mice, as opposed to control cells, whereas the Igf1r-KD cells did not. The tumorigenic effects of insulin on the Mvt-1 cells were also demonstrated using microarray analysis, which indicates alteration of genes and signaling pathways involved in proliferation, the cell cycle, and apoptosis following insulin stimulation. In addition, the correlation between IR and the potential prognostic marker for aggressive breast cancer, CD24, was examined in the Ir-KD cells. Fluorescence-activated cell sorting (FACS) analysis revealed more than 60% reduction in CD24 expression in the Ir-KD cells when compared with the control cells. Our results also indicate that CD24-expressing cells can restore, at least in part, the tumorigenic capacity of Ir-KD cells. Taken together, our results highlight the mitogenic role of the IR in mammary tumor progression with a direct link to CD24 expression.
Collapse
Affiliation(s)
- Ran Rostoker
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Sagi Abelson
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Keren Bitton-Worms
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Inna Genkin
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Sarit Ben-Shmuel
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Maria Dakwar
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Zila Shen Orr
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Avishay Caspi
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Maty Tzukerman
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Derek LeRoith
- Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA Clinical Research Institute at Rambam (CRIR) and the Faculty of MedicineTechnion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, IsraelThe Laboratory of Molecular MedicineRambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, IsraelDivision of EndocrinologyDiabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
48
|
Watanabe N, Kageyama R, Ohtsuka T. Hbp1 regulates the timing of neuronal differentiation during cortical development by controlling cell cycle progression. Development 2015; 142:2278-90. [DOI: 10.1242/dev.120477] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/26/2015] [Indexed: 11/20/2022]
Abstract
In the developing mammalian brain, neural stem cells (NSCs) initially expand the progenitor pool by symmetric divisions. NSCs then shift from symmetric to asymmetric division and commence neurogenesis. Although the precise mechanisms regulating the developmental timing of this transition have not been fully elucidated, gradual elongation in the length of the cell cycle and coinciding accumulation of determinants that promote neuronal differentiation may function as a biological clock that regulates the onset of asymmetric division and neurogenesis. We conducted gene expression profiling of embryonic NSCs in the cortical regions and found that expression of high mobility group box transcription factor 1 (Hbp1) was upregulated during neurogenic stages. Induced conditional knockout mice of Hbp1 generated by crossing with Nestin-CreERT2 mice exhibited a remarkable dilatation of the telencephalic vesicles with a tangentially expanded ventricular zone and a thinner cortical plate containing reduced numbers of neurons. In these Hbp1-deficient mouse embryos, neural stem/progenitor cells continued to divide with a shorter cell cycle length. And downstream target genes of the Wnt signaling, such as cyclin D1 and c-jun, were upregulated in the germinal zone of the cortical regions. These results indicate that Hbp1 plays a critical role in regulating the timing of cortical neurogenesis by elongating the cell cycle and is essential for normal cortical development.
Collapse
Affiliation(s)
- Naoki Watanabe
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiyuki Ohtsuka
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
49
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
50
|
Pooja T, Karunagaran D. Emodin suppresses Wnt signaling in human colorectal cancer cells SW480 and SW620. Eur J Pharmacol 2014; 742:55-64. [PMID: 25205133 DOI: 10.1016/j.ejphar.2014.08.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/16/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022]
Abstract
Wnt signaling is involved in the regulation of cell proliferation, differentiation and apoptosis. Its aberrant activation is a key event in the pathogenesis and progression of human colorectal cancers. Dietary phytochemicals are gaining importance as chemotherapeutic agents owing to their potential to prevent, delay or reverse oncogenesis. Here we demonstrate that emodin (1,3,8-trihydroxy-6-methylanthraquinone), an anthraquinone present in the roots and bark of several medicinal plants, down regulates Wnt signaling pathway in human colorectal cancer cells (SW480 and SW620) by down regulating TCF/LEF transcriptional activity. Emodin significantly down regulated the expression of key players of Wnt signaling (β-catenin and TCF7L2) and also that of its various downstream targets (cyclin D1, c-Myc, snail, vimentin, MMP-2 and MMP-9). Two novel targets of emodin׳s action were discovered namely Wnt co-activator p300 (down regulated) and repressor HBP1 (up regulated). Morphological changes induced by emodin suggest mesenchymal to epithelial transition accompanied by the increase in E-cadherin expression in human colorectal cancer cells but a differentiation marker (alkaline phosphatase) was activated only in SW620 cells (metastatic origin) and not in SW480 cells (primary tumor-derived). Moreover, our data indicate that reactive oxygen species plays a key role in emodin-mediated down regulation of Wnt signaling as emodin-mediated inhibition of migration and induction of growth arrest were partially rescued by the reactive oxygen species scavenger ascorbic acid. Effects of emodin shown in this study may provide important insights for the use of this anthraquinone as a potential complementary and integrated medicine for the treatment of human colorectal cancer.
Collapse
Affiliation(s)
- Thacker Pooja
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|