1
|
Nobs E, Laschanzky K, Munke K, Movert E, Valfridsson C, Carlsson F. Cytosolic serpins act in a cytoprotective feedback loop that limits ESX-1-dependent death of Mycobacterium marinum-infected macrophages. mBio 2024; 15:e0038424. [PMID: 39087767 PMCID: PMC11389378 DOI: 10.1128/mbio.00384-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024] Open
Abstract
Serine protease inhibitors (serpins) constitute the largest family of protease inhibitors expressed in humans, but their role in infection remains largely unexplored. In infected macrophages, the mycobacterial ESX-1 type VII secretion system permeabilizes internal host membranes and causes leakage into the cytosol of host DNA, which induces type I interferon (IFN) production via the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) surveillance pathway, and promotes infection in vivo. Using the Mycobacterium marinum infection model, we show that ESX-1-mediated type I IFN signaling in macrophages selectively induces the expression of serpina3f and serpina3g, two cytosolic serpins of the clade A3. The membranolytic activity of ESX-1 also caused leakage of cathepsin B into the cytosol where it promoted cell death, suggesting that the induction of type I IFN comes at the cost of lysosomal rupture and toxicity. However, the production of cytosolic serpins suppressed the protease activity of cathepsin B in this compartment and thus limited cell death, a function that was associated with increased bacterial growth in infected mice. These results suggest that cytosolic serpins act in a type I IFN-dependent cytoprotective feedback loop to counteract the inevitable toxic effect of ESX-1-mediated host membrane rupture. IMPORTANCE The ESX-1 type VII secretion system is a key virulence determinant of pathogenic mycobacteria. The ability to permeabilize host cell membranes is critical for several ESX-1-dependent virulence traits, including phagosomal escape and induction of the type I interferon (IFN) response. We find that it comes at the cost of lysosomal leakage and subsequent host cell death. However, our results suggest that ESX-1-mediated type I IFN signaling selectively upregulates serpina3f and serpina3g and that these cytosolic serpins limit cell death caused by cathepsin B that has leaked into the cytosol, a function that is associated with increased bacterial growth in vivo. The ability to rupture host membranes is widespread among bacterial pathogens, and it will be of interest to evaluate the role of cytosolic serpins and this type I IFN-dependent cytoprotective feedback loop in the context of human infection.
Collapse
Affiliation(s)
- Esther Nobs
- Department of Biology, Lund University, Lund, Sweden
| | | | - Kristina Munke
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elin Movert
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
2
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
3
|
N 6-methyladenosine of Spi2a attenuates inflammation and sepsis-associated myocardial dysfunction in mice. Nat Commun 2023; 14:1185. [PMID: 36864027 PMCID: PMC9979126 DOI: 10.1038/s41467-023-36865-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Bacteria-triggered sepsis is characterized by systemic, uncontrolled inflammation in affected individuals. Controlling the excessive production of pro-inflammatory cytokines and subsequent organ dysfunction in sepsis remains challenging. Here, we demonstrate that Spi2a upregulation in lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages reduces the production of pro-inflammatory cytokines and myocardial impairment. In addition, exposure to LPS upregulates the lysine acetyltransferase, KAT2B, to promote METTL14 protein stability through acetylation at K398, leading to the increased m6A methylation of Spi2a in macrophages. m6A-methylated Spi2a directly binds to IKKβ to impair IKK complex formation and inactivate the NF-κB pathway. The loss of m6A methylation in macrophages aggravates cytokine production and myocardial damage in mice under septic conditions, whereas forced expression of Spi2a reverses this phenotype. In septic patients, the mRNA expression levels of the human orthologue SERPINA3 negatively correlates with those of the cytokines, TNF, IL-6, IL-1β and IFNγ. Altogether, these findings suggest that m6A methylation of Spi2a negatively regulates macrophage activation in the context of sepsis.
Collapse
|
4
|
Mondal B, Padhy A, Maji S, Gupta A, Sen Gupta S. Dual stimuli-responsive cross-linked nanoassemblies from an amphiphilic mannose-6-phosphate based tri-block copolymer for lysosomal membrane permeabilization. Biomater Sci 2023; 11:1810-1827. [PMID: 36655818 DOI: 10.1039/d2bm02110b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive cross-linked nanocarriers that can induce lysosomal cell death (LCD) via lysosomal membrane permeabilization (LMP) represent a new class of delivery platforms and have attracted the attention of researchers in the biomedical field. The advantages of such cross-linked nanocarriers are as follows (i) they remain intact during blood circulation; and (ii) they reach the target site via specific receptor-mediated endocytosis leading to the enhancement of therapeutic efficacy and reduction of side effects. Herein, we have synthesized a mannose-6-phosphate (M6P) based amphiphilic ABC type tri-block copolymer having two chains of FDA-approved poly(ε-caprolactone) (PCL) as the hydrophobic block, and poly(S-(o-nitrobenzyl)-L-cysteine) (NBC) acts as the photoresponsive crosslinker block. Two different tri-block copolymers, [(PCL35)2-b-NBC20-b-M6PGP20] and [(PCL35)2-b-NBC15-b-M6PGP20], were synthesized which upon successful self-assembly initially formed spherical uncross-linked "micellar-type" aggregates (UCL-M) and vesicles (UCL-V), respectively. The uncross-linked nanocarriers upon UV treatment for thirty minutes were covalently crosslinked in the middle PNBC block giving rise to the di-sulfide bonds and forming interface cross-linked "micellar-type" aggregates (ICL-M) and vesicles (ICL-V). DLS, TEM, and AFM techniques were used to successfully characterize the morphology of these nanocarriers. The dual stimuli (redox and enzyme) responsiveness of the cross-linked nanocarriers and their trafficking to the lysosome in mammalian cells via receptor-mediated endocytosis was probed using confocal microscopy images. Furthermore, the addition of a chloroquine (CQ, a known lysosomotropic agent) encapsulated cross-linked nanocarrier (CQ@ICL-V) to non-cancerous (HEK-293T) cells and liver (HepG2), and breast cancer cells (MDA-MB-231) was found to initiate lysosomal membrane permeabilization (LMP) followed by lysosomal destabilization which eventually led to lysosomal cell death (LCD). Due to the targeted delivery of CQ to the lysosomes of cancerous cells, almost a 90% smaller amount of CQ was able to achieve similar cell death to CQ alone.
Collapse
Affiliation(s)
- Basudeb Mondal
- Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur Campus, Nadia-741246, India.
| | - Abinash Padhy
- Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur Campus, Nadia-741246, India.
| | - Saptarshi Maji
- Indian Institute of Science Education and Research Kolkata, Department of Biological Sciences, Mohanpur Campus, Nadia-741246, India
| | - Arnab Gupta
- Indian Institute of Science Education and Research Kolkata, Department of Biological Sciences, Mohanpur Campus, Nadia-741246, India
| | - Sayam Sen Gupta
- Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur Campus, Nadia-741246, India.
| |
Collapse
|
5
|
Pinto AT, Machado AB, Osório H, Pinto ML, Vitorino R, Justino G, Santa C, Castro F, Cruz T, Rodrigues C, Lima J, Sousa JLR, Cardoso AP, Figueira R, Monteiro A, Marques M, Manadas B, Pauwels J, Gevaert K, Mareel M, Rocha S, Duarte T, Oliveira MJ. Macrophage Resistance to Ionizing Radiation Exposure Is Accompanied by Decreased Cathepsin D and Increased Transferrin Receptor 1 Expression. Cancers (Basel) 2022; 15:270. [PMID: 36612268 PMCID: PMC9818572 DOI: 10.3390/cancers15010270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To identify a molecular signature of macrophages exposed to clinically relevant ionizing radiation (IR) doses, mirroring radiotherapy sessions. METHODS Human monocyte-derived macrophages were exposed to 2 Gy/ fraction/ day for 5 days, mimicking one week of cancer patient's radiotherapy. Protein expression profile by proteomics was performed. RESULTS A gene ontology analysis revealed that radiation-induced protein changes are associated with metabolic alterations, which were further supported by a reduction of both cellular ATP levels and glucose uptake. Most of the radiation-induced deregulated targets exhibited a decreased expression, as was the case of cathepsin D, a lysosomal protease associated with cell death, which was validated by Western blot. We also found that irradiated macrophages exhibited an increased expression of the transferrin receptor 1 (TfR1), which is responsible for the uptake of transferrin-bound iron. TfR1 upregulation was also found in tumor-associated mouse macrophages upon tumor irradiation. In vitro irradiated macrophages also presented a trend for increased divalent metal transporter 1 (DMT1), which transports iron from the endosome to the cytosol, and a significant increase in iron release. CONCLUSIONS Irradiated macrophages present lower ATP levels and glucose uptake, and exhibit decreased cathepsin D expression, while increasing TfR1 expression and altering iron metabolism.
Collapse
Affiliation(s)
- Ana Teresa Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Beatriz Machado
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Champalimaud Centre for the Unknown, Fundação Champalimaud, 1400-038 Lisboa, Portugal
| | - Hugo Osório
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Marta Laranjeiro Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gonçalo Justino
- Centro de Química Estrutural–Institute of Molecular Sciences, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
| | - Cátia Santa
- CNC–Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Flávia Castro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Tânia Cruz
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Rodrigues
- REQUIMTE–LAQV, Chemistry Department, NOVA School of Science and Technology, Universidade de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Lima
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - José Luís R. Sousa
- Personal Health Data Science Group, Sano-Centre for Computational Personalised Medicine, 30-054 Krakow, Poland
| | - Ana Patrícia Cardoso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Bruno Manadas
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sónia Rocha
- Institute of System, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3 GE, UK
| | - Tiago Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria José Oliveira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
6
|
Carrà G, Avalle L, Seclì L, Brancaccio M, Morotti A. Shedding Light on NF-κB Functions in Cellular Organelles. Front Cell Dev Biol 2022; 10:841646. [PMID: 35620053 PMCID: PMC9127296 DOI: 10.3389/fcell.2022.841646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
NF-κB is diffusely recognized as a transcriptional factor able to modulate the expression of various genes involved in a broad spectrum of cellular functions, including proliferation, survival and migration. NF-κB is, however, also acting outside the nucleus and beyond its ability to binds to DNA. NF-κB is indeed found to localize inside different cellular organelles, such as mitochondria, endoplasmic reticulum, Golgi and nucleoli, where it acts through different partners in mediating various biological functions. Here, we discuss the relationship linking NF-κB to the cellular organelles, and how this crosstalk between cellular organelles and NF-κB signalling may be evaluated for anticancer therapies.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
7
|
Adhikari UK, Sakiz E, Habiba U, Mikhael M, Senesi M, David MA, Guillemin GJ, Ooi L, Karl T, Collins S, Tayebi M. Treatment of microglia with Anti-PrP monoclonal antibodies induces neuronal apoptosis in vitro. Heliyon 2021; 7:e08644. [PMID: 35005289 PMCID: PMC8715334 DOI: 10.1016/j.heliyon.2021.e08644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
Previous reports highlighted the neurotoxic effects caused by some motif-specific anti-PrPC antibodies in vivo and in vitro. In the current study, we investigated the detailed alterations of the proteome with liquid chromatography–mass spectrometry following direct application of anti-PrPC antibodies on mouse neuroblastoma cells (N2a) and mouse primary neuronal (MPN) cells or by cross-linking microglial PrPC with anti-PrPC antibodies prior to co-culture with the N2a/MPN cells. Here, we identified 4 (3 upregulated and 1 downregulated) and 17 (11 upregulated and 6 downregulated) neuronal apoptosis-related proteins following treatment of the N2a and N11 cell lines respectively when compared with untreated cells. In contrast, we identified 1 (upregulated) and 4 (2 upregulated and 2 downregulated) neuronal apoptosis-related proteins following treatment of MPN cells and N11 when compared with untreated cells. Furthermore, we also identified 3 (2 upregulated and 1 downregulated) and 2 (1 upregulated and 1 downregulated) neuronal apoptosis-related related proteins following treatment of MPN cells and N11 when compared to treatment with an anti-PrP antibody that lacks binding specificity for mouse PrP. The apoptotic effect of the anti-PrP antibodies was confirmed with flow cytometry following labelling of Annexin V-FITC. The toxic effects of the anti-PrP antibodies was more intense when antibody-treated N11 were co-cultured with the N2a and the identified apoptosis proteome was shown to be part of the PrPC-interactome. Our observations provide a new insight into the prominent role played by microglia in causing neurotoxic effects following treatment with anti-PrPC antibodies and might be relevant to explain the antibody mediated toxicity observed in other related neurodegenerative diseases such as Alzheimer. Antibody cross-linking neuronal PrPC induces apoptosis. Antibody cross-linking microglial PrPC induces neuronal apoptosis. Different apoptotic pathways were triggered by specific anti-PrP antibody treatments.
Collapse
|
8
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
9
|
Perišić Nanut M, Pečar Fonović U, Jakoš T, Kos J. The Role of Cysteine Peptidases in Hematopoietic Stem Cell Differentiation and Modulation of Immune System Function. Front Immunol 2021; 12:680279. [PMID: 34335582 PMCID: PMC8322073 DOI: 10.3389/fimmu.2021.680279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
Cysteine cathepsins are primarily involved in the degradation and recycling of proteins in endo-lysosomal compartments but are also gaining recognition as pivotal proteolytic contributors to various immune functions. Through their extracellular proteolytic activities within the hematopoietic stem cell niche, they are involved in progenitor cell mobilization and differentiation. Cysteine cathepsins, such as cathepsins L and S contribute to antigen-induced adaptive immunity through major histocompatibility complex class II antigen presentation whereas cathepsin X regulates T-cell migration. By regulating toll-like receptor signaling and cytokine secretion cysteine cathepsins activate innate immune cells and affect their functional differentiation. Cathepsins C and H are expressed in cytotoxic T lymphocytes and natural killer cells and are involved in processing of pro-granzymes into proteolytically active forms. Cytoplasmic activities of cathepsins B and L contribute to the maintenance of homeostasis of the adaptive immune response by regulating cell death of T and B lymphocytes. The expression pattern, localization, and activity of cysteine cathepsins is tightly connected to their function in immune cells. Furthermore, cysteine cathepsins together with their endogenous inhibitors, serve as mediators in the interplay between cancer and immune cells that results in immune cell anergy. The aim of the present article is to review the mechanisms of dysregulation of cysteine cathepsins and their inhibitors in relation to immune dysfunction to address new possibilities for regulation of their function.
Collapse
Affiliation(s)
| | | | - Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Chen XC, Li ZH, Yang C, Tang JX, Lan HY, Liu HF. Lysosome Depletion-Triggered Autophagy Impairment in Progressive Kidney Injury. KIDNEY DISEASES 2021; 7:254-267. [PMID: 34395541 DOI: 10.1159/000515035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Background Macroautophagy (autophagy) is a cellular recycling process involving the destruction of damaged organelles and proteins in intracellular lysosomes for efficient nutrient reuse. Summary Impairment of the autophagy-lysosome pathway is tightly associated with multiple kidney diseases, such as diabetic nephropathy, proteinuric kidney disease, acute kidney injury, crystalline nephropathy, and drug- and heavy metal-induced renal injury. The impairment in the process of autophagic clearance may induce injury in renal intrinsic cells by activating the inflammasome, inducing cell cycle arrest, and cell death. The lysosome depletion may be a key mechanism triggering this process. In this review, we discuss this pathway and summarize the protective mechanisms for restoration of lysosome function and autophagic flux via the endosomal sorting complex required for transport (ESCRT) machinery, lysophagy, and transcription factor EB-mediated lysosome biogenesis. Key Message Further exploring mechanisms of ESCRT, lysophagy, and lysosome biogenesis may provide novel therapy strategies for the management of kidney diseases.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi-Hang Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Huangteerakul C, Aung HM, Thosapornvichai T, Duangkaew M, Jensen AN, Sukrong S, Ingkaninan K, Jensen LT. Chemical-Genetic Interactions of Bacopa monnieri Constituents in Cells Deficient for the DNA Repair Endonuclease RAD1 Appear Linked to Vacuolar Disruption. Molecules 2021; 26:1207. [PMID: 33668176 PMCID: PMC7956252 DOI: 10.3390/molecules26051207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chananya Huangteerakul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Thitipa Thosapornvichai
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Marisa Duangkaew
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Amornrat Naranuntarat Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10400, Thailand;
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Laran T. Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| |
Collapse
|
12
|
Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA. Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis. Cancers (Basel) 2020; 12:cancers12113476. [PMID: 33266503 PMCID: PMC7700648 DOI: 10.3390/cancers12113476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53. The consequences of such a mechanism have serious implications for lysosomal-mediated apoptosis and have significant input into the design of therapeutics and their strategic use. In this review, we highlight the importance of extending such findings to other cathepsin family members and the need to assess the roles of p53 isoforms and mutants in furthering this mechanism. Abstract While viewed as the “guardian of the genome”, the importance of the tumor suppressor p53 protein has increasingly gained ever more recognition in modulating additional modes of action related to cell death. Slowly but surely, its importance has evolved from a mutated genetic locus heavily implicated in a wide array of cancer types to modulating lysosomal-mediated cell death either directly or indirectly through the transcriptional regulation of the key signal transduction pathway intermediates involved in this. As an important step in determining the fate of cells in response to cytotoxicity or during stress response, lysosomal-mediated cell death has also become strongly interwoven with the key components that give the lysosome functionality in the form of the cathepsin proteases. While a number of articles have been published highlighting the independent input of p53 or cathepsins to cellular homeostasis and disease progression, one key area that warrants further focus is the regulatory relationship that p53 and its isoforms share with such proteases in regulating lysosomal-mediated cell death. Herein, we review recent developments that have shaped this relationship and highlight key areas that need further exploration to aid novel therapeutic design and intervention strategies.
Collapse
Affiliation(s)
- Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Correspondence: (S.M.S.); (A.A.Z.J.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Paul A. Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (S.M.S.); (A.A.Z.J.)
| |
Collapse
|
13
|
Identification of Novel Targets of RBM5 in the Healthy and Injured Brain. Neuroscience 2020; 440:299-315. [PMID: 32335213 DOI: 10.1016/j.neuroscience.2020.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/20/2022]
Abstract
The tumor suppressor RNA-binding motif 5 (RBM5) regulates the expression levels and cassette exon-definition (i.e. splicing) of a select set of mRNAs in a tissue-specific manner. Most RBM5-regulated targets were identified in oncological investigations and frequently involve genes which mediate apoptotic cell death. Little is known about the role of RBM5 in the brain. Also, it is unclear if a brain injury may be required to detect RBM5 mediated effects on pro-apoptotic genes due to their low expression levels in the healthy adult CNS at baseline. Conditional/floxed (brain-specific) gene deleter mice were generated to elucidate CNS-specific RBM5 mRNA targets. Male/female mice were subjected to a severe controlled cortical impact (CCI) traumatic brain injury (TBI) in order to increase the background expression of pro-death mRNAs and facilitate testing of the hypothesis that RBM5 inhibition decreases post-injury upregulation of caspases/FAS in the CNS. As expected, a CCI increased caspases/FAS mRNA in the injured cortex. RBM5 KO did not affect their levels or splicing. Surprisingly, KO increased the mRNA levels of novel targets including casein kinase 2 alpha prime interacting protein (Csnka2ip/CKT2) - a gene not thought to be expressed in the brain, contrary to findings here. Twenty-two unique splicing events were also detected in KOs including increased block-inclusion of cassette exons 20-22 in regulating synaptic membrane exocytosis 2 (Rims2). In conclusion, here we used genome-wide transcriptomic analysis on healthy and injured RBM5 KO mouse brain tissue to elucidate the first known gene targets of this enigmatic RBP in this CNS.
Collapse
|
14
|
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res 2019; 29:347-364. [PMID: 30948788 PMCID: PMC6796845 DOI: 10.1038/s41422-019-0164-5] [Citation(s) in RCA: 1451] [Impact Index Per Article: 290.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, 510510, Guangzhou, Guangdong, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tom Vanden Berghe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Methusalem program, Ghent University, 9000, Ghent, Belgium
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.
- Université Pierre et Marie Curie, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
15
|
Shamji MH, Temblay JN, Cheng W, Byrne SM, Macfarlane E, Switzer AR, Francisco NDC, Olexandra F, Jacubczik F, Durham SR, Ashton-Rickardt PG. Antiapoptotic serine protease inhibitors contribute to survival of allergenic T H2 cells. J Allergy Clin Immunol 2018; 142:569-581.e5. [PMID: 29106998 PMCID: PMC5920800 DOI: 10.1016/j.jaci.2017.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 07/07/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The mechanisms that regulate maintenance of persistent TH2 cells and potentiate allergic inflammation are not well understood. OBJECTIVE The function of serine protease inhibitor 2A (Spi2A) was studied in mouse TH2 cells, and the serine protease inhibitor B3 (SERPINB3) and SERPINB4 genes were studied in TH2 cells from patients with grass pollen allergy. METHODS Spi2A-deficient TH2 cells were studied in in vitro culture or in vivo after challenge of Spi2A knockout mice with ovalbumin in alum. Expression of SERPINB3 and SERPINB4 mRNA was measured in in vitro-cultured TH2 cells and in ex vivo CD27-CD4+ cells and innate lymphoid cell (ILC) 2 from patients with grass pollen allergy by using quantitative PCR. SERPINB3 and SERPINB4 mRNA levels were knocked down in cultured CD27-CD4+ cells with small hairpin RNA. RESULTS There were lower levels of in vitro-polarized TH2 cells from Spi2A knockout mice (P < .005) and in vivo after ovalbumin challenge (P < .05), higher levels of apoptosis (Annexin V positivity, P < .005), and less lung allergic inflammation (number of lung eosinophils, P < .005). In vitro-polarized TH2 cells from patients with grass pollen allergy expressed higher levels of both SERPINB3 and SERPINB4 mRNA (both P < .05) compared with unpolarized CD4 T cells. CD27-CD4+ from patients with grass pollen allergy expressed higher levels of both SERPINB3 and SERPINB4 mRNA (both P < .0005) compared with CD27+CD4+ cells. ILC2 expressed higher levels of both SERPINB3 and SERPINB4 mRNA (both P < .0005) compared with ILC1. Knockdown of either SERPINB3 or SERPINB4 mRNA (both P < .005) levels resulted in decreased viability of CD27-CD4+ compared with control transduced cells. CONCLUSION The Serpins Spi2A in mice and SERPINB3 and SERPINB4 in allergic patients control the viability of TH2 cells. This provides proof of principle for a therapeutic approach for allergic disease through ablation of allergic memory TH2 cells through SERPINB3 and SERPINB4 mRNA downregulation.
Collapse
Affiliation(s)
- Mohamed H Shamji
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Jeff N Temblay
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Wei Cheng
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Susan M Byrne
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ellen Macfarlane
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Amy R Switzer
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Natalia D C Francisco
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | | | - Fabian Jacubczik
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, London, United Kingdom; Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Philip G Ashton-Rickardt
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
16
|
Shaalan A, Carpenter G, Proctor G. Inducible nitric oxide synthase-mediated injury in a mouse model of acute salivary gland dysfunction. Nitric Oxide 2018; 78:95-102. [PMID: 29885902 DOI: 10.1016/j.niox.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/27/2023]
Abstract
AIM Inducible nitric oxide synthase (iNOS) is a key regulator of the innate immune system. The aim of the current study was to explore whether innate immune-mediated iNOS and reactive nitrogen species acutely perturb acinar cell physiology and calcium homeostasis of exocrine salivary tissues. METHODS Innate immunity in the submandibular gland of C57BL/6 mice was locally activated via intraductal retrograde infusion of polyinosinic:polycytidylic acid (poly (I:C). Expressions of iNOS and the activity of the reactive nitrogen species peroxynitrite, were evaluated by immunohistochemistry. Mice were pre-treated with the selective iNOS inhibitor aminoguanidine in order to substantiate the injurious effect of the nitrosative signal on the key calcium regulator sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2b) and calcium signalling. RESULTS Challenging salivary gland innate immunity with poly (I:C) prompted upregulated expression of iNOS and the generation of peroxynitrite. Inhibition of iNOS/peroxynitrite revealed the role played by upregulated nitrosative signalling in: dysregulated expression of SERCA2b, perturbed calcium homeostasis and loss of saliva secretion. CONCLUSION iNOS mediates disruption of exocrine calcium signalling causing secretory dysfunction following activation of innate immunity in a novel salivary gland injury model.
Collapse
Affiliation(s)
- Abeer Shaalan
- Mucosal and Salivary Biology, Dental Institute, King's College London, United Kingdom.
| | - Guy Carpenter
- Mucosal and Salivary Biology, Dental Institute, King's College London, United Kingdom
| | - Gordon Proctor
- Mucosal and Salivary Biology, Dental Institute, King's College London, United Kingdom
| |
Collapse
|
17
|
Li L, Sun B, Gao Y, Niu H, Yuan H, Lou H. STAT3 contributes to lysosomal-mediated cell death in a novel derivative of riccardin D-treated breast cancer cells in association with TFEB. Biochem Pharmacol 2018; 150:267-279. [PMID: 29476714 DOI: 10.1016/j.bcp.2018.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/19/2018] [Indexed: 12/24/2022]
Abstract
RDD648, a novel derivative of a natural molecule riccardin D, exhibited potent anticancer activity by targeting lysosomes in vitro and in vivo. Mechanistic studies revealed that RDD648 facilitated STAT3 to translocate into the nucleus, and this activity was involved in lysosome-mediated cell death as evidenced by our finding that inhibition of STAT3 alleviated lysosomal membrane permeabilization. Further investigation indicated that nuclear STAT3 directly interacted with transcription factor TFEB, leading to the partial loss of function of TFEB, which is essential for lysosome turnover. The present study first uncovers that STAT3 contributes to lysosomal-mediated cell death in RDD648-treated breast cancer cells though interacting with TFEB, and the findings may be significant in the design of treatments for breast cancers where STAT3 is constitutively expressed.
Collapse
Affiliation(s)
- Lin Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012, China
| | - Bin Sun
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Yun Gao
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012, China
| | - Huanmin Niu
- Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan 250012, China
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan 250012, China.
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012, China.
| |
Collapse
|
18
|
Role of granule proteases in the life and death of neutrophils. Biochem Biophys Res Commun 2017; 482:473-481. [PMID: 28212734 DOI: 10.1016/j.bbrc.2016.11.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023]
Abstract
Neutrophils constitute a crucial component of the innate immune defenses against microbes. Produced in the bone marrow and patrolling in blood vessels, neutrophils are recruited to injured tissues and are immediately active to contain pathogen invasion. Neutrophils undergo programmed cell death by multiple, context-specific pathways, which have consequences on immunopathology and disease outcome. Studies in the last decade indicate additional functions for neutrophils - or a subset of neutrophils - in modulating adaptive responses and tumor progression. Neutrophil granules contain abundant amounts of various proteases, which are directly implicated in protective and pathogenic functions of neutrophils. It now emerges that neutral serine proteases such as cathepsin G and proteinase-3 also contribute to the neutrophil life cycle, but do so via different pathways than that of the aspartate protease cathepsin D and that of mutants of the serine protease elastase. The aim of this review is to appraise the present knowledge of the function of neutrophil granule proteases and their inhibitors in neutrophil cell death, and to integrate these findings in the current understandings of neutrophil life cycle and programmed cell death pathways.
Collapse
|
19
|
Hou X, Yang C, Zhang L, Hu T, Sun D, Cao H, Yang F, Guo G, Gong C, Zhang X, Tong A, Li R, Zheng Y. Killing colon cancer cells through PCD pathways by a novel hyaluronic acid-modified shell-core nanoparticle loaded with RIP3 in combination with chloroquine. Biomaterials 2017; 124:195-210. [PMID: 28199887 DOI: 10.1016/j.biomaterials.2016.12.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 02/05/2023]
Abstract
Due to extensive apoptosis defects and multidrug resistance, there is great interest regarding non-apoptotic programmed cell death (PCD) pathways, such as lysosomal-mediated programmed cell death (LM-PCD), necroptosis and autophagy. Because there is an intricate effector network among these PCD pathways, it is expected that they may act synergistically in cancer therapy. In this study, chloroquine (CQ) was found to significantly upregulate receptor-interacting protein kinase 3 (RIP3) expression, and RIP3 were involved in CQ-related autophagy. Overexpressed-eGFP-RIP3 co-localized with the selective autophagy receptor p62. mRIP3 overexpression in combination with CQ markedly increased the inhibition rate relative to that observed in the CQ-treatment group. Several experiments, including Hoechst staining, transmission electron microscopy (TEM) observation, the high-mobility group box 1 (HMGB1) release assay, Annexin V/PI staining and immunoblotting of proteins included in PCD pathways, verified that mRIP3 overexpression in combination with CQ induced lysosomal membrane permeabilization (LMP) and necroptosis of cancer cells, leading to cancer cell death. For tumor-targeted delivery, hyaluronic acid (HA)-modified, lipid-coated PLGA nanoparticles loaded with mRIP3-pDNA were prepared and characterized using a particle sizer, differential scanning calorimetry (DSC) and TEM. The nanoparticles exhibited ideal biocompatibility and good tumor-targeting efficiency, and the tumor inhibition rate of HA-Lip-PEI-mRIP3-PLGA-NPs + CQ was 80.2% in the CT26 mouse model. In this study, we attempted to treat tumors by inducing several alternative PCD pathways to shed light on the combination therapy of alternative PCD inducers.
Collapse
Affiliation(s)
- Xueyan Hou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Chengli Yang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, 6#, Xuefu Xi Road, Zunyi, Guizhou, 563006, PR China
| | - Lijing Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, PR China
| | - Tingting Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Dan Sun
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hua Cao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Fan Yang
- Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Xiaoning Zhang
- Laboratory of Pharmaceutics, School of Medicine, Tsinghua University, 30#, Shuangqing Road, Haidian Dist, Beijing, 100084, PR China
| | - Aiping Tong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Rui Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Yu Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
20
|
Argenta PA, Ballman KV, Geller MA, Carson LF, Ghebre R, Mullany SA, Teoh DG, Winterhoff BJ, Rivard CL, Erickson BK. The effect of photobiomodulation on chemotherapy-induced peripheral neuropathy: A randomized, sham-controlled clinical trial. Gynecol Oncol 2017; 144:159-166. [DOI: 10.1016/j.ygyno.2016.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/05/2016] [Indexed: 12/13/2022]
|
21
|
Stoka V, Turk V, Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev 2016; 32:22-37. [PMID: 27125852 DOI: 10.1016/j.arr.2016.04.010] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 02/07/2023]
Abstract
Lysosomes and lysosomal hydrolases, including the cathepsins, have been shown to change their properties with aging brain a long time ago, although their function was not really understood. The first biochemical and clinical studies were followed by a major expansion in the last 20 years with the development of animal disease models and new approaches leading to a major advancement of understanding of the role of physiological and degenerative processes in the brain at the molecular level. This includes the understanding of the major role of autophagy and the cathepsins in a number of diseases, including its critical role in the neuronal ceroid lipofuscinosis. Similarly, cathepsins and some other lysosomal proteases were shown to have important roles in processing and/or degradation of several important neuronal proteins, thereby having either neuroprotective or harmful roles. In this review, we discuss lysosomal cathepsins and their regulation with the focus on cysteine cathepsins and their endogenous inhibitors, as well as their role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; J. Stefan International Postgraduate School, Jamova 39, Sl-1000 Ljubljana, Slovenia.
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; J. Stefan International Postgraduate School, Jamova 39, Sl-1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, Sl-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Sl-1000 Ljubljana, Slovenia.
| |
Collapse
|
22
|
Li L, Byrne SM, Rainville N, Su S, Jachimowicz E, Aucher A, Davis DM, Ashton-Rickardt PG, Wojchowski DM. Brief report: serpin Spi2A as a novel modulator of hematopoietic progenitor cell formation. Stem Cells 2015; 32:2550-6. [PMID: 24964278 DOI: 10.1002/stem.1778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 05/05/2014] [Accepted: 05/30/2014] [Indexed: 01/15/2023]
Abstract
Prime regulation over hematopoietic progenitor cell (HPC) production is exerted by hematopoietins (HPs) and their Janus kinase-coupled receptors (HP-Rs). For HP/HP-R studies, one central challenge in determining specific effects involves the delineation of nonredundant signal transduction factors and their lineage restricted actions. Via loss-of-function studies, we define roles for an HP-regulated Serpina3g/Spi2A intracellular serpin during granulomyelocytic, B-cell, and hematopoietic stem cell (HSC) formation. In granulomyelocytic progenitors, granulocyte macrophage colony stimulating factor (GMCSF) strongly induced Serpina3g expression with Stat5 dependency. Spi2A-knockout (KO) led to 20-fold decreased CFU-GM formation, limited GMCSF-dependent granulocyte formation, and compromised neutrophil survival upon tumor necrosis factor alpha (TNF-α) exposure. In B-cell progenitors, Serpina3g was an interleukin-7 (IL7) target. Spi2A-KO elevated CFU-preB greater than sixfold and altered B-cell formation in competitive bone marrow transplant (BMT), and CpG challenge experiments. In HSCs, Serpina3g/Spi2A expression was also elevated. Spi2A-KO compromised LT-HSC proliferation (as well as lineage(neg) Sca1(pos) Kit(pos) (LSK) cell lysosomal integrity), and skewed LSK recovery post 5-FU. Spi2A therefore functions to modulate HP-regulated immune cell and HSC formation post-5-FU challenge.
Collapse
Affiliation(s)
- Lei Li
- COBRE Center of Excellence in Stem Cell Biology and Regenerative Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA; Department of Pediatrics, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu F, Chen Z, Wang B, Jin Z, Hou Y, Ma S, Liu X. The role of lysosome in cell death regulation. Tumour Biol 2015; 37:1427-36. [DOI: 10.1007/s13277-015-4516-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 02/01/2023] Open
|
24
|
Díaz A, Humeres C, González V, Gómez MT, Montt N, Sanchez G, Chiong M, García L. Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death. Biochem Biophys Res Commun 2015; 467:451-7. [PMID: 26449460 DOI: 10.1016/j.bbrc.2015.09.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 01/27/2023]
Abstract
In the heart, insulin controls key functions such as metabolism, muscle contraction and cell death. However, all studies have been focused on insulin action during reperfusion. Here we explore the cardioprotective action of this hormone during ischemia. Rat hearts were perfused ex vivo with an ischemia/reperfusion Langendorff model in absence or presence of insulin. Additionally, cultured rat cardiomyocytes were exposed to simulated ischemia in the absence or presence of insulin. Cytoprotective effects were measured by myocardial infarct size, trypan blue exclusion, released LDH and DNA fragmentation by flow cytometry. We found that insulin protected against cardiac ischemia ex vivo and in vitro. Moreover, insulin protected cardiomyocytes from simulated ischemia by reducing necrotic cell death. Protective effects of insulin were dependent of Akt and NFκB. These novel results show that insulin reduces ischemia-induced cardiomyocyte necrosis through an Akt/NF-κB dependent mechanism. These novel findings clarify the role of insulin during ischemia and further support its use in early GIK perfusion to treat myocardial infarction.
Collapse
Affiliation(s)
- Ariel Díaz
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Humeres
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Verónica González
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - María Teresa Gómez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Natalia Montt
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Gina Sanchez
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
25
|
Li Y, Zhang L, Zhou J, Luo S, Huang R, Zhao C, Diao A. Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy. Cell Prolif 2015; 48:338-47. [PMID: 25809873 DOI: 10.1111/cpr.12184] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4) is a member of the HECT E3 ubiquitin ligases, and is elevated in prostate, bladder and colorectal cancers, and promotes colonic cell population expansion. Up to now, molecular mechanisms of how Nedd4 functions, have not been well understood. MATERIALS AND METHODS In this study, shRNA was used to reduce expression of Nedd4 in the human prostate carcinoma cell line DU145. To analyse effects of Nedd4 on cell proliferation, MTT and colony formation assays were performed. DAPI staining and FACS analysis were used to investigate outcomes of Nedd4 activity, on apoptosis. Results of Nedd4 expression on lysosomal membrane permeabilization and autophagy were further investigated using acridine orange (AO) staining, immunofluorescence and western blot analysis. RESULTS We found that in HeLa cells, expression of Nedd4 promoted cell proliferation, whereas its knockdown inhibited colony formation and induced apoptosis in DU145 cells. Furthermore, down-regulation of Nedd4 in DU145 cells promoted lysosomal membrane permeabilization. We also found that down-regulation of Nedd4 inhibited autophagy in both DU145 and A549 cells. Investigation into mechanisms involved revealed that knockdown of endogenous Nedd4 expression notably increased activated mTOR (p-mTOR) levels, which suggests that mTOR signalling was involved in the Nedd4-mediated autophagy. CONCLUSIONS Our results indicate that expression of Nedd4 promoted cell proliferation and colony formation but prevented apoptosis. Moreover, Nedd4 promoted autophagy and was associated with the mTOR signalling pathway.
Collapse
Affiliation(s)
- Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The lysosome is a membranous organelle that exists in all protozoa and cells of multicellular animals. Studies have shown that lysosome metabolic pathways are closely related to cell apoptosis. This paper reviews the structure of lysosomes, lysosome membrane permeability and cell apoptosis, the main way through which lysosomes participate in cell apoptosis, and the involvement of lysosomal signaling pathways in the apoptosis of hepatic stellate cells.
Collapse
|
27
|
The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem 2014; 6:1355-71. [DOI: 10.4155/fmc.14.73] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine peptidase, with an important role in the development and progression of cancer. It is involved in the degradation of extracellular matrix proteins, a process promoting invasion and metastasis of tumor cells and tumor angiogenesis. Cathepsin B is unique among cathepsins in possessing both carboxypeptidase and endopeptidase activities. While the former is associated with its physiological role, the latter is involved in pathological degradation of the extracellular matrix. Its activities are regulated by different means, the most important being its endogenous inhibitors, the cystatins. In cancer this peptidase/inhibitor balance is altered, leading to harmful cathepsin B activity. The latter can be prevented by exogenous inhibitors. They differ in modes of inhibition, size, structure, binding affinity, selectivity, toxicity and bioavailability. In this article, we review the properties and function of endogenous and exogenous cathepsin B inhibitors and indicate their application as possible anticancer agents.
Collapse
|
28
|
Salazar-Olivo LA, Mejia-Elizondo R, Alonso-Castro AJ, Ponce-Noyola P, Maldonado-Lagunas V, Melendez-Zajgla J, Saavedra-Alanis VM. SerpinA3g participates in the antiadipogenesis and insulin-resistance induced by tumor necrosis factor-α in 3T3-F442A cells. Cytokine 2014; 69:180-8. [PMID: 24973688 DOI: 10.1016/j.cyto.2014.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/09/2014] [Accepted: 05/30/2014] [Indexed: 01/20/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) is a proven modulator of adipose metabolism, but the mechanisms by which this cytokine affects the development and function of adipose tissue have not been fully elucidated to date. Using differential display analysis, in this study, we demonstrate that gene expression of the serine protease inhibitor A3g (SerpinA3g) is specifically induced in 3T3-F442A preadipocytes by TNF-α but not by other adipogenic inhibitors, such as retinoic acid (RA) or transforming growth factor type beta (TGF-β). The specific induction of SerpinA3g by TNF-α was confirmed by RT-PCR in both preadipose and terminally differentiated 3T3-F442A cells. The knockdown of SerpinA3g using small interfering RNA prevented the antiadipogenesis elicited by TNF-α in 3T3-F442A cells but not the antiadipogenesis induced by RA or TGF-β. SerpinA3g-silenced 3T3-F442A cells also did not display TNF-α-induced insulin resistance. Our results demonstrate that SerpinA3g is specifically induced by TNF-α in 3T3-F442A cells, regardless of their stage of differentiation, and participates in the antiadipogenesis and insulin resistance induced by this cytokine. Our results suggest that SerpinA3g plays a role in the TNF-α modulation of adipose tissue development and metabolism. Additional studies are warranted regarding the mechanisms mediating adipose SerpinA3g effects.
Collapse
Affiliation(s)
- Luis A Salazar-Olivo
- Instituto Potosino de Investigación Científica y Tecnológica, Molecular Biology Division, San Luis Potosí, México.
| | - Rebeca Mejia-Elizondo
- Instituto Potosino de Investigación Científica y Tecnológica, Molecular Biology Division, San Luis Potosí, México
| | - Angel Josabad Alonso-Castro
- Instituto Potosino de Investigación Científica y Tecnológica, Molecular Biology Division, San Luis Potosí, México
| | - Patricia Ponce-Noyola
- Universidad de Guanajuato, Department of Biology, Division of Natural and Exact Sciences, Guanajuato, México
| | | | | | | |
Collapse
|
29
|
Kopitar-Jerala N. The role of cysteine proteinases and their inhibitors in the host-pathogen cross talk. Curr Protein Pept Sci 2013; 13:767-75. [PMID: 23305363 PMCID: PMC3594739 DOI: 10.2174/138920312804871102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/17/2012] [Accepted: 07/25/2012] [Indexed: 01/12/2023]
Abstract
Proteinases and their inhibitors play essential functional roles in basic biological processes in both hosts and pathogens. Endo/lysosomal cathepsins participate in immune response in pathogen recognition and elimination. They are essential for both antigen processing and presentation (host adaptive immune response) and activation of endosomal Toll like receptors (innate immune response). Pathogens can produce proteases and also natural inhibitors to subvert the host immune response. Several pathogens are sensed through the intracellular pathogen recognition receptors, but only some of them use the host proteolytic system to escape into the cytosol. In this review, I provide an update on the most recent developments regarding the role of proteinases and their inhibitors in the initiation and regulation of immune responses.
Collapse
Affiliation(s)
- Natasa Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, ›Jozef Stefan‹ Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
30
|
Azzi J, Skartsis N, Mounayar M, Magee CN, Batal I, Ting C, Moore R, Riella LV, Ohori S, Abdoli R, Smith B, Fiorina P, Heathcote D, Bakhos T, Ashton-Rickardt PG, Abdi R. Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2319-27. [PMID: 23913965 DOI: 10.4049/jimmunol.1300851] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regulatory T cells (Tregs) play a pivotal role in the maintenance of immune tolerance and hold great promise as cell therapy for a variety of immune-mediated diseases. However, the cellular mechanisms that regulate Treg maintenance and homeostasis have yet to be fully explored. Although Tregs express granzyme-B (GrB) to suppress effector T cells via direct killing, the mechanisms by which they protect themselves from GrB-mediated self-inflicted damage are unknown. To our knowledge, we show for the first time that both induced Tregs and natural Tregs (nTregs) increase their intracellular expression of GrB and its endogenous inhibitor, serine protease inhibitor 6 (Spi6) upon activation. Subcellular fractionation and measurement of GrB activity in the cytoplasm of Tregs show that activated Spi6(-/-) Tregs had significantly higher cytoplasmic GrB activity. We observed an increase in GrB-mediated apoptosis in Spi6(-/-) nTregs and impaired suppression of alloreactive T cells in vitro. Spi6(-/-) Tregs were rescued from apoptosis by the addition of a GrB inhibitor (Z-AAD-CMK) in vitro. Furthermore, adoptive transfer experiments showed that Spi6(-/-) nTregs were less effective than wild type nTregs in suppressing graft-versus-host disease because of their impaired survival, as shown in our in vivo bioluminescence imaging. Finally, Spi6-deficient recipients rejected MHC class II-mismatch heart allografts at a much faster rate and showed a higher rate of apoptosis among Tregs, as compared with wild type recipients. To our knowledge, our data demonstrate, for the first time, a novel role for Spi6 in Treg homeostasis by protecting activated Tregs from GrB-mediated injury. These data could have significant clinical implications for Treg-based therapy in immune-mediated diseases.
Collapse
Affiliation(s)
- Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream mechanisms that lead to lysosomal membrane permeabilization.
Collapse
Affiliation(s)
- Sonja Aits
- Danish Cancer Society Research Center, Cell Death and Metabolism, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
32
|
Ashton-Rickardt PG. An emerging role for Serine Protease Inhibitors in T lymphocyte immunity and beyond. Immunol Lett 2013; 152:65-76. [PMID: 23624075 DOI: 10.1016/j.imlet.2013.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Serine proteases control a wide variety of physiological and pathological processes in multi-cellular organisms, including blood clotting, cancer, cell death, osmo-regulation, tissue re-modeling and immunity to infection. T lymphocytes are required for adaptive cell mediated immunity and serine proteases are not only important for effector function but also homeostatic regulation of cell numbers. Serine Protease Inhibitors (Serpins) are the physiological regulators of serine proteases activity. In this review, I will discuss the role of serpins in controlling the recognition of antigen, effector function and homeostatic control of T lymphocytes through the inhibition of physiological serine protease targets. An emerging view of serpins is that they are important promoters of cellular viability through their inhibition of executioner proteases. This will be discussed in the context of the T lymphocyte survival during effector responses and the development and persistence of long-lived memory T cells. The potent anti-apoptotic properties of serpins can also work against adaptive cell immunity by protecting viruses and tumors from eradication by cytotoxic T cells (CTL). Recent insights from knock-out mouse models demonstrate that these serpins also are required for hematological progenitor cells and so are critical for the development of lineages other than T lymphocytes. Given the emerging role of serpins in multiple aspects of lymphocyte immunity and blood development I will review the progress to date in developing new immunotherapeutic approaches based directly on serpins or knowledge gained from identifying their physiologically relevant protease targets.
Collapse
Affiliation(s)
- Philip G Ashton-Rickardt
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
33
|
Gomes FM, Carvalho DB, Machado EA, Miranda K. Ultrastructural and functional analysis of secretory goblet cells in the midgut of the lepidopteran Anticarsia gemmatalis. Cell Tissue Res 2013; 352:313-26. [PMID: 23397424 DOI: 10.1007/s00441-013-1563-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
Abstract
Defoliation caused by Anticarsia gemmatalis larvae affects the commercial production of the soybean. Although regulation of the digestion of soybean components has become part of the suggested strategy to overcome problems caused by Anticarsia larvae, few studies have focused on the morphological and cellular aspects of Anticarsia intestinal tissue. We have therefore further analyzed the morphology and ultrastructure of the midgut of 5th instar larvae of A. gemmatalis. Dissected midgut was subjected to chemical or cryo-fixation and then to several descriptive and analytical techniques associated with both light and electron microscopy in order to correlate anatomical and physiological aspects of this organ. Histological analysis revealed typical anatomy composed of a cell layer limited by a peritrophic membrane. The identified lepidoptera-specific goblet cells were shown to contain several mitochondria inside microvilli of the goblet cell cavity and a vacuolar H(+)-ATPase possibly coupled to a K(+)-pumping system. Columnar cells were present and exhibited microvilli dispersed along the apical region that also presented secretory characteristics. We additionally found evidence for the secretion of polyphosphate (PolyP) into the midgut, a result corroborating previous reports suggesting an excretion route from the goblet cell cavity toward the luminal space. Thus, our results suggest that the Anticarsia midgut not only possesses several typical lepidopteran features but also presents some unique aspects such as the presence of a tubular network and PolyP-containing apocrine secretions, plus an apparent route for the release of cellular debris by the goblet cells.
Collapse
Affiliation(s)
- F M Gomes
- Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
34
|
Dev A, Byrne SM, Verma R, Ashton-Rickardt PG, Wojchowski DM. Erythropoietin-directed erythropoiesis depends on serpin inhibition of erythroblast lysosomal cathepsins. ACTA ACUST UNITED AC 2013; 210:225-32. [PMID: 23319700 PMCID: PMC3570101 DOI: 10.1084/jem.20121762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Serpina3g/Spi2A inhibits cathepsins B/L to enhance erythropoietin induced red blood cell formation. Erythropoietin (EPO) and its cell surface receptor (EPOR) are essential for red blood cell production and exert important cytoprotective effects on select vascular, immune, and cancer cells. To discover novel EPO action modes, we profiled the transcriptome of primary erythroid progenitors. We report Serpina3g/Spi2A as a major new EPO/EPOR target for the survival of erythroid progenitors. In knockout mice, loss of Spi2A worsened anemia caused by hemolysis, radiation, or transplantation. EPO-induced erythropoiesis also was compromised. In particular, maturing erythroblasts required Spi2A for cytoprotection, with iron and reactive oxygen species as cytotoxic agents. Spi2A defects were ameliorated by cathepsin-B/L inhibition, and by genetic co-deletion of lysosomal cathepsin B. Pharmacological inhibition of cathepsin B/L enhanced EPO-induced red cell formation in normal mice. Overall, we define an unexpected EPO action mode via an EPOR–Spi2A serpin–cathepsin axis in maturing erythroblasts, with lysosomal cathepsins as novel therapeutic targets.
Collapse
Affiliation(s)
- Arvind Dev
- Center of Excellence in Stem Cell Biology and Regenerative Medicine (COBRE), Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | |
Collapse
|
35
|
Neuhöfer P, Liang S, Einwächter H, Schwerdtfeger C, Wartmann T, Treiber M, Zhang H, Schulz HU, Dlubatz K, Lesina M, Diakopoulos KN, Wörmann S, Halangk W, Witt H, Schmid RM, Algül H. Deletion of IκBα activates RelA to reduce acute pancreatitis in mice through up-regulation of Spi2A. Gastroenterology 2013; 144:192-201. [PMID: 23041330 DOI: 10.1053/j.gastro.2012.09.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 09/18/2012] [Accepted: 09/22/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS The transcription factor nuclear factor-κB (NF-κB) (a heterodimer of NF-κB1p50 and RelA) is activated rapidly in acute pancreatitis (AP). However, it is not clear whether NF-κB promotes or protects against AP. We used the NF-κB inhibitor protein, inhibitor of κB (IκB)α, to study the roles of NF-κB in the development of AP in mice. METHODS IκBα or the combination of IκBα and RelA selectively were deleted from pancreas of mice using the Cre/locus of cross-over P strategy; cerulein or L-arginine were used to induce AP. We performed microarray analyses of the IκBα- and RelA-deficient pancreata. DNA from healthy individuals and patients with acute or chronic pancreatitis were analyzed for variants in coding regions of alpha-1-antichymotrypsin. RESULTS Mice with pancreas-specific deletion of IκBα had constitutive activation of RelA and a gene expression profile consistent with NF-κB activation; development of AP in these mice was attenuated and trypsin activation was impaired. However, AP was fully induced in mice with pancreas-specific deletion of IκBα and RelA. By using genome-wide expression analysis, we identified a cluster of NF-κB-regulated genes that might protect against the development of AP. The serine protease inhibitor 2A (Spi2a) was highly up-regulated in IκBα-deficient mice. Lentiviral-mediated expression of Spi2A reduced the development of AP in C57BL/6 and RelA-deficient mice. However, we did not correlate any variants of alpha-1-antichymotrypsin, the human homologue of Spi2a, with acute or chronic pancreatitis. CONCLUSIONS Pancreas-specific deletion of IκBα results in nuclear translocation of RelA and reduces AP induction and trypsin activation in mice after administration of cerulein or L-arginine. Constitutive activation of RelA up-regulates Spi2A, which protects mice against the development of AP.
Collapse
Affiliation(s)
- Patrick Neuhöfer
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Byrne SM, Aucher A, Alyahya S, Elder M, Olson ST, Davis DM, Ashton-Rickardt PG. Cathepsin B controls the persistence of memory CD8+ T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1133-43. [PMID: 22745374 PMCID: PMC3401340 DOI: 10.4049/jimmunol.1003406] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The persistence of memory T lymphocytes confers lifelong protection from pathogens. Memory T cells survive and undergo homeostatic proliferation (HSP) in the absence of Ag, although the cell-intrinsic mechanisms by which cytokines drive the HSP of memory T cells are not well understood. In this study we report that lysosome stability limits the long-term maintenance of memory CD8(+) T cell populations. Serine protease inhibitor (Spi) 2A, an anti-apoptotic cytosolic cathepsin inhibitor, is induced by both IL-15 and IL-7. Mice deficient in Spi2A developed fewer memory phenotype CD44(hi)CD8(+) T cells with age, which underwent reduced HSP in the bone marrow. Spi2A was also required for the maintenance of central memory CD8(+) T cell populations after acute infection with lymphocytic choriomeningitis virus. Spi2A-deficient Ag-specific CD8(+) T cell populations declined more than wild-type competitors after viral infection, and they were eroded further after successive infections. Spi2A protected memory cells from lysosomal breakdown by inhibiting cathepsin B. The impaired maintenance of Spi2A-deficient memory CD8(+) T cells was rescued by concomitant cathepsin B deficiency, demonstrating that cathepsin B was a physiological target of Spi2A in memory CD8(+) T cell survival. Our findings support a model in which protection from lysosomal rupture through cytokine-induced expression of Spi2A determines the long-term persistence of memory CD8(+) T cells.
Collapse
Affiliation(s)
- Susan M. Byrne
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Anne Aucher
- Section of Immunology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ
| | - Syarifah Alyahya
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthew Elder
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Steven T. Olson
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel M. Davis
- Section of Immunology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ
| | - Philip G. Ashton-Rickardt
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
37
|
Abstract
Evading programmed cell death is one of the hallmarks of cancer. Conversely, inducing cell death by pharmacological means is the basis of almost every non-invasive cancer therapy. Research over the past decade has greatly increased our understanding of non-apoptotic programmed cell death events, such as lysosomal-mediated cell death, necroptosis and cell death with autophagy. It is becoming clear that an intricate effector network connects many of these classical and non-classical death pathways. In this Review, we discuss converging and diverging features of these pathways, as well as attempts to exploit this newly gained knowledge pharmacologically to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Peter Kreuzaler
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
38
|
Yasuda K, Khandare A, Burianovskyy L, Maruyama S, Zhang F, Nasjletti A, Goligorsky MS. Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging (Albany NY) 2011; 3:597-608. [PMID: 21705809 PMCID: PMC3164368 DOI: 10.18632/aging.100341] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although therapeutic effect of adoptive transfer of endothelial progenitor cells (EPC) has been well-substantiated, the actual engraftment is relatively low compared to a robust functional improvement of vasculopathy. Cellular mechanisms governing this action remain elusive. A recently discovered cell-cell communication via tunneling nanotube (TNT) formation is capable of transferring mitochondria and lysosomes between the cells - "organellar diakinesis". Based on the previous demonstration of lysosomal dysfunction in endothelial cells exposed to AGE-modified collagen I, we inquired whether TNT mechanism may be involved in EPC-mediated repair of stressed endothelial cells. Here we demonstrate that EPC selectively and multiplicatively establish TNT communication with stressed endothelia. The guidance cues for the selectivity are provided by exofacially exposed phosphatidylserine moieties. Lysosomal transfer is associated with the preservation of lysosomal pH gradient, functionally reconstituting lysosomal pool of stressed cells and improving endothelial cell viability, reducing premature senescence and apoptosis. In vivo, adoptive transfer of EPC to streptozotocin-diabetic mice results in a TNT-dependent reduction of senescent endothelial cells and correction of endothelium-dependent vasorelaxation. Collectively, these data establish a selective multiplicative effect of TNT between EPC and stressed endothelia, reconstitution of the lysosomal pool, and improved viability and function of stressed endothelia.
Collapse
Affiliation(s)
- Kaoru Yasuda
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA. ‐u.ac.jp
| | | | | | | | | | | | | |
Collapse
|
39
|
Biswas R, Bunderson-Schelvan M, Holian A. Potential role of the inflammasome-derived inflammatory cytokines in pulmonary fibrosis. Pulm Med 2011; 2011:105707. [PMID: 21660282 PMCID: PMC3109309 DOI: 10.1155/2011/105707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/21/2011] [Accepted: 04/13/2011] [Indexed: 11/17/2022] Open
Abstract
Pulmonary fibrosis is a progressive, disabling disease with mortality rates that appear to be increasing in the western population, including the USA. There are over 140 known causes of pulmonary fibrosis as well as many unknown causes. Treatment options for this disease are limited due to poor understanding of the molecular mechanisms of the disease progression. However, recent progress in inflammasome research has greatly contributed to our understanding of its role in inflammation and fibrosis development. The inflammasome is a multiprotein complex that is an important component of both the innate and adaptive immune systems. Activation of proinflammatory cytokines following inflammasome assembly, such as IL-1β and IL-18, has been associated with development of PF. In addition, components of the inflammasome complex itself, such as the adaptor protein ASC have been associated with PF development. Recent evidence suggesting that the fibrotic process can be reversed via blockade of pathways associated with inflammasome activity may provide hope for future drug strategies. In this paper we will give an introduction to pulmonary fibrosis and its known causes. In addition, we will discuss the importance of the inflammasome in the development of pulmonary fibrosis as well as discuss potential future treatment options.
Collapse
Affiliation(s)
- Rupa Biswas
- Center for Environmental Health Sciences, The University of Montana, Skaggs Building 274, Missoula, MT 59812, USA
| | - Melisa Bunderson-Schelvan
- Center for Environmental Health Sciences, The University of Montana, Skaggs Building 274, Missoula, MT 59812, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, The University of Montana, Skaggs Building 274, Missoula, MT 59812, USA
| |
Collapse
|
40
|
Glycogen synthase kinase 3 activation is important for anthrax edema toxin-induced dendritic cell maturation and anthrax toxin receptor 2 expression in macrophages. Infect Immun 2011; 79:3302-8. [PMID: 21576335 DOI: 10.1128/iai.05070-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anthrax edema toxin (ET) is one of two binary toxins produced by Bacillus anthracis that contributes to the virulence of this pathogen. ET is an adenylate cyclase that generates high levels of cyclic AMP (cAMP), causing alterations in multiple host cell signaling pathways. We previously demonstrated that ET increases cell surface expression of the anthrax toxin receptors (ANTXR) in monocyte-derived cells and promotes dendritic cell (DC) migration toward the lymph node-homing chemokine MIP-3β. In this work, we sought to determine if glycogen synthase kinase 3 (GSK-3) is important for ET-induced modulation of macrophage and DC function. We demonstrate that inhibition of GSK-3 dampens ET-induced maturation and migration processes of monocyte-derived dendritic cells (MDDCs). Additional studies reveal that the ET-induced expression of ANTXR in macrophages was decreased when GSK-3 activity was disrupted with chemical inhibitors or with small interfering RNA (siRNA) targeting GSK-3. Further examination of the ET induction of ANTXR revealed that a dominant negative form of CREB could block the ET induction of ANTXR, suggesting that CREB or a related family member was involved in the upregulation of ANTXR. Because CREB and GSK-3 activity appeared to be important for ET-induced ANTXR expression, the impact of GSK-3 on ET-induced CREB activity was examined in RAW 264.7 cells possessing a CRE-luciferase reporter. As with ANTXR expression, the ET induction of the CRE reporter was decreased by reducing GSK-3 activity. These studies not only provide insight into host pathways targeted by ET but also shed light on interactions between GSK-3 and CREB pathways in host immune cells.
Collapse
|
41
|
Luke CJ, Silverman GA. Necrotic cell death: harnessing the Dark side of the Force in mammary gland involution. Nat Cell Biol 2011; 13:197-9. [PMID: 21364568 DOI: 10.1038/ncb0311-197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In response to major cellular insults, a massive increase in lysosomal membrane permeability (LMP) leads to necrosis. Data now reveal that this potent lysosomal-mediated necrotic cell-death machinery can also be harnessed for complex physiological processes, such as post-lactation mammary gland involution.
Collapse
|
42
|
Cavallo-Medved D, Moin K, Sloane B. Cathepsin B: Basis Sequence: Mouse. THE AFCS-NATURE MOLECULE PAGES 2011; 2011:A000508. [PMID: 28781583 PMCID: PMC5541861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
| | - Kamiar Moin
- Pharmacology, Wayne State University, MI 48201, US
| | | |
Collapse
|
43
|
Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol 2011; 13:303-9. [PMID: 21336304 DOI: 10.1038/ncb2171] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/15/2010] [Indexed: 01/05/2023]
Abstract
It is well established that lysosomes play an active role during the execution of cell death. A range of stimuli can lead to lysosomal membrane permeabilization (LMP), thus inducing programmed cell death without involvement of the classical apoptotic programme. However, these lysosomal pathways of cell death have mostly been described in vitro or under pathological conditions. Here we show that the physiological process of post-lactational regression of the mammary gland is accomplished through a non-classical, lysosomal-mediated pathway of cell death. We found that, during involution, lysosomes in the mammary epithelium undergo widespread LMP. Furthermore, although cell death through LMP is independent of executioner caspases 3, 6 and 7, it requires Stat3, which upregulates the expression of lysosomal proteases cathepsin B and L, while downregulating their endogenous inhibitor Spi2A (ref. 8). Our findings report a previously unknown, Stat3-regulated lysosomal-mediated pathway of cell death under physiological circumstances. We anticipate that these findings will be of major importance in the design of treatments for cancers such as breast, colon and liver, where cathepsins and Stat3 are commonly overexpressed and/or hyperactivated respectively.
Collapse
|
44
|
Lee LN, Baban D, Ronan EO, Ragoussis J, Beverley PCL, Tchilian EZ. Chemokine gene expression in lung CD8 T cells correlates with protective immunity in mice immunized intra-nasally with Adenovirus-85A. BMC Med Genomics 2010; 3:46. [PMID: 20942964 PMCID: PMC2967494 DOI: 10.1186/1755-8794-3-46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/13/2010] [Indexed: 11/10/2022] Open
Abstract
Background Immunization of BALB/c mice with a recombinant adenovirus expressing Mycobacterium tuberculosis (M. tuberculosis) antigen 85A (Ad85A) protects against aerosol challenge with M. tuberculosis only when it is administered intra-nasally (i.n.). Immunization with Ad85A induces a lung-resident population of activated CD8 T cells that is antigen dependent, highly activated and mediates protection by early inhibition of M. tuberculosis growth. In order to determine why the i.n. route is so effective compared to parenteral immunization, we used microarray analysis to compare gene expression profiles of pulmonary and splenic CD8 T cells after i.n. or intra-dermal (i.d.) immunization. Method Total RNA from CD8 T cells was isolated from lungs or spleens of mice immunized with Ad85A by the i.n. or i.d. route. The gene profiles generated from each condition were compared. Statistically significant (p ≤ 0.05) differentially expressed genes were analyzed to determine if they mapped to particular molecular functions, biological processes or pathways using Gene Ontology and Panther DB mapping tools. Results CD8 T cells from lungs of i.n. immunized mice expressed a large number of chemokines chemotactic for resting and activated T cells as well as activation and survival genes. Lung lymphocytes from i.n. immunized mice also express the chemokine receptor gene Cxcr6, which is thought to aid long-term retention of antigen-responding T cells in the lungs. Expression of CXCR6 on CD8 T cells was confirmed by flow cytometry. Conclusions Our microarray analysis represents the first ex vivo study comparing gene expression profiles of CD8 T cells isolated from distinct sites after immunization with an adenoviral vector by different routes. It confirms earlier phenotypic data indicating that lung i.n. cells are more activated than lung i.d. CD8 T cells. The sustained expression of chemokines and activation genes enables CD8 T cells to remain in the lungs for extended periods after i.n. immunization. This may account for the early inhibition of M. tuberculosis growth observed in Ad85A i.n. immunized mice and explain the effectiveness of i.n. compared to parenteral immunization with this viral vector.
Collapse
Affiliation(s)
- Lian N Lee
- Nuffield Department of Medicine, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Serine proteases control a wide variety of physiological and pathological processes in multi-cellular organisms, including blood clotting, cancer, cell death, osmoregulation, tissue remodeling, and immunity to infection. Cytotoxic T lymphocytes (CTLs) are required for adaptive cell-mediated immunity to intracellular pathogens by killing infected cells and through the development of memory T cells. Serine proteases not only allow a CTL to kill but also impose homeostatic control on CTL number. Serine protease inhibitors (serpins) are the physiological regulators of serine proteases' activity. In this review, I discuss the role of serpins in controlling the recognition of antigen, effector function, and homeostatic control of CTLs through the inhibition of physiological serine protease targets. An emerging view of serpins is that they are important promoters of cellular viability through their inhibition of executioner proteases. This view is discussed in the context of the T-lymphocyte survival during effector responses and the development and persistence of long-lived memory T cells. Given the important role serpins play in CTL immunity, I discuss the potential for developing new immunotherapeutic approaches based directly on serpins or knowledge gained from identifying their physiologically relevant protease targets.
Collapse
|
46
|
Groth-Pedersen L, Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett 2010; 332:265-74. [PMID: 20598437 DOI: 10.1016/j.canlet.2010.05.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/28/2022]
Abstract
Acquired therapy resistance is one of the prime obstacles for successful cancer treatment. Partial resistance is often acquired already during an early face of tumor development when genetic changes causing defects in classical caspase-dependent apoptosis pathway provide transformed cells with a growth advantage by protecting them against various apoptosis inducing stimuli including transforming oncogenes themselves and host immune system. Apoptosis defective cells are further selected during tumor progression and finally by apoptosis inducing treatments. Another form of resistance, multidrug resistance, arises during cancer treatment when cancer cells with effective efflux of cytotoxic agents escape the therapy. Remarkably, induction of lysosomal membrane permeabilization has recently emerged as an effective way to kill apoptosis resistant cancer cells and some lysosome targeting drugs can also re-sensitize multidrug resistant cells to classical chemotherapy. In this review, we highlight recent data on lysosomal cell death pathways and their implications for the future treatment of apoptosis defective and multidrug resistant aggressive tumors.
Collapse
Affiliation(s)
- Line Groth-Pedersen
- Pediatrics and Adolescent Medicine, The Juliane Marie Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
47
|
Johansson AC, Appelqvist H, Nilsson C, Kågedal K, Roberg K, Ollinger K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 2010; 15:527-40. [PMID: 20077016 PMCID: PMC2850995 DOI: 10.1007/s10495-009-0452-5] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysosomal membrane permeabilization (LMP) occurs in response to a large variety of cell death stimuli causing release of cathepsins from the lysosomal lumen into the cytosol where they participate in apoptosis signaling. In some settings, apoptosis induction is dependent on an early release of cathepsins, while under other circumstances LMP occurs late in the cell death process and contributes to amplification of the death signal. The mechanism underlying LMP is still incompletely understood; however, a growing body of evidence suggests that LMP may be governed by several distinct mechanisms that are likely engaged in a death stimulus- and cell-type-dependent fashion. In this review, factors contributing to permeabilization of the lysosomal membrane including reactive oxygen species, lysosomal membrane lipid composition, proteases, p53, and Bcl-2 family proteins, are described. Potential mechanisms to safeguard lysosomal integrity and confer resistance to lysosome-dependent cell death are also discussed.
Collapse
|
48
|
Hand TW, Kaech SM. Intrinsic and extrinsic control of effector T cell survival and memory T cell development. Immunol Res 2010; 45:46-61. [PMID: 18629449 DOI: 10.1007/s12026-008-8027-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following infection or vaccination T cells expand exponentially and differentiate into effector T cells in order to control infection and coordinate the multiple effector arms of the immune system. Soon after this expansion, the majority of antigen-specific T cells die to reattain homeostasis and a small pool of memory T cells forms to provide long-term immunity to subsequent re-infection. Our understanding of how this process is controlled has improved considerably over the recent years, but many questions remain outstanding. This review focuses on the recent advancements in this area with an emphasis on how the contraction of activated T cells is coordinately regulated by a combination of factors extrinsic and intrinsic to the activated T cells.
Collapse
Affiliation(s)
- Timothy W Hand
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar St., TACS641B, P.O. Box 208011, New Haven, CT 06520, USA
| | | |
Collapse
|
49
|
Konjar S, Yin F, Bogyo M, Turk B, Kopitar-Jerala N. Increased nucleolar localization of SpiA3G in classically but not alternatively activated macrophages. FEBS Lett 2010; 584:2201-6. [PMID: 20338168 DOI: 10.1016/j.febslet.2010.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/05/2010] [Accepted: 03/17/2010] [Indexed: 01/20/2023]
Abstract
Macrophages play a key role in innate immune response to pathogens and in tissue homeostasis, inflammation and repair. A serpin A3G (SpiA3G) is highly induced in classically activated macrophages. We show increased localization of SpiA3G in the nucleolus and co-localization with cathepsin L, upon classical, but not alternative activation of macrophages. Despite the increased expression of cathepsin L in the nuclei of classically activated macrophages, no cathepsin activity was detected. Since only pro-inflammatory, but not anti-inflammatory stimuli induce increased nucleolar localization of SpiA3G, we propose that SpiA3g translocation into the nucleolus is important in host defense against pathogens.
Collapse
Affiliation(s)
- Spela Konjar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
50
|
Bird PI, Trapani JA, Villadangos JA. Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 2009; 9:871-82. [PMID: 19935806 DOI: 10.1038/nri2671] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular endolysosomal compartment is dynamic, complex and incompletely understood. Its organelles and constituents vary between different cell types, but endolysosomal proteases are key components of this compartment in all cells. In immune cells, these proteases function in pathogen recognition and elimination, signal processing and cell homeostasis, and they are regulated by dedicated inhibitors. Pathogens can produce analogous proteases to subvert the host immune response. The balance in activity between a protease and its inhibitor can tune the immune response or cause damage as a result of mislocalized proteolysis. In this Review, we highlight recent developments in this area and emphasize the importance of studying the role of endolysosomal proteases, and their natural inhibitors, in the initiation and regulation of immune responses.
Collapse
Affiliation(s)
- Phillip I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|