1
|
Haga CL, Booker CN, Carvalho A, Boregowda SV, Phinney DG. Transcriptional Targets of TWIST1 in Human Mesenchymal Stem/Stromal Cells Mechanistically Link Stem/Progenitor and Paracrine Functions. Stem Cells 2023; 41:1185-1200. [PMID: 37665974 PMCID: PMC10723815 DOI: 10.1093/stmcls/sxad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Despite extensive clinical testing, mesenchymal stem/stromal cell (MSC)-based therapies continue to underperform with respect to efficacy, which reflects the paucity of biomarkers that predict potency prior to patient administration. Previously, we reported that TWIST1 predicts inter-donor differences in MSC quality attributes that confer potency. To define the full spectrum of TWIST1 activity in MSCs, the present work employed integrated omics-based profiling to identify a high-confidence set of TWIST1 targets, which mapped to cellular processes related to ECM structure/organization, skeletal and circulatory system development, interferon gamma signaling, and inflammation. These targets are implicated in contributing to both stem/progenitor and paracrine activities of MSCs indicating these processes are linked mechanistically in a TWIST1-dependent manner. Targets implicated in extracellular matrix dynamics further implicate TWIST1 in modulating cellular responses to niche remodeling. Novel TWIST1-regulated genes identified herein may be prioritized for future mechanistic and functional studies.
Collapse
Affiliation(s)
- Christopher L Haga
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Cori N Booker
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Ana Carvalho
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Siddaraju V Boregowda
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Donald G Phinney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| |
Collapse
|
2
|
Ito A, Fukaya M, Okamoto H, Sakagami H. Physiological and Pathological Roles of the Cytohesin Family in Neurons. Int J Mol Sci 2022; 23:5087. [PMID: 35563476 PMCID: PMC9104363 DOI: 10.3390/ijms23095087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
The cytohesin proteins, consisting of four closely related members (cytohesins-1, -2, -3, and -4), are a subfamily of the Sec7 domain-containing guanine nucleotide exchange factors for ADP ribosylation factors (Arfs), which are critical regulators of membrane trafficking and actin cytoskeleton remodeling. Recent advances in molecular biological techniques and the development of a specific pharmacological inhibitor for cytohesins, SecinH3, have revealed the functional involvement of the cytohesin-Arf pathway in diverse neuronal functions from the formation of axons and dendrites, axonal pathfinding, and synaptic vesicle recycling, to pathophysiological processes including chronic pain and neurotoxicity induced by proteins related to neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer's disease. Here, we review the physiological and pathological roles of the cytohesin-Arf pathway in neurons and discuss the future directions of this research field.
Collapse
Affiliation(s)
- Akiko Ito
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| |
Collapse
|
3
|
Wang Y, Çil Ç, Harnett MM, Pineda MA. Cytohesin-2/ARNO: A Novel Bridge Between Cell Migration and Immunoregulation in Synovial Fibroblasts. Front Immunol 2022; 12:809896. [PMID: 35095899 PMCID: PMC8790574 DOI: 10.3389/fimmu.2021.809896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
The guanine nucleotide exchange factor cytohesin-2 (ARNO) is a major activator of the small GTPase ARF6 that has been shown to play an important role(s) in cell adhesion, migration and cytoskeleton reorganization in various cell types and models of disease. Interestingly, dysregulated cell migration, in tandem with hyper-inflammatory responses, is one of the hallmarks associated with activated synovial fibroblasts (SFs) during chronic inflammatory joint diseases, like rheumatoid arthritis. The role of ARNO in this process has previously been unexplored but we hypothesized that the pro-inflammatory milieu of inflamed joints locally induces activation of ARNO-mediated pathways in SFs, promoting an invasive cell phenotype that ultimately leads to bone and cartilage damage. Thus, we used small interference RNA to investigate the impact of ARNO on the pathological migration and inflammatory responses of murine SFs, revealing a fully functional ARNO-ARF6 pathway which can be rapidly activated by IL-1β. Such signalling promotes cell migration and formation of focal adhesions. Unexpectedly, ARNO was also shown to modulate SF-inflammatory responses, dictating their precise cytokine and chemokine expression profile. Our results uncover a novel role for ARNO in SF-dependent inflammation, that potentially links pathogenic migration with initiation of local joint inflammation, offering new approaches for targeting the fibroblast compartment in chronic arthritis and joint disease.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Çağlar Çil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom
| |
Collapse
|
4
|
Proteomic analysis in primary T cells reveals IL-7 alters T cell receptor thresholding via CYTIP/cytohesin/LFA-1 localisation and activation. Biochem J 2022; 479:225-243. [PMID: 35015072 PMCID: PMC8883493 DOI: 10.1042/bcj20210313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
The ability of the cellular immune system to discriminate self from foreign antigens depends on the appropriate calibration of the T cell receptor (TCR) signalling threshold. The lymphocyte homeostatic cytokine interleukin 7 (IL-7) is known to affect TCR thresholding, but the molecular mechanism is not fully elucidated. A better understanding of this process is highly relevant in the context of autoimmune disease therapy and cancer immunotherapy. We sought to characterise the early signalling events attributable to IL-7 priming; in particular, the altered phosphorylation of signal transduction proteins and their molecular localisation to the TCR. By integrating high-resolution proximity- phospho-proteomic and imaging approaches using primary T cells, rather than engineered cell lines or an in vitro expanded T cell population, we uncovered transduction events previously not linked to IL-7. We show that IL-7 leads to dephosphorylation of cytohesin interacting protein (CYTIP) at a hitherto undescribed phosphorylation site (pThr280) and alters the co-localisation of cytohesin-1 with the TCR and LFA-1 integrin. These results show that IL-7, acting via CYTIP and cytohesin-1, may impact TCR activation thresholds by enhancing the co-clustering of TCR and LFA-1 integrin.
Collapse
|
5
|
Overbey EG, Ng TT, Catini P, Griggs LM, Stewart P, Tkalcic S, Hawkins RD, Drechsler Y. Transcriptomes of an Array of Chicken Ovary, Intestinal, and Immune Cells and Tissues. Front Genet 2021; 12:664424. [PMID: 34276773 PMCID: PMC8278112 DOI: 10.3389/fgene.2021.664424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
While the chicken (Gallus gallus) is the most consumed agricultural animal worldwide, the chicken transcriptome remains understudied. We have characterized the transcriptome of 10 cell and tissue types from the chicken using RNA-seq, spanning intestinal tissues (ileum, jejunum, proximal cecum), immune cells (B cells, bursa, macrophages, monocytes, spleen T cells, thymus), and reproductive tissue (ovary). We detected 17,872 genes and 24,812 transcripts across all cell and tissue types, representing 73% and 63% of the current gene annotation, respectively. Further quantification of RNA transcript biotypes revealed protein-coding and lncRNAs specific to an individual cell/tissue type. Each cell/tissue type also has an average of around 1.2 isoforms per gene, however, they all have at least one gene with at least 11 isoforms. Differential expression analysis revealed a large number of differentially expressed genes between tissues of the same category (immune and intestinal). Many of these differentially expressed genes in immune cells were involved in cellular processes relating to differentiation and cell metabolism as well as basic functions of immune cells such as cell adhesion and signal transduction. The differential expressed genes of the different segments of the chicken intestine (jejunum, ileum, proximal cecum) correlated to the metabolic processes in nutrient digestion and absorption. These data should provide a valuable resource in understanding the chicken genome.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Genome Sciences, Interdepartmental Astrobiology Program, University of Washington, Seattle, WA, United States
| | - Theros T Ng
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Pietro Catini
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Lisa M Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Paul Stewart
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Suzana Tkalcic
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - R David Hawkins
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
6
|
Salz A, Gurniak C, Jönsson F, Witke W. Cofilin1-driven actin dynamics controls migration of thymocytes and is essential for positive selection in the thymus. J Cell Sci 2020; 133:jcs238048. [PMID: 31974112 DOI: 10.1242/jcs.238048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/14/2020] [Indexed: 11/20/2022] Open
Abstract
Actin dynamics is essential for T-cell development. We show here that cofilin1 is the key molecule for controlling actin filament turnover in this process. Mice with specific depletion of cofilin1 in thymocytes showed increased steady-state levels of actin filaments, and associated alterations in the pattern of thymocyte migration and adhesion. Our data suggest that cofilin1 is controlling oscillatory F-actin changes, a parameter that influences the migration pattern in a 3-D environment. In a collagen matrix, cofilin1 controls the speed and resting intervals of migrating thymocytes. Cofilin1 was not involved in thymocyte proliferation, cell survival, apoptosis or surface receptor trafficking. However, in cofilin1 mutant mice, impaired adhesion and migration resulted in a specific block of thymocyte differentiation from CD4/CD8 double-positive thymocytes towards CD4 and CD8 single-positive cells. Our data suggest that tuning of the dwelling time of thymocytes in the thymic niches is tightly controlled by cofilin1 and essential for positive selection during T-cell differentiation. We describe a novel role of cofilin1 in the physiological context of migration-dependent cell differentiation.
Collapse
Affiliation(s)
- Andree Salz
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Christine Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, 75015 Paris, France
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| |
Collapse
|
7
|
Grosche L, Mühl-Zürbes P, Ciblis B, Krawczyk A, Kuhnt C, Kamm L, Steinkasserer A, Heilingloh CS. Herpes Simplex Virus Type-2 Paralyzes the Function of Monocyte-Derived Dendritic Cells. Viruses 2020; 12:E112. [PMID: 31963276 PMCID: PMC7019625 DOI: 10.3390/v12010112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex viruses not only infect a variety of different cell types, including dendritic cells (DCs), but also modulate important cellular functions in benefit of the virus. Given the relevance of directed immune cell migration during the initiation of potent antiviral immune responses, interference with DC migration constitutes a sophisticated strategy to hamper antiviral immunity. Notably, recent reports revealed that HSV-1 significantly inhibits DC migration in vitro. Thus, we aimed to investigate whether HSV-2 also modulates distinct hallmarks of DC biology. Here, we demonstrate that HSV-2 negatively interferes with chemokine-dependent in vitro migration capacity of mature DCs (mDCs). Interestingly, rather than mediating the reduction of the cognate chemokine receptor expression early during infection, HSV-2 rapidly induces β2 integrin (LFA-1)-mediated mDC adhesion and thereby blocks mDC migration. Mechanistically, HSV-2 triggers the proteasomal degradation of the negative regulator of β2 integrin activity, CYTIP, which causes the constitutive activation of LFA-1 and thus mDC adhesion. In conclusion, our data extend and strengthen recent findings reporting the reduction of mDC migration in the context of a herpesviral infection. We thus hypothesize that hampering antigen delivery to secondary lymphoid organs by inhibition of mDC migration is an evolutionary conserved strategy among distinct members of Herpesviridae.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Barbara Ciblis
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Lisa Kamm
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Christiane Silke Heilingloh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| |
Collapse
|
8
|
Galinato M, Shimoda K, Aguiar A, Hennig F, Boffelli D, McVoy MA, Hertel L. Single-Cell Transcriptome Analysis of CD34 + Stem Cell-Derived Myeloid Cells Infected With Human Cytomegalovirus. Front Microbiol 2019; 10:577. [PMID: 30949159 PMCID: PMC6437045 DOI: 10.3389/fmicb.2019.00577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid cells are important sites of lytic and latent infection by human cytomegalovirus (CMV). We previously showed that only a small subset of myeloid cells differentiated from CD34+ hematopoietic stem cells is permissive to CMV replication, underscoring the heterogeneous nature of these populations. The exact identity of resistant and permissive cell types, and the cellular features characterizing the latter, however, could not be dissected using averaging transcriptional analysis tools such as microarrays and, hence, remained enigmatic. Here, we profile the transcriptomes of ∼7000 individual cells at day 1 post-infection using the 10× genomics platform. We show that viral transcripts are detectable in the majority of the cells, suggesting that virion entry is unlikely to be the main target of cellular restriction mechanisms. We further show that viral replication occurs in a small but specific sub-group of cells transcriptionally related to, and likely derived from, a cluster of cells expressing markers of Colony Forming Unit – Granulocyte, Erythrocyte, Monocyte, Megakaryocyte (CFU-GEMM) oligopotent progenitors. Compared to the remainder of the population, CFU-GEMM cells are enriched in transcripts with functions in mitochondrial energy production, cell proliferation, RNA processing and protein synthesis, and express similar or higher levels of interferon-related genes. While expression levels of the former are maintained in infected cells, the latter are strongly down-regulated. We thus propose that the preferential infection of CFU-GEMM cells may be due to the presence of a pre-established pro-viral environment, requiring minimal optimization efforts from viral effectors, rather than to the absence of specific restriction factors. Together, these findings identify a potentially new population of myeloid cells permissive to CMV replication, and provide a possible rationale for their preferential infection.
Collapse
Affiliation(s)
- Melissa Galinato
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Kristen Shimoda
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Alexis Aguiar
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Fiona Hennig
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Dario Boffelli
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Laura Hertel
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| |
Collapse
|
9
|
Ito A, Fukaya M, Saegusa S, Kobayashi E, Sugawara T, Hara Y, Yamauchi J, Okamoto H, Sakagami H. Pallidin is a novel interacting protein for cytohesin-2 and regulates the early endosomal pathway and dendritic formation in neurons. J Neurochem 2018; 147:153-177. [PMID: 30151872 DOI: 10.1111/jnc.14579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/25/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Cytohesin-2 is a member of the guanine nucleotide exchange factors for ADP ribosylation factor 1 (Arf1) and Arf6, which are small GTPases that regulate membrane traffic and actin dynamics. In this study, we first demonstrated that cytohesin-2 localized to the plasma membrane and vesicles in various subcellular compartment in hippocampal neurons by immunoelectron microscopy. Next, to understand the molecular network of cytohesin-2 in neurons, we conducted yeast two-hybrid screening of brain cDNA libraries using cytohesin-2 as bait and isolated pallidin, a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) involved in endosomal trafficking. Pallidin interacted specifically with cytohesin-2 among cytohesin family members. Glutathione S-transferase pull-down and immunoprecipitation assays further confirmed the formation of a protein complex between cytohesin-2 and pallidin. Immunofluorescence demonstrated that cytohesin-2 and pallidin partially colocalized in various subsets of endosomes immunopositive for EEA1, syntaxin 12, and LAMP2 in hippocampal neurons. Knockdown of pallidin or cytohesin-2 reduced cytoplasmic EEA1-positive early endosomes. Furthermore, knockdown of pallidin increased the total dendritic length of cultured hippocampal neurons, which was rescued by co-expression of wild-type pallidin but not a mutant lacking the ability to interact with cytohesin-2. In contrast, knockdown of cytohesin-2 had the opposite effect on total dendritic length. The present results suggested that the interaction between pallidin and cytohesin-2 may participate in various neuronal functions such as endosomal trafficking and dendritic formation in hippocampal neurons. Cover Image for this issue: doi: 10.1111/jnc.14197.
Collapse
Affiliation(s)
- Akiko Ito
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shintaro Saegusa
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Emi Kobayashi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
10
|
Grosche L, Kummer M, Steinkasserer A. What Goes Around, Comes Around - HSV-1 Replication in Monocyte-Derived Dendritic Cells. Front Microbiol 2017; 8:2149. [PMID: 29163433 PMCID: PMC5674004 DOI: 10.3389/fmicb.2017.02149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023] Open
Abstract
HSV-1 is a very successful human pathogen, known for its high sero-prevalence and the ability to infect a wide range of different cell types, including dendritic cells (DCs). As very potent antigen-presenting cells DCs play an important role in the induction of antiviral immune responses and therefore represent a strategic target for viral-mediated immune escape mechanisms. It is known that HSV-1 completes its gene expression profile in immature as well as in mature DCs, while lytic infection is only found in immature DCs (iDCs). Notably, HSV-1 infected mature DCs (mDCs) fail to release infectious progeny virions into the supernatant. Apart from HSV-1 dissemination via extracellular routes cell-to-cell spread counteracts a yet unknown mechanism by which the virus is trapped in mDCs and not released into the supernatant. The dissemination in a cell-cell contact-dependent manner enables HSV-1 to infect bystander cells without the exposure toward the extracellular environment. This supports the virus to successfully infect the host and establish latency. In this review the mechanism of HSV-1 replication in iDCs and mDCs and its immunological as well as virological implications, will be discussed.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
11
|
Grosche L, Draßner C, Mühl-Zürbes P, Kamm L, Le-Trilling VTK, Trilling M, Steinkasserer A, Heilingloh CS. Human Cytomegalovirus-Induced Degradation of CYTIP Modulates Dendritic Cell Adhesion and Migration. Front Immunol 2017; 8:461. [PMID: 28484459 PMCID: PMC5399032 DOI: 10.3389/fimmu.2017.00461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022] Open
Abstract
As potent antigen-presenting cells, dendritic cells (DCs) are essential for the initiation of effective antiviral immune responses. Viruses and especially herpesviruses, which are able to establish lifelong persistence, exploit several immune evasion mechanisms targeting DC biology. Our group has previously shown that the α-herpesvirus herpes simplex virus type 1 inhibits mature DC (mDC) migration by inducing adhesion via degrading the cellular protein CYTIP (cytohesin-1 interacting protein), an important negative regulator of β2-integrin activity. In the present study, we extended our analysis to the β-herpesvirus human cytomegalovirus (HCMV), to investigate whether other herpesviridae also induce such modulations. Indeed, HCMV impairs mDC transwell migration capability following a CCL19-chemokine gradient, despite equivalent expression levels of the cognate chemokine receptor CCR7 at the corresponding time points post-infection. Remarkably, HCMV infection potently induced β2-integrin activity on mDCs. Furthermore, directly HCMV-infected mDCs, exhibiting viral gene expression, strongly adhere to fibronectin and ICAM-1, in contrast to mDCs lacking infection or viral gene expression. Interestingly, HCMV-positive mDCs display a proteasome-dependent degradation of CYTIP. Contrasting the migration toward CCL19, elevated expression levels of the chemokine receptor CXCR4 in HCMV-infected mDCs were associated with functional CXCL12-chemotaxis under the herein used conditions. In summary, our results show that HCMV shapes mDC adhesion to compromise migration toward CCL19, but retaining CXCL12 responsiveness. Thus, we hypothesize that a preferred migration pattern toward the bone marrow, but not to secondary lymphoid organs, could ultimately cause a failure in the induction of potent antiviral immune responses.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immunomodulation, University Hospital Erlangen, Erlangen, Germany
| | - Christina Draßner
- Department of Immunomodulation, University Hospital Erlangen, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immunomodulation, University Hospital Erlangen, Erlangen, Germany
| | - Lisa Kamm
- Department of Immunomodulation, University Hospital Erlangen, Erlangen, Germany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, Essen, Germany
| | | | | |
Collapse
|
12
|
Abstract
Mac-1 (CD11b/CD18) is a β2 integrin classically regarded as a pro-inflammatory molecule because of its ability to promote phagocyte cytotoxic functions and enhance the function of several effector molecules such as FcγR, uPAR, and CD14. Nevertheless, recent reports have revealed that Mac-1 also plays significant immunoregulatory roles, and genetic variants in ITGAM, the gene that encodes CD11b, confer risk for the autoimmune disease systemic lupus erythematosus (SLE). This has renewed interest in the physiological roles of this integrin and raised new questions on how its seemingly opposing biological functions may be regulated. Here, we provide an overview of the CD18 integrins and how their activation may be regulated as this may shed light on how the opposing roles of Mac-1 may be elicited. We then discuss studies that exemplify Mac-1's pro-inflammatory versus regulatory roles particularly in the context of IgG immune complex-mediated inflammation. This includes a detailed examination of molecular mechanisms that could explain the risk-conferring effect of rs1143679, a single nucleotide non-synonymous Mac-1 polymorphism associated with SLE.
Collapse
Affiliation(s)
- Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tanya N Mayadas
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Verma NK, Kelleher D. Adaptor regulation of LFA-1 signaling in T lymphocyte migration: Potential druggable targets for immunotherapies? Eur J Immunol 2014; 44:3484-99. [PMID: 25251823 DOI: 10.1002/eji.201344428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023]
Abstract
The integrin lymphocyte function associated antigen-1 (LFA-1) plays a key role in leukocyte trafficking and in adaptive immune responses through interactions with adhesive ligands, such as ICAM-1. Specific blockade of these interactions has validated LFA-1 as a therapeutic target in many chronic inflammatory diseases, however LFA-1 antagonists have not been clinically successful due to the development of a general immunosuppression, causing fatal side effects. Growing evidence has now established that LFA-1 mediates an array of intracellular signaling pathways by triggering a number of downstream molecules. In this context, a class of multimodular domain-containing proteins capable of recruiting two or more effector molecules, collectively known as "adaptor proteins," has emerged as important mediators in LFA-1 signal transduction. Here, we provide an overview of the adaptor proteins involved in the intracellular signaling cascades by which LFA-1 regulates T-cell motility and immune responses. The complexity of the LFA-1-associated signaling delineated in this review suggests that it may be an important and challenging focus for future research, enabling the identification of "tunable" targets for the development of immunotherapies.
Collapse
Affiliation(s)
- Navin K Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore
| | | |
Collapse
|
14
|
Torii T, Miyamoto Y, Tago K, Sango K, Nakamura K, Sanbe A, Tanoue A, Yamauchi J. Arf6 guanine nucleotide exchange factor cytohesin-2 binds to CCDC120 and is transported along neurites to mediate neurite growth. J Biol Chem 2014; 289:33887-903. [PMID: 25326380 DOI: 10.1074/jbc.m114.575787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth.
Collapse
Affiliation(s)
- Tomohiro Torii
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535,
| | - Yuki Miyamoto
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Kenji Tago
- the Graduate School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498
| | - Kazunori Sango
- the Amyotrophic Lateral Sclerosis/Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506
| | - Kazuaki Nakamura
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Atsushi Sanbe
- the School of Pharmacy, Iwate Medical University, Morioka, Iwate 020-0023, and
| | - Akito Tanoue
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Junji Yamauchi
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, the Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| |
Collapse
|
15
|
Tompkins N, MacKenzie B, Ward C, Salgado D, Leidal A, McCormick C, Pohajdak B. Cytohesin-associated scaffolding protein (CASP) is involved in migration and IFN-γ secretion in Natural Killer cells. Biochem Biophys Res Commun 2014; 451:165-70. [DOI: 10.1016/j.bbrc.2014.07.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
|
16
|
Gfeller D, Ernst A, Jarvik N, Sidhu SS, Bader GD. Prediction and experimental characterization of nsSNPs altering human PDZ-binding motifs. PLoS One 2014; 9:e94507. [PMID: 24722214 PMCID: PMC3983204 DOI: 10.1371/journal.pone.0094507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/17/2014] [Indexed: 01/03/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are a major contributor to genetic and phenotypic variation within populations. Non-synonymous SNPs (nsSNPs) modify the sequence of proteins and can affect their folding or binding properties. Experimental analysis of all nsSNPs is currently unfeasible and therefore computational predictions of the molecular effect of nsSNPs are helpful to guide experimental investigations. While some nsSNPs can be accurately characterized, for instance if they fall into strongly conserved or well annotated regions, the molecular consequences of many others are more challenging to predict. In particular, nsSNPs affecting less structured, and often less conserved regions, are difficult to characterize. Binding sites that mediate protein-protein or other protein interactions are an important class of functional sites on proteins and can be used to help interpret nsSNPs. Binding sites targeted by the PDZ modular peptide recognition domain have recently been characterized. Here we use this data to show that it is possible to computationally identify nsSNPs in PDZ binding motifs that modify or prevent binding to the proteins containing the motifs. We confirm these predictions by experimentally validating a selected subset with ELISA. Our work also highlights the importance of better characterizing linear motifs in proteins as many of these can be affected by genetic variations.
Collapse
Affiliation(s)
- David Gfeller
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, Lausanne, Switzerland
| | - Andreas Ernst
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nick Jarvik
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S. Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gary D. Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Miyamoto Y, Torii T, Nakamura K, Takashima S, Sanbe A, Tanoue A, Yamauchi J. Signaling through Arf6 guanine-nucleotide exchange factor cytohesin-1 regulates migration in Schwann cells. Cell Signal 2013; 25:1379-87. [DOI: 10.1016/j.cellsig.2013.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
18
|
Grabher D, Hofer S, Ortner D, Heufler C. In human monocyte derived dendritic cells SOCS1 interacting with CYTIP induces the degradation of CYTIP by the proteasome. PLoS One 2013; 8:e57538. [PMID: 23469018 PMCID: PMC3585367 DOI: 10.1371/journal.pone.0057538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/23/2013] [Indexed: 12/05/2022] Open
Abstract
CYTIP (cytohesin interacting protein) is an intracellular molecule induced in dendritic cells during maturation. CYTIP modulates the binding intensity of the adhesion molecule LFA-1. If dendritic cells are silenced for CYTIP they keep longer contacts with T-cells resulting in a lower T cell stimulation. We identified Suppressor of cytokine signaling-1 (SOCS-1) as a binding partner for CYTIP in human monocyte derived dendritic cells. In Western blot analyses we found that CYTIP expression is down regulated at later time points, starting at about 72 hours after induction of maturation. To investigate a possible role for SOCS-1 in taking CYTIP to the degradation machinery of the cell we measured endogenous CYTIP protein levels in mature dendritic cells transfected with SOCS-1 encoding plasmid in quantitative Western blot analyses. We observed lower amounts of endogenous CYTIP in mature dendritic cells transfected with SOCS-1 encoding plasmid compared with untransfected dendritic cells. Experiments with the proteasome-inhibitor Bortezomib/Velcade® show stable CYTIP expression levels in dendritic cells. In addition, we show that CYTIP in dendritic cells matured for 48 hours is ubiquitinated and thus ready for degradation. We here describe a newly identified binding partner of CYTIP, SOCS-1, and confirm its function in regulating the degradation of CYTIP by the proteasome.
Collapse
Affiliation(s)
- Daniela Grabher
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria
| | - Susanne Hofer
- Department of Gynecological Endocrinology and Reproductive Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Daniela Ortner
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria
| | - Christine Heufler
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
19
|
Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med 2012; 19:50-6. [PMID: 23223005 PMCID: PMC3540187 DOI: 10.1038/nm.3029] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 11/14/2012] [Indexed: 12/13/2022]
Abstract
Inactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of Polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway.
Collapse
|
20
|
Lim TS, Goh JKH, Mortellaro A, Lim CT, Hämmerling GJ, Ricciardi-Castagnoli P. CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells. PLoS One 2012; 7:e45185. [PMID: 23024807 PMCID: PMC3443229 DOI: 10.1371/journal.pone.0045185] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/13/2012] [Indexed: 01/17/2023] Open
Abstract
Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs), including dendritic cells (DCs) and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force spectroscopy to characterize and compare the mechanical forces of interactions between DC:T-cells and B:T-cells. Following antigen stimulation, intercellular interactions of DC:T-cell conjugates were stronger than B:T-cell interactions. DCs induced higher levels of T-cell calcium mobilization and production of IL-2 and IFNγ than were elicited by B-cells, thus suggesting that tight intercellular contacts are important in providing mechanically stable environment to initiate T-cell activation. Blocking antibodies targeting surface co-stimulatory molecules CD80 or CD86 weakened intercellular interactions and dampen T-cell activation, highlighting the amplificatory roles of CD80/86 in regulating APC:T-cell interactions and T-cell functional activation. The variable strength of mechanical forces between DC:T-cells and B:T-cell interactions were not solely dependent on differential APC expression of CD80/86, since DCs were superior to B-cells in promoting strong interactions with T-cells even when CD80 and CD86 were inhibited. These data provide mechanical insights into the effects of co-stimulatory molecules in regulating APC:T-cell interactions.
Collapse
Affiliation(s)
- Tong Seng Lim
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (PR-C); (TSL)
| | - James Kang Hao Goh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Bioengineering & Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Günter J. Hämmerling
- Division of Molecular Immunology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Paola Ricciardi-Castagnoli
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (PR-C); (TSL)
| |
Collapse
|
21
|
Heib V, Sparber F, Tripp CH, Ortner D, Stoitzner P, Heufler C. Cytip regulates dendritic-cell function in contact hypersensitivity. Eur J Immunol 2012; 42:589-97. [PMID: 22488362 PMCID: PMC3470920 DOI: 10.1002/eji.201041286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 11/09/2011] [Accepted: 12/22/2011] [Indexed: 11/28/2022]
Abstract
Cytohesin-interacting protein (Cytip) is induced during dendritic cell (DC) maturation and in T cells upon activation. It has also been shown to be involved in the regulation of immune responses. Here, we evaluated the functional consequences of Cytip deficiency in DCs using Cytip knockout (KO) mice. No difference in DC subpopulations in the skin draining lymph nodes (LNs) was found between Cytip KO mice and their wild-type counterparts, excluding a role in DC development. To investigate the function of Cytip in DCs in vivo, we used 2,4,6-trinitrochlorobenzene (TNCB)-induced contact hypersensitivity (CHS) as a model system. In the sensitization as well as in the elicitation phase, DCs derived from Cytip KO mice induced an increased inflammatory reaction indicated by more pronounced ear swelling. Furthermore, IL-12 production was increased in Cytip KO bone marrow-derived DCs (BMDCs) after CpG stimulation. Additionally, Cytip-deficient DCs loaded with ovalbumin induced stronger proliferation of antigen-specific CD4(+) and CD8(+) T cells in vitro. Finally, migration of skin DCs was not altered after TNCB application due to Cytip deficiency. Taken together, these data suggest a suppressive function for Cytip in mouse DCs in limiting immune responses.
Collapse
Affiliation(s)
- Valeska Heib
- Department of Dermatology and Venereology, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
22
|
Ortner D, Grabher D, Hermann M, Kremmer E, Hofer S, Heufler C. The adaptor protein Bam32 in human dendritic cells participates in the regulation of MHC class I-induced CD8+ T cell activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:3972-8. [PMID: 21930970 DOI: 10.4049/jimmunol.1003072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is strongly induced during the maturation of dendritic cells (DC). Most known functions of Bam32 are related to the signaling of the B cell receptor for Ag. Because DC do not express receptors specific for Ags, we aim at characterizing the role of Bam32 in human monocyte-derived DC in this study. Our results show that binding of allogeneic T cells to mature DC causes accumulation of Bam32 on the contact sites and that this translocation is mimicked by Ab-mediated engagement of MHC class I. Silencing of Bam32 in mature monocyte-derived DC results in an enhanced proliferation of CD8(+) T cells in an Ag-specific T cell proliferation assay. Further studies identify galectin-1 as an intracellular binding partner of Bam32. Regulating immune responses via regulatory T cell (Treg) modulation is one of the many immunological activities attributed to galectin-1. Therefore, we assayed mixed leukocyte reactions for Treg expansion and found fewer Treg in reactions stimulated with DC silenced for Bam32 compared to reactions stimulated with DC treated with a nontarget control. Based on our findings, we propose a role for Bam32 in the signaling of MHC class I molecules in professional Ag-presenting DC for the regulation of CD8(+) T cell activation. It is distinct from that of MHC class I recognized by CD8(+) T cells leading to target [corrected] cell death. Thus, our data pinpoint a novel level of T cell regulation that may be of biological relevance.
Collapse
Affiliation(s)
- Daniela Ortner
- Department of Dermatology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Infection of dendritic cells with herpes simplex virus type 1 induces rapid degradation of CYTIP, thereby modulating adhesion and migration. Blood 2011; 118:107-15. [PMID: 21562043 DOI: 10.1182/blood-2010-07-294363] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immune responses require spatial and temporal coordinated interactions between different cell types within distinct microenvironments. This dynamic interplay depends on the competency of the involved cells, predominantly leukocytes, to actively migrate to defined sites of cellular encounters in various tissues. Because of their unique capacity to transport antigen from the periphery to secondary lymphoid tissues for the activation of naive T cells, dendritic cells (DCs) play a key role in the initiation and orchestration of adaptive immune responses. Therefore, pathogen-mediated interference with this process is a very effective way of immune evasion. CYTIP (cytohesin-interacting protein) is a key regulator of DC motility. It has previously been described to control LFA-1 deactivation and to regulate DC adherence. CYTIP expression is up-regulated during DC maturation, enabling their transition from the sessile to the motile state. Here, we demonstrate that on infection of human monocyte-derived DCs with herpes simplex virus type 1 (HSV-1), CYTIP is rapidly degraded and as a consequence β-2 integrins, predominantly LFA-1, are activated. Furthermore, we show that the impairment of migration in HSV-1-infected DCs is in part the result of this increased integrin-mediated adhesion. Thus, we propose a new mechanism of pathogen-interference with central aspects of leukocyte biology.
Collapse
|
24
|
El azreq MA, Bourgoin SG. Cytohesin-1 regulates human blood neutrophil adhesion to endothelial cells through β2 integrin activation. Mol Immunol 2011; 48:1408-16. [PMID: 21511340 DOI: 10.1016/j.molimm.2011.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 12/23/2022]
Abstract
Cytohesin-1 is a guanine nucleotide exchange factor for ADP ribosylation factor 6 (Arf6) in human blood neutrophils and differentiated PLB-985 neutrophil-like cells. Cytohesin-1 regulates adhesion and the transendothelial migration of monocytes, dendritic cells and T lymphocytes through activation of the β2 integrin LFA-1. In this study we investigated the role of cytohesin-1 in neutrophil and neutrophil-like cell adhesion to HUVECs, immobilized ICAM-1, and the α4β1 and α5β1 integrin extracellular matrix ligand fibronectin. We show that cytohesin-1 knockdown or inhibition with secinH3 inhibits fMLF-mediated cell adhesion to HUVECs and immobilized ICAM-1, whereas cytohesin-1 over-expression has the opposing effect. Binding of PLB-985 cells to HUVECs correlated with expression of the high-affinity β2 integrin epitope recognized by mAb24. Adhesion to HUVECs was inhibited by soluble ICAM-1, anti-ICAM-1, anti-CD11a and anti-CD18, but not anti-CD11b, blocking antibodies. We also demonstrate that cytohesin-1 knockdown promotes fMLF-mediated cell adhesion to fibronectin whereas cytohesin-1 over-expression has the opposing effect. Crosstalk between β1 and β2 integrins also exists since inhibition of β1 integrin functions with blocking antibodies enhanced adhesion of PLB-985 over-expressing cytohesin-1 to ICAM-1. We suggest that cytohesin-1 is a key regulator of neutrophil adhesion to endothelial cells and to components of extracellular matrix, which may influence cell emigration through its dual opposing effect on β2 and β1 integrin activation.
Collapse
Affiliation(s)
- Mohammed-Amine El azreq
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ-CHUL, Québec, Canada
| | | |
Collapse
|
25
|
Yang L, Matsuda T, Raviraj V, Ching YW, Braet F, Nagai T, Soon LL. Imaging the dynamics of intracellular protein translocation by photoconversion of phamret-cybr/ROM. J Microsc 2010; 242:250-61. [PMID: 21118394 DOI: 10.1111/j.1365-2818.2010.03463.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cybr/Reduced On-random Motile (ROM) is a scaffold protein, containing a postsynaptic density protein-95/discs-large/ZO-1 (PDZ) domain, a LEU region and a PDZ domain binding region at the C-terminus. In the immune system, Cybr/ROM was found to localize in vesicles and at the plasma membrane, through interactions with cytohesin-1. In this investigation, we reported Cybr/ROM as occurring in vesicles, the cytoplasm and at membrane ruffles of H1299 lung cancer cells. Its localization at the ruffles was dependent on intact actin structures as indicated by latrunculin A treatment, which abrogated ruffle formation and staining of Cybr/ROM at the cells' periphery. Transfection of truncation mutants consisting of either the PDZ or LEU domain showed that the LEU domain of ROM was localized to membrane ruffles, vesicles and the cytoplasm, whereas, the PDZ domain localized to the membrane ruffles and cytoplasm only. There was therefore, domain/molecular segregation of Cybr/ROM in different cellular compartments. Cybr/ROM was subcloned into a plasmid carrying the photoactivation-mediated resonance energy transfer (Phamret) protein. The photoconversion experiments demonstrated the diffusion of ROM from the cytoplasm to the membrane ruffling sites and conversely from membrane ruffles to the cytoplasm. Large variances in the transport velocity of Cybr/ROM in the cytoplasm suggested that its movements were facilitated by other mechanisms in addition to diffusion.
Collapse
Affiliation(s)
- L Yang
- Australian Centre for Microscopy and Microanalysis (ACMM), Australian Microscopy and Microanalysis Research Facility (AMMRF), University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Stalder D, Barelli H, Gautier R, Macia E, Jackson CL, Antonny B. Kinetic studies of the Arf activator Arno on model membranes in the presence of Arf effectors suggest control by a positive feedback loop. J Biol Chem 2010; 286:3873-83. [PMID: 21118813 DOI: 10.1074/jbc.m110.145532] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins of the cytohesin/Arno/Grp1 family of Arf activators are positive regulators of the insulin-signaling pathway and control various remodeling events at the plasma membrane. Arno has a catalytic Sec7 domain, which promotes GDP to GTP exchange on Arf, followed by a pleckstrin homology (PH) domain. Previous studies have revealed two functions of the PH domain: inhibition of the Sec7 domain and membrane targeting. Interestingly, the Arno PH domain interacts not only with a phosphoinositide (phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate) but also with an activating Arf family member, such as Arf6 or Arl4. Using the full-length membrane-bound forms of Arf1 and Arf6 instead of soluble forms, we show here that the membrane environment dramatically affects the mechanism of Arno activation. First, Arf6-GTP stimulates Arno at nanomolar concentrations on liposomes compared with micromolar concentrations in solution. Second, mutations in the PH domain that abolish interaction with Arf6-GTP render Arno completely inactive when exchange reactions are reconstituted on liposomes but have no effect on Arno activity in solution. Third, Arno is activated by its own product Arf1-GTP in addition to a distinct activating Arf isoform. Consequently, Arno activity is strongly modulated by competition with Arf effectors. These results show that Arno behaves as a bistable switch, having an absolute requirement for activation by an Arf protein but, once triggered, becoming highly active through the positive feedback effect of Arf1-GTP. This property of Arno might provide an explanation for its function in signaling pathways that, once triggered, must move forward decisively.
Collapse
Affiliation(s)
- Danièle Stalder
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
27
|
LFA-1 activity state on dendritic cells regulates contact duration with T cells and promotes T-cell priming. Blood 2010; 116:1885-94. [PMID: 20530790 DOI: 10.1182/blood-2009-05-224428] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key event in the successful induction of adaptive immune responses is the antigen-specific activation of T cells by dendritic cells (DCs). Although LFA-1 (lymphocyte function-associated antigen 1) on T cells is considered to be important for antigen-specific T-cell activation, the role for LFA-1 on DCs remains elusive. Using 2 different approaches to activate LFA-1 on DCs, either by deletion of the αL-integrin cytoplasmic GFFKR sequence or by silencing cytohesin-1-interacting protein, we now provide evidence that DCs are able to make use of active LFA-1 and can thereby control the contact duration with naive T cells. Enhanced duration of DC/T-cell interaction correlates inversely with antigen-specific T-cell proliferation, generation of T-helper 1 cells, and immune responses leading to delayed-type hypersensitivity. We could revert normal interaction time and T-cell proliferation to wild-type levels by inhibition of active LFA-1 on DCs. Our data further suggest that cytohesin-1-interacting protein might be responsible for controlling LFA-1 deactivation on mature DCs. In summary, our findings indicate that LFA-1 on DCs needs to be in an inactive state to ensure optimal T-cell activation and suggest that regulation of LFA-1 activity allows DCs to actively control antigen-driven T-cell proliferation and effective immune responses.
Collapse
|
28
|
Torii T, Miyamoto Y, Sanbe A, Nishimura K, Yamauchi J, Tanoue A. Cytohesin-2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. J Biol Chem 2010; 285:24270-81. [PMID: 20525696 DOI: 10.1074/jbc.m110.125658] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The formation of primitive adipose tissue is the initial process in adipose tissue development followed by the migration of preadipocytes into adipocyte clusters. Comparatively little is known about the molecular mechanism controlling preadipocyte migration. Here, we show that cytohesin-2, the guanine-nucleotide exchange factor for the Arf family GTP-binding proteins, regulates migration of mouse preadipocyte 3T3-L1 cells through Arf6. SecinH3, a specific inhibitor of the cytohesin family, markedly inhibits migration of 3T3-L1 cells. 3T3-L1 cells express cytohesin-2 and cytohesin-3, and knockdown of cytohesin-2 with its small interfering RNA effectively decreases cell migration. Cytohesin-2 preferentially acts upstream of Arf6 in this signaling pathway. Furthermore, we find that the focal adhesion protein paxillin forms a complex with cytohesin-2. Paxillin colocalizes with cytohesin-2 at the leading edges of migrating cells. This interaction is mediated by the LIM2 domain of paxillin and the isolated polybasic region of cytohesin-2. Importantly, migration is inhibited by expression of the constructs containing these regions. These results suggest that cytohesin-2, through a previously unexplored complex formation with paxillin, regulates preadipocyte migration and that paxillin plays a previously unknown role as a scaffold protein of Arf guanine-nucleotide exchange factor.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Okura, Tokyo 157-8535, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Oh SJ, Santy LC. Differential effects of cytohesins 2 and 3 on beta1 integrin recycling. J Biol Chem 2010; 285:14610-6. [PMID: 20223830 DOI: 10.1074/jbc.m109.043935] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
ADP-ribosylation actor 6 (ARF6) regulates the endocytosis and recycling of a variety of proteins and also promotes peripheral actin rearrangements and cell motility. ARF6 is activated by a large number of guanine nucleotide exchange factors, which likely regulate ARF6 at different locations and during different processes. In this study we investigate the roles of the cytohesin ADP-ribosylation factor (ARF)-guanine nucleotide exchange factors during the recycling of integrin beta1. Intriguingly, we find that knockdown and overexpression of ARNO/cytohesin 2 and GRP1/cytohesin 3 have opposing effects on cell adhesion and spreading on fibronectin and on cell migration. We find that ARNO/cytohesin 2 is required for integrin beta1 recycling, whereas GRP1/cytohesin 3 is dispensable for this process. This is the first demonstration of unique roles for these proteins.
Collapse
Affiliation(s)
- Seung Ja Oh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
30
|
White DT, McShea KM, Attar MA, Santy LC. GRASP and IPCEF promote ARF-to-Rac signaling and cell migration by coordinating the association of ARNO/cytohesin 2 with Dock180. Mol Biol Cell 2009; 21:562-71. [PMID: 20016009 PMCID: PMC2820421 DOI: 10.1091/mbc.e09-03-0217] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ARF-GEF ARNO promotes motility by activating ARF6 and a subsequent downstream activation of Rac. ARNO is shown to associate with the Rac GEF Dock180 via its coiled-coil domain. Knockdown of scaffold proteins that bind ARNO disrupts the formation of this complex and disrupts ARF-to-Rac signaling. ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein–protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs.
Collapse
Affiliation(s)
- David T White
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
31
|
Role of Cybr, a cytohesin binder and regulator, in CD4(+) T-cell function and host immunity. Mol Immunol 2009; 46:3218-23. [PMID: 19744714 DOI: 10.1016/j.molimm.2009.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 01/12/2023]
Abstract
Cytohesin binder and regulator (Cybr) is known to regulate leukocyte adhesion and migration. However, its function in T-cells is poorly understood. Here, we investigated the role of Cybr in CD4(+) T-cell function and host immunity. Cybr inhibited p38 phosphorylation following CD4(+) T-cell stimulation. Since p38 regulates the expression of T-box expressed in T-cells (T-bet) but not GATA binding protein 3 (GATA-3) in T-cells, Cybr decreased the expression of T-bet and IFN-gamma in CD4(+) T-cells. Moreover, we found that host immunity against Listeria infection and IFN-gamma production in blood were significantly compromised in Cybr-overexpressing transgenic mice. In summary, our data suggest that Cybr represses the expression of T-bet and IFN-gamma via an inhibition of p38 in T-cells and consequently reduces host resistance to bacterial infection in mice.
Collapse
|
32
|
Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood 2009; 113:5801-10. [PMID: 19346499 DOI: 10.1182/blood-2008-08-176123] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion and motility of mammalian leukocytes are essential requirements for innate and adaptive immune defense mechanisms. We show here that the guanine nucleotide exchange factor cytohesin-1, which had previously been demonstrated to be an important component of beta-2 integrin activation in lymphocytes, regulates the activation of the small GTPase RhoA in primary dendritic cells (DCs). Cytohesin-1 and RhoA are both required for the induction of chemokine-dependent conformational changes of the integrin beta-2 subunit of DCs during adhesion under physiological flow conditions. Furthermore, use of RNAi in murine bone marrow DCs (BM-DCs) revealed that interference with cytohesin-1 signaling impairs migration of wild-type dendritic cells in complex 3D environments and in vivo. This phenotype was not observed in the complete absence of integrins. We thus demonstrate an essential role of cytohesin-1/RhoA during ameboid migration in the presence of integrins and further suggest that DCs without integrins switch to a different migration mode.
Collapse
|
33
|
Lambrechts N, Verstraelen S, Lodewyckx H, Felicio A, Hooyberghs J, Witters H, Van Tendeloo V, Van Cauwenberge P, Nelissen I, Van Den Heuvel R, Schoeters G. THP-1 monocytes but not macrophages as a potential alternative for CD34+ dendritic cells to identify chemical skin sensitizers. Toxicol Appl Pharmacol 2009; 236:221-30. [DOI: 10.1016/j.taap.2009.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/16/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
|
34
|
MacNeil AJ, Pohajdak B. Getting aGRASPon CASP: properties and role of the cytohesin‐associated scaffolding protein in immunity. Immunol Cell Biol 2008; 87:72-80. [DOI: 10.1038/icb.2008.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Adam J MacNeil
- Department of Biology, Dalhousie University Nova Scotia Halifax Canada
| | - Bill Pohajdak
- Department of Biology, Dalhousie University Nova Scotia Halifax Canada
| |
Collapse
|
35
|
Cybr, CYTIP or CASP: an attempt to pinpoint a molecule's functions and names. Immunobiology 2008; 213:729-32. [PMID: 18926288 DOI: 10.1016/j.imbio.2008.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/20/2022]
Abstract
Over the last decade several groups, including ourself, have published a series of findings on a molecule expressed in leukocytes. The molecule was termed Cybr, CYTIP or CASP for its functions and PSCDBP for its binding properties. In this review we attempt to chronicle and combine the findings on the molecule to gain an overview of its features.
Collapse
|
36
|
Gene duplication in early vertebrates results in tissue-specific subfunctionalized adaptor proteins: CASP and GRASP. J Mol Evol 2008; 67:168-78. [PMID: 18600293 DOI: 10.1007/s00239-008-9136-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/22/2008] [Accepted: 06/09/2008] [Indexed: 01/12/2023]
Abstract
CASP and GRASP are small cytoplasmic adaptor proteins that share highly similar protein structures as well as an association with the cytohesin/ARNO family of guanine nucleotide exchange factors within the immune and nervous systems respectively. Each contains an N-terminal PDZ domain, a central coiled-coil motif, and a carboxy-terminal PDZ-binding motif (PDZbm). We set out to further characterize the relationship between CASP and GRASP by comparing both their gene structures and their functional motifs across several vertebrate organisms. CASP and GRASP not only share significant protein structure but also share remarkably similar gene structure, with six of eight exons of equal length and relative position. We report on the addition of a unique amino acid within the coiled-coil motif of CASP proteins in several species. We also examine the Class I PDZbm, which is highly conserved across all classes of vertebrates but shows a functionally relevant mutation in the CASP proteins of several species of fish. Further, we determine the evolutionary relationship of these proteins both by use of phylogenetics and by comparative analysis of the conservation of genes near each locus in various chordates including amphioxus. We conclude that CASP and GRASP are the products of a relatively recent gene duplication event in early vertebrate organisms and that the evolution of the adaptive immune system and complex brain most likely contributed to the apparent subfunctionalization of these proteins into tissue-specific roles.
Collapse
|
37
|
O'Brien M, Morrison JJ, Smith TJ. Upregulation of PSCDBP, TLR2, TWIST1, FLJ35382, EDNRB, and RGS12 gene expression in human myometrium at labor. Reprod Sci 2008; 15:382-93. [PMID: 18497345 DOI: 10.1177/1933719108316179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regulatory mechanisms underlying myometrial smooth muscle contractility during labor are poorly understood. The authors therefore investigated the transcriptional profile of the changes that occur in the human myometrium at term pregnancy when compared with that at labor. Microarray technology was used to identify differentially expressed genes in human myometrium at labor. Real-time fluorescence reversetranscriptase polymerase chain reaction (RT-PCR) was subsequently performed to verify the microarray data. Semiquantitative RT-PCR, Western blotting, and microscopy methodologies were also used. Certain novel genes were found to be upregulated in human myometrium at labor. Of these, PSCDBP, TLR2, TWIST1 , FLJ35382, andRGS12 have not been previously characterized or identified in human myometrium. EDNRB is the other novel labor-associated gene whose reported expression is also upregulated at labor. All 6 genes were expressed on human myometrial smooth muscle cells. These novel upregulated genes are involved in multiple pathways that may be associated with a variety of cellular processes including inflammation, transcriptional regulation, and intracellular signaling.
Collapse
Affiliation(s)
- Margaret O'Brien
- National Centre for Biomedical and Engineering Science, National University of Ireland Galway, Galway, Ireland.
| | | | | |
Collapse
|
38
|
Abstract
The ADP ribosylation factors (Arfs) are a family of small, ubiquitously expressed and evolutionarily conserved guanosine triphosphatases that are key regulators of vesicular transport in eukaryotic cells (D'Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006;7:347-358). Although Arfs are best known for their role in the nucleation of coat protein assembly at a variety of intracellular locations, it is increasingly apparent that they are also integral components in a number of important signaling pathways that are regulated by extracellular cues. The activation of Arfs is catalyzed by a family of guanine nucleotide exchange factors (GEFs), referred to as the Sec7 family, based on homology of their catalytic domains to the yeast Arf GEF, sec7p. While there are only six mammalian Arfs, the human genome encodes 15 Sec7 family members, which can be divided into five classes based on related domain organization. Some of this diversity arises from the tissue-specific expression of certain isoforms, but all mammalian cells appear to express at least six Arf GEFs, suggesting that Arf activation is under extensive regulatory control. Here we review recent progress in our understanding of the structure, localization and biology of the different classes of Arf GEFs.
Collapse
Affiliation(s)
- James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908-0732, USA.
| |
Collapse
|
39
|
Reichardt P, Dornbach B, Gunzer M. The molecular makeup and function of regulatory and effector synapses. Immunol Rev 2007; 218:165-77. [PMID: 17624952 DOI: 10.1111/j.1600-065x.2007.00526.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Physical interactions between T cells and antigen-presenting cells (APCs) form the basis of any specific immune response. Upon cognate contacts, a multimolecular assembly of receptors and adhesion molecules on both cells is created, termed the immunological synapse (IS). Very diverse structures of ISs have been described, yet the functional importance for T-cell differentiation is largely unclear. Here we discuss the principal structure and function of ISs. We then focus on two characteristic T-cell-APC pairs, namely T cells contacting dendritic cells (DCs) or naive B cells, for which extremely different patterns of the IS have been observed as well as fundamentally different effects on the function of the activated T cells. We provide a model on how differences in signaling and the involvement of adhesion molecules might lead to diverse interaction kinetics and, eventually, diverse T-cell differentiation. We hypothesize that the preferred activation of the adhesion molecule leukocyte function-associated antigen-1 (LFA-1) and of the negative regulator for T-cell activation, cytotoxic T-lymphocyte antigen-4 (CTLA-4), through contact with naive B cells, lead to prolonged cell-cell contacts and the generation of T cells with regulatory capacity. In contrast, DCs might have evolved mechanisms to avoid LFA-1 overactivation and CTLA-4 triggering, thereby promoting more dynamic contacts that lead to the preferential generation of effector cells.
Collapse
Affiliation(s)
- Peter Reichardt
- Junior Research Group Immunodynamics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | |
Collapse
|
40
|
Kolanus W. Guanine nucleotide exchange factors of the cytohesin family and their roles in signal transduction. Immunol Rev 2007; 218:102-13. [PMID: 17624947 DOI: 10.1111/j.1600-065x.2007.00542.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the cytohesin protein family, a group of guanine nucleotide exchange factors for adenosine diphosphate ribosylation factor (ARF) guanosine triphosphatases, have recently emerged as important regulators of signal transduction in vertebrate and invertebrate biology. These proteins share a modular domain structure, comprising carboxy-terminal membrane recruitment elements, a Sec7 homology effector domain, and an amino-terminal coiled-coil domain that serve as a platform for their integration into larger signaling complexes. Although these proteins have a highly similar overall build, their individual biological functions appear to be at least partly specific. Cytohesin-1 had been identified as a regulator of beta2 integrin inside-out regulation in immune cells and was subsequently shown to be involved in mitogen-associated protein kinase signaling in tumor cell proliferation as well as in T-helper cell activation and differentiation. Cytohesin-3, which had been discovered to be strongly associated with T-cell anergy, was very recently described as an essential component of insulin signal transduction in Drosophila and in human and murine liver cells. Future work will aim to dissect the mechanistic details of the modes of action of the cytohesins as well as to define the precise roles of these versatile proteins in vertebrates at the genetic level.
Collapse
Affiliation(s)
- Waldemar Kolanus
- Laboratory of Molecular Immunology, Program Unit Molecular Immune and Cell Biology, LIMES (Life and Medical Sciences Bonn), University of Bonn, Bonn, Germany.
| |
Collapse
|
41
|
Laroche G, Giguère PM, Dupré E, Dupuis G, Parent JL. The N-terminal coiled-coil domain of the cytohesin/ARNO family of guanine nucleotide exchange factors interacts with Galphaq. Mol Cell Biochem 2007; 306:141-52. [PMID: 17846866 DOI: 10.1007/s11010-007-9564-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/12/2007] [Indexed: 01/06/2023]
Abstract
Cytohesins are guanine-nucleotide exchange factors (GEF) for the Arf family of GTPases. One member of the Arf family, ARF6, plays an active role in the intracellular trafficking of G protein-coupled receptors. We have previously reported that Galphaq signaling leads to the activation of ARF6, possibly through a direct interaction with cytohesin-2/ARNO. Here, we report that Galphaq can directly interact with cytohesin-1, another Arf-GEF of the ARNO/cytohesin family. Cytohesin-1 preferentially associated with a constitutively active mutant of Galphaq (Galphaq-Q209L) compared to wild-type Galphaq in HEK293 cells. Stimulation of TPbeta, a Galphaq-coupled receptor, to activate Galphaq resulted in the promotion of a protein complex between Galphaq and cytohesin-1. Confocal immunofluorescence microscopy revealed that wild-type Galphaq and cytohesin-1 co-localized in intracellular compartments and at or near the plasma membrane. In contrast, expression of Galphaq-Q209L induced a drastic increase in the localization of cytohesin-1 at the plasma membrane. Expression of a dominant-negative mutant of cytohesin-1 reduced by 40% the agonist-induced internalization of TPbeta, a process that we previously demonstrated to be dependent on Galphaq-mediated signaling and Arf6 activation. Using deletion mutants, we show that cytohesin-1 interacts with Galphaq through its N-terminal coiled-coil domain. Cytohesin-1 and cytohesin-2/ARNO mutants lacking the coiled-coil domain were unable to relay Galphaq-mediated activation of Arf6. This is the first report of an interaction between the coiled-coil domain of the cytohesin/ARNO family of Arf-GEFs and a member of the heterotrimeric G proteins.
Collapse
Affiliation(s)
- Geneviève Laroche
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, Centre de Recherche Clinique Etienne-Lebel, University of Sherbrooke, 3001, 12th Avenue North, J1H 5N4 Fleurimont, Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
42
|
MacNeil AJ, Mansour M, Pohajdak B. Sorting nexin 27 interacts with the Cytohesin associated scaffolding protein (CASP) in lymphocytes. Biochem Biophys Res Commun 2007; 359:848-53. [PMID: 17577583 DOI: 10.1016/j.bbrc.2007.05.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
CASP is a small cytokine-inducible protein, primarily expressed in hematopoetic cells, which associates with members of the Cytohesin/ARNO family of guanine nucleotide-exchange factors. Cytohesins activate ARFs, a group of GTPases involved in vesicular initiation. Functionally, CASP is an adaptor protein containing a PDZ domain, a coiled-coil, and a potential carboxy terminal PDZ-binding motif that we sought to characterize here. Using GST pulldowns and mass spectrometry we identified the novel interaction of CASP and sorting nexin 27 (SNX27). In lymphocytes, CASP's PDZ-binding motif interacts with the PDZ domain of SNX27. This protein is a unique member of the sorting nexin family of proteins, a group generally involved in the endocytic and intracellular sorting machinery. Endogenous SNX27 and CASP co-localize at the early endosomal compartment in lymphocytes and also in transfection studies. These results suggest that endosomal SNX27 may recruit CASP to orchestrate intracellular trafficking and/or signaling complexes.
Collapse
Affiliation(s)
- Adam J MacNeil
- Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1
| | | | | |
Collapse
|
43
|
Varga G, Balkow S, Wild MK, Stadtbaeumer A, Krummen M, Rothoeft T, Higuchi T, Beissert S, Wethmar K, Scharffetter-Kochanek K, Vestweber D, Grabbe S. Active MAC-1 (CD11b/CD18) on DCs inhibits full T-cell activation. Blood 2006; 109:661-9. [PMID: 17003381 DOI: 10.1182/blood-2005-12-023044] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe β2 integrins are important for transendothelial migration of leukocytes as well as for T-cell activation during antigen presentation. Despite abundant expression of β2 integrins on antigen-presenting cells (APCs), their functional relevance for antigen presentation is completely unclear. We show here that dendritic cells (DCs) from CD18-deficient mice, which lack all functional β2 integrins, have no defect in antigen presentation. Moreover, DCs from normal mice express inactive β2 integrins that do not become activated on contact with T cells, at least in vitro. Pharmacologic activation of β2 integrins on DCs results in a significant reduction of their T cell–activating capacity. This effect is mediated by Mac-1 (CD11b/CD18) on DCs because it could be reversed via blocking antibodies against CD18 and CD11b. Furthermore, the antigen-presenting capacity of macrophages, which express constitutively active β2 integrins, is significantly enhanced on Mac-1 blockade. We therefore conclude that active CD11b/CD18 (Mac-1) on APCs directly inhibits T-cell activation.
Collapse
Affiliation(s)
- Georg Varga
- Cell Biology, Department of Dermatology, University of Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Watford WT, Li D, Agnello D, Durant L, Yamaoka K, Yao ZJ, Ahn HJ, Cheng TP, Hofmann SR, Cogliati T, Chen A, Hissong BD, Husa MR, Schwartzberg P, O'Shea JJ, Gadina M. Cytohesin binder and regulator (cybr) is not essential for T- and dendritic-cell activation and differentiation. Mol Cell Biol 2006; 26:6623-32. [PMID: 16914744 PMCID: PMC1592848 DOI: 10.1128/mcb.02460-05] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cybr (also known as Cytip, CASP, and PSCDBP) is an interleukin-12-induced gene expressed exclusively in hematopoietic cells and tissues that associates with Arf guanine nucleotide exchange factors known as cytohesins. Cybr levels are dynamically regulated during T-cell development in the thymus and upon activation of peripheral T cells. In addition, Cybr is induced in activated dendritic cells and has been reported to regulate dendritic cell (DC)-T-cell adhesion. Here we report the generation and characterization of Cybr-deficient mice. Despite the selective expression in hematopoietic cells, there was no intrinsic defect in T- or B-cell development or function in Cybr-deficient mice. The adoptive transfer of Cybr-deficient DCs showed that they migrated efficiently and stimulated proliferation and cytokine production by T cells in vivo. However, competitive stem cell repopulation experiments showed a defect in the abilities of Cybr-deficient T cells to develop in the presence of wild-type precursors. These data suggest that Cybr is not absolutely required for hematopoietic cell development or function, but stem cells lacking Cybr are at a developmental disadvantage compared to wild-type cells. Collectively, these data demonstrate that despite its selective expression in hematopoietic cells, the role of Cybr is limited or largely redundant. Previous in vitro studies using overexpression or short interfering RNA inhibition of the levels of Cybr protein appear to have overestimated its immunological role.
Collapse
Affiliation(s)
- Wendy T Watford
- LCBS-MIIB-NIAMS-NIH, Bldg. 10, Room 9N256, MSC-1820, 10 Center Dr., Bethesda, MD 20892-1820, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Munker R, Reibke R, Kolb HJ. Graft-versus-host and graft-versus-leukemia reactions: a summary of the Seventh International Symposium held in Garmisch-Partenkirchen, Germany, February 22nd–25th, 2006, Tolerance and Immunity, an update on lymphoid malignancies. Bone Marrow Transplant 2006; 38:593-607. [PMID: 16980992 DOI: 10.1038/sj.bmt.1705499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Seventh International Symposium on graft-versus-host and graft-versus-leukemia reactions was held in Garmisch Partenkirchen (Germany, near Lake Riessersee) between January 22nd and 25th, 2006. A total of more than 100 invited participants (scientists and clinicians working in the area of allogeneic stem cell transplantation) discussed research in the area of lymphoid malignancies. Major topics of the 2006 meeting were lymphocyte biology, experimental systems, lymphoma pathogenesis, cellular therapy in vivo and vitro, idiotype-specific responses and graft-versus-malignancy reactions for lymphomas and multiple myeloma. Further highlights were immune responses to blasts of ALL, haploidentical transplantation, role of natural killer cells, clinical guidelines for allogeneic transplantation and adoptive immunotherapy in chronic lymphocytic leukemia and multiple myeloma, new antibody-mediated strategies. As can be seen in the summaries of the individual presentations, progress was made in the understanding of lymphoma biology and in the clinical application of graft-versus-lymphoma or graft-versus-myeloma effects. Each day was followed by round-table discussions, which summarized new data and challenged established concepts. The discussions resulted in new insights and projects for basic research and clinical transplantation.
Collapse
Affiliation(s)
- R Munker
- Division of Hematology/Oncology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | |
Collapse
|
46
|
Coppola V, Barrick CA, Bobisse S, Rodriguez-Galan MC, Pivetta M, Reynolds D, Howard OMZ, Palko ME, Esteban PF, Young HA, Rosato A, Tessarollo L. The scaffold protein Cybr is required for cytokine-modulated trafficking of leukocytes in vivo. Mol Cell Biol 2006; 26:5249-58. [PMID: 16809763 PMCID: PMC1592701 DOI: 10.1128/mcb.02473-05] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trafficking and cell adhesion are key properties of cells of the immune system. However, the molecular pathways that control these cellular behaviors are still poorly understood. Cybr is a scaffold protein highly expressed in the hematopoietic/immune system whose physiological role is still unknown. In vitro studies have shown it regulates LFA-1, a crucial molecule in lymphocyte attachment and migration. Cybr also binds cytohesin-1, a guanine nucleotide exchange factor for the ARF GTPases, which affects actin cytoskeleton remodeling during cell migration. Here we show that expression of Cybr in vivo is differentially modulated by type 1 cytokines during lymphocyte maturation. In mice, Cybr deficiency negatively affects leukocytes circulating in blood and lymphocytes present in the lymph nodes. Moreover, in a Th1-polarized mouse model, lymphocyte trafficking is impaired by loss of Cybr, and Cybr-deficient mice with aseptic peritonitis have fewer cells than controls present in the peritoneal cavity, as well as fewer leukocytes leaving the bloodstream. Mutant mice injected with Moloney murine sarcoma/leukemia virus develop significantly larger tumors than wild-type mice and have reduced lymph node enlargement, suggesting reduced cytotoxic T-lymphocyte migration. Taken together, these data support a role for Cybr in leukocyte trafficking, especially in response to proinflammatory cytokines in stress conditions.
Collapse
Affiliation(s)
- Vincenzo Coppola
- Neural Development Group, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhou S, Liu Y, Bo H, Bian X, Xia X, Lin C, Wong VWS, Lu Z. Expression profilings of 39 genes selected by ANOVA could separate precursors of murine dendritic cells and macrophages. Biochem Biophys Res Commun 2006; 344:438-45. [PMID: 16603127 DOI: 10.1016/j.bbrc.2006.03.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Accepted: 03/06/2006] [Indexed: 11/29/2022]
Abstract
Dendritic cells (DCs) and macrophages share some stages in the development and function of antigen presentation. But it is difficult to separate them from their precursors. We used one-way ANOVA (analysis of variances) on murine expression profilings of several hematopoietic cells associated with DCs and macrophages to find the genes with great differences across the cell groups. These groups were the DCs from spleen, cultivated DCs, DC precursors, DC progenitors, DC progenitor cell lines, hematopoietic stem cell (HSC), and bone marrow-derived macrophages. The data of expression profilings were all downloaded from GEO and ArrayExpress database. After the normalization of 11 housekeeping genes across 42 arrays, we got 39 genes (44 probesets) by analysis of one-way ANOVA (Bonferroni step-down) with p values cutoff of 0.05. These genes (probesets) could separate the hematopoietic cells well by the methods of unsupervised hierarchical clustering and principal component analysis (PCA). The class prediction also indicated that these genes could separate the precursors of DC and macrophages with 20 arrays composed of 5 cell types with the same normalization. The accuracy rate of class prediction was 90% (18/20). The genes selected by one-way ANOVA included those of MHC (major histocompatibility complex) and defense of immunity, cell adhesion, chemokine or its receptors, and transcription factors. The results indicated that these 39 genes could separate precursors of DC and macrophages very clearly. It was suggested that these genes might represent some important molecules that related with the precursors of DCs and macrophages, and were worthy for further study.
Collapse
Affiliation(s)
- Shixin Zhou
- Chien-Shiung Wu Laboratory, Department of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen Q, Coffey A, Bourgoin SG, Gadina M. Cytohesin binder and regulator augments T cell receptor-induced nuclear factor of activated T Cells.AP-1 activation through regulation of the JNK pathway. J Biol Chem 2006; 281:19985-94. [PMID: 16702224 DOI: 10.1074/jbc.m601629200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytohesin binder and regulator (Cybr; also known as CYTIP, CASP, and PSCDBP) is a cytokine-induced gene preferentially expressed in hematopoietic tissues and in T helper 1 cells. Cybr protein associates with members of the cytohesin family, which are known ADP-ribosylation factors-GDP/GTP exchange factors, and its functions appear to regulate lymphocyte adhesion and cell-cell contact. Here we show that Cybr mRNA and protein levels are increased upon T cell receptor engagement. Cybr expression then influences T cell receptor-dependent signaling events, such as nuclear factor of activated T cells and AP-1 transcriptional activity. In addition, expression of Cybr results in increased T cell receptor-mediated activation of the Rho/Rac exchange factor Vav and of the JNK-p38 MAPK signaling pathway. The effects of Cybr on nuclear factor of activated T cells and AP-1 are dependent on MAPK activation, and enhanced activation of this cascade results in cooperation between the two transcription factors in the regulation of gene expression. These findings provide the first evidence that the adaptor protein Cybr not only regulates lymphocyte adhesion and cell-cell interaction but also contributes to the regulation of the signaling cascade and of the genetic program downstream of the T cell receptor.
Collapse
Affiliation(s)
- Qian Chen
- Division of Infection and Immunity, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | | | |
Collapse
|
49
|
Barreiro O, de la Fuente H, Mittelbrunn M, Sánchez-Madrid F. Posterolateral approach for open reduction and internal fixation of trimalleolar ankle fractures. Immunol Rev 2006; 218:147-64. [PMID: 17624951 DOI: 10.1111/j.1600-065x.2007.00529.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell-cell and cell-matrix interactions are of critical importance in immunobiology. Leukocytes make extensive use of a specialized repertoire of receptors to mediate such processes. Among these receptors, integrins are known to be of crucial importance. This review deals with the central role of integrins and their counterreceptors during the establishment of leukocyte-endothelium contacts, interstitial migration, and final encounter with antigen-presenting cells to develop an appropriate immune response. Particularly, we have addressed the molecular events occurring during these sequential processes, leading to the dynamic subcellular redistribution of adhesion receptors and the reorganization of the actin cytoskeleton, which is reflected in changes in cytoarchitecture, including leukocyte polarization, endothelial docking structure formation, or immune synapse organization. The roles of signaling and structural actin cytoskeleton-associated proteins and organized membrane microdomains in the regulation of receptor adhesiveness are also discussed.
Collapse
Affiliation(s)
- Olga Barreiro
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Russell S, Oliaro J. Compartmentalization in T‐cell signalling: Membrane microdomains and polarity orchestrate signalling and morphology. Immunol Cell Biol 2006; 84:107-13. [PMID: 16405658 DOI: 10.1111/j.1440-1711.2005.01415.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lymphocyte function is regulated by complex signalling responses to diverse extracellular inputs, and a cell will often receive multiple, conflicting signals at one time. The mechanisms by which a lymphocyte integrates these signals into a single cellular response are not well understood. An important factor in the integration of signals likely involves the regulation of access of signalling molecules to cell surface receptors and of receptor signals to morphological determinants within the cell. Recent studies have led to important advances in our understanding of both the mechanisms by which signals are compartmentalized in T cells and the physiological role played by such compartmentalization. We review progress in the field, with a particular focus on membrane microdomains or lipid rafts and on cell polarity.
Collapse
Affiliation(s)
- Sarah Russell
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | | |
Collapse
|