1
|
Scaltriti E, Iyad K, Boniotti MB, Menozzi I, Bolzoni L, Ippolito D, Ciarello FP, Loda D, D’Incau M, Zanoni M, Presti VDML, Mazzone P, Gavaudan S, Pacciarini ML. Inside Mycobacterium bovis SB0120 spoligotype circulating in Italy: analysis of the most frequent genotypes by whole genome sequencing. Front Microbiol 2024; 15:1416605. [PMID: 39132144 PMCID: PMC11310128 DOI: 10.3389/fmicb.2024.1416605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Bovine tuberculosis (bTB) is a chronic inflammatory disease primarily caused by Mycobacterium bovis. The infection affects domestic animals and wildlife, posing a zoonotic risk to humans. To understand the dynamics of transmission and genetic diversity in Italy's M. bovis population, we conducted whole-genome sequencing (WGS) analysis on two prevalent genotypes, belonging to Spoligotype SB0120, identified in different geographical and temporal contexts. By comparing these genomes with international M. bovis isolates, we identified a distinct clade within the lineage La1.2, encompassing the Italian SB0120 isolates, indicating a genomic segregation of Italian M. bovis from other European isolates. Within Italy, a significant level of genetic variability emerged across regions, while isolates within epidemiologically linked outbreaks exhibited minimal genetic diversity. Additionally, isolates derived from cattle and wild boars within a tuberculosis hotspot in Central Italy and from cattle and black pigs in Sicily formed unified clonal clusters. This indicates the presence of persistent strains circulating in the examined regions. The genetic diversity within herds was limited, as specific clones endured over time within certain herds. This research enhances our comprehension of the epidemiology and transmission patterns of bTB in Italy, thereby aiding the development of precise control strategies and disease management. Using WGS and implementing standardized protocols and databases will be pivotal in combating bTB and promoting One-Health approaches to address this noteworthy public health concern.
Collapse
Affiliation(s)
- Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Karaman Iyad
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Maria Beatrice Boniotti
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Ilaria Menozzi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Dorotea Ippolito
- Area Territoriale Barcellona Pozzo di Gotto, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Barcellona Pozzo di Gotto, Messina, Italy
| | - Flavia Pruiti Ciarello
- Area Territoriale Barcellona Pozzo di Gotto, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Barcellona Pozzo di Gotto, Messina, Italy
| | - Daniela Loda
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Mario D’Incau
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Mariagrazia Zanoni
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Vincenzo Di Marco Lo Presti
- Area Territoriale Barcellona Pozzo di Gotto, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Barcellona Pozzo di Gotto, Messina, Italy
| | - Piera Mazzone
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Perugia, Italy
| | - Stefano Gavaudan
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Ancona, Italy
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| |
Collapse
|
2
|
Khoulane M, Fellahi S, Khayi S, Bouslikhane M, Lakhdissi H, Berrada J. First Insight into the Whole Genome Sequencing Whole Variations in Mycobacterium bovis from Cattle in Morocco. Microorganisms 2024; 12:1316. [PMID: 39065084 PMCID: PMC11278621 DOI: 10.3390/microorganisms12071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Six cattle heads which tested positive against bovine tuberculosis (bTB) in Morocco were investigated to confirm the disease and to determine the source(s) of infection. Polymerase Chain Reaction (PCR) was directly performed on tissue samples collected from slaughtered animals. All investigated animals tested positive to PCR for the Mycobacterium bovis sub-type. Bacteriological isolation was conducted according to the technique recommended by WOAH for the cultivation of the Mycobacterium tuberculosis Complex (MBTC). Whole genome sequencing (WGS) was carried out on six mycobacterial isolates and the phylogenic tree was constructed. The six Moroccan isolates fit with clades II, III, IV, V and VII and were confirmed to belong to the clonal complexes Eu2, Unknown 2 and 7 as well as to sublineages La1.7.1, La1.2 and La1.8.2. The significant Single Nucleotide Polymorphism (SNPs) ranged from 84 to 117 between the isolates and the reference M. bovis strain and from 17 to 212 between the six isolates. Considering the high resolution of WGS, these results suggests that the source of infection of the bTB could be linked to imported animals as five of the investigated reactor animals were imported a few months prior. WGS can be a useful component to the Moroccan strategy to control bTB.
Collapse
Affiliation(s)
- Mohammed Khoulane
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| | - Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat 10090, Morocco;
| | - Mohammed Bouslikhane
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| | - Hassan Lakhdissi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| | - Jaouad Berrada
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| |
Collapse
|
3
|
Nimmo C, Ortiz AT, Tan CCS, Pang J, Acman M, Millard J, Padayatchi N, Grant AD, O'Donnell M, Pym A, Brynildsrud OB, Eldholm V, Grandjean L, Didelot X, Balloux F, van Dorp L. Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis. Genome Med 2024; 16:34. [PMID: 38374151 PMCID: PMC10877763 DOI: 10.1186/s13073-024-01289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene (Rv0678), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. METHODS We compiled a dataset of 3682 Mtb genomes, including 180 carrying variants in mmpR5, and its immediate background (i.e. mmpR5 promoter and adjacent mmpL5 gene), that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We characterised the occurrence of all nonsynonymous mutations in mmpR5 in this dataset and estimated, using time-resolved phylogenetic methods, the age of their emergence. RESULTS We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in mmpR5, some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade, Ile67fs (a RAV when considered in isolation) was estimated to have emerged prior to the antibiotic era, together with a resistance reverting mmpL5 mutation. CONCLUSIONS The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control.
Collapse
Affiliation(s)
- Camus Nimmo
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
- Division of Infection and Immunity, University College London, London, UK.
- Africa Health Research Institute, Durban, South Africa.
| | - Arturo Torres Ortiz
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
- Department of Medicine, Imperial College, London, UK
| | - Cedric C S Tan
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
| | - Juanita Pang
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Mislav Acman
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
| | - James Millard
- Africa Health Research Institute, Durban, South Africa
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Nesri Padayatchi
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Alison D Grant
- Africa Health Research Institute, Durban, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Max O'Donnell
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
- Department of Medicine & Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Pym
- Africa Health Research Institute, Durban, South Africa
| | - Ola B Brynildsrud
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Louis Grandjean
- Division of Infection and Immunity, University College London, London, UK
- Laboratorio de Investigacion y Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Infection, Immunity and Inflammation, Institute of Child Health, University College London, London, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - François Balloux
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
| |
Collapse
|
4
|
Silva-Pereira TT, Soler-Camargo NC, Guimarães AMS. Diversification of gene content in the Mycobacterium tuberculosis complex is determined by phylogenetic and ecological signatures. Microbiol Spectr 2024; 12:e0228923. [PMID: 38230932 PMCID: PMC10871547 DOI: 10.1128/spectrum.02289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
We analyzed the pan-genome and gene content modulation of the most diverse genome data set of the Mycobacterium tuberculosis complex (MTBC) gathered to date. The closed pan-genome of the MTBC was characterized by reduced accessory and strain-specific genomes, compatible with its clonal nature. However, significantly fewer gene families were shared between MTBC genomes as their phylogenetic distance increased. This effect was only observed in inter-species comparisons, not within-species, which suggests that species-specific ecological characteristics are associated with changes in gene content. Gene loss, resulting from genomic deletions and pseudogenization, was found to drive the variation in gene content. This gene erosion differed among MTBC species and lineages, even within M. tuberculosis, where L2 showed more gene loss than L4. We also show that phylogenetic proximity is not always a good proxy for gene content relatedness in the MTBC, as the gene repertoire of Mycobacterium africanum L6 deviated from its expected phylogenetic niche conservatism. Gene disruptions of virulence factors, represented by pseudogene annotations, are mostly not conserved, being poor predictors of MTBC ecotypes. Each MTBC ecotype carries its own accessory genome, likely influenced by distinct selective pressures such as host and geography. It is important to investigate how gene loss confer new adaptive traits to MTBC strains; the detected heterogeneous gene loss poses a significant challenge in elucidating genetic factors responsible for the diverse phenotypes observed in the MTBC. By detailing specific gene losses, our study serves as a resource for researchers studying the MTBC phenotypes and their immune evasion strategies.IMPORTANCEIn this study, we analyzed the gene content of different ecotypes of the Mycobacterium tuberculosis complex (MTBC), the pathogens of tuberculosis. We found that changes in their gene content are associated with their ecological features, such as host preference. Gene loss was identified as the primary driver of these changes, which can vary even among different strains of the same ecotype. Our study also revealed that the gene content relatedness of these bacteria does not always mirror their evolutionary relationships. In addition, some genes of virulence can be variably lost among strains of the same MTBC ecotype, likely helping them to evade the immune system. Overall, our study highlights the importance of understanding how gene loss can lead to new adaptations in these bacteria and how different selective pressures may influence their genetic makeup.
Collapse
Affiliation(s)
- Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Lee S, Clémentine C, Kim H. Exploring the genetic factors behind the discrepancy in resistance to bovine tuberculosis between African zebu cattle and European taurine cattle. Sci Rep 2024; 14:2370. [PMID: 38287127 PMCID: PMC10824790 DOI: 10.1038/s41598-024-52606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
Caused by the pathogenic agent Mycobacterium bovis, bovine tuberculosis (bTB) is a major concern in cattle breeding due to both its zoonotic potential and economic impact. Greater resistance to this disease has been reported in certain African zebu breeds compared to European taurine breeds. However the genetic basis for the lower susceptibility to bTB infection observed in zebu cattle remains poorly explored. This study was conducted on whole genome sequencing data of three bTB infection-resistant African zebu breeds and two bTB infection-susceptible taurine breeds to decipher the genetic background. A set of four selection signature statistics based on linkage disequilibrium, site frequency spectrum, and population differentiation were used on SNPs whereas between population variance based VST and t-test were used on CNVs. As a complement, genes from previous literature reported as candidate genes for bTB resistance were also inspected to identify genetic variations. Interestingly, the resulting nine candidate genes had deleterious missense variants (SHC3, IFNGR1, TLR2, TLR6, IL1A, LRRK2, EP300 and IRAK4) or a CNV difference (CD48) segregating between the groups. The genes found in the study play a role in immune pathways activated during Mycobacterium infection, contributing to the proliferation of immune cells and the granuloma formation, ultimately modulating the outcome of the infectious event. In particular, a deleterious variant in the LRRK2 gene, whose deficiency has been linked to improved prognosis upon tuberculosis infection, was found in the bTB infection-resistant zebu breeds. Therefore, these genes constitute credible candidates in explaining the discrepancy in Mycobacterium bovis infection susceptibility among different breed.
Collapse
Affiliation(s)
- SangJung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Charton Clémentine
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Kapalamula TF, Chizimu JY, Akapelwa ML, Barnes DA, Toyting J, Bwalya P, Basikolo L, Squarre D, Chambaro HM, Gordon SV, Thapa J, Nakajima C, Suzuki Y. Insight into the genetic diversity of Mycobacterium bovis isolated from cattle in Malawi. Res Vet Sci 2023; 164:105030. [PMID: 37788548 DOI: 10.1016/j.rvsc.2023.105030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
We describe the genetic diversity and phylogenetic relationships of Mycobacterium bovis, isolated from cattle in Malawi. Deletion analysis, spoligotyping, and MIRU-VNTR typing were used to genotype the isolates. Combined with a larger dataset from neighboring countries, the overall M. bovis diversity in Southern Africa was contextualized. From the southern and northern regions of Malawi, 24 isolates were confirmed as M. bovis. We pooled data for the central region (60 isolates) from our recent publication to conceptualize the genetic and phylogenetic relationships of M. bovis in Malawi. European 1 was the dominant M. bovis clonal complex, with 10 unique spoligotype patterns, and SB0131 was ubiquitous. High genetic diversity, a low clustering rate, and many singletons, coupled with a low mutation transmission index, infer a low level of recent transmission, and suggest an endemic status of bovine tuberculosis (bTB) in Malawi. M. bovis isolates from Zambia, Mozambique, and South Africa were genetically related to Malawian isolates, whereas Tanzanian isolates were distantly related. The diversity and phylogenetic analysis suggest earlier introductions and maintenance of M. bovis by constant reinfection from reservoir animals. These findings are fundamental to understanding the source and route of infection in order to establish alternative management strategies for bTB.
Collapse
Affiliation(s)
- Thoko Flav Kapalamula
- Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi; Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Joseph Yamweka Chizimu
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - David Atomanyi Barnes
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Jirachaya Toyting
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Precious Bwalya
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; University Teaching Hospital, Ministry of Health, Lusaka, Zambia
| | - Linda Basikolo
- Department of Animal Health and Livestock Development, Ministry of Agriculture, Lilongwe, Malawi
| | - David Squarre
- Department of National Parks and Wildlife, Wildlife Veterinary Unit, Chilanga, Zambia
| | - Herman M Chambaro
- Division of Molecular Pathobiology, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; Department of National Parks and Wildlife, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan; Hokkaido University Institute for Vaccine Research and Development, Sapporo, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan; Hokkaido University Institute for Vaccine Research and Development, Sapporo, Hokkaido, Japan.
| |
Collapse
|
7
|
Mitermite M, Elizari JMU, Ma R, Farrell D, Gordon SV. Exploring virulence in Mycobacterium bovis: clues from comparative genomics and perspectives for the future. Ir Vet J 2023; 76:26. [PMID: 37770951 PMCID: PMC10540498 DOI: 10.1186/s13620-023-00257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Here we provide a summary of a plenary lecture delivered on Mycobacterium bovis, the bovine TB bacillus, at the M. bovis 2022 meeting held in Galway, Ireland, in June 2022. We focus on the analysis of genetic differences between M. bovis and the human pathogen Mycobacterium tuberculosis as a route to gain knowledge on what makes M. bovis function as an animal pathogen. We provide a brief historical background around M. bovis and comparative virulence experiments with M. tuberculosis, before moving to what we have learned from the studies of the M. bovis genome sequence. We discuss the need to translate knowledge on the molecular basis of virulence in M. bovis into improved control of bovine tuberculosis.
Collapse
Affiliation(s)
- Morgane Mitermite
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Jose Maria Urtasun Elizari
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ruoyao Ma
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
- UCD School of Medicine, University College Dublin, Dublin, Ireland.
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
- UCD Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Rossi G, Shih BBJ, Egbe NF, Motta P, Duchatel F, Kelly RF, Ndip L, Sander M, Tanya VN, Lycett SJ, Bronsvoort BM, Muwonge A. Unraveling the epidemiology of Mycobacterium bovis using whole-genome sequencing combined with environmental and demographic data. Front Vet Sci 2023; 10:1086001. [PMID: 37266384 PMCID: PMC10230100 DOI: 10.3389/fvets.2023.1086001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/14/2023] [Indexed: 06/03/2023] Open
Abstract
When studying the dynamics of a pathogen in a host population, one crucial question is whether it transitioned from an epidemic (i.e., the pathogen population and the number of infected hosts are increasing) to an endemic stable state (i.e., the pathogen population reached an equilibrium). For slow-growing and slow-evolving clonal pathogens such as Mycobacterium bovis, the causative agent of bovine (or animal) and zoonotic tuberculosis, it can be challenging to discriminate between these two states. This is a result of the combination of suboptimal detection tests so that the actual extent of the pathogen prevalence is often unknown, as well as of the low genetic diversity, which can hide the temporal signal provided by the accumulation of mutations in the bacterial DNA. In recent years, the increased availability, efficiency, and reliability of genomic reading techniques, such as whole-genome sequencing (WGS), have significantly increased the amount of information we can use to study infectious diseases, and therefore, it has improved the precision of epidemiological inferences for pathogens such as M. bovis. In this study, we use WGS to gain insights into the epidemiology of M. bovis in Cameroon, a developing country where the pathogen has been reported for decades. A total of 91 high-quality sequences were obtained from tissue samples collected in four abattoirs, 64 of which were with complete metadata. We combined these with environmental, demographic, ecological, and cattle movement data to generate inferences using phylodynamic models. Our findings suggest M. bovis in Cameroon is slowly expanding its epidemiological range over time; therefore, endemic stability is unlikely. This suggests that animal movement plays an important role in transmission. The simultaneous prevalence of M. bovis in co-located cattle and humans highlights the risk of such transmission being zoonotic. Therefore, using genomic tools as part of surveillance would vastly improve our understanding of disease ecology and control strategies.
Collapse
Affiliation(s)
- Gianluigi Rossi
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
- Centre of Expertise on Animal Diseases Outbreaks, EPIC, Edinburgh, United Kingdom
| | - Barbara Bo-Ju Shih
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
| | - Nkongho Franklyn Egbe
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Paolo Motta
- The Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand
| | - Florian Duchatel
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
| | - Robert Francis Kelly
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Lucy Ndip
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | | | | | - Samantha J. Lycett
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
- Centre of Expertise on Animal Diseases Outbreaks, EPIC, Edinburgh, United Kingdom
| | - Barend Mark Bronsvoort
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
- Centre of Expertise on Animal Diseases Outbreaks, EPIC, Edinburgh, United Kingdom
| | - Adrian Muwonge
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
9
|
Charles C, Conde C, Vorimore F, Cochard T, Michelet L, Boschiroli ML, Biet F. Features of Mycobacterium bovis Complete Genomes Belonging to 5 Different Lineages. Microorganisms 2023; 11:177. [PMID: 36677470 PMCID: PMC9865570 DOI: 10.3390/microorganisms11010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Mammalian tuberculosis (TB) is a zoonotic disease mainly due to Mycobacterium bovis (M. bovis). A current challenge for its eradication is understanding its transmission within multi-host systems. Improvements in long-read sequencing technologies have made it possible to obtain complete bacterial genomes that provide a comprehensive view of species-specific genomic features. In the context of TB, new genomic references based on complete genomes genetically close to field strains are also essential to perform precise field molecular epidemiological studies. A total of 10 M. bovis strains representing each genetic lineage identified in France and in other countries were selected for performing complete assembly of their genomes. Pangenome analysis revealed a "closed" pangenome composed of 3900 core genes and only 96 accessory genes. Whole genomes-based alignment using progressive Mauve showed remarkable conservation of the genomic synteny except that the genomes have a variable number of copies of IS6110. Characteristic genomic traits of each lineage were identified through the discovery of specific indels. Altogether, these results provide new genetic features that improve the description of M. bovis lineages. The availability of new complete representative genomes of M. bovis will be useful to epidemiological studies and better understand the transmission of this clonal-evolving pathogen.
Collapse
Affiliation(s)
- Ciriac Charles
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Cyril Conde
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Fabien Vorimore
- Laboratory for Food Safety, Unit of ‘Pathogenic E. coli’ (COLiPATH) & Genomics Platform ‘IdentyPath’ (IDPA), ANSES, 94701 Maisons-Alfort, France
| | - Thierry Cochard
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Lorraine Michelet
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
| | - Maria Laura Boschiroli
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
| | - Franck Biet
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| |
Collapse
|
10
|
Edao BM, Ameni G, Berg S, Tekle M, Whatmore AM, Wood JLN, van Tonder AJ, Ashford RT. Whole genome sequencing of Ethiopian Brucella abortus isolates expands the known diversity of an early branching sub-Saharan African lineage. Front Microbiol 2023; 14:1128966. [PMID: 37213520 PMCID: PMC10192883 DOI: 10.3389/fmicb.2023.1128966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 05/23/2023] Open
Abstract
Brucellosis remains one of the most significant zoonotic diseases globally, responsible for both considerable human morbidity and economic losses due to its impacts on livestock productivity. Despite this, there remain significant evidence gaps in many low- and middle-income countries, including those of sub-Saharan Africa. Here we report the first molecular characterisation of Brucella sp. from Ethiopia. Fifteen Brucella sp. isolates from an outbreak in cattle from a herd in central Ethiopia were identified as Brucella abortus, using bacterial culture and molecular methods. Sequencing of the Ethiopian B. abortus isolates allowed their phylogenetic comparison with 411 B. abortus strains of diverse geographical origins, using whole genome single nucleotide polymorphisms (wgSNP). The Ethiopian isolates belonged to an early-branching lineage (Lineage A) previously only represented by data from two strains, both of sub-Saharan African origin (Kenya and Mozambique). A second B. abortus lineage (Lineage B), also comprised solely of strains originating from sub-Saharan Africa, was identified. The majority of strains belonged to one of two lineages of strains originating from a much broader geographical range. Further analyses based on multi-locus sequence typing (MLST) and multi-locus variable-number tandem repeat analysis (MLVA) expanded the number of B. abortus strains available for comparison with the Ethiopian isolates and were consistent with the findings from wgSNP analysis. MLST profiles of the Ethiopian isolates expanded the sequence type (ST) diversity of the early branching lineage of B. abortus, equivalent to wgSNP Lineage A. A more diverse cluster of STs, equivalent to wgSNP Lineage B, was comprised solely of strains originating from sub-Saharan Africa. Similarly, analysis of B. abortus MLVA profiles (n = 1891) confirmed that the Ethiopian isolates formed a unique cluster, similar to only two existing strains, and distinct from the majority of other strains of sub-Saharan African origin. These findings expand the known diversity of an under-represented lineage of B. abortus and suggest a potential evolutionary origin for the species in East Africa. In addition to providing information concerning Brucella species extant within Ethiopia this work serves as the basis for further studies on the global population structure and evolutionary history of a major zoonotic pathogen.
Collapse
Affiliation(s)
- Bedaso Mammo Edao
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- College of Veterinary Medicine, Addis Ababa University, Bishoftu, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Stefan Berg
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muluken Tekle
- College of Veterinary Medicine, Addis Ababa University, Bishoftu, Ethiopia
| | - Adrian M. Whatmore
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Roland T. Ashford
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
- *Correspondence: Roland T. Ashford,
| |
Collapse
|
11
|
Legall N, Salvador LCM. Selective sweep sites and SNP dense regions differentiate Mycobacterium bovis isolates across scales. Front Microbiol 2022; 13:787856. [PMID: 36160199 PMCID: PMC9489834 DOI: 10.3389/fmicb.2022.787856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium bovis, a bacterial zoonotic pathogen responsible for the economically and agriculturally important livestock disease bovine tuberculosis (bTB), infects a broad mammalian host range worldwide. This characteristic has led to bidirectional transmission events between livestock and wildlife species as well as the formation of wildlife reservoirs, impacting the success of bTB control measures. Next Generation Sequencing (NGS) has transformed our ability to understand disease transmission events by tracking variant sites, however the genomic signatures related to host adaptation following spillover, alongside the role of other genomic factors in the M. bovis transmission process are understudied problems. We analyzed publicly available M. bovis datasets collected from 700 hosts across three countries with bTB endemic regions (United Kingdom, United States, and New Zealand) to investigate if genomic regions with high SNP density and/or selective sweep sites play a role in Mycobacterium bovis adaptation to new environments (e.g., at the host-species, geographical, and/or sub-population levels). A simulated M. bovis alignment was created to generate null distributions for defining genomic regions with high SNP counts and regions with selective sweeps evidence. Random Forest (RF) models were used to investigate evolutionary metrics within the genomic regions of interest to determine which genomic processes were the best for classifying M. bovis across ecological scales. We identified in the M. bovis genomes 14 and 132 high SNP density and selective sweep regions, respectively. Selective sweep regions were ranked as the most important in classifying M. bovis across the different scales in all RF models. SNP dense regions were found to have high importance in the badger and cattle specific RF models in classifying badger derived isolates from livestock derived ones. Additionally, the genes detected within these genomic regions harbor various pathogenic functions such as virulence and immunogenicity, membrane structure, host survival, and mycobactin production. The results of this study demonstrate how comparative genomics alongside machine learning approaches are useful to investigate further the nature of M. bovis host-pathogen interactions.
Collapse
Affiliation(s)
- Noah Legall
- Interdisciplinary Disease Ecology Across Scales Research Traineeship Program, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Liliana C. M. Salvador
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Almaw G, Mihret A, Abebe T, Ameni G, Gumi B, Olani A, Tamiru M, Koran T, Aliy A, Sombo M, Ayalew S, Yesuf A, Taye H, Wood JLN, Berg S. Spoligotype analysis of Mycobacterium bovis isolates from cattle and assessment of zoonotic TB transmission among individuals working in bovine TB-infected dairy farms in Ethiopia. Zoonoses Public Health 2022; 69:663-672. [PMID: 37379451 PMCID: PMC9544066 DOI: 10.1111/zph.12955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 11/30/2022]
Abstract
Bovine tuberculosis (bTB) is a disease with impact on dairy productivity, as well as having the potential for zoonotic transmission. Understanding the genetic diversity of the disease agent Mycobacterium bovis is important for identifying its routes of transmission. Here we investigated the level of genetic diversity of M. bovis isolates and assessed the zoonotic potential in risk groups of people working in bTB-infected dairy farms in central Ethiopia. M. bovis was isolated and spoligotyped from tissue lesions collected from slaughtered cattle as well as from raw milk collected from bTB positive cows in dairy farms from six urban areas of central Ethiopia. From consented dairy farm workers, knowledge and practices related to zoonotic TB transmission, together with demographic and clinical information, was collected through interviews. Sputum or Fine Needle Aspirate (FNA) samples were collected from suspected TB cases. Spoligotyping of 55 M. bovis isolates that originated either from cattle tissues with tuberculous lesion or from raw milk revealed seven spoligotype patterns where SB1176 was the most prevalent type (47.3%). Most isolates (89.1%) were of the M. bovis African 2 clonal complex. All sputum and FNA samples from 41 dairy farm workers with symptoms of TB were culture negative for any mycobacteria. Among the 41 TB suspected farm workers, 61% did not know about bTB in cattle and its zoonotic potential, and over two-third of these workers practiced raw milk consumption. Our spoligotype analysis suggests a wider transmission of a single spoligotype in the study area. The results reported here may be useful in guiding future work to identify the source and direction of bTB transmission and hence design of a control strategy. Isolation of M. bovis from milk, knowledge gap on zoonotic TB and practice of consumption of raw milk in the study population showed potential risk for zoonotic transmission.
Collapse
Affiliation(s)
- Gizat Almaw
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
- Department of Microbiology, Immunology and Parasitology, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
- Armauer Hansen Research InstituteAddis AbabaEthiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
- Department of Veterinary Medicine, College of Food and AgricultureUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - Balako Gumi
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Abebe Olani
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Mekdes Tamiru
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Tafesse Koran
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Abde Aliy
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Melaku Sombo
- National Animal Health Diagnostic and Investigation CenterSebetaEthiopia
| | - Sosina Ayalew
- Armauer Hansen Research InstituteAddis AbabaEthiopia
| | - Adem Yesuf
- Armauer Hansen Research InstituteAddis AbabaEthiopia
| | - Hawult Taye
- Armauer Hansen Research InstituteAddis AbabaEthiopia
| | - James L. N. Wood
- Disease Dynamics Unit, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Stefan Berg
- Bacteriology DepartmentAnimal and Plant Health AgencyWeybridgeUK
| | | |
Collapse
|
13
|
Ceres KM, Stanhope MJ, Gröhn YT. A critical evaluation of Mycobacterium bovis pangenomics, with reference to its utility in outbreak investigation. Microb Genom 2022; 8:mgen000839. [PMID: 35763423 PMCID: PMC9455707 DOI: 10.1099/mgen.0.000839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
The increased accessibility of next generation sequencing has allowed enough genomes from a given bacterial species to be sequenced to describe the distribution of genes in the pangenome, without limiting analyses to genes present in reference strains. Although some taxa have thousands of whole genome sequences available on public databases, most genomes were sequenced with short read technology, resulting in incomplete assemblies. Studying pangenomes could lead to important insights into adaptation, pathogenicity, or molecular epidemiology, however given the known information loss inherent in analyzing contig-level assemblies, these inferences may be biased or inaccurate. In this study we describe the pangenome of a clonally evolving pathogen, Mycobacterium bovis , and examine the utility of gene content variation in M. bovis outbreak investigation. We constructed the M. bovis pangenome using 1463 de novo assembled genomes. We tested the assumption of strict clonal evolution by studying evidence of recombination in core genes and analyzing the distribution of accessory genes among core monophyletic groups. To determine if gene content variation could be utilized in outbreak investigation, we carefully examined accessory genes detected in a well described M. bovis outbreak in Minnesota. We found significant errors in accessory gene classification. After accounting for these errors, we show that M. bovis has a much smaller accessory genome than previously described and provide evidence supporting ongoing clonal evolution and a closed pangenome, with little gene content variation generated over outbreaks. We also identified frameshift mutations in multiple genes, including a mutation in glpK , which has recently been associated with antibiotic tolerance in Mycobacterium tuberculosis . A pangenomic approach enables a more comprehensive analysis of genome dynamics than is possible with reference-based approaches; however, without critical evaluation of accessory gene content, inferences of transmission patterns employing these loci could be misguided.
Collapse
Affiliation(s)
- Kristina M. Ceres
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yrjö T. Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Valcheva V, Perea C, Savova-Lalkovska T, Dimitrova A, Radulski L, Mokrousov I, Marinov K, Najdenski H, Bonovska M. Mycobacterium bovis and M. caprae in Bulgaria: insight into transmission and phylogeography gained through whole-genome sequencing. BMC Vet Res 2022; 18:148. [PMID: 35461250 PMCID: PMC9034630 DOI: 10.1186/s12917-022-03249-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND This study aimed to characterize recent Mycobacterium bovis/M. caprae isolates from Bulgaria by whole-genome sequencing (WGS) to gain a first insight into their molecular diversity, transmission, and position within the global phylogeography of this important zoonotic species. RESULTS The isolates were obtained from cattle in diverse locations of Bulgaria in 2015-2020 and were identified by microbiological and PCR assays. WGS data were used for phylogenetic analysis that also included M. bovis global dataset. Thirty-seven M. bovis/caprae isolates from Bulgaria were studied and 34 of them were SNP genotyped. The isolates were subdivided into 3 major phylogenetic groups. Type Mbovis-13 (Eu2 complex [western Europe and northern Africa]) included one isolate. Mbovis-37 type included 5 isolates outside of known clonal complexes. The Bulgarian M. caprae isolates formed a sub-group within the Mcaprae-27B cluster which also included 22 M. caprae isolates from Poland, Spain, Germany, and the Republic of Congo. The Bulgarian M. caprae isolates share their latest common ancestors with Spanish isolates. The Mbovis-37 group shares a distant common ancestor (pairwise distance 22-29 SNPs) with an isolate from Poland but was very distant (> 200 SNPs) from the rest of the tree. The Mbovis-13 group shares a common ancestor with two human isolates from Germany. Phylogeographically, both M. bovis clades had limited circulation in northeastern Bulgaria while the majority of the studied isolates (M. caprae) were from central and western provinces. A phylogenetic network-based analysis demonstrated that 11 Bulgarian isolates were separated by 1 to 6 SNPs within four clusters, mostly forming pairs of isolates. CONCLUSION The obtained WGS analysis positioned the Bulgarian isolates within the global phylogeography of M. bovis/M. caprae. Hypothetically, the observed phylogenetic diversity may not have resulted from livestock trade routes, but instead may reflect the deeply rooted M. bovis/M. caprae phylogeography of Europe. A high level of genetic divergence between the majority of the studied isolates suggests limited active transmission of bTB in Bulgaria during the survey period. At the same time, a possibility of the endemic presence of circulating bTB strains in the form of the latent persistent disease cannot be ruled out.
Collapse
Affiliation(s)
- Violeta Valcheva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria.
| | - Claudia Perea
- National Veterinary Services Laboratories, United States Department of Agriculture, Ames, IA, USA
| | - Tanya Savova-Lalkovska
- National Diagnostic and Research Veterinary Medical Institute "Prof. Dr. G. Pavlov", Sofia, Bulgaria
| | - Albena Dimitrova
- National Diagnostic and Research Veterinary Medical Institute "Prof. Dr. G. Pavlov", Sofia, Bulgaria
| | | | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | | | - Hristo Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria
| | - Magdalena Bonovska
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria
| |
Collapse
|
15
|
Belakehal F, Barth SA, Menge C, Mossadak HT, Malek N, Moser I. Evaluation of the discriminatory power of spoligotyping and 19-locus mycobacterial interspersed repetitive unit-variable number of tandem repeat analysis (MIRU-VNTR) of Mycobacterium bovis strains isolated from cattle in Algeria. PLoS One 2022; 17:e0262390. [PMID: 35015775 PMCID: PMC8751994 DOI: 10.1371/journal.pone.0262390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
Bovine tuberculosis (bTB) caused by Mycobacterium (M.) bovis and M. caprae is a transmissible disease of livestock, notifiable to the World Organization for Animal Health (OIE). BTB particularly affects cattle and small ruminants and can be transmitted to humans thereby posing a significant threat to veterinary and public health worldwide. M. bovis is the principal cause of bTB in Algeria. In order to better understand the route of spreading and elaborate an eradication program, isolation and characterization of mycobacteria from Algerian cattle was performed. Sixty strains belonging to the M. tuberculosis complex were analyzed by spoligotyping, thereof 42 by 19-locus-MIRU-VNTR-typing. Spoligotyping revealed 16 distinguishable patterns (Hunter-Gaston discriminatory index [HGDI] of 0.8294), with types SB0120 (n = 20) and SB0121 (n = 13) being the most frequent patterns, representing 55% of the strains. Analyses based on 19-locus-MIRU-VNTR yielded 32 different profiles, five clusters and one orphan pattern, showing higher discriminatory power (HGDI = 0.9779) than spoligotyping. Seven VNTR-loci [VNTR 577 (alias ETR C), 2163b (QU11b), 2165 (ETR A), 2461 (ETR B), 3007 (MIRU 27), 2163a (QUB11a) and 3232 (QUB 3232)] were the most discriminative loci (HGDI ˃ 0.50). In conclusion, 19-locus-MIRU-VNTR yielded more information than spoligotyping concerning molecular differentiation of strains and better supports the elucidation of transmission routes of M. bovis between Algerian cattle herds.
Collapse
Affiliation(s)
- Faïza Belakehal
- High National Veterinary School, Laboratory of Food Hygiene and Quality Insurance System, El-Alia, Oued Smar, Algeria
- * E-mail: (FB); (SAB)
| | - Stefanie A. Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Germany
- National Reference Laboratory for Bovine Tuberculosis, at Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Germany
- * E-mail: (FB); (SAB)
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Germany
| | - Hamdi T. Mossadak
- High National Veterinary School, Laboratory of Food Hygiene and Quality Insurance System, El-Alia, Oued Smar, Algeria
| | - Naïm Malek
- Central Military Hospital, Department of Microbiology, Kouba, Algeria
| | - Irmgard Moser
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Germany
- National Reference Laboratory for Bovine Tuberculosis, at Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Germany
| |
Collapse
|
16
|
Lorente-Leal V, Farrell D, Romero B, Álvarez J, de Juan L, Gordon SV. Performance and Agreement Between WGS Variant Calling Pipelines Used for Bovine Tuberculosis Control: Toward International Standardization. Front Vet Sci 2022; 8:780018. [PMID: 34970617 PMCID: PMC8712436 DOI: 10.3389/fvets.2021.780018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
Whole genome sequencing (WGS) and allied variant calling pipelines are a valuable tool for the control and eradication of infectious diseases, since they allow the assessment of the genetic relatedness of strains of animal pathogens. In the context of the control of tuberculosis (TB) in livestock, mainly caused by Mycobacterium bovis, these tools offer a high-resolution alternative to traditional molecular methods in the study of herd breakdown events. However, despite the increased use and efforts in the standardization of WGS methods in human tuberculosis around the world, the application of these WGS-enabled approaches to control TB in livestock is still in early development. Our study pursued an initial evaluation of the performance and agreement of four publicly available pipelines for the analysis of M. bovis WGS data (vSNP, SNiPgenie, BovTB, and MTBseq) on a set of simulated Illumina reads generated from a real-world setting with high TB prevalence in cattle and wildlife in the Republic of Ireland. The overall performance of the evaluated pipelines was high, with recall and precision rates above 99% once repeat-rich and problematic regions were removed from the analyses. In addition, when the same filters were applied, distances between inferred phylogenetic trees were similar and pairwise comparison revealed that most of the differences were due to the positioning of polytomies. Hence, under the studied conditions, all pipelines offer similar performance for variant calling to underpin real-world studies of M. bovis transmission dynamics.
Collapse
Affiliation(s)
- Víctor Lorente-Leal
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Beatriz Romero
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Álvarez
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Zwyer M, Çavusoglu C, Ghielmetti G, Pacciarini ML, Scaltriti E, Van Soolingen D, Dötsch A, Reinhard M, Gagneux S, Brites D. A new nomenclature for the livestock-associated Mycobacterium tuberculosis complex based on phylogenomics. OPEN RESEARCH EUROPE 2021; 1:100. [PMID: 37645186 PMCID: PMC10445919 DOI: 10.12688/openreseurope.14029.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 08/31/2023]
Abstract
Background: The bacteria that compose the Mycobacterium tuberculosis complex (MTBC) cause tuberculosis (TB) in humans and in different animals, including livestock. Much progress has been made in understanding the population structure of the human-adapted members of the MTBC by combining phylogenetics with genomics. Accompanying the discovery of new genetic diversity, a body of operational nomenclature has evolved to assist comparative and molecular epidemiological studies of human TB. By contrast, for the livestock-associated MTBC members, Mycobacterium bovis, M. caprae and M. orygis, there has been a lack of comprehensive nomenclature to accommodate new genetic diversity uncovered by emerging phylogenomic studies. We propose to fill this gap by putting forward a new nomenclature covering the main phylogenetic groups within M. bovis, M. caprae and M. orygis. Methods: We gathered a total of 8,736 whole-genome sequences (WGS) from public sources and 39 newly sequenced strains, and selected a subset of 829 WGS, representative of the worldwide diversity of M. bovis, M. caprae and M. orygis. We used phylogenetics and genetic diversity patterns inferred from WGS to define groups. Results: We propose to divide M. bovis, M. caprae and M. orygis in three main phylogenetic lineages, which we named La1, La2 and La3, respectively. Within La1, we identified several monophyletic groups, which we propose to classify into eight sublineages (La1.1-La1.8). These sublineages differed in geographic distribution, with some being geographically restricted and others globally widespread, suggesting different expansion abilities. To ease molecular characterization of these MTBC groups by the community, we provide phylogenetically informed, single nucleotide polymorphisms that can be used as barcodes for genotyping. These markers were implemented in KvarQ and TB-Profiler, which are platform-independent, open-source tools. Conclusions: Our results contribute to an improved classification of the genetic diversity within the livestock-associated MTBC, which will benefit future molecular epidemiological and evolutionary studies.
Collapse
Affiliation(s)
- Michaela Zwyer
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Cengiz Çavusoglu
- Department of Medical Microbiology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Giovanni Ghielmetti
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, University of Zurich, Zurich, Switzerland
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Dick Van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands Antilles
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anna Dötsch
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Miriam Reinhard
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Sebastien Gagneux
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Daniela Brites
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| |
Collapse
|
18
|
van Tonder AJ, Thornton MJ, Conlan AJK, Jolley KA, Goolding L, Mitchell AP, Dale J, Palkopoulou E, Hogarth PJ, Hewinson RG, Wood JLN, Parkhill J. Inferring Mycobacterium bovis transmission between cattle and badgers using isolates from the Randomised Badger Culling Trial. PLoS Pathog 2021; 17:e1010075. [PMID: 34843579 PMCID: PMC8659364 DOI: 10.1371/journal.ppat.1010075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/09/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium bovis (M. bovis) is a causative agent of bovine tuberculosis, a significant source of morbidity and mortality in the global cattle industry. The Randomised Badger Culling Trial was a field experiment carried out between 1998 and 2005 in the South West of England. As part of this trial, M. bovis isolates were collected from contemporaneous and overlapping populations of badgers and cattle within ten defined trial areas. We combined whole genome sequences from 1,442 isolates with location and cattle movement data, identifying transmission clusters and inferred rates and routes of transmission of M. bovis. Most trial areas contained a single transmission cluster that had been established shortly before sampling, often contemporaneous with the expansion of bovine tuberculosis in the 1980s. The estimated rate of transmission from badger to cattle was approximately two times higher than from cattle to badger, and the rate of within-species transmission considerably exceeded these for both species. We identified long distance transmission events linked to cattle movement, recurrence of herd breakdown by infection within the same transmission clusters and superspreader events driven by cattle but not badgers. Overall, our data suggests that the transmission clusters in different parts of South West England that are still evident today were established by long-distance seeding events involving cattle movement, not by recrudescence from a long-established wildlife reservoir. Clusters are maintained primarily by within-species transmission, with less frequent spill-over both from badger to cattle and cattle to badger.
Collapse
Affiliation(s)
- Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mark J. Thornton
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. K. Conlan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Lee Goolding
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | - James Dale
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | | | | | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Perea C, Ciaravino G, Stuber T, Thacker TC, Robbe-Austerman S, Allepuz A, de Val BP. Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain. Microorganisms 2021; 9:microorganisms9081629. [PMID: 34442709 PMCID: PMC8401651 DOI: 10.3390/microorganisms9081629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
The high-resolution WGS analyses of MTBC strains have provided useful insight for determining sources of infection for animal tuberculosis. In Spain, tuberculosis in livestock is caused by Mycobacterium bovis and Mycobacterium caprae, where wildlife reservoirs play an important role. We analyzed a set of 125 M. bovis isolates obtained from livestock and wildlife from Catalonia to investigate strain diversity and identify possible sources and/or causes of infection. Whole-genome SNP profiles were used for phylogenetic reconstruction and pairwise SNP distance analysis. Additionally, SNPs were investigated to identify virulence and antimicrobial resistance factors to investigate clade-specific associations. Putative transmission clusters (≤12 SNPs) were identified, and associated epidemiological metadata were used to determine possible explanatory factors for transmission. M. bovis distribution was heterogeneous, with 7 major clades and 21 putative transmission clusters. In order of importance, the explanatory factors associated were proximity and neighborhood, residual infection, livestock-wildlife interaction, shared pasture, and movement. Genes related to lipid transport and metabolism showed the highest number of SNPs. All isolates were pyrazinamide resistant, and five were additionally resistant to isoniazid, but no clade-specific associations could be determined. Our findings highlight the importance of high-resolution molecular surveillance to monitor bovine tuberculosis dynamics in a low-prevalence setting.
Collapse
Affiliation(s)
- Claudia Perea
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
- Correspondence:
| | - Giovanna Ciaravino
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (G.C.); (A.A.)
| | - Tod Stuber
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Tyler C. Thacker
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (G.C.); (A.A.)
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), 08197 Bellaterra, Spain;
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Bernat Pérez de Val
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), 08197 Bellaterra, Spain;
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| |
Collapse
|
20
|
Tazerart F, Saad J, Sahraoui N, Yala D, Niar A, Drancourt M. Whole Genome Sequence Analysis of Mycobacterium bovis Cattle Isolates, Algeria. Pathogens 2021; 10:pathogens10070802. [PMID: 34202816 PMCID: PMC8308521 DOI: 10.3390/pathogens10070802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium bovis (M. bovis), a Mycobacterium tuberculosis complex species responsible for tuberculosis in cattle and zoonotic tuberculosis in humans, is present in Algeria. In Algeria however, the M. bovis population structure is unknown, limiting understanding of the sources and transmission of bovine tuberculosis. In this study, we identified the whole genome sequence (WGS) of 13 M. bovis strains isolated from animals exhibiting lesions compatible with tuberculosis, which were slaughtered and inspected in five slaughterhouses in Algeria. We found that six isolates were grouped together with reference clinical strains of M. bovis genotype-Unknown2. One isolate was related to M. bovis genotype-Unknown7, one isolate was related to M. bovis genotype-Unknown4, three isolates belonged to M. bovis genotype-Europe 2 and there was one new clone for two M. bovis isolates. Two isolates from Blida exhibited no pairwise differences in single nucleotide polymorphisms. None of these 13 isolates were closely related to four zoonotic M. bovis isolates previously characterized in Algeria. In Algeria, the epidemiology of bovine tuberculosis in cattle is partly driven by cross border movements of animals and animal products.
Collapse
Affiliation(s)
- Fatah Tazerart
- Laboratoire d’Agro Biotechnologie et de Nutrition des Zones Semi Arides, Université Ibn Khaldoun, Tiaret 14000, Algeria;
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria;
- Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
| | - Jamal Saad
- Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
- Faculté de Médecine, Aix-Marseille-Université, IHU Méditerranée Infection, 13005 Marseille, France
| | - Naima Sahraoui
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria;
| | - Djamel Yala
- Laboratoire National de Référence pour la Tuberculose et Mycobactéries, Institut Pasteur d’Algérie, Alger 16015, Algeria;
| | - Abdellatif Niar
- Laboratoire de Reproduction des Animaux de la Ferme, Université Ibn Khaldoun, Tiaret 14000, Algeria;
| | - Michel Drancourt
- Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
- Faculté de Médecine, Aix-Marseille-Université, IHU Méditerranée Infection, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
21
|
Rodrigues RDA, Ribeiro Araújo F, Rivera Dávila AM, Etges RN, Parkhill J, van Tonder AJ. Genomic and temporal analyses of Mycobacterium bovis in southern Brazil. Microb Genom 2021; 7. [PMID: 34016251 PMCID: PMC8209730 DOI: 10.1099/mgen.0.000569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium bovis is a causal agent of bovine tuberculosis (bTB), one of the most important diseases currently facing the cattle industry worldwide. Tracing the source of M. bovis infections of livestock is an important tool for understanding the epidemiology of bTB and defining control/eradication strategies. In this study, whole genome sequencing (WGS) of 74 M. bovis isolates sourced from naturally infected cattle in the State of Rio Grande do Sul (RS), southern Brazil, was used to evaluate the population structure of M. bovis in the region, identify potential transmission events and date the introduction of clonal complex (CC) European 2 (Eu2). In silico spoligotyping identified 11 distinct patterns including four new profiles and two CCs, European 1 (Eu1) and Eu2. The analyses revealed a high level of genetic diversity in the majority of herds and identified putative transmission clusters that suggested that within- and between-herd transmission is occurring in RS. In addition, a comparison with other published M. bovis isolates from Argentina, Brazil, Paraguay and Uruguay demonstrated some evidence for a possible cross-border transmission of CC Eu1 into RS from Uruguay or Argentina. An estimated date for the introduction of CC Eu2 into RS in the middle of the 19th century correlated with the historical introduction of cattle into RS to improve existing local breeds. These findings contribute to the understanding of the population structure of M. bovis in southern Brazil and highlight the potential of WGS in surveillance and helping to identify bTB transmission.
Collapse
Affiliation(s)
- Rudielle de Arruda Rodrigues
- Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Alberto Martín Rivera Dávila
- Computational and Systems Biology Laboratory, Graduate Program in Biodiversity and Health, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
22
|
Almaw G, Mekonnen GA, Mihret A, Aseffa A, Taye H, Conlan AJK, Gumi B, Zewude A, Aliy A, Tamiru M, Olani A, Lakew M, Sombo M, Gebre S, Diguimbaye C, Hilty M, Fané A, Müller B, Hewinson RG, Ellis RJ, Nunez-Garcia J, Palkopoulou E, Abebe T, Ameni G, Parkhill J, Wood JLN, Berg S, van Tonder AJ. Population structure and transmission of Mycobacterium bovis in Ethiopia. Microb Genom 2021; 7:000539. [PMID: 33945462 PMCID: PMC8209724 DOI: 10.1099/mgen.0.000539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 12/03/2022] Open
Abstract
Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis, which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M. bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis, based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.
Collapse
Affiliation(s)
- Gizat Almaw
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getnet Abie Mekonnen
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hawult Taye
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aboma Zewude
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abde Aliy
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Mekdes Tamiru
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Abebe Olani
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Matios Lakew
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Melaku Sombo
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Solomon Gebre
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Colette Diguimbaye
- Institut de Recherches en Elevage pour le Développement & Clinique Médico-Chirurgicale PROVIDENCE, N'Djaména, Chad
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Adama Fané
- Laboratoire Centrale Vétérinaire, Bamako, Mali
| | | | | | | | | | | | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
23
|
Kapalamula TF, Chizimu J, Belotindos L, Akapelwa M, Shrestha D, Nyenje ME, Munyeme M, Hang'ombe BM, Mkakosya RS, Gordon SV, Nakajima C, Suzuki Y. Molecular epidemiology of Mycobacterium bovis in central parts of Malawi. Transbound Emerg Dis 2021; 69:1577-1588. [PMID: 33900039 DOI: 10.1111/tbed.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022]
Abstract
Bovine tuberculosis (bTB) is a neglected disease that affects cattle and humans. The burden of bTB is higher in developing countries as compared to industrialized countries. The reasons behind this discrepancy include the fact that bTB control measures, such as testing and slaughter of infected cattle and pasteurization of milk, are not usually practised in developing countries largely because of their high cost. To improve our understanding of bTB in developing countries, molecular typing studies are essential, in particular in terms of transmission dynamics, infection sources and knowledge of circulating strains of the principal causative agent, Mycobacterium bovis. In this study, we applied a suite of molecular typing techniques encompassing deletion analysis, spoligotyping and MIRU-VNTR to isolates recovered from samples collected during the routine post-mortem of cattle at the cold storage abattoir in Lilongwe, Malawi. Out of 63 isolates, 51 (81%) belonged to the European 1. M. bovis clonal complex. Spoligotyping identified 8 profiles, with SB0131 being the predominant type (56% of isolates). Spoligotypes SB0273 and SB0425 were identified in 14% and 13%, respectively, of the isolates. MIRU-VNTR showed a high discriminatory power of 0.959 and differentiated the 8 spoligotypes to 31 genotypes. The high diversity of M. bovis within the study area suggests the infection has been circulating in the area for a considerable period of time, likely facilitated by the lack of effective control measures. We also observed genetic similarities between isolates from Malawi (this study) to isolates described in previous studies in Zambia and Mozambique, suggesting transmission links in this region. The information provided by this study provides much needed evidence for the formulation of improved bTB control strategies.
Collapse
Affiliation(s)
- Thoko Flav Kapalamula
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Joseph Chizimu
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Lawrence Belotindos
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mwangala Akapelwa
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Dipti Shrestha
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mirriam Ethel Nyenje
- Community Health Sciences Unit, National Tuberculosis Reference Laboratory, Lilongwe, Malawi
| | - Musso Munyeme
- School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Bernard Mudenda Hang'ombe
- School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | | | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Carneiro PA, Zimpel CK, Pasquatti TN, Silva-Pereira TT, Takatani H, Silva CBDG, Abramovitch RB, Sa Guimaraes AM, Davila AMR, Araujo FR, Kaneene JB. Genetic Diversity and Potential Paths of Transmission of Mycobacterium bovis in the Amazon: The Discovery of M. bovis Lineage Lb1 Circulating in South America. Front Vet Sci 2021; 8:630989. [PMID: 33665220 PMCID: PMC7921743 DOI: 10.3389/fvets.2021.630989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis (bTB) has yet to be eradicated in Brazil. Herds of cattle and buffalo are important sources of revenue to people living in the banks of the Amazon River basin. A better understanding of Mycobacterium bovis (M. bovis) populational structure and transmission dynamics affecting these animals can significantly contribute in efforts to improve their sanitary status. Herein, we sequenced the whole genome of 22 M. bovis isolates (15 from buffalo and 7 from cattle) from 10 municipalities in the region of the Lower Amazon River Basin in Brazil and performed phylogenomic analysis and Single Nucleotide Polymorphism (SNP)-based transmission inference to evaluate population structure and transmission networks. Additionally, we compared these genomes to others obtained in unrelated studies in the Marajó Island (n = 15) and worldwide (n = 128) to understand strain diversity in the Amazon and to infer M. bovis lineages. Our results show a higher genomic diversity of M. bovis genomes obtained in the Lower Amazon River region when compared to the Marajó Island, while no significant difference was observed between M. bovis genomes obtained from cattle and buffalo (p ≥ 0.05). This high genetic diversity is reflected by the weak phylogenetic clustering of M. bovis from the Lower Amazon River region based on geographic proximity and in the detection of only two putative transmission clusters in the region. One of these clusters is the first description of inter-species transmission between cattle and buffalo in the Amazon, bringing implications to the bTB control program. Surprisingly, two M. bovis lineages were detected in our dataset, namely Lb1 and Lb3, constituting the first description of Lb1 in South America. Most of the strains of this study (13/22) and all 15 strains of the Marajó Island carried no clonal complex marker, suggesting that the recent lineage classification better describe the diversity of M. bovis in the Amazon.
Collapse
Affiliation(s)
- Paulo Alex Carneiro
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Amazonas State Federal Institute, Manaus, Brazil
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | | | - Taiana T. Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Haruo Takatani
- Agência de Defesa Agropecuaria Do Amazonas, Manaus, Brazil
| | | | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Ana Marcia Sa Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alberto M. R. Davila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute and Graduate Program in Biodiversity and Health, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - John B. Kaneene
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
25
|
Menardo F, Rutaihwa LK, Zwyer M, Borrell S, Comas I, Conceição EC, Coscolla M, Cox H, Joloba M, Dou HY, Feldmann J, Fenner L, Fyfe J, Gao Q, García de Viedma D, Garcia-Basteiro AL, Gygli SM, Hella J, Hiza H, Jugheli L, Kamwela L, Kato-Maeda M, Liu Q, Ley SD, Loiseau C, Mahasirimongkol S, Malla B, Palittapongarnpim P, Rakotosamimanana N, Rasolofo V, Reinhard M, Reither K, Sasamalo M, Silva Duarte R, Sola C, Suffys P, Batista Lima KV, Yeboah-Manu D, Beisel C, Brites D, Gagneux S. Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim. F1000Res 2021; 10:60. [PMID: 33732436 PMCID: PMC7921886 DOI: 10.12688/f1000research.28318.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC) causing tuberculosis (TB) in humans. L1 and L3 are prevalent around the rim of the Indian Ocean, the region that accounts for most of the world's new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Methods: We analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We reconstructed the evolutionary history of these two lineages and identified genes under positive selection. Results: We found a strongly asymmetric pattern of migration from South Asia toward neighboring regions, highlighting the historical role of South Asia in the dispersion of L1 and L3. Moreover, we found that several genes were under positive selection, including genes involved in virulence and resistance to antibiotics. For L1 we identified signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Conclusions: Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Liliana K Rutaihwa
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Michaela Zwyer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, Valencia, Spain
| | - Emilyn Costa Conceição
- Instituto de Microbiologia, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Helen Cox
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Zhunan, Taiwan
| | - Julia Feldmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lukas Fenner
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
| | - Qian Gao
- Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Darío García de Viedma
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias, Madrid, Spain.,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alberto L Garcia-Basteiro
- Barcelona Institute for Global Health, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Sebastian M Gygli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jerry Hella
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hellen Hiza
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Levan Jugheli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lujeko Kamwela
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Qingyun Liu
- Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Serej D Ley
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Chloe Loiseau
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Surakameth Mahasirimongkol
- Department of Microbiology, Mahidol University, Bangkok, Thailand.,National Science and Technology Development Agency, Bangkok, Thailand
| | - Bijaya Malla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Prasit Palittapongarnpim
- Department of Microbiology, Mahidol University, Bangkok, Thailand.,National Science and Technology Development Agency, Bangkok, Thailand
| | | | | | - Miriam Reinhard
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Klaus Reither
- University of Basel, Basel, Switzerland.,Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Mohamed Sasamalo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Rafael Silva Duarte
- Instituto de Microbiologia, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christophe Sola
- Université Paris-Saclay, Paris, France.,INSERM-Université de Paris, Paris, France
| | - Philip Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Karla Valeria Batista Lima
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil.,Instituto Evandro Chagas, Ananindeua, Brazil
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Damene H, Tahir D, Diels M, Berber A, Sahraoui N, Rigouts L. Broad diversity of Mycobacterium tuberculosis complex strains isolated from humans and cattle in Northern Algeria suggests a zoonotic transmission cycle. PLoS Negl Trop Dis 2020; 14:e0008894. [PMID: 33253150 PMCID: PMC7728391 DOI: 10.1371/journal.pntd.0008894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/10/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis complex (MTBC) comprises closely related species responsible for human and animal tuberculosis (TB). Efficient species determination is useful for epidemiological purposes, especially for the elucidation of the zoonotic contribution. In Algeria, data on MTBC genotypes are largely unknown. In this study, we aimed to investigate the occurrence and diversity of MTBC genotypes causing human and bovine TB in Northern Algeria. During a two-year sampling period (2017-2019) in two regions of Northern Algeria, we observed an overall prevalence of 6.5% of tuberculosis (TB) among slaughtered cattle, which is higher than previous Algerian data yet comparable to neighboring countries. A total of 296 Mycobacterium tuberculosis complex (MTBC) isolates were genotyped by spoligotyping: 181 from tissues with TB-like lesions collected from 181 cattle carcasses and 115 from TB patients. In human isolates, we identified 107 M. tuberculosis, seven M. bovis and one "M. pinnipedii-like", while for bovine samples, 174 isolates were identified as M. bovis, three as M. caprae, three as "M. pinnipedii-like" and one as "M. microti-like". The majority of isolates (89.2%) belonged to 72 different known Shared International Types (SIT) or M. bovis spoligotypes (SB), while we also identified seven new SB profiles (SB2695 to SB2701). Twenty-eight of the SB profiles were new to Algeria. Our data suggest zoonotic transmission in Sétif, where significantly more TB was observed among cattle (20%) compared to the slaughterhouses from the three other regions (5.4%-7.3%) (p < 0.0001), with the isolation of the same M. bovis genotypes from TB patients. The present study showed a high genetic diversity of MTBC isolated from human and cattle in Northern Algeria. Even though relatively small in terms of numbers, our data suggest the zoonotic transmission of TB from cattle to humans, suggesting the need for stronger eradication strategies for bovine TB.
Collapse
Affiliation(s)
- Hanane Damene
- Institute of Veterinary Sciences, University Blida 1, Blida, Algeria
| | - Djamel Tahir
- Institute of Veterinary Sciences, University Blida 1, Blida, Algeria
- IHU Méditerranée Infection, Marseille, France
| | - Maren Diels
- BCCM/ITM Mycobacterial Culture collection, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ali Berber
- Institute of Veterinary Sciences, University Blida 1, Blida, Algeria
| | - Naima Sahraoui
- Institute of Veterinary Sciences, University Blida 1, Blida, Algeria
| | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
27
|
Population Structure of Mycobacterium bovis in Germany: a Long-Term Study Using Whole-Genome Sequencing Combined with Conventional Molecular Typing Methods. J Clin Microbiol 2020; 58:JCM.01573-20. [PMID: 32817084 DOI: 10.1128/jcm.01573-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium bovis is the primary cause of bovine tuberculosis (bTB) and infects a wide range of domestic animal and wildlife species and humans. In Germany, bTB still emerges sporadically in cattle herds, free-ranging wildlife, diverse captive animal species, and humans. In order to understand the underlying population structure and estimate the population size fluctuation through time, we analyzed 131 M. bovis strains from animals (n = 38) and humans (n = 93) in Germany from 1999 to 2017 by whole-genome sequencing (WGS), mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing, and spoligotyping. Based on WGS data analysis, 122 out of the 131 M. bovis strains were classified into 13 major clades, of which 6 contained strains from both human and animal cases and 7 only strains from human cases. Bayesian analyses suggest that the M. bovis population went through two sharp anticlimaxes, one in the middle of the 18th century and another one in the 1950s. WGS-based cluster analysis grouped 46 strains into 13 clusters ranging in size from 2 to 11 members and involving strains from distinct host types, e.g., only cattle and also mixed hosts. Animal strains of four clusters were obtained over a 9-year span, pointing toward autochthonous persistent bTB infection cycles. As expected, WGS had a higher discriminatory power than spoligotyping and MIRU-VNTR typing. In conclusion, our data confirm that WGS and suitable bioinformatics constitute the method of choice to implement prospective molecular epidemiological surveillance of M. bovis The population of M. bovis in Germany is diverse, with subtle, but existing, interactions between different host groups.
Collapse
|
28
|
McDonald SK, Matisoo-Smith EA, Buckley HR, Walter RK, Aung HL, Collins CJ, Cook GM, Kardailsky O, Krause J, Knapp M. 'TB or not TB': the conundrum of pre-European contact tuberculosis in the Pacific. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190583. [PMID: 33012234 DOI: 10.1098/rstb.2019.0583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a major global health threat, infecting one-third of the world's population. Despite this prominence, the age, origin and spread of the disease have been topics of contentious debate. Molecular studies suggest that Mycobacterium tuberculosis 'sensu stricto', the most common strain of TB infecting humans today, originated in Africa and from there spread into Europe and Asia. The M. tuberculosis strains most commonly found across the Pacific and the Americas today are most closely related to European strains, supporting a hypothesis that the disease only reached these regions relatively recently via European sailors or settlers. However, this hypothesis is inconsistent with palaeopathological evidence of TB-like lesions in human remains from across the Pacific that predate European contact. Similarly, genetic evidence from pre-European South American mummies challenges the notion of a European introduction of the disease into the Pacific. Here, we review the complex evidence for the age and origin of TB in the Pacific, and discuss key gaps in our knowledge and how these may be addressed. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- S K McDonald
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand.,Archaeology Programme, University of Otago, Dunedin 9016, New Zealand
| | - E A Matisoo-Smith
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - H R Buckley
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - R K Walter
- Archaeology Programme, University of Otago, Dunedin 9016, New Zealand.,School of Social Science, University of Queensland, St Lucia, Queensland 4072, Australia
| | - H L Aung
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - C J Collins
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - G M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - O Kardailsky
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - J Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - M Knapp
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
29
|
Köser CU, Cirillo DM, Miotto P. How To Optimally Combine Genotypic and Phenotypic Drug Susceptibility Testing Methods for Pyrazinamide. Antimicrob Agents Chemother 2020; 64:e01003-20. [PMID: 32571824 PMCID: PMC7449218 DOI: 10.1128/aac.01003-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/17/2020] [Indexed: 11/20/2022] Open
Abstract
False-susceptible phenotypic drug-susceptibility testing (DST) results for pyrazinamide due to mutations with MICs close to the critical concentration (CC) confound the classification of pncA resistance mutations, leading to an underestimate of the specificity of genotypic DST. This could be minimized by basing treatment decisions on well-understood mutations and by adopting an area of technical uncertainty for phenotypic DST rather than only testing the CC, as is current practice for the Mycobacterium tuberculosis complex.
Collapse
Affiliation(s)
- Claudio U Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|