1
|
Moon S, Lee Y, Gutierrez‐Marcos J, Jung K. Advancements in hybrid rice production: improvements in male sterility and synthetic apomixis for sustainable agriculture. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2330-2345. [PMID: 40112041 PMCID: PMC12120881 DOI: 10.1111/pbi.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Rice serves as a staple food for approximately half of the world's population, and enhanced yields from hybrid rice play a crucial role in ensuring food security and augmenting incomes. However, the annual purchase and high cost of hybrid seeds hinder widespread hybrid rice adoption. In this review, we discuss hybrid seed production strategies based on molecular mechanisms along with biotechnological techniques employed for production and future prospects. Male-sterile lines are pivotal in hybrid seed production, with ongoing developments markedly advancing this process. Initially, cytoplasmic male-sterile lines facilitated three-line hybrid seed production. Subsequent innovations, including environmentally responsive gene-based and biotechnology-driven male-sterile lines, enabled two-line hybrid rice production. Ongoing research is focusing on implementing a one-line hybrid seed production method using apomixis, driving innovation in hybrid seed production. Overall, advancements in male-sterile lines and synthetic apomixis present promising avenues for improving the efficiency and sustainability of hybrid rice production. These developments highlight the critical need for continued research and concerted efforts to address global food security challenges.
Collapse
Affiliation(s)
- Sunok Moon
- Graduate School of Green‐Bio Science and Crop Biotech InstituteKyung Hee UniversityYonginKorea
| | - Yang‐Seok Lee
- School of Life Sciences, University of WarwickCoventryUK
| | | | - Ki‐Hong Jung
- Graduate School of Green‐Bio Science and Crop Biotech InstituteKyung Hee UniversityYonginKorea
- Research Center for Plant Plasticity, Seoul National UniversitySeoulKorea
| |
Collapse
|
2
|
Gonzalo A, Nayak A, Bomblies K. Improved synapsis dynamics accompany meiotic stability in Arabidopsis arenosa autotetraploids. Proc Natl Acad Sci U S A 2025; 122:e2420115122. [PMID: 40333759 PMCID: PMC12088413 DOI: 10.1073/pnas.2420115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
During meiosis, the correct pairing, synapsis, and recombination of homologous chromosome pairs is critical for fertility of sexual eukaryotes. These processes are challenged in polyploids, which possess additional copies of each chromosome. Polyploidy thus provides a unique context to study how evolution can modify meiotic programs in response to challenges. We previously observed that in newly formed (neo-)polyploids of Arabidopsis arenosa, synapsis defects precede chromosomes associating in aberrant multivalent and univalent configurations. Here, we study synapsis dynamics in genotypes with varying levels of meiotic stability to ask whether efficient synaptic progression is a key component of evolving stable tetraploid meiosis. We develop a method to quantify synapsis dynamics using the progression of foci of the pro-crossover factor HEI10 as a reference. HEI10 initially appears at many small foci before accumulating only at crossover sites. In diploids, this transition begins while significant asynapsis is still present, though it quickly declines as HEI10 accumulates at fewer foci. In neo-tetraploids, suboptimal elongation of synaptic initiation sites and stalled synapsis, perhaps due to defective pairing, occurs before the onset of HEI10 accumulation. In established tetraploids, HEI10 accumulation begins only when synapsis is near complete, suggesting enhanced HEI10/synapsis codynamics (even compared to diploids). Hybrids generated by crossing neo- and established tetraploids exhibit intermediate phenotypes. We find the extent of asynapsis correlates positively with crossover numbers, and the frequency of multivalents and univalents, which can disturb chromosome segregation. Our work supports the hypothesis that improving the efficiency of synapsis is important for evolving polyploid meiotic stability.
Collapse
Affiliation(s)
- Adrián Gonzalo
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich8093, Switzerland
| | - Aditya Nayak
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich8093, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich8093, Switzerland
| |
Collapse
|
3
|
Herbert L, Vernet A, Frouin J, Meunier AC, Di Mattia J, Wang M, Sidhu GK, Mathis L, Nicolas A, Guiderdoni E, Fayos I. dCas9-SPO11-1 locally stimulates meiotic recombination in rice. FRONTIERS IN PLANT SCIENCE 2025; 16:1580225. [PMID: 40376157 PMCID: PMC12078263 DOI: 10.3389/fpls.2025.1580225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 05/18/2025]
Abstract
Introduction Meiotic crossovers shuffle the genetic information transmitted by the gametes. However, the potential to recover all the combinations of the parental alleles remains limited in most organisms, including plants, by the occurrence of only few crossovers per chromosome and a prominent bias in their spatial distribution. Thus, novel methods for stimulating recombination frequencies and/or modifying their location are highly desired to accelerate plant breeding. Methods Here, we investigate the use of a dCas9-SPO11-1 fusion and clusters of 11 gRNAs to alter meiotic recombination in two chromosomal regions of a rice hybrid (KalingaIII/Kitaake). To accurately genotype rare recombinants in regions of few kbp, we improved the digital PCR-based pollen-typing method in parallel. Results Expression of the dCas9-SPO11-1 fusion protein under the ubiquitous ZmUbi1 promoter was obtained in leaves/anthers/meiocytes and found to complement the sterility of the Osspo11-1 mutant line. We observed a 3.27-fold increase over wild-type (p<0.001) of recombinant pollens in a transgenic hybrid line (7a) targeting a chromosome 7 region. In the offspring plant 7a1, a significant 2.05-fold increase (p=0.048) was observed in the central interval (7.2 kb) of the Chr. 7 target region. This stimulation of meiotic recombination is consistent with the expression of the dCas9-SPO11-1 fusion and gRNAs as well as with the ChIP-revealed binding of dCas9-SPO11-1 to the targeted region. In contrast, no stimulation was observed in other transgenic lines deficient in the above pre-requisite features, expressing the dCas9-SPO11-1 fusion but no gRNAs or targeting a Chr.9 region. Discussion These results open new avenues to locally stimulate meiotic recombination in crop genomes and paves the way for a future implementation in plant breeding programs.
Collapse
Affiliation(s)
| | - Aurore Vernet
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Montpellier, France
- Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Université de Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Montpellier, France
| | - Julien Frouin
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Montpellier, France
- Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Université de Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Montpellier, France
| | - Anne Cécile Meunier
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Montpellier, France
- Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Université de Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Montpellier, France
| | - Jeremy Di Mattia
- Ingénierie et Analyse en Génétique Environnementale (IAGE), Montpellier, France
| | - Minghui Wang
- Meiogenix Inc., Center for Life Science Ventures Cornell University, Ithaca, NY, United States
| | - Gaganpreet K. Sidhu
- Meiogenix Inc., Center for Life Science Ventures Cornell University, Ithaca, NY, United States
| | | | - Alain Nicolas
- Meiogenix SA, Paris, France
- IRCAN (Institute for Research on Cancer and Aging), CNRS (Centre national de la recherche scientifique) UMR7284, INSERM (Institut national de la santé et de la recherche médicale) U1081, Université Côte d’Azur, Nice, France
| | - Emmanuel Guiderdoni
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Montpellier, France
- Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Université de Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Montpellier, France
| | | |
Collapse
|
4
|
Cornaro L, Banfi C, Cavalleri A, van Dijk PJ, Radoeva T, Cucinotta M, Colombo L. Apomixis at high resolution: unravelling diplospory in Asteraceae. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1644-1657. [PMID: 39673465 PMCID: PMC11981899 DOI: 10.1093/jxb/erae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Apomictic plants are able to produce clonal seeds. This reproductive system allows the one-step fixation of any valuable trait for subsequent generations and would pave the way for a revolution in the agricultural system. Despite this, the introduction of apomixis in sexually reproducing crops has been hampered due to the difficulty in characterizing its genetic regulation. In this study, we described the high-resolution characterization of apomeiosis in the apomictic model species Erigeron annuus, Chondrilla juncea, and Taraxacum officinale. We showed that apomeiosis differs from meiosis in a few critical steps, including homologous chromosome synapsis and segregation during meiosis I. We then compared megasporogenesis in three T. officinale genetic backgrounds, showing that diplospory is superimposed on the sexual pathway without severely altering the expression of crucial meiotic genes. Our findings will contribute to the identification of pivotal players controlling this intriguing asexual reproductive strategy.
Collapse
Affiliation(s)
- Letizia Cornaro
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| | - Camilla Banfi
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| | - Alex Cavalleri
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| | - Peter J van Dijk
- Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| | - Tatyana Radoeva
- Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| | - Mara Cucinotta
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| | - Lucia Colombo
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| |
Collapse
|
5
|
Singh AK, Chowdary KVSKA, Shen WH. SDG8 and HUB2 depositing euchromatin histone marks play important roles in meiosis and crossing-over regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17241. [PMID: 39916632 DOI: 10.1111/tpj.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/02/2024] [Accepted: 12/19/2024] [Indexed: 05/08/2025]
Abstract
Histone modifications play critical roles in plant growth and development. Crossing-over (CO) during meiosis, which constitutes a fundamental process ensuring sexual transmission of genetic material to the next generation and, meanwhile, generating diversity within species by creating new chromosome/allele combinations, occurs predominantly in euchromatin, which is enriched in active histone marks such as H3K4me3, H3K36me3, and H2Bub1. In plants, it is known that CO hotspots are correlated with H3K4me3 but the role of H3K36me3 and H2Bub1 during meiosis remains elusive so far. Here, we studied the Arabidopsis (Arabidopsis thaliana) sdg8-1 and hub2-2 mutants impeded in depositing H3K36me3 and H2Bub1, respectively. Chromosome spreading using 4',6-diamidino-2-phenylindole (DAPI) staining indicated that male meiotic stages are defective in the sdg8-1 mutant, and the defect increases synergistically in the sdg8-1hub2-2 double mutant. Defects in meiosis, seed formation, and silique length were also observed by RNAi-knockdown of SDG8 using the meiosis-specific gene DMC1 promoter. This corroborates to support a bona fide role of active histone marks during meiosis and plant reproduction. Using the tetrad-based visual reporter lines and immunostaining with antibodies against HEI10 and ZYP1, it was found that synapsis and pairing of homologous chromosomes are abnormal and CO rate increases in sdg8 mutants, pointing to a repressive role of SDG8 in Arabidopsis male meiotic homologous recombination.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - K V S K Arjun Chowdary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| |
Collapse
|
6
|
Sall SO, Alioua A, Staerck S, Graindorge S, Pellicioli M, Schuler J, Galindo C, Raffy Q, Rousseau M, Molinier J. Characterization of radiations-induced genomic structural variations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17180. [PMID: 39616610 PMCID: PMC11712536 DOI: 10.1111/tpj.17180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
DNA, is assaulted by endogenous and exogenous agents that lead to the formation of damage. In order to maintain genome integrity DNA repair pathways must be efficiently activated to prevent mutations and deleterious chromosomal rearrangements. Conversely, genome rearrangement is also necessary to allow genetic diversity and evolution. The antagonist interaction between maintenance of genome integrity and rearrangements determines genome shape and organization. Therefore, it is of great interest to understand how the whole linear genome structure behaves upon formation and repair of DNA damage. For this, we used long reads sequencing technology to identify and to characterize genomic structural variations (SV) of wild-type Arabidopsis thaliana somatic cells exposed either to UV-B, to UV-C or to protons irradiations. We found that genomic regions located in heterochromatin are more prone to form SVs than those located in euchromatin, highlighting that genome stability differs along the chromosome. This holds true in Arabidopsis plants deficient for the expression of master regulators of the DNA damage response (DDR), ATM (Ataxia-telangiectasia-mutated) and ATR (Ataxia-telangiectasia-mutated and Rad3-related), suggesting that independent and alternative surveillance processes exist to maintain integrity in genic regions. Finally, the analysis of the radiations-induced deleted regions allowed determining that exposure to UV-B, UV-C and protons induced the microhomology-mediated end joining mechanism (MMEJ) and that both ATM and ATR repress this repair pathway.
Collapse
Affiliation(s)
- Salimata Ousmane Sall
- Institut de biologie moléculaire des plantes du CNRS12 rue du Général Zimmer67000StrasbourgFrance
| | - Abdelmalek Alioua
- Institut de biologie moléculaire des plantes du CNRS12 rue du Général Zimmer67000StrasbourgFrance
| | - Sébastien Staerck
- Institut de biologie moléculaire des plantes du CNRS12 rue du Général Zimmer67000StrasbourgFrance
| | - Stéfanie Graindorge
- Institut de biologie moléculaire des plantes du CNRS12 rue du Général Zimmer67000StrasbourgFrance
| | - Michel Pellicioli
- Institut pluridisciplinaire Hubert CurienCampus de Cronenbourg23 rue LoessBP 28 67037Strasbourg CedexFrance
| | - Jacky Schuler
- Institut pluridisciplinaire Hubert CurienCampus de Cronenbourg23 rue LoessBP 28 67037Strasbourg CedexFrance
| | - Catherine Galindo
- Institut pluridisciplinaire Hubert CurienCampus de Cronenbourg23 rue LoessBP 28 67037Strasbourg CedexFrance
| | - Quentin Raffy
- Institut pluridisciplinaire Hubert CurienCampus de Cronenbourg23 rue LoessBP 28 67037Strasbourg CedexFrance
| | - Marc Rousseau
- Institut pluridisciplinaire Hubert CurienCampus de Cronenbourg23 rue LoessBP 28 67037Strasbourg CedexFrance
- Present address:
Ecole Nationale Supérieure d'Ingénieurs de CaenLaboratoire de physique corpusculaire6 Boulevard du maréchal Juin14050Caen Cedex 4France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes du CNRS12 rue du Général Zimmer67000StrasbourgFrance
| |
Collapse
|
7
|
Zhao 赵 J嘉, Fu H, Wang Z, Zhang M, Liang Y, Cui X, Pan W, Ren Z, Wu Z, Zhang Y, Gui X, Huo L, Lei X, Wang C, Schnittger A, Pawlowski WP, Liu B. Genetic variation in Arabidopsis thaliana reveals the existence of natural heat resilience factors for meiosis. PLANT PHYSIOLOGY 2024; 197:kiae671. [PMID: 39711182 DOI: 10.1093/plphys/kiae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Heat interferes with multiple meiotic processes, leading to genome instability and sterility in flowering plants, including many crops. Despite its importance for food security, the mechanisms underlying heat tolerance of meiosis are poorly understood. In this study, we analyzed different meiotic processes in the Arabidopsis (Arabidopsis thaliana) accessions Col and Ler, their F1 hybrids, and the F2 offspring under heat stress (37 °C). At 37 °C, Col exhibits significantly reduced formation of double-strand breaks and completely abolished homolog pairing, synapsis, and crossover (CO) formation. Strikingly, Ler and Col/Ler hybrids exhibit normal CO formation and show mildly impacted homolog pairing and synapsis. Interestingly, only 10% to 20% of F2 offspring behave as Ler, revealing that heat tolerance of meiotic recombination in Arabidopsis is genetically controlled by several loci. Moreover, F2 offspring show defects in chromosome morphology and integrity and sister chromatid segregation, the levels of which exceed those in either inbreds or hybrids, thus implying a transgressive effect on heat tolerance of meiosis. Furthermore, correlation and cytogenetic analyses suggest that homolog pairing and synapsis have an impact on heat tolerance of chromosome morphology and stability at postrecombination stages. This study reveals natural heat resilience factors for meiosis in Arabidopsis, which have the great potential to be exploited in breeding programs.
Collapse
Affiliation(s)
- Jiayi 嘉怡 Zhao 赵
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Huiqi Fu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Zhengze Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Yaoqiong Liang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xueying Cui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Wenjing Pan
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yujie Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xin Gui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Li Huo
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg 22609, Germany
| | | | - Bing Liu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
8
|
Zhu L, Dluzewska J, Fernández-Jiménez N, Ranjan R, Pelé A, Dziegielewski W, Szymanska-Lejman M, Hus K, Górna J, Pradillo M, Ziolkowski PA. The kinase ATR controls meiotic crossover distribution at the genome scale in Arabidopsis. THE PLANT CELL 2024; 37:koae292. [PMID: 39471331 DOI: 10.1093/plcell/koae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Meiotic crossover, i.e. the reciprocal exchange of chromosome fragments during meiosis, is a key driver of genetic diversity. Crossover is initiated by the formation of programmed DNA double-strand breaks (DSBs). While the role of ATAXIA-TELANGIECTASIA AND RAD3-RELATED (ATR) kinase in DNA damage signaling is well-known, its impact on crossover formation remains understudied. Here, using measurements of recombination at chromosomal intervals and genome-wide crossover mapping, we showed that ATR inactivation in Arabidopsis (Arabidopsis thaliana) leads to dramatic crossover redistribution, with an increase in crossover frequency in chromosome arms and a decrease in pericentromeres. These global changes in crossover placement were not caused by alterations in DSB numbers, which we demonstrated by analyzing phosphorylated H2A.X foci in zygonema. Using the seed-typing technique, we found that hotspot usage remains mainly unchanged in atr mutants compared with wild-type individuals. Moreover, atr showed no change in the number of crossovers caused by two independent pathways, which implies no effect on crossover pathway choice. Analyses of genetic interaction indicate that while the effects of atr are independent of MMS AND UV SENSITIVE81 (MUS81), ZIPPER1 (ZYP1), FANCONI ANEMIA COMPLEMENTATION GROUP M (FANCM), and D2 (FANCD2), the underlying mechanism may be similar between ATR and FANCD2. This study extends our understanding of ATR's role in meiosis, uncovering functions in regulating crossover distribution.
Collapse
Affiliation(s)
- Longfei Zhu
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rajeev Ranjan
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Alexandre Pelé
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Karolina Hus
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Julia Górna
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| |
Collapse
|
9
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
10
|
Wan Y, Liu X, Wang N, Zeng Z, Jiang Y. Identification and Gene Fine Mapping of the Bisexual Sterility Mutant Meiosis Abnormal Bisexual Sterility 1 in Rice. Curr Issues Mol Biol 2024; 46:12978-12993. [PMID: 39590367 PMCID: PMC11592856 DOI: 10.3390/cimb46110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Exploring the genes regulating rice fertility is of great value for studying the molecular mechanisms of rice reproductive development and production practices. In this study, we identified a sterile mutant from the mutant library induced by ethyl methanesulfonate (EMS), designated as meiosis abnormal bisexual sterility 1 (mabs1). The mabs1 mutant exhibits no phenotypic differences from the wild-type during the vegetative growth phase but shows complete sterility during the reproductive growth phase. Phenotypic observations revealed that both pollen and embryo sac fertility are lost in mabs1. Notably, in mabs1, the development of the anther inner and outer walls, tapetum degeneration, and callose synthesis and degradation all proceed normally, yet meiosis fails to form normal tetrads. Genetic analysis indicated that this mutant trait is controlled by a single recessive nuclear gene. By constructing a genetic segregation population, we successfully mapped the MABS1 gene to a 49 kb region between primer markers Y7 and Y9 on chromosome 1. Resequencing revealed a single-nucleotide substitution in the exon of the LOC_Os01g66170 gene, which resulted in a change from Valine to Isoleucine. Subsequent sequencing of this locus in both wild-type and mabs1 mutants confirmed this mutation. Therefore, we have identified the gene at LOC_Os01g66170 as a candidate for MABS1, a previously unreported novel gene involved in rice meiosis. Through RT-qPCR, we found that the expression levels of multiple meiosis-related genes were significantly changed in the mabs1 mutant. Therefore, we believe that MABS1 is also involved in the process of rice meiosis. This study lays the groundwork for a functional study of MABS1.
Collapse
Affiliation(s)
- Yingchun Wan
- Deyang Branch of Sichuan Academy of Agricultural Sciences, Luzhou Branch of National Rice
Improvement Center, Southwest Key Laboratory of Rice Biology, Rice and Sorghum, Research Institute of Sichuan Academy of Agricultural Sciences, Genetics and Breeding of Ministry of Agriculture,
Deyang 618000, China;
- Transgenic Plants and Safety Control Chongqing Municipal Key Laboratory, Rice Research Institute of Southwest University, Engineering Research Center of Southern Mountain Agriculture Ministry of
Education, Chongqing 400716, China; (X.L.)
| | - Xiaoqing Liu
- Transgenic Plants and Safety Control Chongqing Municipal Key Laboratory, Rice Research Institute of Southwest University, Engineering Research Center of Southern Mountain Agriculture Ministry of
Education, Chongqing 400716, China; (X.L.)
| | - Nan Wang
- Transgenic Plants and Safety Control Chongqing Municipal Key Laboratory, Rice Research Institute of Southwest University, Engineering Research Center of Southern Mountain Agriculture Ministry of
Education, Chongqing 400716, China; (X.L.)
| | - Zhengming Zeng
- Deyang Branch of Sichuan Academy of Agricultural Sciences, Luzhou Branch of National Rice
Improvement Center, Southwest Key Laboratory of Rice Biology, Rice and Sorghum, Research Institute of Sichuan Academy of Agricultural Sciences, Genetics and Breeding of Ministry of Agriculture,
Deyang 618000, China;
| | - Yudong Jiang
- Deyang Branch of Sichuan Academy of Agricultural Sciences, Luzhou Branch of National Rice
Improvement Center, Southwest Key Laboratory of Rice Biology, Rice and Sorghum, Research Institute of Sichuan Academy of Agricultural Sciences, Genetics and Breeding of Ministry of Agriculture,
Deyang 618000, China;
| |
Collapse
|
11
|
Goeckeritz CZ, Zheng X, Harkess A, Dresselhaus T. Widespread application of apomixis in agriculture requires further study of natural apomicts. iScience 2024; 27:110720. [PMID: 39280618 PMCID: PMC11399699 DOI: 10.1016/j.isci.2024.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Apomixis, or asexual reproduction through seeds, is frequent in nature but does not exist in any major crop species, yet the phenomenon has captivated researchers for decades given its potential for clonal seed production and plant breeding. A discussion on whether this field will benefit from the continued study of natural apomicts is warranted given the recent outstanding progress in engineering apomixis. Here, we summarize what is known about its genetic control and the status of applying synthetic apomixis in agriculture. We argue there is still much to be learned from natural apomicts, and learning from them is necessary to improve on current progress and guarantee the effective application of apomixis beyond the few genera it has shown promise in so far. Specifically, we stress the value of studying the repeated evolution of natural apomicts in a phylogenetic and comparative -omics context. Finally, we identify outstanding questions in the field and discuss how technological advancements can be used to help close these knowledge gaps. In particular, genomic resources are lacking for apomicts, and this must be remedied for widespread use of apomixis in agriculture.
Collapse
Affiliation(s)
| | - Xixi Zheng
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
12
|
Cromer L, Tiscareno-Andrade M, Lefranc S, Chambon A, Hurel A, Brogniez M, Guérin J, Le Masson I, Adam G, Charif D, Andrey P, Grelon M. Rapid meiotic prophase chromosome movements in Arabidopsis thaliana are linked to essential reorganization at the nuclear envelope. Nat Commun 2024; 15:5964. [PMID: 39013853 PMCID: PMC11252379 DOI: 10.1038/s41467-024-50169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages. These centromere movements are not affected by altered chromosome organization and recombination but are abolished in the double mutant sun1 sun2. We also document the changes in chromosome dynamics and nucleus organization during the transition from leptotene to zygotene, including telomere attachment to SUN-enriched NE domains, bouquet formation, and nucleolus displacement, all of which were defective in sun1 sun2. These results establish A. thaliana as a model species for studying the functional implications of meiotic RPMs and demonstrate the mechanistic conservation of telomere-led RPMs in plants.
Collapse
Affiliation(s)
- Laurence Cromer
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mariana Tiscareno-Andrade
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sandrine Lefranc
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Chambon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Hurel
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Manon Brogniez
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Julie Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Ivan Le Masson
- Université Paris-Saclay, AgroParisTech, INRAE, UMR Agronomie, 91120, Palaiseau, France
| | - Gabriele Adam
- Université Paris-Saclay, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Delphine Charif
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mathilde Grelon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
| |
Collapse
|
13
|
Olaya I, Burgess SM, Rog O. Formation and resolution of meiotic chromosome entanglements and interlocks. J Cell Sci 2024; 137:jcs262004. [PMID: 38985540 PMCID: PMC11267460 DOI: 10.1242/jcs.262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.
Collapse
Affiliation(s)
- Iván Olaya
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Qu Y, Fernie AR, Liu J, Yan J. Doubled haploid technology and synthetic apomixis: Recent advances and applications in future crop breeding. MOLECULAR PLANT 2024; 17:1005-1018. [PMID: 38877700 DOI: 10.1016/j.molp.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Doubled haploid (DH) technology and synthetic apomixis approaches can considerably shorten breeding cycles and enhance breeding efficiency. Compared with traditional breeding methods, DH technology offers the advantage of rapidly generating inbred lines, while synthetic apomixis can effectively fix hybrid vigor. In this review, we focus on (i) recent advances in identifying and characterizing genes responsible for haploid induction (HI), (ii) the molecular mechanisms of HI, (iii) spontaneous haploid genome doubling, and (iv) crop synthetic apomixis. We also discuss the challenges and potential solutions for future crop breeding programs utilizing DH technology and synthetic apomixis. Finally, we provide our perspectives about how to integrate DH and synthetic apomixis for precision breeding and de novo domestication.
Collapse
Affiliation(s)
- Yanzhi Qu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max- Planck- Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jie Liu
- Yazhouwan National Laboratory, Sanya 572024, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572024, China.
| |
Collapse
|
15
|
Hernández Sánchez-Rebato M, Schubert V, White CI. Meiotic double-strand break repair DNA synthesis tracts in Arabidopsis thaliana. PLoS Genet 2024; 20:e1011197. [PMID: 39012914 PMCID: PMC11280534 DOI: 10.1371/journal.pgen.1011197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
We report here the successful labelling of meiotic prophase I DNA synthesis in the flowering plant, Arabidopsis thaliana. Incorporation of the thymidine analogue, EdU, enables visualisation of the footprints of recombinational repair of programmed meiotic DNA double-strand breaks (DSB), with ~400 discrete, SPO11-dependent, EdU-labelled chromosomal foci clearly visible at pachytene and later stages of meiosis. This number equates well with previous estimations of 200-300 DNA double-strand breaks per meiosis in Arabidopsis, confirming the power of this approach to detect the repair of most or all SPO11-dependent meiotic DSB repair events. The chromosomal distribution of these DNA-synthesis foci accords with that of early recombination markers and MLH1, which marks Class I crossover sites. Approximately 10 inter-homologue cross-overs (CO) have been shown to occur in each Arabidopsis male meiosis and, athough very probably under-estimated, an equivalent number of inter-homologue gene conversions (GC) have been described. Thus, at least 90% of meiotic recombination events, and very probably more, have not previously been accessible for analysis. Visual examination of the patterns of the foci on the synapsed pachytene chromosomes corresponds well with expectations from the different mechanisms of meiotic recombination and notably, no evidence for long Break-Induced Replication DNA synthesis tracts was found. Labelling of meiotic prophase I, SPO11-dependent DNA synthesis holds great promise for further understanding of the molecular mechanisms of meiotic recombination, at the heart of reproduction and evolution of eukaryotes.
Collapse
Affiliation(s)
- Miguel Hernández Sánchez-Rebato
- Institut de Génétique, Reproduction et Développement, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Charles I. White
- Institut de Génétique, Reproduction et Développement, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
16
|
Carballo J, Achilli A, Hernández F, Bocchini M, Pasten MC, Marconi G, Albertini E, Zappacosta D, Echenique V. Differentially methylated genes involved in reproduction and ploidy levels in recent diploidized and tetraploidized Eragrostis curvula genotypes. PLANT REPRODUCTION 2024; 37:133-145. [PMID: 38055074 PMCID: PMC11180019 DOI: 10.1007/s00497-023-00490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
Epigenetics studies changes in gene activity without changes in the DNA sequence. Methylation is an epigenetic mechanism important in many pathways, such as biotic and abiotic stresses, cell division, and reproduction. Eragrostis curvula is a grass species reproducing by apomixis, a clonal reproduction by seeds. This work employed the MCSeEd technique to identify deferentially methylated positions, regions, and genes in the CG, CHG, and CHH contexts in E. curvula genotypes with similar genomic backgrounds but with different reproductive modes and ploidy levels. In this way, we focused the analysis on the cvs. Tanganyika INTA (4x, apomictic), Victoria (2x, sexual), and Bahiense (4x, apomictic). Victoria was obtained from the diploidization of Tanganyika INTA, while Bahiense was produced from the tetraploidization of Victoria. This study showed that polyploid/apomictic genotypes had more differentially methylated positions and regions than the diploid sexual ones. Interestingly, it was possible to observe fewer differentially methylated positions and regions in CG than in the other contexts, meaning CG methylation is conserved across the genotypes regardless of the ploidy level and reproductive mode. In the comparisons between sexual and apomictic genotypes, we identified differentially methylated genes involved in the reproductive pathways, specifically in meiosis, cell division, and fertilization. Another interesting observation was that several differentially methylated genes between the diploid and the original tetraploid genotype recovered their methylation status after tetraploidization, suggesting that methylation is an important mechanism involved in reproduction and ploidy changes.
Collapse
Affiliation(s)
- J Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - A Achilli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - F Hernández
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina
| | - M Bocchini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121, Perugia, Italy
| | - M C Pasten
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - G Marconi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121, Perugia, Italy
| | - E Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121, Perugia, Italy.
| | - D Zappacosta
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina.
| | - V Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
17
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Zou M, Shabala S, Zhao C, Zhou M. Molecular mechanisms and regulation of recombination frequency and distribution in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:86. [PMID: 38512498 PMCID: PMC10957645 DOI: 10.1007/s00122-024-04590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
KEY MESSAGE Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.
Collapse
Affiliation(s)
- Meilin Zou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| |
Collapse
|
19
|
Cseh A, Lenykó-Thegze A, Makai D, Szabados F, Hamow KÁ, Gulyás Z, Kiss T, Karsai I, Moncsek B, Mihók E, Sepsi A. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b Green Revolution genes. THE NEW PHYTOLOGIST 2024; 241:180-196. [PMID: 37691304 DOI: 10.1111/nph.19256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- András Cseh
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Andrea Lenykó-Thegze
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Diána Makai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Fanni Szabados
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Kamirán Áron Hamow
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Zsolt Gulyás
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Tibor Kiss
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Ildikó Karsai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Blanka Moncsek
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Edit Mihók
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Adél Sepsi
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
20
|
Fernández-Jiménez N, Martinez-Garcia M, Varas J, Gil-Dones F, Santos JL, Pradillo M. The scaffold nucleoporins SAR1 and SAR3 are essential for proper meiotic progression in Arabidopsis thaliana. Front Cell Dev Biol 2023; 11:1285695. [PMID: 38111849 PMCID: PMC10725928 DOI: 10.3389/fcell.2023.1285695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Nuclear Pore Complexes (NPCs) are embedded in the nuclear envelope (NE), regulating macromolecule transport and physically interacting with chromatin. The NE undergoes dramatic breakdown and reformation during plant cell division. In addition, this structure has a specific meiotic function, anchoring and positioning telomeres to facilitate the pairing of homologous chromosomes. To elucidate a possible function of the structural components of the NPCs in meiosis, we have characterized several Arabidopsis lines with mutations in genes encoding nucleoporins belonging to the outer ring complex. Plants defective for either SUPPRESSOR OF AUXIN RESISTANCE1 (SAR1, also called NUP160) or SAR3 (NUP96) present condensation abnormalities and SPO11-dependent chromosome fragmentation in a fraction of meiocytes, which is increased in the double mutant sar1 sar3. We also observed these meiotic defects in mutants deficient in the outer ring complex protein HOS1, but not in mutants affected in other components of this complex. Furthermore, our findings may suggest defects in the structure of NPCs in sar1 and a potential link between the meiotic role of this nucleoporin and a component of the RUBylation pathway. These results provide the first insights in plants into the role of nucleoporins in meiotic chromosome behavior.
Collapse
Affiliation(s)
- Nadia Fernández-Jiménez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Marina Martinez-Garcia
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Félix Gil-Dones
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Luis Santos
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Chowdary KVSKA, Saini R, Singh AK. Epigenetic regulation during meiosis and crossover. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1945-1958. [PMID: 38222277 PMCID: PMC10784443 DOI: 10.1007/s12298-023-01390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Meiosis is a distinctive type of cell division that reorganizes genetic material between generations. The initial stages of meiosis consist of several crucial steps which include double strand break, homologous chromosome pairing, break repair and crossover. Crossover frequency varies depending on the position on the chromosome, higher at euchromatin region and rare at heterochromatin, centromeres, telomeres and ribosomal DNA. Crossover positioning is dependent on various factors, especially epigenetic modifications. DNA methylation, histone post-translational modifications, histone variants and non-coding RNAs are most probably playing an important role in positioning of crossovers on a chromosomal level as well as hotspot level. DNA methylation negatively regulates crossover frequency and its effect is visible in centromeres, pericentromeres and heterochromatin regions. Pericentromeric chromatin and heterochromatin mark studies have been a centre of attraction in meiosis. Crossover hotspots are associated with euchromatin regions having specific chromatin modifications such as H3K4me3, H2A.Z. and H3 acetylation. This review will provide the current understanding of the epigenetic role in plants during meiotic recombination, chromosome synapsis, double strand break and hotspots with special attention to euchromatin and heterochromatin marks. Further, the role of epigenetic modifications in regulating meiosis and crossover in other organisms is also discussed.
Collapse
Affiliation(s)
- K. V. S. K. Arjun Chowdary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ramswaroop Saini
- Department of Biotechnology, Joy University, Vadakangulam, Tirunelveli, Tamil Nadu 627116 India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
22
|
Wang Y, Dong Z, Ma Y, Zheng Y, Huang S, Yang X. Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber. PLANT PHYSIOLOGY 2023; 193:1913-1932. [PMID: 37530486 PMCID: PMC10602612 DOI: 10.1093/plphys/kiad432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Meiotic recombination drives genetic diversity and crop genome optimization. In plant breeding, parents with favorable traits are crossed to create elite varieties. Different hybridizations produce diverse types of segment reshuffling between homologous chromosomes. However, little is known about the factors that cause hybrid-specific changes in crossovers (COs). Here, we constructed 2 F2 populations from crosses between a semiwild and 2 domesticated cucumber (Cucumis sativus) accessions and examined CO events. COs mainly occurred around genes and differed unevenly along chromosomes between the 2 hybrids. Fine-scale CO distributions were suppressed in regions of heterozygous structural variations (SVs) and were accelerated by high sequence polymorphism. C. sativus RADiation sensitive 51A (CsRAD51A) binding, histone H3 lysine 4 trimethylation (H3K4me3) modification, chromatin accessibility, and hypomethylation were positively associated with global CO landscapes and in local DNA double-strand break (DSB) hotspots and genes. The frequency and suppression of COs could be roughly predicted based on multiomic information. Differences in CO events between hybrids could be partially traced to distinct genetic and epigenetic features and were significantly associated with specific DSB hotspots and heterozygous SVs. Our findings identify the genomic and epigenetic features that contribute to CO formation and hybrid-specific divergence in cucumber and provide theoretical support for selecting parental combinations and manipulating recombination events at target genomic regions during plant breeding.
Collapse
Affiliation(s)
- Yanling Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhaonian Dong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yalin Ma
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yi Zheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Xu W, Yu Y, Jing J, Wu Z, Zhang X, You C, Ma H, Copenhaver GP, He Y, Wang Y. SCF RMF mediates degradation of the meiosis-specific recombinase DMC1. Nat Commun 2023; 14:5044. [PMID: 37598222 PMCID: PMC10439943 DOI: 10.1038/s41467-023-40799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Meiotic recombination requires the specific RecA homolog DMC1 recombinase to stabilize strand exchange intermediates in most eukaryotes. Normal DMC1 levels are crucial for its function, yet the regulatory mechanisms of DMC1 stability are unknown in any organism. Here, we show that the degradation of Arabidopsis DMC1 by the 26S proteasome depends on F-box proteins RMF1/2-mediated ubiquitination. Furthermore, RMF1/2 interact with the Skp1 ortholog ASK1 to form the ubiquitin ligase complex SCFRMF1/2. Genetic analyses demonstrate that RMF1/2, ASK1 and DMC1 act in the same pathway downstream of SPO11-1 dependent meiotic DNA double strand break formation and that the proper removal of DMC1 is crucial for meiotic crossover formation. Moreover, six DMC1 lysine residues were identified as important for its ubiquitination but not its interaction with RMF1/2. Our results reveal mechanistic insights into how the stability of a key meiotic recombinase that is broadly conserved in eukaryotes is regulated.
Collapse
Affiliation(s)
- Wanyue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juli Jing
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China.
- College of Life Sciences, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
24
|
Tsui V, Lyu R, Novakovic S, Stringer JM, Dunleavy JE, Granger E, Semple T, Leichter A, Martelotto LG, Merriner DJ, Liu R, McNeill L, Zerafa N, Hoffmann ER, O’Bryan MK, Hutt K, Deans AJ, Heierhorst J, McCarthy DJ, Crismani W. Fancm has dual roles in the limiting of meiotic crossovers and germ cell maintenance in mammals. CELL GENOMICS 2023; 3:100349. [PMID: 37601968 PMCID: PMC10435384 DOI: 10.1016/j.xgen.2023.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 08/22/2023]
Abstract
Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.
Collapse
Affiliation(s)
- Vanessa Tsui
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Stevan Novakovic
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jessica M. Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jessica E.M. Dunleavy
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Elissah Granger
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Tim Semple
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Anna Leichter
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruijie Liu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy McNeill
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Eva R. Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moira K. O’Bryan
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Deans
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jörg Heierhorst
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Molecular Genetics Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Davis J. McCarthy
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
25
|
Schindfessel C, De Storme N, Trinh HK, Geelen D. Asynapsis and meiotic restitution in tomato male meiosis induced by heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1210092. [PMID: 37521921 PMCID: PMC10373595 DOI: 10.3389/fpls.2023.1210092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Susceptibility of the reproductive system to temperature fluctuations is a recurrent problem for crop production under a changing climate. The damage is complex as multiple processes in male and female gamete formation are affected, but in general, particularly pollen production is impaired. Here, the impact of short periods of elevated temperature on male meiosis of tomato (Solanum lycopersicon L.) is reported. Meiocytes in early stage flower buds exposed to heat stress (>35°C) exhibit impaired homolog synapsis resulting in partial to complete omission of chiasmata formation. In the absence of chiasmata, univalents segregate randomly developing unbalanced tetrads and polyads resulting in aneuploid spores. However, most heat-stressed meiotic buds primarily contain balanced dyads, indicating a propensity to execute meiotic restitution. With most meiocytes exhibiting a complete loss of chiasma formation and concomitantly showing a mitotic-like division, heat stress triggers first division restitution resulting in clonal spores. These findings corroborate with the plasticity of male meiosis under heat and establish a natural route for the induction of sexual polyploidization in plants and the engineering of clonal seed.
Collapse
Affiliation(s)
- Cédric Schindfessel
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Nico De Storme
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Hoang Khai Trinh
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Danny Geelen
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Li J, Wang C, Liang W, Zhang J, Jiang CK, Liu Y, Ren Z, Ci D, Chang J, Han S, Deng XW, Wang Y, Qian W. Functional importance and divergence of plant apurinic/apyrimidinic endonucleases in somatic and meiotic DNA repair. THE PLANT CELL 2023; 35:2316-2331. [PMID: 36856605 PMCID: PMC10226563 DOI: 10.1093/plcell/koad056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 05/30/2023]
Abstract
Apurinic/apyrimidinic (AP) sites are one of the most abundant DNA lesions and are mainly repaired by AP endonucleases (APEs). While most eukaryotic genomes encode two APEs, plants usually possess three APEs, namely APE1L, APE2, and ARP. To date, the biological relevance and functional divergence of plant APEs are unclear. Here, we show that the three plant APEs have ancient origins, with the APE1L clade being plant-specific. In Arabidopsis thaliana, simultaneously mutating APE1L and APE2, but not ARP alone or in combination with either APE1L or APE2, results in clear developmental defects linked to genotoxic stress. Genetic analyses indicated that the three plant APEs have different substrate preferences in vivo. ARP is mainly responsible for AP site repair, while APE1L and APE2 prefer to repair 3'-blocked single-stranded DNA breaks. We further determined that APEs play an important role in DNA repair and the maintenance of genomic integrity in meiotic cells. The ape1l ape2 double mutant exhibited a greatly enhanced frequency of sporulation 1 (SPO11-1)-dependent and SPO11-1-independent double-stranded DNA breaks. The DNA damage response (DDR) was activated in ape1l ape2 to trigger pollen abortion. Our findings suggest functional divergence of plant APEs and reveal important roles of plant APEs during vegetative and reproductive development.
Collapse
Affiliation(s)
- Jinchao Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Cong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jun Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chen-Kun Jiang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhitong Ren
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Dong Ci
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Jinjie Chang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Shangling Han
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Yingxiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| |
Collapse
|
27
|
Rafiei N, Ronceret A. Crossover interference mechanism: New lessons from plants. Front Cell Dev Biol 2023; 11:1156766. [PMID: 37274744 PMCID: PMC10236007 DOI: 10.3389/fcell.2023.1156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Plants are the source of our understanding of several fundamental biological principles. It is well known that Gregor Mendel discovered the laws of Genetics in peas and that maize was used for the discovery of transposons by Barbara McClintock. Plant models are still useful for the understanding of general key biological concepts. In this article, we will focus on discussing the recent plant studies that have shed new light on the mysterious mechanisms of meiotic crossover (CO) interference, heterochiasmy, obligatory CO, and CO homeostasis. Obligatory CO is necessary for the equilibrated segregation of homologous chromosomes during meiosis. The tight control of the different male and female CO rates (heterochiasmy) enables both the maximization and minimization of genome shuffling. An integrative model can now predict these observed aspects of CO patterning in plants. The mechanism proposed considers the Synaptonemal Complex as a canalizing structure that allows the diffusion of a class I CO limiting factor linearly on synapsed bivalents. The coarsening of this limiting factor along the SC explains the interfering spacing between COs. The model explains the observed coordinated processes between synapsis, CO interference, CO insurance, and CO homeostasis. It also easily explains heterochiasmy just considering the different male and female SC lengths. This mechanism is expected to be conserved in other species.
Collapse
|
28
|
Mahlandt A, Singh DK, Mercier R. Engineering apomixis in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:131. [PMID: 37199785 DOI: 10.1007/s00122-023-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Apomixis is an asexual mode of reproduction through seeds where progeny are clones of the mother plants. Naturally apomictic modes of reproduction are found in hundreds of plant genera distributed across more than 30 plant families, but are absent in major crop plants. Apomixis has the potential to be a breakthrough technology by allowing the propagation through seed of any genotype, including F1 hybrids. Here, we have summarized the recent progress toward synthetic apomixis, where combining targeted modifications of both the meiosis and fertilization processes leads to the production of clonal seeds at high frequencies. Despite some remaining challenges, the technology has approached a level of maturity that allows its consideration for application in the field.
Collapse
Affiliation(s)
- Alexander Mahlandt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Dipesh Kumar Singh
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany.
| |
Collapse
|
29
|
Li H, Berent E, Hadjipanteli S, Galey M, Muhammad-Lahbabi N, Miller DE, Crown KN. Heterozygous inversion breakpoints suppress meiotic crossovers by altering recombination repair outcomes. PLoS Genet 2023; 19:e1010702. [PMID: 37053290 PMCID: PMC10128924 DOI: 10.1371/journal.pgen.1010702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/25/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Heterozygous chromosome inversions suppress meiotic crossover (CO) formation within an inversion, potentially because they lead to gross chromosome rearrangements that produce inviable gametes. Interestingly, COs are also severely reduced in regions nearby but outside of inversion breakpoints even though COs in these regions do not result in rearrangements. Our mechanistic understanding of why COs are suppressed outside of inversion breakpoints is limited by a lack of data on the frequency of noncrossover gene conversions (NCOGCs) in these regions. To address this critical gap, we mapped the location and frequency of rare CO and NCOGC events that occurred outside of the dl-49 chrX inversion in D. melanogaster. We created full-sibling wildtype and inversion stocks and recovered COs and NCOGCs in the syntenic regions of both stocks, allowing us to directly compare rates and distributions of recombination events. We show that COs outside of the proximal inversion breakpoint are distributed in a distance-dependent manner, with strongest suppression near the inversion breakpoint. We find that NCOGCs occur evenly throughout the chromosome and, importantly, are not suppressed near inversion breakpoints. We propose a model in which COs are suppressed by inversion breakpoints in a distance-dependent manner through mechanisms that influence DNA double-strand break repair outcome but not double-strand break formation. We suggest that subtle changes in the synaptonemal complex and chromosome pairing might lead to unstable interhomolog interactions during recombination that permits NCOGC formation but not CO formation.
Collapse
Affiliation(s)
- Haosheng Li
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Erica Berent
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Savannah Hadjipanteli
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Nigel Muhammad-Lahbabi
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
30
|
Jiang Y, N'Diaye A, Koh CS, Quilichini TD, Shunmugam ASK, Kirzinger MW, Konkin D, Bekkaoui Y, Sari E, Pasha A, Esteban E, Provart NJ, Higgins JD, Rozwadowski K, Sharpe AG, Pozniak CJ, Kagale S. The coordinated regulation of early meiotic stages is dominated by non-coding RNAs and stage-specific transcription in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:209-224. [PMID: 36710629 DOI: 10.1111/tpj.16125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.
Collapse
Affiliation(s)
- Yunfei Jiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Amidou N'Diaye
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Chu Shin Koh
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Rd., Saskatoon, SK, S7N 4L8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Arun S K Shunmugam
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Morgan W Kirzinger
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yasmina Bekkaoui
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Ehsan Sari
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Adrian Building, University Road, Leicester, Leicestershire, LE1 7RH, UK
| | - Kevin Rozwadowski
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Pl., Saskatoon, SK, S7N 0X2, Canada
| | - Andrew G Sharpe
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Rd., Saskatoon, SK, S7N 4L8, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
31
|
Zhao J, Gui X, Ren Z, Fu H, Yang C, Wang W, Liu Q, Zhang M, Wang C, Schnittger A, Liu B. ATM-mediated double-strand break repair is required for meiotic genome stability at high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:403-423. [PMID: 36786716 DOI: 10.1111/tpj.16145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
In eukaryotes, meiotic recombination maintains genome stability and creates genetic diversity. The conserved Ataxia-Telangiectasia Mutated (ATM) kinase regulates multiple processes in meiotic homologous recombination, including DNA double-strand break (DSB) formation and repair, synaptonemal complex organization, and crossover formation and distribution. However, its function in plant meiotic recombination under stressful environmental conditions remains poorly understood. In this study, we demonstrate that ATM is required for the maintenance of meiotic genome stability under heat stress in Arabidopsis thaliana. Using cytogenetic approaches we determined that ATM does not mediate reduced DSB formation but does ensure successful DSB repair, and thus meiotic chromosome integrity, under heat stress. Further genetic analysis suggested that ATM mediates DSB repair at high temperature by acting downstream of the MRE11-RAD50-NBS1 (MRN) complex, and acts in a RAD51-independent but chromosome axis-dependent manner. This study extends our understanding on the role of ATM in DSB repair and the protection of genome stability in plants under high temperature stress.
Collapse
Affiliation(s)
- Jiayi Zhao
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Xin Gui
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huiqi Fu
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Wenyi Wang
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Min Zhang
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Bing Liu
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
32
|
Russo AE, Giacopazzi S, Deshong A, Menon M, Ortiz V, Ego KM, Corbett KD, Bhalla N. The conserved AAA ATPase PCH-2 distributes its regulation of meiotic prophase events through multiple meiotic HORMADs in C. elegans. PLoS Genet 2023; 19:e1010708. [PMID: 37058535 PMCID: PMC10132761 DOI: 10.1371/journal.pgen.1010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
During meiotic prophase, the essential events of homolog pairing, synapsis, and recombination are coordinated with meiotic progression to promote fidelity and prevent aneuploidy. The conserved AAA+ ATPase PCH-2 coordinates these events to guarantee crossover assurance and accurate chromosome segregation. How PCH-2 accomplishes this coordination is poorly understood. Here, we provide evidence that PCH-2 decelerates pairing, synapsis and recombination in C. elegans by remodeling meiotic HORMADs. We propose that PCH-2 converts the closed versions of these proteins, which drive these meiotic prophase events, to unbuckled conformations, destabilizing interhomolog interactions and delaying meiotic progression. Further, we find that PCH-2 distributes this regulation among three essential meiotic HORMADs in C. elegans: PCH-2 acts through HTP-3 to regulate pairing and synapsis, HIM-3 to promote crossover assurance, and HTP-1 to control meiotic progression. In addition to identifying a molecular mechanism for how PCH-2 regulates interhomolog interactions, our results provide a possible explanation for the expansion of the meiotic HORMAD family as a conserved evolutionary feature of meiosis. Taken together, our work demonstrates that PCH-2's remodeling of meiotic HORMADs has functional consequences for the rate and fidelity of homolog pairing, synapsis, recombination and meiotic progression, ensuring accurate meiotic chromosome segregation.
Collapse
Affiliation(s)
- Anna E. Russo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Stefani Giacopazzi
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Alison Deshong
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Malaika Menon
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Kaori M. Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, United States of America
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, United States of America
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
33
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
34
|
Xu LY, Wu WT, Bi N, Yan ZJ, Yang F, Yang WJ, Yang JS. A cytological revisit on parthenogenetic Artemia and the deficiency of a meiosis-specific recombinase DMC1 in the possible transition from bisexuality to parthenogenesis. Chromosoma 2023:10.1007/s00412-023-00790-x. [PMID: 36939898 DOI: 10.1007/s00412-023-00790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/21/2023]
Abstract
Although parthenogenesis is widespread in nature and known to have close relationships with bisexuality, the transitional mechanism is poorly understood. Artemia is an ideal model to address this issue because bisexuality and "contagious" obligate parthenogenesis independently exist in its congeneric members. In the present study, we first performed chromosome spreading and immunofluorescence to compare meiotic processes of Artemia adopting two distinct reproductive ways. The results showed that, unlike conventional meiosis in bisexual Artemia, meiosis II in parthenogenic Artemia is entirely absent and anaphase I is followed by a single mitosis-like equational division. Interspecific comparative transcriptomics showed that two central molecules in homologous recombination (HR), Dmc1 and Rad51, exhibited significantly higher expression in bisexual versus parthenogenetic Artemia. qRT-PCR indicated that the expression of both genes peaked at the early oogenesis and gradually decreased afterward. Knocking-down by RNAi of Dmc1 in unfertilized females of bisexual Artemia resulted in a severe deficiency of homologous chromosome pairing and produced univalents at the middle oogenesis stage, which was similar to that of parthenogenic Artemia, while in contrast, silencing Rad51 led to no significant chromosome morphological change. Our results indicated that Dmc1 is vital for HR in bisexual Artemia, and the deficiency of Dmc1 may be correlated with or even possibly one of core factors in the transition from bisexuality to parthenogenesis.
Collapse
Affiliation(s)
- Lian-Ying Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Tao Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning Bi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Jun Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Female meiosis in plants, and differential recombination in the two sexes: a perspective. THE NUCLEUS 2023. [DOI: 10.1007/s13237-023-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
36
|
Steckenborn S, Cuacos M, Ayoub MA, Feng C, Schubert V, Hoffie I, Hensel G, Kumlehn J, Heckmann S. The meiotic topoisomerase VI B subunit (MTOPVIB) is essential for meiotic DNA double-strand break formation in barley (Hordeum vulgare L.). PLANT REPRODUCTION 2023; 36:1-15. [PMID: 35767067 PMCID: PMC9957907 DOI: 10.1007/s00497-022-00444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/31/2022] [Indexed: 06/01/2023]
Abstract
In barley (Hordeum vulgare), MTOPVIB is critical for meiotic DSB and accompanied SC and CO formation while dispensable for meiotic bipolar spindle formation. Homologous recombination during meiosis assures genetic variation in offspring. Programmed meiotic DNA double-strand breaks (DSBs) are repaired as crossover (CO) or non-crossover (NCO) during meiotic recombination. The meiotic topoisomerase VI (TopoVI) B subunit (MTOPVIB) plays an essential role in meiotic DSB formation critical for CO-recombination. More recently MTOPVIB has been also shown to play a role in meiotic bipolar spindle formation in rice and maize. Here, we describe a meiotic DSB-defective mutant in barley (Hordeum vulgare L.). CRISPR-associated 9 (Cas9) endonuclease-generated mtopVIB plants show complete sterility due to the absence of meiotic DSB, synaptonemal complex (SC), and CO formation leading to the occurrence of univalents and their unbalanced segregation into aneuploid gametes. In HvmtopVIB plants, we also frequently found the bi-orientation of sister kinetochores in univalents during metaphase I and the precocious separation of sister chromatids during anaphase I. Moreover, the near absence of polyads after meiosis II, suggests that despite being critical for meiotic DSB formation in barley, MTOPVIB seems not to be strictly required for meiotic bipolar spindle formation.
Collapse
Affiliation(s)
- Stefan Steckenborn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Mohammad A Ayoub
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Chao Feng
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
| |
Collapse
|
37
|
Thangavel G, Hofstatter PG, Mercier R, Marques A. Tracing the evolution of the plant meiotic molecular machinery. PLANT REPRODUCTION 2023; 36:73-95. [PMID: 36646915 PMCID: PMC9957857 DOI: 10.1007/s00497-022-00456-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Meiosis is a highly conserved specialised cell division in sexual life cycles of eukaryotes, forming the base of gene reshuffling, biological diversity and evolution. Understanding meiotic machinery across different plant lineages is inevitable to understand the lineage-specific evolution of meiosis. Functional and cytogenetic studies of meiotic proteins from all plant lineage representatives are nearly impossible. So, we took advantage of the genomics revolution to search for core meiotic proteins in accumulating plant genomes by the highly sensitive homology search approaches, PSI-BLAST, HMMER and CLANS. We could find that most of the meiotic proteins are conserved in most of the lineages. Exceptionally, Arabidopsis thaliana ASY4, PHS1, PRD2, PRD3 orthologs were mostly not detected in some distant algal lineages suggesting their minimal conservation. Remarkably, an ancestral duplication of SPO11 to all eukaryotes could be confirmed. Loss of SPO11-1 in Chlorophyta and Charophyta is likely to have occurred, suggesting that SPO11-1 and SPO11-2 heterodimerisation may be a unique feature in land plants of Viridiplantae. The possible origin of the meiotic proteins described only in plants till now, DFO and HEIP1, could be traced and seems to occur in the ancestor of vascular plants and Streptophyta, respectively. Our comprehensive approach is an attempt to provide insights about meiotic core proteins and thus the conservation of meiotic pathways across plant kingdom. We hope that this will serve the meiotic community a basis for further characterisation of interesting candidates in future.
Collapse
Affiliation(s)
- Gokilavani Thangavel
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | | | - Raphaël Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
38
|
Abstract
KEY MESSAGE Chromatin state, and dynamic loading of pro-crossover protein HEI10 at recombination intermediates shape meiotic chromosome patterning in plants. Meiosis is the basis of sexual reproduction, and its basic progression is conserved across eukaryote kingdoms. A key feature of meiosis is the formation of crossovers which result in the reciprocal exchange of segments of maternal and paternal chromosomes. This exchange generates chromosomes with new combinations of alleles, increasing the efficiency of both natural and artificial selection. Crossovers also form a physical link between homologous chromosomes at metaphase I which is critical for accurate chromosome segregation and fertility. The patterning of crossovers along the length of chromosomes is a highly regulated process, and our current understanding of its regulation forms the focus of this review. At the global scale, crossover patterning in plants is largely governed by the classically observed phenomena of crossover interference, crossover homeostasis and the obligatory crossover which regulate the total number of crossovers and their relative spacing. The molecular actors behind these phenomena have long remained obscure, but recent studies in plants implicate HEI10 and ZYP1 as key players in their coordination. In addition to these broad forces, a wealth of recent studies has highlighted how genomic and epigenomic features shape crossover formation at both chromosomal and local scales, revealing that crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|
39
|
Synthetic apomixis: the beginning of a new era. Curr Opin Biotechnol 2023; 79:102877. [PMID: 36628906 DOI: 10.1016/j.copbio.2022.102877] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Apomixis is a process of asexual reproduction that enables plants to bypass meiosis and fertilization to generate clonal seeds that are identical to the maternal genotype. Apomixis has tremendous potential for breeding plants with desired characteristics, given its ability to fix any elite genotype. However, little is known about the origin and dynamics of natural apomictic plant systems. The introgression of apomixis-related genes from natural apomicts has achieved limited success. Therefore, synthetic apomixis, engineered to include apomeiosis, autonomous embryo formation, and autonomous endosperm development, has been proposed as a promising platform to effectuate apomixis in any crop. In this study, we have summarized recent advances in the understanding of synthetic apomixis and discussed the limitations of current synthetic apomixis systems and ways to overcome them.
Collapse
|
40
|
Aboobucker SI, Zhou L, Lübberstedt T. Haploid male fertility is restored by parallel spindle genes in Arabidopsis thaliana. NATURE PLANTS 2023; 9:214-218. [PMID: 36624258 DOI: 10.1038/s41477-022-01332-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Doubled haploid technology can accelerate plant breeding and its two main steps are haploid induction and subsequent doubled haploid production from fertile haploid plants. Although haploid female fertility is present to some extent in plants, the lack of haploid male fertility is a bottleneck. Herein, we demonstrate that mutations in the parallel spindle genes are sufficient to restore haploid male fertility in Arabidopsis with no impact on haploid female fertility.
Collapse
Affiliation(s)
| | - Liming Zhou
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
41
|
Hyde L, Osman K, Winfield M, Sanchez‐Moran E, Higgins JD, Henderson IR, Sparks C, Franklin FCH, Edwards KJ. Identification, characterization, and rescue of CRISPR/Cas9 generated wheat SPO11-1 mutants. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:405-418. [PMID: 36373224 PMCID: PMC9884015 DOI: 10.1111/pbi.13961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 05/29/2023]
Abstract
Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination 'cold' regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.
Collapse
Affiliation(s)
- Lucy Hyde
- School of Biological Sciences, Life SciencesUniversity of BristolBristolUK
| | - Kim Osman
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Mark Winfield
- School of Biological Sciences, Life SciencesUniversity of BristolBristolUK
| | | | - James D. Higgins
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
| | | | | | | | - Keith J. Edwards
- School of Biological Sciences, Life SciencesUniversity of BristolBristolUK
| |
Collapse
|
42
|
A genetic mechanism to restore haploid male fertility in Arabidopsis - an alternative to chemical methods. NATURE PLANTS 2023; 9:205-206. [PMID: 36646833 DOI: 10.1038/s41477-022-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
43
|
Munro C, Cadis H, Pagnotta S, Houliston E, Huynh JR. Conserved meiotic mechanisms in the cnidarian Clytia hemisphaerica revealed by Spo11 knockout. SCIENCE ADVANCES 2023; 9:eadd2873. [PMID: 36706182 PMCID: PMC9882977 DOI: 10.1126/sciadv.add2873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
During meiosis, DNA recombination allows the shuffling of genetic information between the maternal and paternal chromosomes. Recombination is initiated by double-strand breaks (DSBs) catalyzed by the conserved enzyme Spo11. How this crucial event is connected to other meiotic processes is unexpectedly variable depending on the species. Here, we knocked down Spo11 by CRISPR in the jellyfish Clytia hemisphaerica. Germ cells in Clytia Spo11 mutants fail to assemble synaptonemal complexes and chiasmata, and in consequence, homologous chromosome pairs in females remain unassociated during oocyte growth and meiotic divisions, creating aneuploid but fertilizable eggs that develop into viable larvae. Clytia thus shares an ancient eukaryotic dependence of synapsis and chromosome segregation on Spo11-generated DSBs. Phylogenetically, Clytia belongs to Cnidaria, the sister clade to Bilateria where classical animal model species are found, so these results provide fresh evolutionary perspectives on meiosis regulation.
Collapse
Affiliation(s)
- Catriona Munro
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer 06230, France
| | - Hugo Cadis
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer 06230, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée, Université Nice Côte d’Azur, Parc Valrose, Nice 06108, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer 06230, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
44
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
45
|
Abstract
Introducing asexual reproduction through seeds - apomixis - into crop species could revolutionize agriculture by allowing F1 hybrids with enhanced yield and stability to be clonally propagated. Engineering synthetic apomixis has proven feasible in inbred rice through the inactivation of three genes (MiMe), which results in the conversion of meiosis into mitosis in a line ectopically expressing the BABYBOOM1 (BBM1) parthenogenetic trigger in egg cells. However, only 10-30% of the seeds are clonal. Here, we show that synthetic apomixis can be achieved in an F1 hybrid of rice by inducing MiMe mutations and egg cell expression of BBM1 in a single step. We generate hybrid plants that produce more than 95% of clonal seeds across multiple generations. Clonal apomictic plants maintain the phenotype of the F1 hybrid along successive generations. Our results demonstrate that there is no barrier to almost fully penetrant synthetic apomixis in an important crop species, rendering it compatible with use in agriculture.
Collapse
|
46
|
Li M, Li S, He Y, Wang Y, Zhang T, Li P, He Y. ZmSPO11-2 is critical for meiotic recombination in maize. Chromosome Res 2022; 30:415-428. [PMID: 35674907 DOI: 10.1007/s10577-022-09694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
Most plant species have three or more SPO11/TOPOVIA homologs and two TOPOVIB homologs, which associate to trigger meiotic double-strand break (DSB) formation and subsequent meiotic recombination. In Zea mays L. (maize), ZmSPO11-1 and ZmMTOPVIB have been reported to be indispensable for the initiation of meiotic recombination, yet the function of ZmSPO11-2 remains unclear. In this study, we characterized meiotic functions of ZmSPO11-2 during male meiosis in maize. Two independent Zmspo11-1 knock-out mutants exhibited normal vegetative growth but both male and female sterility. The formation of meiotic DSBs of DNA molecules was fully abolished in the Zmspo11-2 plants, leading to the defective homologous chromosome paring, synapsis, recombination, and segregation. However, the bipolar spindle assembly was not noticeably affected in Zmspo11-2 meiocytes. Overall, our results demonstrate that as its partner ZmSPO11-1 and ZmMTOPVIB, ZmSPO11-2 plays essential roles in DSB formation and homologous recombination in maize meiosis.
Collapse
Affiliation(s)
- Menghan Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China.,College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China
| | - Shuyue Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Yan He
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ting Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ping Li
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China.
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
47
|
Yu H, Zhang L, He X, Zhang T, Wang C, Lu J, He X, Chen K, Gu W, Cheng S, Hu Y, Yao B, Jian A, Yu X, Zheng H, You S, Wang Q, Lei D, Jiang L, Zhao Z, Wan J. OsPHS1 is required for both male and female gamete development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111480. [PMID: 36183810 DOI: 10.1016/j.plantsci.2022.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Meiosis plays an essential role in the production of male and female gametes. Extensive studies have elucidated that homologous chromosome association and pairing are essential for crossing-over and recombination of chromosomal segments. However, the molecular mechanism of chromosome recognition and pairing remains elusive. Here, we identified a rice male-female sterility mutant plant. Cytological observations showed that the development of both pollen and embryo sacs of the mutant were abnormal due to defects in homologous chromosome recognition and pairing during prophase I. Map-based cloning revealed that Os06g0473000 encoding a poor homologous synapsis 1 (PHS1) protein is the candidate target gene, which was confirmed by knockout using CRISPR/Cas9 technology. Sequence analysis revealed a single base mutation (G > A) involving the junction of the fourth exon and intron of OsPHS1, which is predicted to alter splicing, resulting in an Osphs1 mutant. Expression pattern analysis indicated that OsPHS1 expression levels were mainly expressed in panicles at the beginning of meiosis. Subcellular localization analysis demonstrated that the OsPHS1 protein is situated in the nucleus and cytoplasm. Taken together, our results suggest an important role for OsPHS1 in homologous chromosome pairing in both male and female gametogenesis in rice.
Collapse
Affiliation(s)
- Hao Yu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojuan He
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Taohui Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaolong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Lu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodong He
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Keyi Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihang Gu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqi Cheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Hu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Bowen Yao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Anqi Jian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowen Yu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shimin You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Dekun Lei
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
48
|
Nath S, Welch LA, Flanagan MK, White MA. Meiotic pairing and double-strand break formation along the heteromorphic threespine stickleback sex chromosomes. Chromosome Res 2022; 30:429-442. [PMID: 35635635 DOI: 10.1007/s10577-022-09699-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023]
Abstract
Double-strand break repair during meiosis is normally achieved using the homologous chromosome as a repair template. Heteromorphic sex chromosomes share little sequence homology, presenting unique challenges to the repair of double-strand breaks. Our understanding of how heteromorphic sex chromosomes behave during meiosis has been focused on ancient sex chromosomes, where the X and Y differ markedly in overall structure and gene content. It remains unclear how more recently evolved sex chromosomes that share considerably more sequence homology with one another pair and form double-strand breaks. One possibility is barriers to pairing evolve rapidly. Alternatively, recently evolved sex chromosomes may exhibit pairing and double-strand break repair that more closely resembles that of their autosomal ancestors. Here, we use the recently evolved X and Y chromosomes of the threespine stickleback fish (Gasterosteus aculeatus) to study patterns of pairing and double-stranded break formation using molecular cytogenetics. We found that the sex chromosomes of threespine stickleback fish did not pair exclusively in the pseudoautosomal region. Instead, the chromosomes fully paired in a non-homologous fashion. To achieve this, the X chromosome underwent synaptic adjustment during pachytene to match the axis length of the Y chromosome. Double-strand break formation and repair rate also matched that of the autosomes. Our results highlight that recently evolved sex chromosomes exhibit meiotic behavior that is reminiscent of autosomes and argues for further work to identify the homologous templates that are used to repair double-strand breaks on the X and Y chromosomes.
Collapse
Affiliation(s)
- Shivangi Nath
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Lucille A Welch
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Mary K Flanagan
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Michael A White
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA.
| |
Collapse
|
49
|
DNA polymerase epsilon interacts with SUVH2/9 to repress the expression of genes associated with meiotic DSB hotspot in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2208441119. [PMID: 36191225 PMCID: PMC9564942 DOI: 10.1073/pnas.2208441119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is initiated by the SPORULATION 11 (SPO11)-triggered formation of double-strand breaks (DSBs) that usually occur in open chromatin with active transcriptional features in many eukaryotes. However, gene transcription at DSB sites appears to be detrimental for repair, but the regulatory mechanisms governing transcription at meiotic DSB sites are largely undefined in plants. Here, we demonstrate that the largest DNA polymerase epsilon subunit POL2A interacts with SU(VAR)3 to 9 homologs SUVH2 and SUVH9. N-SIM (structured illumination microscopy) observation shows that the colocalization of SUVH2 with the meiotic DSB marker γ-H2AX is dependent on POL2A. RNA-seq of male meiocytes demonstrates that POL2A and SUVH2 jointly repress the expression of 865 genes, which have several known characteristics associated with meiotic DSB sites. Bisulfite-seq and small RNA-seq of male meiocytes support the idea that the silencing of these genes by POL2A and SUVH2/9 is likely independent of CHH methylation or 24-nt siRNA accumulation. Moreover, pol2a suvh2 suvh9 triple mutants have more severe defects in meiotic recombination and fertility compared with either pol2a or suvh2 suvh9. Our results not only identify a epigenetic regulatory mechanism for gene silencing in male meiocytes but also reveal roles for DNA polymerase and SUVH2/9 beyond their classic functions in mitosis.
Collapse
|
50
|
Li Y, Huang Y, Sun H, Wang T, Ru W, Pan L, Zhao X, Dong Z, Huang W, Jin W. Heat shock protein 101 contributes to the thermotolerance of male meiosis in maize. THE PLANT CELL 2022; 34:3702-3717. [PMID: 35758611 PMCID: PMC9516056 DOI: 10.1093/plcell/koac184] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/17/2022] [Indexed: 05/12/2023]
Abstract
High temperatures interfere with meiotic recombination and the subsequent progression of meiosis in plants, but few genes involved in meiotic thermotolerance have been characterized. Here, we characterize a maize (Zea mays) classic dominant male-sterile mutant Ms42, which has defects in pairing and synapsis of homologous chromosomes and DNA double-strand break (DSB) repair. Ms42 encodes a member of the heat shock protein family, HSP101, which accumulates in pollen mother cells. Analysis of the dominant Ms42 mutant and hsp101 null mutants reveals that HSP101 functions in RADIATION SENSITIVE 51 loading, DSB repair, and subsequent meiosis. Consistent with these functions, overexpression of Hsp101 in anthers results in robust microspores with enhanced heat tolerance. These results demonstrate that HSP101 mediates thermotolerance during microsporogenesis, shedding light on the genetic basis underlying the adaptation of male meiocytes to high temperatures.
Collapse
Affiliation(s)
- Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Huayue Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianyi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Ru
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaoming Zhao
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Huang
- Author for correspondence: (W.H.), (W.J.)
| | - Weiwei Jin
- Author for correspondence: (W.H.), (W.J.)
| |
Collapse
|