1
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
2
|
Shcholok T, Eftekharpour E. Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models. BIOLOGY 2024; 13:180. [PMID: 38534450 DOI: 10.3390/biology13030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain.
Collapse
Affiliation(s)
- Tetiana Shcholok
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
3
|
Kratzke M, Scaria G, Porter S, Kren B, Klein MA. Inhibition of Mitochondrial Antioxidant Defense and CDK4/6 in Mesothelioma. Molecules 2023; 28:molecules28114380. [PMID: 37298855 DOI: 10.3390/molecules28114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced mesothelioma is considered an incurable disease and new treatment strategies are needed. Previous studies have demonstrated that mitochondrial antioxidant defense proteins and the cell cycle may contribute to mesothelioma growth, and that the inhibition of these pathways may be effective against this cancer. We demonstrated that the antioxidant defense inhibitor auranofin and the cyclin-dependent kinase 4/6 inhibitor palbociclib could decrease mesothelioma cell proliferation alone or in combination. In addition, we determined the effects of these compounds on colony growth, cell cycle progression, and the expression of key antioxidant defense and cell cycle proteins. Auranofin and palbociclib were effective in decreasing cell growth and inhibiting the above-described activity across all assays. Further study of this drug combination will elucidate the contribution of these pathways to mesothelioma activity and may reveal a new treatment strategy.
Collapse
Affiliation(s)
- Marian Kratzke
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - George Scaria
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55417, USA
| | - Stephen Porter
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Betsy Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55417, USA
| | - Mark A Klein
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55417, USA
| |
Collapse
|
4
|
Jia J, Xu G, Zhu D, Liu H, Zeng X, Li L. Advances in the Functions of Thioredoxin System in Central Nervous System Diseases. Antioxid Redox Signal 2023; 38:425-441. [PMID: 35761787 DOI: 10.1089/ars.2022.0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: The thioredoxin system comprises thioredoxin (Trx), thioredoxin reductase (TrxR), and nicotinamide adenine dinucleotide phosphate, besides an endogenous Trx inhibitor, the thioredoxin-interacting protein (TXNIP). The Trx system plays critical roles in maintaining the redox homeostasis in the central nervous system (CNS), in which oxidative stress damage is prone to occurrence due to its high-energy demand. Recent Advances: Increasing studies have demonstrated that the expression or activity of Trx/TrxR is usually decreased and that TXNIP expression is increased in patients with CNS diseases, including neurodegenerative diseases, cerebral ischemia, traumatic brain injury, and depression, as well as in their cellular and animal models. The compromise of Trx/TrxR enhances the susceptibility of neurons to related pathological state. Increased TXNIP not only enhances the inhibition of Trx activity, but also activates the NOD-like receptor protein 3 inflammasome, resulting in neuroinflammation in the brain. Critical Issues: In this review, we highlight the sources of oxidative stress in the CNS. The expression and function of the Trx system are summarized in different CNS diseases. This review also mentions that some inducers of Trx show neuroprotection in CNS diseases. Future Directions: Accumulating evidence has demonstrated the important roles of the Trx system in CNS diseases, suggesting that the Trx system may be a promising therapeutic target for CNS diseases. Further study should aim to develop the most effective inducers of Trx and specific inhibitors of TXNIP and to apply them in the clinical trials for the treatment of CNS diseases. Antioxid. Redox Signal. 38, 425-441.
Collapse
Affiliation(s)
- Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China.,Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Guangtao Xu
- Department of Forensic and Pathology, Jiaxing University Medical College, Jiaxing, China
| | - Dongsheng Zhu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongjun Liu
- Department of Neurology, Affiliated Xin'an International Hospital, Jiaxing University, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China.,Department of Biochemistry, Jiaxing University Medical College, Jiaxing, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China.,Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
5
|
Jacobs LJHC, Riemer J. Maintenance of small molecule redox homeostasis in mitochondria. FEBS Lett 2023; 597:205-223. [PMID: 36030088 DOI: 10.1002/1873-3468.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/26/2023]
Abstract
Compartmentalisation of eukaryotic cells enables fundamental otherwise often incompatible cellular processes. Establishment and maintenance of distinct compartments in the cell relies not only on proteins, lipids and metabolites but also on small redox molecules. In particular, small redox molecules such as glutathione, NAD(P)H and hydrogen peroxide (H2 O2 ) cooperate with protein partners in dedicated machineries to establish specific subcellular redox compartments with conditions that enable oxidative protein folding and redox signalling. Dysregulated redox homeostasis has been directly linked with a number of diseases including cancer, neurological disorders, cardiovascular diseases, obesity, metabolic diseases and ageing. In this review, we will summarise mechanisms regulating establishment and maintenance of redox homeostasis in the mitochondrial subcompartments of mammalian cells.
Collapse
Affiliation(s)
- Lianne J H C Jacobs
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
6
|
Wang A, Kang L, Yang G, Li Z. Transcriptomic and iTRAQ-Based Quantitative Proteomic Analyses of inap CMS in Brassica napus L. PLANTS 2022; 11:plants11192460. [PMID: 36235325 PMCID: PMC9571993 DOI: 10.3390/plants11192460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/02/2022]
Abstract
Brassica napus inap cytoplasmic male sterility (CMS) is a novel sterile line with potential application in rapeseed hybrid breeding. Sterile cytoplasm was obtained from Isatis indigotica through somatic fusion and then recurrent backcrossing with B. napus. Previous studies have shown that inap CMS abortion occurred before the stamen primordia (stage 4–5), but the genetic mechanism of sterility needs to be studied. RNA-seq analyses were performed on the floral buds at two stages (0–5 and 6–8), before and after the formation of stamen primordium. As a result, a total of 1769 and 594 differentially expressed genes (DEGs) were detected in the CMS line compared to its maintainer line at the two stages, respectively. In accordance with the CMS phenotype, the up- and downstream regulators of the stamen identity genes AP3 and PI were up- and downregulated in the CMS line, respectively. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ) analysis showed that a total of 760 differentially abundant proteins (DAPs) were identified in flower buds at stages 0–8, and most of the proteins related to the anther development, oxidative phosphorylation, and programmed cell death (PCD) were downregulated in inap CMS. In combined transcriptomic and proteomic analysis, a total of 32 DEGs/DAPs were identified, of which 7 common DEGs/DAPs had the same expression trend at stage 0–8 of flower development. The downregulation of genes related to the energy deficiency, hormone signal transduction, and the maintenance of mitochondrial metabolic homeostasis at stage 0–5 might disturb the normal differentiation of stamen primordium, resulting in carpelloid stamen of inap CMS. The study will help provide insights into the molecular mechanism of this new male sterility.
Collapse
Affiliation(s)
- Aifan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Kang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (L.K.); (Z.L.)
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (L.K.); (Z.L.)
| |
Collapse
|
7
|
Quintana M, Rodriguez-Rius A, Vellé A, Vives S, Sanz Miguel PJ, Triola G. Dinuclear silver and gold bisNHC complexes as drug candidates for cancer therapy. Bioorg Med Chem 2022; 67:116814. [PMID: 35598528 DOI: 10.1016/j.bmc.2022.116814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
We report four dinuclear silver(I) and gold(I) complexes containing two different bidentate N-heterocyclic carbene ligands (bisNHC). One of these complexes 4, shows strong and selective anticancer activity against the human ovarian cancer cell line A2780. Mechanistically, 4 enhances the oxidative stress by stimulating reactive oxygen species production and inhibiting the scavenging activity of thioredoxin reductase. Our findings provide evidence that tuning ligand and electronic properties of metal-NHC complexes can modulate their reactivity and selectivity and it may result in potential novel anticancer drugs.
Collapse
Affiliation(s)
- Mireia Quintana
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Alba Rodriguez-Rius
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Alba Vellé
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Sonia Vives
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Pablo J Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
| | - Gemma Triola
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
8
|
Yook JS, Kajimura S. Is thermogenesis really needed for brown adipose tissue-mediated metabolic benefit? J Clin Invest 2022; 132:e159296. [PMID: 35499086 PMCID: PMC9057615 DOI: 10.1172/jci159296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Brown adipose tissue (BAT) dissipates energy in the form of heat and functions as a metabolic sink for lipids, glucose, and branched-chain amino acids. Enhanced BAT thermogenesis is thought to tightly couple with beneficial energy metabolism. However, in this issue of the JCI, Huang et al. report a mouse model in which BAT thermogenesis was impaired, yet systemic glucose and lipid homeostasis were improved, on a high-fat diet compared with what occurred in control mice. The authors showed that BAT-specific deletion of mitochondrial thioredoxin-2 (TRX2) impaired adaptive thermogenesis through elevated mitochondrial reactive oxygen species (ROS) and cytosolic efflux of mitochondrial DNA. On the other hand, TRX2 loss enhanced lipid uptake in the BAT and protected mice from obesity, hypertriglyceridemia, and insulin resistance. This study provides a unique model in which BAT does not require thermogenesis per se to function as a lipid sink that leads to metabolic benefits in vivo.
Collapse
|
9
|
Schistosoma mansoni Adult Worm Protective and Diagnostic Proteins in n-Butanol Extracts Revealed by Proteomic Analysis. Pathogens 2021; 11:pathogens11010022. [PMID: 35055970 PMCID: PMC8777762 DOI: 10.3390/pathogens11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
The S. mansoni adult worm n-butanol extract (Sm-AWBE) has been previously shown to contain specific S. mansoni antigens that have been used for immunodiagnosis of schistosomiasis in solid phase alkaline phosphatase immunoassay (APIA) and western blot (WB) analyses. Sm-AWBE was also used in immunoprotection studies against a fatal live-cercariae challenge in experimental mouse vaccination (~43% protection). The Sm-AWBE fraction was prepared by mixing adult worm membranous suspensions with aqueous-saturated n-butanol, centrifuging and recovering n-butanol-resistant proteins in the aqueous phase. Here we report a preliminary identification of Sm-AWBE protein components as revealed from a qualitative proteomic study after processing Sm-AWBE by 1D-gel electrophoresis, in-gel and in-solution tryptic digestions, and mass spectrometry analyses. We identified 33 proteins in Sm-AWBE, all previously known S. mansoni proteins and antigens; among them, immunomodulatory proteins and proteins mostly involved in host–parasite interactions. About 81.8% of the identified Sm-AWBE proteins are antigenic. STRING analysis showed a set of Sm-AWBE proteins configuring a small network of interactive proteins and a group of proteins without interactions. Functional groups of proteins included muscle contraction, antioxidant, GPI-anchored phosphoesterases, regulatory 14-3-3, various enzymes and stress proteins. The results widen the possibilities to design novel antigen combinations for better diagnostic and immunoprotective strategies for schistosomiasis control.
Collapse
|
10
|
Krasovec G, Karaiskou A, Quéinnec É, Chambon JP. Comparative transcriptomic analysis reveals gene regulation mediated by caspase activity in a chordate organism. BMC Mol Cell Biol 2021; 22:51. [PMID: 34615460 PMCID: PMC8495957 DOI: 10.1186/s12860-021-00388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apoptosis is a caspase regulated cell death present in all metazoans defined by a conserved set of morphological features. A well-described function of apoptosis is the removal of excessive cells during development and homeostasis. Recent studies have shown an unexpected signalling property of apoptotic cells, affecting cell fate and/or behaviour of neighbouring cells. In contrast to the apoptotic function of cell elimination, this new role of apoptosis is not well understood but seems caspase-dependent. To deepen our understanding of apoptotic functions, it is necessary to work on a biological model with a predictable apoptosis pattern affecting cell fate and/or behaviour. The tunicate Ciona intestinalis has a bi-phasic life cycle with swimming larvae which undergo metamorphosis after settlement. Previously, we have shown that the tail regression step during metamorphosis, characterized by a predictable polarized apoptotic wave, ensures elimination of most tail cells and controls primordial germ cells survival and migration. RESULTS We performed differential transcriptomic analysis between control metamorphosing larvae and larvae treated with the pan-caspase inhibitor Z-VAD-fmk in order to explore the transcriptional control of apoptotic cells on neighbouring cells that survive and migrate. When caspase activity was impaired, genes known to be involved in metamorphosis were downregulated along with other implicated in cell migration and survival molecular pathways. CONCLUSION We propose these results as a confirmation that apoptotic cells can control surrounding cells fate and as a reference database to explore novel apoptotic functions in animals, including those related to migration and differentiation.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France. .,Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Anthi Karaiskou
- INSERM UMRS_938, Centre de recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Éric Quéinnec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France
| | - Jean-Philippe Chambon
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000, Montpellier, France
| |
Collapse
|
11
|
Kundumani-Sridharan V, Subramani J, Owens C, Das KC. Nrg1β Released in Remote Ischemic Preconditioning Improves Myocardial Perfusion and Decreases Ischemia/Reperfusion Injury via ErbB2-Mediated Rescue of Endothelial Nitric Oxide Synthase and Abrogation of Trx2 Autophagy. Arterioscler Thromb Vasc Biol 2021; 41:2293-2314. [PMID: 34039018 PMCID: PMC8288485 DOI: 10.1161/atvbaha.121.315957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022]
Abstract
OBJECTIVE: Remote ischemic preconditioning (RIPC) is an intervention process where the application of multiple cycles of short ischemia/reperfusion (I/R) in a remote vascular bed provides protection against I/R injury. However, the identity of the specific RIPC factor and the mechanism by which RIPC alleviates I/R injury remains unclear. Here, we have investigated the identity and the mechanism by which the RIPC factor provides protection. APPROACH AND RESULTS: Using fluorescent in situ hybridization and immunofluorescence, we found that RIPC induces Nrg1β expression in the endothelial cells, which is secreted into the serum. Whereas, RIPC protected against myocardial apoptosis and infarction, treatment with neutralizing-Nrg1 antibodies abolished the protective effect of RIPC. Further, increased superoxide anion generated in RIPC is required for Nrg1 expression. Improved myocardial perfusion and nitric oxide production were achieved by RIPC as determined by contrast echocardiography and electron spin resonance. However, treatment with neutralizing-Nrg1β antibody abrogated these effects, suggesting Nrg1β is a RIPC factor. ErbB2 (Erb-B2 receptor tyrosine kinase 2) is not expressed in the adult murine cardiomyocytes, but expressed in the endothelial cells of heart which is degraded in I/R. RIPC-induced Nrg1β interacts with endothelial ErbB2 and thereby prevents its degradation. Mitochondrial Trx2 (thioredoxin) is degraded in I/R, but rescue of ErbB2 by Nrg1β prevents Trx-2 degradation that decreased myocardial apoptosis in I/R. CONCLUSIONS: Nrg1β is a RIPC factor that interacts with endothelial ErbB2 and prevents its degradation, which in turn prevents Trx2 degradation due to phosphorylation and inactivation of ATG5 (autophagy-related 5) by ErbB2. Nrg1β also restored loss of eNOS (endothelial nitric oxide synthase) function in I/R via its interaction with Src.
Collapse
Affiliation(s)
| | - Jaganathan Subramani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Cade Owens
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Kumuda C. Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| |
Collapse
|
12
|
Chelko SP, Keceli G, Carpi A, Doti N, Agrimi J, Asimaki A, Beti CB, Miyamoto M, Amat-Codina N, Bedja D, Wei AC, Murray B, Tichnell C, Kwon C, Calkins H, James CA, O'Rourke B, Halushka MK, Melloni E, Saffitz JE, Judge DP, Ruvo M, Kitsis RN, Andersen P, Di Lisa F, Paolocci N. Exercise triggers CAPN1-mediated AIF truncation, inducing myocyte cell death in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:13/581/eabf0891. [PMID: 33597260 DOI: 10.1126/scitranslmed.abf0891] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Myocyte death occurs in many inherited and acquired cardiomyopathies, including arrhythmogenic cardiomyopathy (ACM), a genetic heart disease plagued by the prevalence of sudden cardiac death. Individuals with ACM and harboring pathogenic desmosomal variants, such as desmoglein-2 (DSG2), often show myocyte necrosis with progression to exercise-associated heart failure. Here, we showed that homozygous Dsg2 mutant mice (Dsg2 mut/mut), a model of ACM, die prematurely during swimming and display myocardial dysfunction and necrosis. We detected calcium (Ca2+) overload in Dsg2 mut/mut hearts, which induced calpain-1 (CAPN1) activation, association of CAPN1 with mitochondria, and CAPN1-induced cleavage of mitochondrial-bound apoptosis-inducing factor (AIF). Cleaved AIF translocated to the myocyte nucleus triggering large-scale DNA fragmentation and cell death, an effect potentiated by mitochondrial-driven AIF oxidation. Posttranslational oxidation of AIF cysteine residues was due, in part, to a depleted mitochondrial thioredoxin-2 redox system. Hearts from exercised Dsg2 mut/mut mice were depleted of calpastatin (CAST), an endogenous CAPN1 inhibitor, and overexpressing CAST in myocytes protected against Ca2+ overload-induced necrosis. When cardiomyocytes differentiated from Dsg2 mut/mut embryonic stem cells (ES-CMs) were challenged with β-adrenergic stimulation, CAPN1 inhibition attenuated CAPN1-induced AIF truncation. In addition, pretreatment of Dsg2 mut/mut ES-CMs with an AIF-mimetic peptide, mirroring the cyclophilin-A (PPIA) binding site of AIF, blocked PPIA-mediated AIF-nuclear translocation, and reduced both apoptosis and necrosis. Thus, preventing CAPN1-induced AIF-truncation or barring binding of AIF to the nuclear chaperone, PPIA, may avert myocyte death and, ultimately, disease progression to heart failure in ACM and likely other forms of cardiomyopathies.
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA. .,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Carlos Bueno Beti
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nuria Amat-Codina
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - An-Chi Wei
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Edon Melloni
- Department of Medicine, University of Genova, Genova 16126, Italy
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 20115, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Medical University of South Carolina, Charleston, SC 29425, USA
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. .,Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| |
Collapse
|
13
|
Cao X, He W, Pang Y, Cao Y, Qin A. Redox-dependent and independent effects of thioredoxin interacting protein. Biol Chem 2021; 401:1215-1231. [PMID: 32845855 DOI: 10.1515/hsz-2020-0181] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Thioredoxin interacting protein (TXNIP) is an important physiological inhibitor of the thioredoxin (TXN) redox system in cells. Regulation of TXNIP expression and/or activity not only plays an important role in redox regulation but also exerts redox-independent physiological effects that exhibit direct pathophysiological consequences including elevated inflammatory response, aberrant glucose metabolism, cellular senescence and apoptosis, cellular immunity, and tumorigenesis. This review provides a brief overview of the current knowledge concerning the redox-dependent and independent roles of TXNIP and its relevance to various disease states. The implications for the therapeutic targeting of TXNIP will also be discussed.
Collapse
Affiliation(s)
- Xiankun Cao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Wenxin He
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Yichuan Pang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011,People's Republic of China
| | - Yu Cao
- Department of Orthopaedics and Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - An Qin
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| |
Collapse
|
14
|
Nolin SL, Napoli E, Flores A, Hagerman RJ, Giulivi C. Deficits in Prenatal Serine Biosynthesis Underlie the Mitochondrial Dysfunction Associated with the Autism-Linked FMR1 Gene. Int J Mol Sci 2021; 22:ijms22115886. [PMID: 34070950 PMCID: PMC8198117 DOI: 10.3390/ijms22115886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Fifty-five to two hundred CGG repeats (called a premutation, or PM) in the 5′-UTR of the FMR1 gene are generally unstable, often expanding to a full mutation (>200) in one generation through maternal inheritance, leading to fragile X syndrome, a condition associated with autism and other intellectual disabilities. To uncover the early mechanisms of pathogenesis, we performed metabolomics and proteomics on amniotic fluids from PM carriers, pregnant with male fetuses, who had undergone amniocentesis for fragile X prenatal diagnosis. The prenatal metabolic footprint identified mitochondrial deficits, which were further validated by using internal and external cohorts. Deficits in the anaplerosis of the Krebs cycle were noted at the level of serine biosynthesis, which was confirmed by rescuing the mitochondrial dysfunction in the carriers’ umbilical cord fibroblasts using alpha-ketoglutarate precursors. Maternal administration of serine and its precursors has the potential to decrease the risk of developing energy shortages associated with mitochondrial dysfunction and linked comorbidities.
Collapse
Affiliation(s)
- Sarah L. Nolin
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA;
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (E.N.); (A.F.)
| | - Amanda Flores
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (E.N.); (A.F.)
- Medical Sciences Campus, Department of Biochemistry, University of Puerto Rico, San Juan PR00936, Puerto Rico
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA 95817, USA;
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (E.N.); (A.F.)
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Correspondence: ; Tel.: +1-530-754-8603
| |
Collapse
|
15
|
Baral H, Sekiguchi A, Uchiyama A, Nisaa Amalia S, Yamazaki S, Inoue Y, Yokoyama Y, Ogino S, Torii R, Hosoi M, Akai R, Iwawaki T, Ishikawa O, Motegi SI. Inhibition of skin fibrosis in systemic sclerosis by botulinum toxin B via the suppression of oxidative stress. J Dermatol 2021; 48:1052-1061. [PMID: 33840125 DOI: 10.1111/1346-8138.15888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress has been reported to play an important role in the pathogenesis of skin fibrosis in systemic sclerosis (SSc). We previously identified that botulinum toxin (BTX) injection suppresses pressure ulcer formation in a cutaneous ischemia-reperfusion injury mouse model by regulation of oxidative stress. However, the therapeutic possibility of BTX administration for preventing skin fibrosis in SSc is unclear. The objective of this study was to investigate the effect of BTX-B on skin fibrosis in a murine model of SSc and determine the underlying mechanism. We found that BTX-B injection significantly reduced dermal thickness and inflammatory cell infiltration in bleomycin-induced skin fibrosis lesion in mice. We also identified that the oxidative stress signal detected through bioluminescence in OKD48 mice after bleomycin injection in the skin was significantly decreased by BTX-B. Additionally, mRNA levels of oxidative stress associated factors (NOX2, HO-1, Trx2) were significantly decreased by BTX-B. Apoptotic cells in the lesional skin of bleomycin-treated mice were significantly reduced by BTX-B. Oxidant-induced intracellular accumulation of reactive oxygen species in SSc fibroblasts was also inhibited by BTX-B. In conclusion, BTX-B might improve bleomycin-induced skin fibrosis via the suppression of oxidative stress and inflammatory cells in the skin. BTX-B injection may have a therapeutic effect on skin fibrosis in SSc.
Collapse
Affiliation(s)
- Hritu Baral
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Syahla Nisaa Amalia
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuta Inoue
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
16
|
Ehrenfeld V, Fulda S. Thioredoxin inhibitor PX-12 induces mitochondria-mediated apoptosis in acute lymphoblastic leukemia cells. Biol Chem 2021; 401:273-283. [PMID: 31352431 DOI: 10.1515/hsz-2019-0160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/30/2019] [Indexed: 01/05/2023]
Abstract
Imbalances in redox homeostasis have been described to be involved in the development, progression and relapse of leukemia. As the thioredoxin (Trx) system, one of the major cellular antioxidant networks, has been implicated in acute lymphoblastic leukemia (ALL), we investigated the therapeutic potential of Trx inhibition in ALL. Here, we show that the Trx inhibitor PX-12 reduced cell viability and induced cell death in a dose- and time-dependent manner in different ALL cell lines. This antileukemic activity was accompanied by an increase in reactive oxygen species (ROS) levels and enhanced PRDX3 dimerization. Pre-treatment with the thiol-containing ROS scavenger N-acetylcysteine (NAC), but not with non-thiol-containing scavengers α-tocopherol (α-Toc) or Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP), significantly rescued PX-12-induced cell death. Furthermore, PX-12 triggered activation of BAK. Importantly, knockdown of BAK reduced PX-12-stimulated ROS production and cell death. Similarly, silencing of NOXA provided significant protection from PX-12-mediated cell death. The relevance of mitochondria-mediated, caspase-dependent apoptosis was further supported by data showing that PX-12 triggered cleavage of caspase-3 and that addition of the broad-range caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (zVAD.fmk) potently blocked cell death upon PX-12 treatment. This study provides novel insights into the mechanisms of PX-12-induced cell death in ALL and further highlights the therapeutic potential of redox-active compounds in ALL.
Collapse
Affiliation(s)
- Vanessa Ehrenfeld
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Komturstr. 3a, D-60528 Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Komturstr. 3a, D-60528 Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.,German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Yoo YH, Kim DW, Chen BH, Sim H, Kim B, Lee JC, Ahn JH, Park Y, Cho JH, Kang IJ, Won MH, Lee TK. Comparison of age-dependent alterations in thioredoxin 2 and thioredoxin reductase 2 expressions in hippocampi between mice and rats. Lab Anim Res 2021; 37:11. [PMID: 33676586 PMCID: PMC7937215 DOI: 10.1186/s42826-021-00088-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Aging is one of major causes triggering neurophysiological changes in many brain substructures, including the hippocampus, which has a major role in learning and memory. Thioredoxin (Trx) is a class of small redox proteins. Among the Trx family, Trx2 plays an important role in the regulation of mitochondrial membrane potential and is controlled by TrxR2. Hitherto, age-dependent alterations in Trx2 and TrxR2 in aged hippocampi have been poorly investigated. Therefore, the aim of this study was to examine changes in Trx2 and TrxR2 in mouse and rat hippocampi by age and to compare their differences between mice and rats. Results Trx2 and TrxR2 levels using Western blots in mice were the highest at young age and gradually reduced with time, showing that no significant differences in the levels were found between the two subfields. In rats, however, their expression levels were the lowest at young age and gradually increased with time. Nevertheless, there were no differences in cellular distribution and morphology in their hippocampi when it was observed by cresyl violet staining. In addition, both Trx2 and TrxR2 immunoreactivities in the CA1-3 fields were mainly shown in pyramidal cells (principal cells), showing that their immunoreactivities were altered like changes in their protein levels. Conclusions Our current findings suggest that Trx2 and TrxR2 expressions in the brain may be different according to brain regions, age and species. Therefore, further studies are needed to examine the reasons of the differences of Trx2 and TrxR2 expressions in the hippocampus between mice and rats.
Collapse
Affiliation(s)
- Yeon Ho Yoo
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University Hospital, Kangwon National University, 24289, Chuncheon, Gangwon, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, 25457, Gangneung, Gangwon, Republic of Korea
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, P.R. China
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea.,Department of Physical Therapy, College of Health Science, Youngsan University, 50510, Yangsan, Gyeongnam, Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University Hospital, Kangwon National University, 24289, Chuncheon, Gangwon, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University Hospital, Kangwon National University, 24289, Chuncheon, Gangwon, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, 24252, Chuncheon, Gangwon, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea.
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, 24252, Chuncheon, Gangwon, Republic of Korea.
| |
Collapse
|
18
|
He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI, Min W. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. J Exp Med 2021; 218:e20201416. [PMID: 33315085 PMCID: PMC7927432 DOI: 10.1084/jem.20201416] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance and type 2 diabetes mellitus (T2DM). However, the mechanisms underlying these alterations remain unknown. By analyzing the transcriptome landscape in human adipocytes based on available RNA-seq datasets from lean, obese, and T2DM patients, we reveal elevated mitochondrial reactive oxygen species (ROS) pathway and NF-κB signaling with altered fatty acid metabolism in T2DM adipocytes. Mice with adipose-specific deletion of mitochondrial redox Trx2 develop hyperglycemia, hepatic insulin resistance, and hepatic steatosis. Trx2-deficient WAT exhibited excessive mitophagy, increased inflammation, and lipolysis. Mechanistically, mitophagy was induced through increasing ROS generation and NF-κB-dependent accumulation of autophagy receptor p62/SQSTM1, which recruits damaged mitochondria with polyubiquitin chains. Importantly, administration of ROS scavenger or NF-κB inhibitor ameliorates glucose and lipid metabolic disorders and T2DM progression in mice. Taken together, this study reveals a previously unrecognized mechanism linking mitophagy-mediated adipose inflammation to T2DM with hepatic insulin resistance.
Collapse
Affiliation(s)
- Feng He
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Yanrui Huang
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Zhi Song
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | - Haifeng Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Rachel J. Perry
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Gerald I. Shulman
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Wang Min
- Department of Pathology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
19
|
Syeda T, Cannon JR. Environmental exposures and the etiopathogenesis of Alzheimer's disease: The potential role of BACE1 as a critical neurotoxic target. J Biochem Mol Toxicol 2021; 35:e22694. [PMID: 33393683 DOI: 10.1002/jbt.22694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a major public health crisis due to devastating cognitive symptoms, a lack of curative treatments, and increasing prevalence. Most cases are sporadic (>95% of cases) after the age of 65 years, implicating an important role of environmental factors in disease pathogenesis. Environmental neurotoxicants have been implicated in neurodegenerative disorders including Parkinson's Disease and AD. Animal models of AD and in vitro studies have shed light on potential neuropathological mechanisms, yet the biochemical and molecular underpinnings of AD-relevant environmental neurotoxicity remain poorly understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potentially critical pathogenic target of environmentally induced neurotoxicity. BACE1 clearly has a critical role in AD pathophysiology: It is required for amyloid beta production and expression and activity of BACE1 are increased in the AD brain. Though the literature on BACE1 in response to environmental insults is limited, current studies, along with extensive AD neurobiology literature suggest that BACE1 deserves attention as an important neurotoxic target. Here, we critically review research on environmental neurotoxicants such as metals, pesticides, herbicides, fungicides, polyfluoroalkyl substances, heterocyclic aromatic amines, advanced glycation end products, and acrolein that modulate BACE1 and potential mechanisms of action. Though more research is needed to clearly understand whether BACE1 is a critical mediator of AD-relevant neurotoxicity, available reports provide convincing evidence that BACE1 is altered by environmental risk factors associated with AD pathology, implying that BACE1 inhibition and its use as a biomarker should be considered in AD management and research.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
20
|
Deshmukh S, Saini S. Phenotypic Heterogeneity in Tumor Progression, and Its Possible Role in the Onset of Cancer. Front Genet 2020; 11:604528. [PMID: 33329751 PMCID: PMC7734151 DOI: 10.3389/fgene.2020.604528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Heterogeneity among isogenic cells/individuals has been known for at least 150 years. Even Mendel, working on pea plants, realized that not all tall plants were identical. However, Mendel was more interested in the discontinuous variation between genetically distinct individuals. The concept of environment dictating distinct phenotypes among isogenic individuals has since been shown to impact the evolution of populations in numerous examples at different scales of life. In this review, we discuss how phenotypic heterogeneity and its evolutionary implications exist at all levels of life, from viruses to mammals. In particular, we discuss how a particular disease condition (cancer) is impacted by heterogeneity among isogenic cells, and propose a potential role that phenotypic heterogeneity might play toward the onset of the disease.
Collapse
Affiliation(s)
- Saniya Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
21
|
Seco-Cervera M, González-Cabo P, Pallardó FV, Romá-Mateo C, García-Giménez JL. Thioredoxin and Glutaredoxin Systems as Potential Targets for the Development of New Treatments in Friedreich's Ataxia. Antioxidants (Basel) 2020; 9:antiox9121257. [PMID: 33321938 PMCID: PMC7763308 DOI: 10.3390/antiox9121257] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The thioredoxin family consists of a small group of redox proteins present in all organisms and composed of thioredoxins (TRXs), glutaredoxins (GLRXs) and peroxiredoxins (PRDXs) which are found in the extracellular fluid, the cytoplasm, the mitochondria and in the nucleus with functions that include antioxidation, signaling and transcriptional control, among others. The importance of thioredoxin family proteins in neurodegenerative diseases is gaining relevance because some of these proteins have demonstrated an important role in the central nervous system by mediating neuroprotection against oxidative stress, contributing to mitochondrial function and regulating gene expression. Specifically, in the context of Friedreich’s ataxia (FRDA), thioredoxin family proteins may have a special role in the regulation of Nrf2 expression and function, in Fe-S cluster metabolism, controlling the expression of genes located at the iron-response element (IRE) and probably regulating ferroptosis. Therefore, comprehension of the mechanisms that closely link thioredoxin family proteins with cellular processes affected in FRDA will serve as a cornerstone to design improved therapeutic strategies.
Collapse
Affiliation(s)
- Marta Seco-Cervera
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Pilar González-Cabo
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Carlos Romá-Mateo
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (J.L.G.-G.); Tel.: +34-963-864-646 (C.R.-M. & J.L.G.-G.)
| | - José Luis García-Giménez
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (J.L.G.-G.); Tel.: +34-963-864-646 (C.R.-M. & J.L.G.-G.)
| |
Collapse
|
22
|
Kim MJ, Han C, White K, Park HJ, Ding D, Boyd K, Rothenberger C, Bose U, Carmichael P, Linser PJ, Tanokura M, Salvi R, Someya S. Txn2 haplodeficiency does not affect cochlear antioxidant defenses or accelerate the progression of cochlear cell loss or hearing loss across the lifespan. Exp Gerontol 2020; 141:111078. [PMID: 32866605 DOI: 10.1016/j.exger.2020.111078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Thioredoxin 2 (TXN2) is a small redox protein found in nearly all organisms. As a mitochondrial member of the thioredoxin antioxidant defense system, TXN2 interacts with peroxiredoxin 3 (PRDX3) to remove hydrogen peroxide. Accordingly, TXN2 is thought to play an important role in maintaining the appropriate mitochondrial redox environment and protecting the mitochondrial components against oxidative stress. In the current study, we investigated the effects of Txn2 haplodeficiency on cochlear antioxidant defenses, auditory function, and cochlear cell loss across the lifespan in wild-type (WT) and Txn2 heterozygous knockout (Txn2+/-) mice backcrossed onto CBA/CaJ mice, a well-established model of age-related hearing loss. Txn2+/- mice displayed a 58% decrease in TXN2 protein levels in the mitochondria of the inner ears compared to WT mice. However, Txn2 haplodeficiency did not affect the thioredoxin or glutathione antioxidant defense in both the mitochondria and cytosol of the inner ears of young mice. There were no differences in the levels of mitochondrial biogenesis markers, mitochondrial DNA content, or oxidative DNA and protein damage markers in the inner ears between young WT and Txn2+/- mice. In a mouse inner ear cell line, knockdown of Txn2 did not affect cell viability under hydrogen peroxide treatment. Consistent with the tissue and cell line results, there were no differences in hair cell loss or spiral ganglion neuron density between WT and Txn2+/- mice at 3-5 or 23-25 months of age. Furthermore, Txn2 haplodeficiency did not affect auditory brainstem response threshold, wave I latency, or wave I amplitude at 3-5, 15-16, or 23-25 months of age. Therefore, Txn2 haplodeficiency does not affect cochlear antioxidant defenses, accelerate degeneration of cochlear cells, or affect auditory function in mice across the lifespan.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Kevin Boyd
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | | | - Upal Bose
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Peter Carmichael
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Paul J Linser
- Whitney Laboratory, University of Florida, St Augustine, FL, USA
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Hsu YJ, Lin CW, Cho SL, Yang WS, Yang CM, Yang CH. Protective Effect of Fenofibrate on Oxidative Stress-Induced Apoptosis in Retinal-Choroidal Vascular Endothelial Cells: Implication for Diabetic Retinopathy Treatment. Antioxidants (Basel) 2020; 9:antiox9080712. [PMID: 32764528 PMCID: PMC7464418 DOI: 10.3390/antiox9080712] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of diabetes and one of the leading causes of blindness in developed countries. Two large clinical studies showed that fenofibrate, a peroxisome proliferator-activated receptor type α (PPAR-α) agonist, reduces DR progression. We evaluated the protective effects of fenofibrate on retinal/choroidal vascular endothelial cells under oxidative stress and investigated the underlying mechanisms using RF/6A cells as the model system and paraquat (PQ) to induce oxidative stress. Pretreatment with fenofibrate suppressed reactive oxygen species (ROS) production, decreased cellular apoptosis, diminished the changes in the mitochondrial membrane potential, increased the mRNA levels of peroxiredoxin (Prx), thioredoxins (Trxs), B-cell lymphoma 2 (Bcl-2), and Bcl-xl, and reduced the level of B-cell lymphoma 2-associated X protein (Bax) in PQ-stimulated RF/6A cells. Western blot analysis revealed that fenofibrate repressed apoptosis through cytosolic and mitochondrial apoptosis signal-regulated kinase-1 (Ask)-Trx-related signaling pathways, including c-Jun amino-terminal kinase (JNK) phosphorylation, cytochrome c release, caspase 3 activation, and poly (ADP-ribose) polymerase-1 (PARP-1) cleavage. These protective effects of fenofibrate on RF/6A cells may be attributable to its anti-oxidative ability. Our research suggests that fenofibrate could serve as an effective adjunct therapy for ocular oxidative stress-related disorders, such as DR.
Collapse
Affiliation(s)
- Ying-Jung Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100, Taiwan; (Y.-J.H.); (C.-W.L.); (W.-S.Y.)
| | - Chao-Wen Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100, Taiwan; (Y.-J.H.); (C.-W.L.); (W.-S.Y.)
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Sheng-Li Cho
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100, Taiwan; (Y.-J.H.); (C.-W.L.); (W.-S.Y.)
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
- Correspondence: ; Tel.: +886-2-23123456 (ext. 63193)
| |
Collapse
|
24
|
García-Heredia JM, Carnero A. Role of Mitochondria in Cancer Stem Cell Resistance. Cells 2020; 9:E1693. [PMID: 32679735 PMCID: PMC7407626 DOI: 10.3390/cells9071693] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) are associated with the mechanisms of chemoresistance to different cytotoxic drugs or radiotherapy, as well as with tumor relapse and a poor prognosis. Various studies have shown that mitochondria play a central role in these processes because of the ability of this organelle to modify cell metabolism, allowing survival and avoiding apoptosis clearance of cancer cells. Thus, the whole mitochondrial cycle, from its biogenesis to its death, either by mitophagy or by apoptosis, can be targeted by different drugs to reduce mitochondrial fitness, allowing for a restored or increased sensitivity to chemotherapeutic drugs. Once mitochondrial misbalance is induced by a specific drug in any of the processes of mitochondrial metabolism, two elements are commonly boosted: an increment in reactive nitrogen/oxygen species and, subsequently, activation of the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avda. de la Reina Mercedes 6, 41012 Seville, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
25
|
Branco V, Pimentel J, Brito MA, Carvalho C. Thioredoxin, Glutathione and Related Molecules in Tumors of the Nervous System. Curr Med Chem 2020; 27:1878-1900. [PMID: 30706774 DOI: 10.2174/0929867326666190201113004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 09/14/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Central Nervous System (CNS) tumors have a poor survival prognosis due to their invasive and heterogeneous nature, in addition to the resistance to multiple treatments. OBJECTIVE In this paper, the main aspects of brain tumor biology and pathogenesis are reviewed both for primary tumors of the brain, (i.e., gliomas) and for metastasis from other malignant tumors, namely lung cancer, breast cancer and malignant melanoma which account for a high percentage of overall malignant brain tumors. We review the role of antioxidant systems, namely the thioredoxin and glutathione systems, in the genesis and/or progression of brain tumors. METHODS Although overexpression of Thioredoxin Reductase (TrxR) and Thioredoxin (Trx) is often linked to increased malignancy rate of brain tumors, and higher expression of Glutathione (GSH) and Glutathione S-Transferases (GST) are associated to resistance to therapy, several knowledge gaps still exist regarding for example, the role of Peroxiredoxins (Prx), and Glutaredoxins (Grx). CONCLUSION Due to their central role in redox homeostasis and ROS scavenging, redox systems are potential targets for new antitumorals and examples of innovative therapeutics aiming at improving success rates in brain tumor treatment are discussed.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurology, Hospital de Santa Maria (CHLN), Av. Prof. Egas Moniz, 1649-036 Lisboa, Portugal.,Faculty of Medicine, Lisbon University, Av. Prof. Egas Moniz, 1649-036 Lisboa, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
26
|
Kiffer F, Alexander T, Anderson J, Groves T, McElroy T, Wang J, Sridharan V, Bauer M, Boerma M, Allen A. Late Effects of 1H + 16O on Short-Term and Object Memory, Hippocampal Dendritic Morphology and Mutagenesis. Front Behav Neurosci 2020; 14:96. [PMID: 32670032 PMCID: PMC7332779 DOI: 10.3389/fnbeh.2020.00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
The space extending beyond Earth’s magnetosphere is subject to a complex field of high-energy charged nuclei, which are capable of traversing spacecraft shielding and human tissues, inducing dense ionization events. The central nervous system is a major area of concern for astronauts who will be exposed to the deep-space radiation environment on a mission to Mars, as charged-particle radiation has been shown to elicit changes to the dendritic arbor within the hippocampus of rodents, and related cognitive-behavioral deficits. We exposed 6-month-old male mice to whole-body 1H (0.5 Gy; 150 MeV/n; 18–19 cGy/minute) and an hour later to 16O (0.1Gy; 600 MeV/n; 18–33 Gy/min) at NASA’s Space Radiation Laboratory as a galactic cosmic ray-relevant model. Animals were housed with bedding which provides cognitive enrichment. Mice were tested for cognitive behavior 9 months after exposure to elucidate late radiation effects. Radiation induced significant deficits in novel object recognition and short-term spatial memory (Y-maze). Additionally, we observed opposing morphological differences between the mature granular and pyramidal neurons throughout the hippocampus, with increased dendritic length in the dorsal dentate gyrus and reduced length and complexity in the CA1 subregion of the hippocampus. Dendritic spine analyses revealed a severe reduction in mushroom spine density throughout the hippocampus of irradiated animals. Finally, we detected no general effect of radiation on single-nucleotide polymorphisms in immediate early genes, and genes involved in inflammation but found a higher variant allele frequency in the antioxidants thioredoxin reductase 2 and 3 loci.
Collapse
Affiliation(s)
- Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tyler Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Julie Anderson
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antiño Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
27
|
Ghareeb H, Metanis N. The Thioredoxin System: A Promising Target for Cancer Drug Development. Chemistry 2020; 26:10175-10184. [PMID: 32097513 DOI: 10.1002/chem.201905792] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/20/2022]
Abstract
The thioredoxin system is highly conserved system found in all living cells and comprises NADPH, thioredoxin, and thioredoxin reductase. This system plays a critical role in preserving a reduced intracellular environment, and its involvement in regulating a wide range of cellular functions makes it especially vital to cellular homeostasis. Its critical role is not limited to healthy cells, it is also involved in cancer development, and is overexpressed in many cancers. This makes the thioredoxin system a promising target for cancer drug development. As such, over the last decade, many inhibitors have been developed that target the thioredoxin system, most of which are small molecules targeting the thioredoxin reductase C-terminal redox center. A few inhibitors of thioredoxin have also been developed. We believe that more efforts should be invested in developing protein/peptide-based inhibitors against both thioredoxin reductase and/or thioredoxin.
Collapse
Affiliation(s)
- Hiba Ghareeb
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
28
|
Yadav A, Verma S, Keshri GK, Gupta A. Role of 904 nm superpulsed laser-mediated photobiomodulation on nitroxidative stress and redox homeostasis in burn wound healing. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:208-218. [PMID: 32027411 DOI: 10.1111/phpp.12538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Burn wound healing is delayed due to several critical factors such as sustained inflammation, vascular disorder, neuropathy, enhanced proteolysis, infection, and oxidative stress. Burn wounds have limited oxygen supply owing to compromised blood circulation. Hypoxic burn milieu leads to free radicals overproduction incurring oxidative injury, which impedes repair process causing damage to cell membranes, proteins, lipids, and DNA. Photobiomodulation (PBM) with 904 nm superpulsed laser had shown potent healing efficacy via attenuating inflammation while enhancing proliferation, angiogenesis, collagen accumulation, and bioenergetic activation in burn wounds. METHODS This study investigated the effects of 904 nm superpulsed laser at 0.4 mW/cm2 average power density, 0.2 J/cm2 total energy density, 100 Hz frequency, and 200 ns pulse width for 10 min daily for seven days postburn injury on nitroxidative stress, endogenous antioxidants status, and redox homeostasis. RESULTS Photobiomodulation treatment significantly decreased reactive oxygen species, nitric oxide, and lipid peroxidation levels as compared to non-irradiated control. Further, protective action of PBM against protein oxidative damage was evidenced by reduced protein carbonylation and advanced oxidation protein product levels along with significantly enhanced endogenous antioxidants levels of SOD, catalase, GPx, GST, reduced glutathione, and thiol (T-SH, Np-SH, P-SH). Biochemical changes aid in reduction of oxidative stress and maintenance of redox homeostasis, which further well corroborated by significantly up-regulated protein expression of Nrf 2, hemeoxygenase (HO-1), and thioredoxin reductase 2 (Txnrd2). CONCLUSION Photobiomodulation with 904 nm superpulsed laser led to reduction of nitroxidative stress, induction of endogenous antioxidants, and maintenance of redox homeostasis that could play a vital role in augmentation of burn wound healing.
Collapse
Affiliation(s)
- Anju Yadav
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | - Saurabh Verma
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | - Gaurav K Keshri
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | - Asheesh Gupta
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| |
Collapse
|
29
|
Dvorakova M, Lapcik P, Bouchalova P, Bouchal P. Transgelin Silencing Induces Different Processes in Different Breast Cancer Cell Lines. Proteomics 2020; 20:e1900383. [PMID: 32061197 DOI: 10.1002/pmic.201900383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Indexed: 12/30/2022]
Abstract
Transgelin is a protein reported to be a marker of several cancers. However, previous studies have shown both up- and down-regulation of transgelin in tumors when compared with non-tumor tissues and the mechanisms whereby transgelin may affect the development of cancer remain largely unknown. Transgelin is especially abundant in smooth muscle cells and is associated with actin stress fibers. These contractile structures participate in cell motility, adhesion, and the maintenance of cell morphology. Here, the role of transgelin in breast cancer is focused on. Initially, the effects of transgelin on cell migration of the breast cancer cell lines, BT 549 and PMC 42, is studied. Interestingly, transgelin silencing increased the migration of PMC 42 cells, but decreased the migration of BT 549 cells. To clarify these contradictory results, the changes in protein abundances after transgelin silencing in these two cell lines are analyzed using quantitative proteomics. The results confirmed the role of transgelin in the migration of BT 549 cells and suggest the involvement of transgelin in apoptosis and small molecule biochemistry in PMC 42 cells. The context-dependent function of transgelin reflects the different molecular backgrounds of these cell lines, which differ in karyotypes, mutation statuses, and proteome profiles.
Collapse
Affiliation(s)
- Monika Dvorakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| |
Collapse
|
30
|
Thioredoxin-2 impacts the inflammatory response via suppression of NF-κB and MAPK signaling in sepsis shock. Biochem Biophys Res Commun 2020; 524:876-882. [PMID: 32057359 DOI: 10.1016/j.bbrc.2020.01.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Sepsis is a progressive disease characterized by excessive inflammatory responses, severe tissue injury and organ dysfunction, ultimately leading to mortality. In this study, we demonstrated that thioredoxin-2 (TRX-2) expression is reduced in macrophages stimulated with lipopolysaccharide (LPS). Overexpression of TRX-2 significantly attenuated interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) production induced by LPS. TRX-2 inhibited LPS-induced inflammatory responses through suppressing activation of the NF-κB and MAPK signaling pathways. Furthermore, TRX-2 induced a significant decrease in mortality in mouse sepsis models in association with reduced inflammatory cytokine production and attenuation of organ injury. Our data collectively support a role of TRX-2 as a critical regulator of sepsis that influences survival by protecting the host from excessive inflammatory damage.
Collapse
|
31
|
Cyclin-Dependent Kinase and Antioxidant Gene Expression in Cancers with Poor Therapeutic Response. Pharmaceuticals (Basel) 2020; 13:ph13020026. [PMID: 32033319 PMCID: PMC7169466 DOI: 10.3390/ph13020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022] Open
Abstract
Pancreatic cancer, hepatocellular carcinoma (HCC), and mesothelioma are treatment-refractory cancers, and patients afflicted with these cancers generally have a very poor prognosis. The genomics of these tumors were analyzed as part of The Cancer Genome Atlas (TCGA) project. However, these analyses are an overview and may miss pathway interactions that could be exploited for therapeutic targeting. In this study, the TCGA Pan-Cancer datasets were queried via cBioPortal for correlations among mRNA expression of key genes in the cell cycle and mitochondrial (mt) antioxidant defense pathways. Here we describe these correlations. The results support further evaluation to develop combination treatment strategies that target these two critical pathways in pancreatic cancer, hepatocellular carcinoma, and mesothelioma.
Collapse
|
32
|
Yang B, Huang Y, Zhang H, Huang Y, Zhou HJ, Young L, Xiao H, Min W. Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome. J Mol Cell Cardiol 2020; 138:291-303. [DOI: 10.1016/j.yjmcc.2019.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
|
33
|
Sekiguchi A, Motegi SI, Fujiwara C, Yamazaki S, Inoue Y, Uchiyama A, Akai R, Iwawaki T, Ishikawa O. Inhibitory effect of kaempferol on skin fibrosis in systemic sclerosis by the suppression of oxidative stress. J Dermatol Sci 2019; 96:8-17. [DOI: 10.1016/j.jdermsci.2019.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
|
34
|
Intracellular free radical scavenging activity and protective role of mammalian cells by antioxidant peptide from thioredoxin disulfide reductase of Arthrospira platensis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
|
36
|
Chen C, Wang K, Zhang H, Zhou HJ, Chen Y, Min W. A Unique SUMO-Interacting Motif of Trx2 Is Critical for Its Mitochondrial Presequence Processing and Anti-oxidant Activity. Front Physiol 2019; 10:1089. [PMID: 31555141 PMCID: PMC6727865 DOI: 10.3389/fphys.2019.01089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Mitochondrial thioredoxin 2 (Trx2) is a vital mitochondrial redox protein that mediates normal protein thiol reduction and provides electrons to peroxiredoxin 3 (Prx3) to scavenge H2O2 in mitochondria. It has been widely reported that Trx2 deletion in cells or mice generates massive reactive oxygen species (ROS) which have been implicated in many pathological processes. On the contrary, how ROS regulate Trx2 processing and activity remains to be elucidated. APPROACH AND RESULTS Here we show that excess ROS induce endothelial cell senescence concomitant with an attenuation of Trx2 processing in which Trx2 presequence [i.e., mitochondrial targeting signal peptide (MTS)] is cleaved to generate a mature form. Mutation analyses indicate that Trx2 processing is mediated by mitochondrial processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP)-recognition sites within the MTS. Interestingly, a mutation at a SUMO- interacting motif (SIM), but not the catalytic sites within the mature Trx2 protein, completely blocks Trx2 processing with no effect on Trx2 mitochondrial targeting. Consistently, chemical inhibition of protein SUMOylation attenuates, while SUMOylation agonist promotes, Trx2 processing. Moreover, we identify the α-MPP subunit is a SUMOylated protein that potentially mediates Trx2-binding and cleavage. Furthermore, the unprocessed form of Trx2-SIM is unable to protect cells from both ROS generation and oxidative stress-induced cellular senescence. CONCLUSION Our study reveals that a unique SUMO-interacting motif of Trx2 is critical for its mitochondrial processing and subsequent anti-oxidant/antisenescence activities.
Collapse
Affiliation(s)
- Chaofei Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kang Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Haifeng Zhang
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Huanjiao Jenny Zhou
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wang Min
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
37
|
Genetic Deletion or Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Cardiac Ischemia/Reperfusion Injury by Attenuating NLRP3 Inflammasome Activation. Int J Mol Sci 2019; 20:ijms20143502. [PMID: 31319469 PMCID: PMC6678157 DOI: 10.3390/ijms20143502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Activation of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome cascade has a role in the pathogenesis of ischemia/reperfusion (IR) injury. There is growing evidence indicating cytochrome p450 (CYP450)-derived metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) possess both adverse and protective effects in the heart. CYP-derived epoxy metabolites are rapidly hydrolyzed by the soluble epoxide hydrolase (sEH). The current study hypothesized that the cardioprotective effects of inhibiting sEH involves limiting activation of the NLRP3 inflammasome. Isolated hearts from young wild-type (WT) and sEH null mice were perfused in the Langendorff mode with either vehicle or the specific sEH inhibitor t-AUCB. Improved post-ischemic functional recovery and better mitochondrial respiration were observed in both sEH null hearts or WT hearts perfused with t-AUCB. Inhibition of sEH markedly attenuated the activation of the NLRP3 inflammasome complex and limited the mitochondrial localization of the fission protein dynamin-related protein-1 (Drp-1) triggered by IR injury. Cardioprotective effects stemming from the inhibition of sEH included preserved activities of both cytosolic thioredoxin (Trx)-1 and mitochondrial Trx-2 antioxidant enzymes. Together, these data demonstrate that inhibiting sEH imparts cardioprotection against IR injury via maintaining post-ischemic mitochondrial function and attenuating a detrimental innate inflammatory response.
Collapse
|
38
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
39
|
Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid Redox Signal 2019; 30:1911-1947. [PMID: 30187773 DOI: 10.1089/ars.2017.7311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling. CRITICAL ISSUES Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH2 from the flavin semiquinone coproduced with superoxide anion radical in 1e- oxidation of FADH2 by molecular oxygen. FUTURE DIRECTIONS Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD+ in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.
Collapse
Affiliation(s)
- Victoria I Bunik
- 1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
40
|
Chasapis CT, Makridakis M, Damdimopoulos AE, Zoidakis J, Lygirou V, Mavroidis M, Vlahou A, Miranda-Vizuete A, Spyrou G, Vlamis-Gardikas A. Implications of the mitochondrial interactome of mammalian thioredoxin 2 for normal cellular function and disease. Free Radic Biol Med 2019; 137:59-73. [PMID: 31018154 DOI: 10.1016/j.freeradbiomed.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
Abstract
Multiple thioredoxin isoforms exist in all living cells. To explore the possible functions of mammalian mitochondrial thioredoxin 2 (Trx2), an interactome of mouse Trx2 was initially created using (i) a monothiol mouse Trx2 species for capturing protein partners from different organs and (ii) yeast two hybrid screens on human liver and rat brain cDNA libraries. The resulting interactome consisted of 195 proteins (Trx2 included) plus the mitochondrial 16S RNA. 48 of these proteins were classified as mitochondrial (MitoCarta2.0 human inventory). In a second step, the mouse interactome was combined with the current four-membered mitochondrial sub-network of human Trx2 (BioGRID) to give a 53-membered human Trx2 mitochondrial interactome (52 interactor proteins plus the mitochondrial 16S RNA). Although thioredoxins are thiol-employing disulfide oxidoreductases, approximately half of the detected interactions were not due to covalent disulfide bonds. This finding reinstates the extended role of thioredoxins as moderators of protein function by specific non-covalent, protein-protein interactions. Analysis of the mitochondrial interactome suggested that human Trx2 was involved potentially in mitochondrial integrity, formation of iron sulfur clusters, detoxification of aldehydes, mitoribosome assembly and protein synthesis, protein folding, ADP ribosylation, amino acid and lipid metabolism, glycolysis, the TCA cycle and the electron transport chain. The oxidoreductase functions of Trx2 were verified by its detected interactions with mitochondrial peroxiredoxins and methionine sulfoxide reductase. Parkinson's disease, triosephosphate isomerase deficiency, combined oxidative phosphorylation deficiency, and lactate dehydrogenase b deficiency are some of the diseases where the proposed mitochondrial network of Trx2 may be implicated.
Collapse
Affiliation(s)
- Christos T Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), Platani 26504, Greece
| | | | - Anastassios E Damdimopoulos
- Department of Biosciences and Nutrition, Center for Innovative Medicine (CIMED), Karolinska Institutet, Huddinge, Sweden
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Manolis Mavroidis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Giannis Spyrou
- Department of Clinical and Experimental Medicine, Division of Clinical Chemistry, Linköping University, S-581 85 Linköping, Sweden
| | | |
Collapse
|
41
|
Darwesh AM, Jamieson KL, Wang C, Samokhvalov V, Seubert JM. Cardioprotective effects of CYP-derived epoxy metabolites of docosahexaenoic acid involve limiting NLRP3 inflammasome activation. Can J Physiol Pharmacol 2019; 97:544-556. [DOI: 10.1139/cjpp-2018-0480] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Impaired mitochondrial function and activation of NLRP3 inflammasome cascade has a significant role in the pathogenesis of myocardial ischemia–reperfusion (IR) injury. The current study investigated whether eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or their corresponding CYP epoxygenase metabolites 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) protect against IR injury. Isolated mouse hearts were perfused in the Langendorff mode with vehicle, DHA, 19,20-EDP, EPA, or 17,18-EEQ and subjected to 30 min of ischemia and followed by 40 min of reperfusion. In contrast with EPA and 17,18-EEQ, DHA and 19,20-EDP exerted cardioprotection, as shown by a significant improvement in postischemic functional recovery associated with significant attenuation of NLRP3 inflammasome complex activation and preserved mitochondrial function. Hearts perfused with DHA or 19,20-EDP displayed a marked reduction in localization of mitochondrial Drp-1 and Mfn-2 as well as maintained Opa-1 levels. DHA and 19,20-EDP preserved the activities of both the cytosolic Trx-1 and mitochondrial Trx-2. DHA cardioprotective effect was attenuated by the CYP epoxygenase inhibitor N-(methysulfonyl)-2-(2-propynyloxy)-benzenehexanamide. In conclusion, our data indicate a differential cardioprotective response between DHA, EPA, and their active metabolites toward IR injury. Interestingly, 19,20-EDP provided the best protection against IR injury via maintaining mitochondrial function and thereby reducing the detrimental NLRP3 inflammasome responses.
Collapse
Affiliation(s)
- Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K. Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Chuying Wang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Victor Samokhvalov
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
42
|
Jia JJ, Geng WS, Wang ZQ, Chen L, Zeng XS. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019; 84:453-470. [DOI: 10.1007/s00280-019-03869-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/04/2019] [Indexed: 01/16/2023]
|
43
|
EsTrx-2, the mitochondrial thioredoxin from Antarctic microcrustacean (Euphausia superba): Cloning and functional characterization. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:52-58. [DOI: 10.1016/j.cbpb.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/07/2023]
|
44
|
Sengillo JD, Cho GY, Paavo M, Lee W, White E, Jauregui R, Sparrow JR, Allikmets R, Tsang SH. Hyperautofluorescent Dots are Characteristic in Ceramide Kinase Like-associated Retinal Degeneration. Sci Rep 2019; 9:876. [PMID: 30696906 PMCID: PMC6351646 DOI: 10.1038/s41598-018-37578-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
There is a lack of studies which seek to discern disease expression in patients with mutations that alter retinal ceramide metabolism, specifically in the ceramide kinase like (CERKL) gene. This cross-sectional case series reports a novel phenotypic manifestation of CERKL-associated retinopathy. Four unrelated patients with homozygous CERKL mutations underwent a complete ocular exam, spectral-domain optical coherence tomography, short-wavelength fundus autofluorescence (SW-AF), quantitative autofluorescence (qAF), and full-field electroretinogram (ffERG). Decreased visual acuity and early-onset maculopathy were present in all patients. All four patients had extensive hyperautofluorescent foci surrounding an area of central atrophy on SW-AF imaging, which has not been previously characterized. An abnormal spatial distribution of qAF signal was seen in one patient, and abnormally elevated qAF8 signal in another patient. FfERG recordings showed markedly attenuated rod and cone response in all patients. We conclude that these patients exhibit several features that, collectively, may warrant screening of CERKL as a first candidate: early-onset maculopathy, severe generalized retinal dysfunction, peripheral lacunae, intraretinal pigment migration, and hyperautofluorescent foci on SW-AF.
Collapse
Affiliation(s)
- Jesse D Sengillo
- Department of Internal Medicine, Reading Hospital, West Reading, PA, USA
| | - Galaxy Y Cho
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, USA
| | - Maarjaliis Paavo
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Eugenia White
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, New York, USA. .,Department of Ophthalmology, Columbia University, New York, NY, USA. .,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA. .,Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
45
|
Hu C, Zhang H, Qiao Z, Wang Y, Zhang P, Yang D. Loss of thioredoxin 2 alters mitochondrial respiratory function and induces cardiomyocyte hypertrophy. Exp Cell Res 2018; 372:61-72. [PMID: 30236513 DOI: 10.1016/j.yexcr.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 01/06/2023]
Abstract
Thioredoxin 2 (Trx2), as a member of the thioredoxin system in mitochondria, is involved in controlling mitochondrial redox state. However, the role of Trx2 in cardiac biology is not fully understood. In the present study, the expression of Trx2 is silenced in quiescent neonatal rat ventricular cardiomyocytes (NRVCs) and mitochondrial respiratory function and cardiomyocyte hypertrophy are assessed. The results show that Trx2 depletion does not induce significant cytotoxicity in quiescent NRVCs. Remarkably, Trx2 depletion results in cardiomyocyte hypertrophy as determined by increased cell size and protein synthesis. Furthermore, Trx2 depletion inhibits AMPK activity and AMPK activator reversed cellular hypertrophy. Trx2 depletion enhances mitochondrial ROS generation without impact on cellular ROS level. Trx2 depletion has no effect on mitochondrial biogenesis. Specifically, Trx2 depletion increases mitochondrial respiration flux and total ATP concentration under quiescent conditions. To decipher the relationship between ROS generation, mitochondrial respiration flux, and AMPK signaling, mitochondrial metabolism and ROS was specifically inhibited, and the results show that AMPK inactivation and hypertrophic response in Trx2-silenced cells is reversed by respiration blockers but not ROS scavenger. In conclusion, these results show that beyond mitochondrial ROS scavenging, Trx2 controls mitochondrial respiratory function in quiescent cardiomyocytes and is implicated in cardiomyocyte hypertrophy via AMPK signaling.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China
| | - Hao Zhang
- Deparment of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China
| | - Zhengdong Qiao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China
| | - Yueqian Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China
| | - Peng Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China.
| | - Dan Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China.
| |
Collapse
|
46
|
Zuo H, Yuan J, Yang L, Zheng J, Weng S, He J, Xu X. Identification of the thioredoxin-related protein of 14 kDa (TRP14) from Litopenaeus vannamei and its role in immunity. FISH & SHELLFISH IMMUNOLOGY 2018; 80:514-520. [PMID: 29964195 DOI: 10.1016/j.fsi.2018.06.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The thioredoxin system plays essential roles in maintenance and regulation of the redox state of cysteine residues in cellular proteins. The thioredoxin-related protein of 14 kDa (TRP14) is an important member of the TRX superfamily which acts on various substrate proteins, some of which are not overlapped with those of thioredoxin. The knowledge on the function of TRP14 in invertebrates is limited to date. In this study, a TRP14 gene was identified from Pacific white shrimp Litopenaeus vannamei (LvTRP14) and its role in immune responses was investigated. We demonstrated that the expression level of LvTRP14 was high in hepatopancreas and intestine, low in eyestalk, and medium in other tissues of healthy shrimp. The transcription of LvTRP14 in vivo was significantly down-regulated in Relish-silencing shrimp but up-regulated in STAT-silencing shrimp, indicating a complex regulation of LvTRP14 expression. Although the LvTRP14 expression showed little change after immune stimulation with different type of pathogens, knockdown of LvTRP14 expression using RNAi strategy could significantly facilitate the infection of white spot syndrome virus (WSSV) and Vibrio parahaemolyticus in shrimp. Dual luciferase reporter assays demonstrated that LvTRP14 enhanced the transcription factor activity of Relish but attenuated that of Dorsal. Furthermore, silencing of LvTRP14 in vivo had opposite effects on expression of different type of antimicrobial peptides. These suggested that LvTRP14 could play a complex role in shrimp immunity.
Collapse
Affiliation(s)
- Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou, PR China
| | - Jia Yuan
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Linwei Yang
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jiefu Zheng
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
47
|
Haffo L, Lu J, Bykov VJN, Martin SS, Ren X, Coppo L, Wiman KG, Holmgren A. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246. Sci Rep 2018; 8:12671. [PMID: 30140002 PMCID: PMC6107631 DOI: 10.1038/s41598-018-31048-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/10/2018] [Indexed: 01/20/2023] Open
Abstract
The tumor suppressor p53 is commonly inactivated in human tumors, allowing evasion of p53-dependent apoptosis and tumor progression. The small molecule APR-246 (PRIMA-1Met) can reactive mutant p53 in tumor cells and trigger cell death by apoptosis. The thioredoxin (Trx) and glutaredoxin (Grx) systems are important as antioxidants for maintaining cellular redox balance and providing electrons for thiol-dependent reactions like those catalyzed by ribonucleotide reductase and peroxiredoxins (Prxs). We show here that the Michael acceptor methylene quinuclidinone (MQ), the active form of APR-246, is a potent direct inhibitor of Trx1 and Grx1 by reacting with sulfhydryl groups in the enzymes. The inhibition of Trx1 and Grx1 by APR-246/MQ is reversible and the inhibitory efficiency is dependent on the presence of glutathione. APR-246/MQ also inhibits Trxs in mutant p53-expressing Saos-2 His-273 cells, showing modification of Trx1 and mitochondrial Trx2. Inhibition of the Trx and Grx systems leads to insufficient reducing power to deoxyribonucleotide production for DNA replication and repair and peroxiredoxin for removal of ROS. We also demonstrate that APR-246 and MQ inhibit ribonucleotide reductase (RNR) in vitro and in living cells. Our results suggest that APR-246 induces tumor cell death through both reactivations of mutant p53 and inhibition of cellular thiol-dependent redox systems, providing a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Lena Haffo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,School of Pharmaceutical Sciences, Southwest University, 400715, Chongqing, China
| | - Vladimir J N Bykov
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Sebastin S Martin
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Klas G Wiman
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
48
|
Chung YW, Choi JS, Shin SY. Expression of MyoD, insulin like growth factor binding protein, thioredoxin and p27 in secondarily overacting inferior oblique muscles with superior oblique palsy. BMC Ophthalmol 2018; 18:128. [PMID: 29843669 PMCID: PMC5975681 DOI: 10.1186/s12886-018-0793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/22/2018] [Indexed: 11/24/2022] Open
Abstract
Backgound To identify and compare specific protein levels between overacting inferior oblique (IO) muscles in superior oblique (SO) palsy patients and normal IO muscles. Methods We obtained 20 IO muscle samples from SO palsy patients with IO overaction ≥ + 3 who underwent IO myectomies (IOOA group), and 20 IO samples from brain death donors whose IO had functioned normally, according to their ophthalmological chart review (control group). We used MyoD for identifying satellite cell activation, insulin-like growth factor binding protein 5 (IGFBP5) for IGF effects, thioredoxin for oxidative stress, and p27 for satellite cell activation or oxidative stress in both groups. Using immunohistochemistry and Western blot, we compared expression levels of the four proteins (MyoD, IGFBP5, thioredoxin, and p27). Results Levels of thioredoxin and p27 were decreased significantly in the IOOA group. MyoD and IGFBP5 levels showed no significant difference between the groups. Conclusions Based on these findings, the overacting IOs of patients with SO palsy had been under oxidative stress status versus normal IOs. Pathologically overacting extraocular muscles may have an increased risk of oxidative stress compared with normal extraocular muscles.
Collapse
Affiliation(s)
- Yeon Woong Chung
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Republic of Korea
| | - Jun Sub Choi
- Department of Ophthalmology & Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sun Young Shin
- Department of Ophthalmology & Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
49
|
Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication. Mol Neurobiol 2018; 55:7900-7920. [PMID: 29488135 DOI: 10.1007/s12035-018-0917-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Neurological diseases, including acute attacks (e.g., ischemic stroke) and chronic neurodegenerative diseases (e.g., Alzheimer's disease), have always been one of the leading cause of morbidity and mortality worldwide. These debilitating diseases represent an enormous disease burden, not only in terms of health suffering but also in economic costs. Although the clinical presentations differ for these diseases, a growing body of evidence suggests that oxidative stress and inflammatory responses in brain tissue significantly contribute to their pathology. However, therapies attempting to prevent oxidative damage or inhibiting inflammation have shown little success. Identification and targeting endogenous "upstream" mediators that normalize such processes will lead to improve therapeutic strategy of these diseases. Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the thioredoxin (TRX) system, a major cellular thiol-reducing and antioxidant system. TXNIP regulating redox/glucose-induced stress and inflammation, now is known to get upregulated in stroke and other brain diseases, and represents a promising therapeutic target. In particular, there is growing evidence that glucose strongly induces TXNIP in multiple cell types, suggesting possible physiological roles of TXNIP in glucose metabolism. Recently, a significant body of literature has supported an essential role of TXNIP in the activation of the NOD-like receptor protein (NLRP3)-inflammasome, a well-established multi-molecular protein complex and a pivotal mediator of sterile inflammation. Accordingly, TXNIP has been postulated to reside centrally in detecting cellular damage and mediating inflammatory responses to tissue injury. The majority of recent studies have shown that pharmacological inhibition or genetic deletion of TXNIP is neuroprotective and able to reduce detrimental aspects of pathology following cerebrovascular and neurodegenerative diseases. Conspicuously, the mainstream of the emerging evidences is highlighting TXNIP link to damaging signals in endothelial cells. Thereby, here, we keep the trend to present the accumulative data on CNS diseases dealing with vascular integrity. This review aims to summarize evidence supporting the significant contribution of regulatory mechanisms of TXNIP with the development of brain diseases, explore pharmacological strategies of targeting TXNIP, and outline obstacles to be considered for efficient clinical translation.
Collapse
|
50
|
Li Y, Xiang Y, Zhang S, Wang Y, Yang J, Liu W, Xue F. Intramyocardial injection of thioredoxin 2-expressing lentivirus alleviates myocardial ischemia-reperfusion injury in rats. Am J Transl Res 2017; 9:4428-4439. [PMID: 29118905 PMCID: PMC5666052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study is to explore the role of thioredoxin-2 (Trx2) in autophagy and apoptosis during myocardial ischemia-reperfusion (I/R) injury in vivo. In the study, adult male Sprague-Dawley rats were assigned to four groups at random and pretreated with normal saline (sham operation and I/R groups) and either a control lentivirus (Lv-GFP-N) or one expressing Trx2 (Lv-GFP-Trx2). Sevendays after pretreatment, rat MIRI models were produced via occlusion of the left anterior descending coronary artery for 30 min followed by reperfusion for 6 h. Hearts and blood were harvested to assess efficiency of lentivirus transfection via immunofluorescence staining, quantitative RT-PCR and western blotting, oxidative stress via the malondialdehyde level and superoxide dismutase activity, myocardial damage via myocardial enzymelevels and histopathological staining, myocardial apoptosis via TUNEL assays and western blotting, and myocardial autophagy viawestern blotting. Our results showed thatthe delivery of Lv-GFP-Trx2 into the myocardium remarkably increased Trx2 expression. The upregulation of Trx2 contributed to alleviation of oxidative stress, attenuation of myocardial histological damage, reduced leakage of myocardial enzyme and decrease in infarct size. Moreover, the overexpression of Trx2 was significantly associated with thedecreased incidence of apoptosis via ASK1-dependent intrinsic mitochondrial apoptotic pathwayand autophagy via the mammalian target of rapamycin (mTOR) pathway. The study indicates that upregulation of Trx2 protectsthe myocardium from MIRI and isinvolved inthe inhibition of apoptosis and autophagy. Therefore, Trx2 isa promising therapeutic strategy for attenuating MIRI.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University1665 Kongjiang Road, Shanghai 200092, China
| | - Yin Xiang
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University1665 Kongjiang Road, Shanghai 200092, China
| | - Song Zhang
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University1665 Kongjiang Road, Shanghai 200092, China
| | - Yan Wang
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University1665 Kongjiang Road, Shanghai 200092, China
| | - Jie Yang
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University1665 Kongjiang Road, Shanghai 200092, China
| | - Wei Liu
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University1665 Kongjiang Road, Shanghai 200092, China
| | - Fengtai Xue
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|