1
|
Dehariya D, Eswar K, Tarafdar A, Balusamy S, Rengan AK. Recent Advances of Nanobubble-based systems in Cancer Therapeutics: A Review. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
2
|
Davidson BP, Hodovan J, Layoun ME, Golwala H, Zahr F, Lindner JR. Echocardiographic Ischemic Memory Molecular Imaging for Point-of-Care Detection of Myocardial Ischemia. J Am Coll Cardiol 2021; 78:1990-2000. [PMID: 34763776 DOI: 10.1016/j.jacc.2021.08.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Noninvasive molecular imaging of recent ischemia can potentially be used to diagnose acute coronary syndrome (ACS) with high accuracy. OBJECTIVES The authors hypothesized that bedside myocardial contrast echocardiography (MCE) ischemic memory imaging could be achieved with phosphatidylserine microbubbles (MBPS) that are retained in the microcirculation via ischemia-associated endothelial activation. METHODS A dose-finding study was performed in healthy volunteers (n = 17) to establish optimal MBPS dosing. Stable patients with ACS (n = 30) and confirmed antecedent but resolved myocardial ischemia were studied within 2 hours of coronary angiography and percutaneous coronary intervention (PCI) when indicated. MCE molecular imaging was performed 8 minutes after intravenous administration of MBPS. MCE perfusion imaging was used to assess the status of the postischemic microcirculation. RESULTS Based on dose-finding studies, 0.10 or 0.15 mL of MBPS based on body mass was selected. In patients with ACS, all but 2 underwent primary PCI. MCE molecular imaging signal intensity was greater in the postischemic risk area vs remote territory (median [95% CI]: 56 [33-66] vs 8 [2-17] IU; P < 0.001) with a receiver-operating characteristic curve C-statistic of 0.94 to differentiate post-ischemic from remote territory. Molecular imaging signal in the risk area was not related to type of ACS (unstable angina: 3; non-ST-segment elevation myocardial infarction: 14; ST-segment elevation myocardial infarction: 13), peak troponin, time to PCI, post-PCI myocardial perfusion, GRACE (Global Registry of Acute Coronary Events) score, or HEART score. CONCLUSIONS Molecular imaging with point-of-care echocardiography and MBPS can detect recent but resolved myocardial ischemia. This bedside technique requires only minutes to perform and appears independent of the degree of ischemia. (Ischemic Memory Imaging With Myocardial Contrast Echocardiography; NCT03009266).
Collapse
Affiliation(s)
- Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael E Layoun
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Harsh Golwala
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Firas Zahr
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
3
|
|
4
|
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 2021; 11:12915-12928. [PMID: 35423829 PMCID: PMC8697319 DOI: 10.1039/d0ra08727k] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The non-specific distribution, non-selectivity towards cancerous cells, and adverse off-target side effects of anticancer drugs and other therapeutic molecules lead to their inferior clinical efficacy. Accordingly, ultrasound-based targeted delivery of therapeutic molecules loaded in smart nanocarriers is currently gaining wider acceptance for the treatment and management of cancer. Nanobubbles (NBs) are nanosize carriers, which are currently used as effective drug/gene delivery systems because they can deliver drugs/genes selectively to target sites. Thus, combining the applications of ultrasound with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side-effects on other non-cancerous tissues. This review illustrates present developments in the field of ultrasound-nanobubble combined strategies for targeted cancer treatment. The first part of this review discusses the composition and the formulation parameters of NBs. Next, we illustrate the interactions and biological effects of combining NBs and ultrasound. Subsequently, we explain the potential of NBs combined with US for targeted cancer therapeutics. Finally, the present and future directions for the improvement of current methods are proposed. NBs combined with ultrasound demonstrated the ability to enhance the targeting of anticancer agents and improve the efficacy.![]()
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - XiaoJun Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Tiangang Li
- Department of Ultrasound Diagnosis, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730030, Gansu Province, China
| | - Wenhao Lv
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Yao Zhang
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| |
Collapse
|
5
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
6
|
Scoping Review of Targeted Ultrasound Contrast Agents in the Detection of Myocardial Ischemia. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2020. [DOI: 10.1177/8756479320935393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: A systematic search was conducted to categorize targeted ultrasound contrast agents used in the detection of myocardial ischemia. Methods: The search identified 14 primary research articles published from 2000 to August 2019 that fulfilled the selection criteria. All studies were conducted in animal models ranging from mice to rhesus monkeys, with the most common targets being P-selectin and E-selectin. Results: These studies show that targeted ultrasound contrast agents produced greater signal enhancement in regions with prolonged ischemia and maintained enhancement hours after reperfusion. Conclusion: This review identified gaps in the literature, such as a need for comparative studies among different molecular markers and between current standard of care with the use of targeted contrast agents in cardiac ultrasound.
Collapse
|
7
|
Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. Pharmacol Ther 2020; 211:107550. [PMID: 32325067 DOI: 10.1016/j.pharmthera.2020.107550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications.
Collapse
|
8
|
Luong A, Smith D, Tai CH, Cotter B, Luo C, Strachan M, DeMaria A, Rychak JJ. Development of a Translatable Ultrasound Molecular Imaging Agent for Inflammation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:690-702. [PMID: 31899038 DOI: 10.1016/j.ultrasmedbio.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This study details the development, characterization and non-clinical efficacy of an ultrasound molecular imaging agent intended for molecular imaging of P-selectin in humans. A targeting ligand based on a recently discovered human selectin ligand was manufactured as fusion protein, and activity for human and mouse P- and E-selectin was evaluated by functional immunoassay. The targeting ligand was covalently conjugated to a lipophilic anchor inserted into a phospholipid microbubble shell. Three lots of the targeted microbubble drug product, TS-07-009, were produced, and assays for size distribution, zeta potential and morphology were established. The suitability of TS-07-009 as a molecular imaging agent was evaluated in vitro in a flow-based adhesion assay and in vivo using a canine model of transient myocardial ischemia. Selectivity for P-selectin over E-selectin was observed in both the human and murine systems. Contrast agent adhesion increased with P-selectin concentration in a dynamic adhesion assay. Significant contrast enhancement was observed on ultrasound imaging with TS-07-009 in post-ischemic canine myocardium at 30 or 90 min of re-perfusion. Negligible enhancement was observed in resting (no prior ischemia) hearts or with a control microbubble 90 min after ischemia. The microbubble contrast agent described here exhibits physiochemical properties and in vivo behavior suitable for development as a clinical imaging agent.
Collapse
Affiliation(s)
| | - Dan Smith
- Targeson, Inc., San Diego, California, USA
| | | | - Bruno Cotter
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Colin Luo
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Monet Strachan
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Anthony DeMaria
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Joshua J Rychak
- Targeson, Inc., San Diego, California, USA; Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
9
|
Kosareva A, Abou-Elkacem L, Chowdhury S, Lindner JR, Kaufmann BA. Seeing the Invisible-Ultrasound Molecular Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:479-497. [PMID: 31899040 DOI: 10.1016/j.ultrasmedbio.2019.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound molecular imaging has been developed in the past two decades with the goal of non-invasively imaging disease phenotypes on a cellular level not depicted on anatomic imaging. Such techniques already play a role in pre-clinical research for the assessment of disease mechanisms and drug effects, and are thought to in the future contribute to earlier diagnosis of disease, assessment of therapeutic effects and patient-tailored therapy in the clinical field. In this review, we first describe the chemical composition and structure as well as the in vivo behavior of the ultrasound contrast agents that have been developed for molecular imaging. We then discuss the strategies that are used for targeting of contrast agents to specific cellular targets and protocols used for imaging. Next we describe pre-clinical data on imaging of thrombosis, atherosclerosis and microvascular inflammation and in oncology, including the pathophysiological principles underlying the selection of targets in each area. Where applicable, we also discuss efforts that are currently underway for translation of this technique into the clinical arena.
Collapse
Affiliation(s)
- Alexandra Kosareva
- Cardiovascular Molecular Imaging, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California, USA
| | - Sayan Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Beat A Kaufmann
- Cardiovascular Molecular Imaging, Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Cardiology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Ge Y, Leong-Poi H. Ischemic Memory Imaging: The Quest for the Holy Grail Continues. J Am Soc Echocardiogr 2019; 32:1487-1490. [PMID: 31679582 DOI: 10.1016/j.echo.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Yin Ge
- Division of Cardiology, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Howard Leong-Poi
- Division of Cardiology, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Newsome IG, Kierski TM, Dayton PA. Assessment of the Superharmonic Response of Microbubble Contrast Agents for Acoustic Angiography as a Function of Microbubble Parameters. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2515-2524. [PMID: 31174922 PMCID: PMC7202402 DOI: 10.1016/j.ultrasmedbio.2019.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 05/07/2023]
Abstract
Acoustic angiography is a superharmonic contrast-enhanced ultrasound imaging technique that enables 3-D high-resolution microvascular visualization. This technique utilizes a dual-frequency imaging strategy, transmitting at a low frequency and receiving at a higher frequency, to detect high-frequency contrast agent signatures and separate them from tissue background. Prior studies have illustrated differences in microbubble scatter dependent on microbubble size and composition; however, most previously reported data have utilized a relatively narrow frequency bandwidth centered around the excitation frequency. To date, a comprehensive study of isolated microbubble superharmonic responses with a broadband dual-frequency system has not been performed. Here, the superharmonic signal production of 14 contrast agents with various gas cores, shell compositions, and bubble diameters at mechanical indices of 0.2 to 1.2 was evaluated using a transmit 4 MHz, receive 25 MHz configuration. Results indicate that perfluorocarbon cores or lipid shells with 18- or 20-carbon acyl chains produce more superharmonic signal than sulfur hexafluoride cores or lipid shells with 16-carbon acyl chains, respectively. As microbubble diameter increases from 1 to 4 µm, superharmonic generation decreases. In a comparison of two clinical agents, Definity and Optison, and one preclinical agent, Micromarker, Optison produced the least superharmonic signal. Overall, this work suggests that microbubbles around 1 μm in diameter with perfluorocarbon cores and longer-chained lipid shells perform best for superharmonic imaging at 4 MHz. Studies have found that microbubble superharmonic response follows trends different from those described in prior studies using a narrower frequency bandwidth centered around the excitation frequency. Future work will apply these results in vivo to optimize the sensitivity of acoustic angiography.
Collapse
Affiliation(s)
- Isabel G Newsome
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Thomas M Kierski
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
12
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Hu HL, Kang Y, Zeng Y, Zhang M, Liao Q, Rong MQ, Zhang Q, Lai R. Region-resolved proteomics profiling of monkey heart. J Cell Physiol 2019; 234:13720-13734. [PMID: 30644093 PMCID: PMC7166496 DOI: 10.1002/jcp.28052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023]
Abstract
Nonhuman primates (NHPs) play an indispensable role in biomedical research because of their similarities in genetics, physiological, and neurological function to humans. Proteomics profiling of monkey heart could reveal significant cardiac biomarkers and help us to gain a better understanding of the pathogenesis of heart disease. However, the proteomic study of monkey heart is relatively lacking. Here, we performed the proteomics profiling of the normal monkey heart by measuring three major anatomical regions (vessels, valves, and chambers) based on iTRAQ‐coupled LC‐MS/MS analysis. Over 3,200 proteins were identified and quantified from three heart tissue samples. Furthermore, multiple bioinformatics analyses such as gene ontology analysis, protein–protein interaction analysis, and gene‐diseases association were used to investigate biological network of those proteins from each area. More than 60 genes in three heart regions are implicated with heart diseases such as hypertrophic cardiomyopathy, heart failure, and myocardial infarction. These genes associated with heart disease are mainly enriched in citrate cycle, amino acid degradation, and glycolysis pathway. At the anatomical level, the revelation of molecular characteristics of the healthy monkey heart would be an important starting point to investigate heart disease. As a unique resource, this study can serve as a reference map for future in‐depth research on cardiac disease‐related NHP model and novel biomarkers of cardiac injury.
Collapse
Affiliation(s)
- Hao-Liang Hu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Kang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| | - Qiong Liao
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming-Qiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qin Zhang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| |
Collapse
|
14
|
Nam K, Stanczak M, Forsberg F, Liu JB, Eisenbrey JR, Solomides CC, Lyshchik A. Sentinel Lymph Node Characterization with a Dual-Targeted Molecular Ultrasound Contrast Agent. Mol Imaging Biol 2019; 20:221-229. [PMID: 28762204 DOI: 10.1007/s11307-017-1109-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this study was to assess the performance of molecular ultrasound with dual-targeted microbubbles to detect metastatic disease in the sentinel lymph nodes (SLNs) in swine model of naturally occurring melanoma. The SLN is the first lymph node in the lymphatic chain draining primary tumor, and early detection of metastatic SLN involvement is critical in the appropriate management of melanoma. PROCEDURE Nine Sinclair swine (weight 3-7 kg; Sinclair BioResources, Columbia, MO, USA) with naturally occurring melanoma were examined. Siemens S3000 scanner with a 9L4 probe was used for imaging (Siemens Healthineers, Mountain View, CA). Dual-targeted contrast agent was created using Targestar SA microbubbles (Targeson, San Diego, CA, USA) labeled with ανβ3-integrin and P-selectin antibodies. Targestar SA microbubbles labeled with IgG-labeled were used as control. First, peritumoral injection of Sonazoid contrast agent (GE Healthcare, Oslo, Norway) was performed to detect SLNs. After that, dual-targeted and IGG control Targestar SA microbubbles were injected intravenously with a 30-min interval between injections. Labeled Targestar SA microbubbles were allowed to circulate for 4 min to enable binding. After that, two sets of image clips were acquired several seconds before and after a high-power destruction sequence. The mean intensity difference pre- to post-bubble destruction within the region of interest placed over SLN was calculated as a relative measure of targeted microbubble contrast agent retention. This process was repeated for non-SLNs as controls. All lymph nodes evaluated on imaging were surgically removed and histologically examined for presence of metastatic involvement. RESULTS A total of 43 lymph nodes (25 SLNs and 18 non-SLNs) were included in the analysis with 18 SLNs demonstrating metastatic involvement greater than 5 % on histology. All non-SLNs were benign. The mean intensity (± SD) of the dual-targeted microbubbles for metastatic SLNs was significantly higher than that of benign LNs (18.05 ± 19.11 vs. 3.30 ± 6.65 AU; p = 0.0008), while IgG-labeled control microbubbles demonstrated no difference in retained contrast intensity between metastatic and benign lymph nodes (0.39 ± 1.14 vs. 0.03 ± 0.24 AU; p = 0.14). CONCLUSIONS The results indicate that dual-targeted microbubbles labeled with P-selectin and ανβ3-integrin antibodies may aid in detecting metastatic involvement in SLNs of melanoma.
Collapse
Affiliation(s)
- Kibo Nam
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | | | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
15
|
Abstract
OBJECTIVES The aim of this study was to demonstrate a new clinically translatable ultrasound molecular imaging approach, modulated acoustic radiation force-based imaging, which is capable of rapid and reliable detection of inflammation as validated in mouse abdominal aorta. MATERIALS AND METHODS Animal studies were approved by the Institutional Animal Care and Use Committee at the University of Virginia. C57BL/6 mice stimulated with tumor necrosis factor α, or fed with a high-fat diet, were used as inflammation (MInflammation) and diet-induced obesity (DIO) (MDIO) models, respectively. C57BL/6 mice, not exposed to tumor necrosis factor α or DIO, were used as controls (MNormal). P-selectin-targeted (MBP-selectin), vascular cell adhesion molecule (VCAM)-1-targeted (MBVCAM-1), and isotype control (MBControl) microbubbles were synthesized by conjugating anti-P-selectin, anti-VCAM-1, and isotype control antibodies to microbubbles, respectively. The abdominal aortas were imaged for 180 seconds during a constant infusion of microbubbles. A parameter, residual-to-saturation ratio (RSR), was used to assess P-selectin and VCAM-1. Statistical analysis was performed with the Student t test. RESULTS For the inflammation model, RSR of the MInflammation + MBP-selectin group was significantly higher (40.9%, P < 0.0005) than other groups. For the DIO model, RSR of the MDIO + MBVCAM-1 group was significantly higher (60.0%, P < 0.0005) than other groups. Immunohistochemistry staining of the abdominal aorta confirmed the expression of P-selectin and VCAM-1. CONCLUSIONS A statistically significant assessment of P-selectin and VCAM-1 in mouse abdominal aorta was achieved. This technique yields progress toward rapid targeted molecular imaging in large blood vessels and thus has the potential for early diagnosis, treatment selection, and risk stratification of atherosclerosis.
Collapse
|
16
|
Abstract
Ultrasound is a rapidly advancing field with many emerging diagnostic and therapeutic applications. For diagnostics, new vascular targets are routinely identified and mature technologies are being translated to humans, while other recent innovations may bring about the creation of acoustic reporter genes and micron-scale resolution with ultrasound. As a cancer therapy, ultrasound is being explored as an adjuvant to immune therapies and to deliver acoustically or thermally active drugs to tumor regions. Ultrasound-enhanced delivery across the blood brain barrier (BBB) could potentially be very impactful for brain cancers and neurodegenerative diseases where the BBB often impedes the delivery of therapeutic molecules. In this minireview, we provide an overview of these topics in the field of ultrasound that are especially relevant to the interests of World Molecular Imaging Society.
Collapse
|
17
|
Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target 2018; 26:420-434. [PMID: 29258335 DOI: 10.1080/1061186x.2017.1419362] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For contrast ultrasound imaging, the most efficient contrast agents comprise highly compressible gas-filled microbubbles. These micrometer-sized particles are typically filled with low-solubility perfluorocarbon gases, and coated with a thin shell, often a lipid monolayer. These particles circulate in the bloodstream for several minutes; they demonstrate good safety and are already in widespread clinical use as blood pool agents with very low dosage necessary (sub-mg per injection). As ultrasound is an ubiquitous medical imaging modality, with tens of millions of exams conducted annually, its use for molecular/targeted imaging of biomarkers of disease may enable wider implementation of personalised medicine applications, precision medicine, non-invasive quantification of biomarkers, targeted guidance of biopsy and therapy in real time. To achieve this capability, microbubbles are decorated with targeting ligands, possessing specific affinity towards vascular biomarkers of disease, such as tumour neovasculature or areas of inflammation, ischaemia-reperfusion injury or ischaemic memory. Once bound to the target, microbubbles can be selectively visualised to delineate disease location by ultrasound imaging. This review discusses the general design trends and approaches for such molecular ultrasound imaging agents, which are currently at the advanced stages of development, and are evolving towards widespread clinical trials.
Collapse
Affiliation(s)
- Shiying Wang
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - John A Hossack
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - Alexander L Klibanov
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA.,b Cardiovascular Division (Department of Medicine), Robert M Berne Cardiovascular Research Center , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
18
|
Qiu C, Yin T, Zhang Y, Lian Y, You Y, Wang K, Zheng R, Shuai X. Ultrasound Imaging Based on Molecular Targeting for Quantitative Evaluation of Hepatic Ischemia-Reperfusion Injury. Am J Transplant 2017; 17:3087-3097. [PMID: 28489274 DOI: 10.1111/ajt.14345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
The aim of the present study was to quantitatively diagnose and monitor the therapy response of hepatic ischemia-reperfusion injury (IRI) with the use of targeted ultrasound (US) imaging. Targeted microbubbles (MBs) were fabricated, and the binding of intracellular adhesion molecule 1 (ICAM-1) antibodies to MBs was observed. To establish a quantitative method based on targeted US imaging, contrast-enhanced US was applied for IRI rats. After andrographolide treatment, the IRI rats were subjected to the quantitative targeted US imaging for a therapeutic effect. Effective binding of ICAM-1 antibodies to MBs was observed. According to the quantitative targeted US imaging, the ICAM-1 normalized intensity difference (NID) in the IRI rats (38.74 ± 15.08%) was significantly higher than that in the control rats (10.08 ± 2.52%, p = 0.048). Further, different degrees of IRI (mild IRI, moderate to severe IRI) were distinguished by the use of the NID (37.14 ± 2.14%, 22.34 ± 1.08%, p = 0.002). Analysis of mRNA expression demonstrated the accuracy of analyzing the NID by using quantitative targeted US imaging (R2 = 0.7434, p < 0.001). Andrographolide treatment resulted in an obviously weakened NID of ICAM-1 (17.7 ± 4.8% vs 34.2 ± 6.6%, p < 0.001). The study showed the potential of the quantitative targeted US imaging method for the diagnosis and therapeutic monitoring of IRI.
Collapse
Affiliation(s)
- C Qiu
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - T Yin
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Y Zhang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Y Lian
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Y You
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - K Wang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Science, Beijing, China
| | - R Zheng
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - X Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China.,Center for Biomedical Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Verkaik M, van Poelgeest EM, Kwekkeboom RFJ, Ter Wee PM, van den Brom CE, Vervloet MG, Eringa EC. Myocardial contrast echocardiography in mice: technical and physiological aspects. Am J Physiol Heart Circ Physiol 2017; 314:H381-H391. [PMID: 29101165 DOI: 10.1152/ajpheart.00242.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myocardial contrast echocardiography (MCE) offers the opportunity to study myocardial perfusion defects in mice in detail. The value of MCE compared with single-photon emission computed tomography, positron emission tomography, and computed tomography consists of high spatial resolution, the possibility of quantification of blood volume, and relatively low costs. Nevertheless, a number of technical and physiological aspects should be considered to ensure reproducibility among research groups. The aim of this overview is to describe technical aspects of MCE and the physiological parameters that influence myocardial perfusion data obtained with this technique. First, technical aspects of MCE discussed in this technical review are logarithmic compression of ultrasound data by ultrasound systems, saturation of the contrast signal, and acquisition of images during different phases of the cardiac cycle. Second, physiological aspects of myocardial perfusion that are affected by the experimental design are discussed, including the anesthesia regimen, systemic cardiovascular effects of vasoactive agents used, and fluctuations in body temperature that alter myocardial perfusion. When these technical and physiological aspects of MCE are taken into account and adequately standardized, MCE is an easily accessible technique for mice that can be used to study the control of myocardial perfusion by a wide range of factors.
Collapse
Affiliation(s)
- Melissa Verkaik
- Department of Nephrology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands.,Department of Physiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Erik M van Poelgeest
- Department of Physiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Rick F J Kwekkeboom
- Department of Physiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Piet M Ter Wee
- Department of Nephrology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Charissa E van den Brom
- Department of Anaesthesiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Etto C Eringa
- Department of Physiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| |
Collapse
|
20
|
Ultra-Low-Dose Ultrasound Molecular Imaging for the Detection of Angiogenesis in a Mouse Murine Tumor Model: How Little Can We See? Invest Radiol 2017; 51:758-766. [PMID: 27654582 DOI: 10.1097/rli.0000000000000310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate the minimum microbubble dose for ultrasound molecular imaging to achieve statistically significant detection of angiogenesis in a mouse model. MATERIALS AND METHODS The preburst minus postburst method was implemented on a Verasonics ultrasound research scanner using a multiframe compounding pulse inversion imaging sequence. Biotinylated lipid (distearoyl phosphatidylcholine-based) microbubbles that were conjugated with antivascular endothelial growth factor 2 (VEGFR2) antibody (MBVEGFR2) or isotype control antibody (MBControl) were injected into mice carrying adenocarcinoma xenografts. Different injection doses ranging from 5 × 10 to 1 × 10 microbubbles per mouse were evaluated to determine the minimum diagnostically effective dose. RESULTS The proposed imaging sequence was able to achieve statistically significant detection (P < 0.05, n = 5) of VEGFR2 in tumors with a minimum MBVEGFR2 injection dose of only 5 × 10 microbubbles per mouse (distearoyl phosphatidylcholine at 0.053 ng/g mouse body mass). Nonspecific adhesion of MBControl at the same injection dose was negligible. In addition, the targeted contrast ultrasound signal of MBVEGFR2 decreased with lower microbubble doses, whereas nonspecific adhesion of MBControl increased with higher microbubble doses. CONCLUSIONS The dose of 5 × 10 microbubbles per animal is now the lowest injection dose on record for ultrasound molecular imaging to achieve statistically significant detection of molecular targets in vivo. Findings in this study provide us with further guidance for future developments of clinically translatable ultrasound molecular imaging applications using a lower dose of microbubbles.
Collapse
|
21
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM, Basso DM. Molecular Ultrasound Imaging for the Detection of Neural Inflammation: A Longitudinal Dosing Pilot Study. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317736250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes noninvasively by targeting a variety of biomarkers in vivo. The current study was performed by exploiting an inflammatory biomarker, P-selectin, known to be present following spinal cord injury. Using a murine model (n = 6), molecular ultrasound imaging was performed using contrast microbubbles modified to target and adhere to P-selectin, prior to spinal cord injury (0D), acute stage postinjury (7D), and chronic stage (42D). Additionally, two imaging sessions were performed on each subject at specific time points, using doses of 30 μL and 100 μL. Upon analysis, targeted contrast analysis parameters were appreciably increased during the 7D scan compared with the 42D scan, without statistical significance. When examining the dose levels, the 30-μL dose demonstrated greater values than the 100-μL dose but lacked statistical significance. These findings provide additional preclinical evidence for the use of molecular ultrasound imaging for the possible detection of inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - D. Michele Basso
- College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM. Molecular Ultrasound Imaging of the Spinal Cord for the Detection of Acute Inflammation. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317729671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes non-invasively by targeting a wide variety of biological markers in vivo. The current study investigates the novel application of molecular ultrasound imaging for the detection of neural inflammation. Using a murine model with acutely injured spinal cords (n=31), subjects were divided into four groups, each being administered ultrasound contrast microbubbles bearing antibodies against various known inflammatory molecules (P-selectin, vascular cell adhesion protein 1 [VCAM-1], intercellular adhesion molecule 1 [ICAM-1], and isotype control) during molecular ultrasound imaging. Upon administration of the targeted contrast agent, ultrasound imaging of the injured spinal cord was performed at 40MHz for seven minutes, followed by a bursting pulse. We observed significantly enhanced signals from contrast targeted to P-selectin and VCAM-1, using a variety of outcome measures. These findings provide preclinical evidence that molecular ultrasound imaging could be a useful tool in the detection of neural inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
23
|
Duan S, Guo L, Shi D, Shang M, Meng D, Li J. Development of a novel folate-modified nanobubbles with improved targeting ability to tumor cells. ULTRASONICS SONOCHEMISTRY 2017; 37:235-243. [PMID: 28427629 DOI: 10.1016/j.ultsonch.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 06/07/2023]
Abstract
Conjugation of folate (FOL) to nanobubbles could enhance the selective targeting to tumors expressing high levels of folate receptor (FR). To further improve the selective targeting ability of FOL-modified nanobubbles, a novel FOL-targeted nanobubble ((FOL)2-NB) with increasing FOL content (accomplished by linking two FOL molecules per DSPE-PEG2000 chain) was synthesized, through the methods of mechanical shaking and low-speed centrifugation based on lipid-stabilized perfluoropropane. The bubble size and distribution range were measured by dynamic light scattering (DLS). Enhanced imaging ability was evaluated using a custom-made agarose mold with a clinical US imaging system at mechanical indices of up to 0.12 at a center frequency of 9.0MHz. Targeted ability was also carried out in human breast cancer MCF-7 cells, which over-express the FR, by fluorescence activated cell sorting (FACS) and fluorescence microscopy, respectively. (FOL)2-NB with a particle size of 286.87±22.96nm were successfully prepared, and they exhibited superior contrast imaging effect. FACS and fluorescence microscopy studies showed greater cellular targeting ability in the group of (FOL)2-NB than in their control group of Non-targeted-NB (no FOL targeted nanobubbles) and FOL-NB (one FOL molecule per DSPE-PEG2000 chain). These results suggest that a new type of stronger targeted nanobubble was successfully prepared by increasing the FOL content per DSPE-PEG2000 chain. This novel (FOL)2-NBs are potentially useful for ultrasound molecular imaging and treatment of FR-positive tumors and are worthy for further investigation.
Collapse
Affiliation(s)
- Sujuan Duan
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
24
|
Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol 2017; 24:574-590. [PMID: 27480973 DOI: 10.1007/s12350-016-0620-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Cardiac left ventricular (LV) remodeling is the final common pathway of most primary cardiovascular diseases that manifest clinically as heart failure (HF). The more advanced the systolic HF and LV dysfunction, the worse the prognosis. The knowledge of the molecular, cellular, and neurohormonal mechanisms that lead to myocardial dysfunction and symptomatic HF has expanded rapidly and has allowed sophisticated approaches to understanding and management of the disease. New therapeutic targets for pharmacologic intervention in HF have also been identified through discovery of novel cellular and molecular components of membrane-bound receptor-mediated intracellular signal transduction cascades. Despite all advances, however, the prognosis of systolic HF has remained poor in general. This is, at least in part, related to the (1) relatively late institution of treatment due to reliance on gross functional and structural abnormalities that define the "heart failure phenotype" clinically; (2) remarkable genetic-based interindividual variations in the contribution of each of the many molecular components of cardiac remodeling; and (3) inability to monitor the activity of individual pathways to cardiac remodeling in order to estimate the potential benefits of pharmacologic agents, monitor the need for dose titration, and minimize side effects. Imaging of the recognized ultrastructural components of cardiac remodeling can allow redefinition of heart failure based on its "molecular phenotype," and provide a guide to implementation of "personalized" and "evidence-based" evaluation, treatment, and longitudinal monitoring of the disease beyond what is currently available through randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA.
| | - Amitoj Singh
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Sahil Agrawal
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Li B, Juenet M, Aid-Launais R, Maire M, Ollivier V, Letourneur D, Chauvierre C. Development of Polymer Microcapsules Functionalized with Fucoidan to Target P-Selectin Overexpressed in Cardiovascular Diseases. Adv Healthc Mater 2017; 6. [PMID: 27943662 DOI: 10.1002/adhm.201601200] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 12/17/2022]
Abstract
New tools for molecular imaging and targeted therapy for cardiovascular diseases are still required. Herein, biodegradable microcapsules (MCs) made of polycyanoacrylate and polysaccharide and functionalized with fucoidan (Fuco-MCs) are designed as new carriers to target arterial thrombi overexpressing P-selectin. Physicochemical characterizations demonstrated that microcapsules have a core-shell structure and that fucoidan is present onto the surface of Fuco-MCs. Furthermore, their sizes range from 2 to 6 µm and they are stable on storage over 30 d at 4 °C. Flow cytometry experiments evidenced the binding of Fuco-MCs for human activated platelets as compared to MCs (mean fluorescence intensity: 12 008 vs. 9, p < 0.001) and its absence for nonactivated platelets (432). An in vitro flow adhesion assay showed high specific binding efficiency of Fuco-MCs to P-selectin and to activated platelet aggregates under arterial shear stress conditions. Moreover, both types of microcapsules reveal excellent compatibility with 3T3 cells in cytotoxicity assay. One hour after intravenous injection of microcapsules, histological analysis revealed that Fuco-MCs are localized in the rat abdominal aortic aneurysm thrombotic wall and that the binding in the healthy aorta is low. In conclusion, these microcapsules appear as promising carriers for targeting of tissues characterized by P-selectin overexpression and for their molecular imaging or treatment.
Collapse
Affiliation(s)
- Bo Li
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Maya Juenet
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Rachida Aid-Launais
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Murielle Maire
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Véronique Ollivier
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Didier Letourneur
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Cédric Chauvierre
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| |
Collapse
|
26
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM. Targeted Contrast-Enhanced Ultrasound for Inflammation Detection. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2016. [DOI: 10.1177/8756479316678616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to target biochemical markers, permitting their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing into the body molecular probes, which are often contrast agents that have been nanoengineered to target and tether to molecules, thus enabling their radiologic identification. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, extending ultrasound’s capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast-enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomic and functional information without ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging and consequently remains largely preclinical. This review explores the commonalities of TCEUS across several molecular targets and points to the need for standardization of kinetic behavior analysis. The literature underscores evidence gaps and the need for additional research. The application of TCEUS is unlimited but needs further standardization to ensure that future research studies are comparable.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Christopher D. Kanner
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - John A. Buford
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
27
|
Spivak I, Rix A, Schmitz G, Fokong S, Iranzo O, Lederle W, Kiessling F. Low-Dose Molecular Ultrasound Imaging with E-Selectin-Targeted PBCA Microbubbles. Mol Imaging Biol 2016; 18:180-90. [PMID: 26391990 DOI: 10.1007/s11307-015-0894-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Our objective was to determine the lowest diagnostically effective dose for E-selectin-targeted poly n-butyl cyanoacrylate (PBCA)-shelled microbubbles and to apply it to monitor antiangiogenic therapy effects. PROCEDURES PBCA-shelled microbubbles (MBs) coupled to an E-selectin-specific peptide were applied in mice carrying MLS or A431 carcinoma xenografts scaling down the MB dosage to the lowest level where binding could be examined with a 18-MHz small animal ultrasound transducer. Differences in E-selectin expression in the two carcinoma xenografts were confirmed by enzyme-linked immunosorbent assay (ELISA). In addition, MLS tumor-bearing mice under antiangiogenic therapy were monitored using E-selectin-targeted MBs at the lowest applicable dose. Therapy effects on tumor vascularization were verified by immunohistological analyses. RESULTS The minimally required dosage was 7 × 10(7) MBs/kg body weight. This dosage was sufficient to enable E-selectin detection in high E-selectin-expressing MLS tumors, while low E-selectin-expressing A431 tumors required almost 2.5-fold higher doses. At the dose of 7 × 10(7) MBs/kg body weight, a decrease in E-selectin MB binding under antiangiogenic therapy could be assessed (being significant after 3 days of treatment; p < 0.0001), which was in line with the significant drop in E-selectin-positive area fractions that was found histologically (p < 0.05). CONCLUSIONS Molecular ultrasound imaging with our E-selectin-targeted MB and therapy monitoring was possible down to a dose of 7 × 10(7) MBs/kg body weight (equates to 66 μg PBCA/kg and 4.6 mg PBCA/70 kg). Improvements in choice of targets, MB composition, and other MB detection methods may improve sensitivity and lead to reliable detection results of clinically transferrable MBs at even lower dosage levels.
Collapse
Affiliation(s)
- Igor Spivak
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Rix
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Georg Schmitz
- Institute of Medical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Stanley Fokong
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Olga Iranzo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Wiltrud Lederle
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany. .,Institute for Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
28
|
Volz KR, Evans KD, Kanner CD, Basso DM. Exploring Targeted Contrast-Enhanced Ultrasound to Detect Neural Inflammation. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2016. [DOI: 10.1177/8756479316665865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Targeted contrast-enhanced ultrasound (TCEUS) is an innovative method of molecular imaging used for detection of inflammatory biomarkers in vivo. By targeting ultrasound contrast to cell adhesion molecules (CAMs), which are known inflammatory markers within neural tissue, a more direct evaluation of neural inflammation can be made. Due to the novel nature of TCEUS, standardized methods of image analysis do not yet exist. Time intensity curve (TIC) shape analysis is currently used in magnetic resonance contrast imaging to determine temporal behavior of perfusion. Therefore, the presented research attempts to determine TIC shape analysis utility in TCEUS imaging by applying it to TCEUS scans targeted to CAMs present in neural inflammation. This was done in an animal model that underwent a traumatic spinal cord injury to induce inflammation ( n = 31). Subjects were divided into four groups, each receiving a TCEUS targeted to a different CAM seven days after surgery (P-selectin, intracellular adhesion molecule 1 [ICAM-1], vascular cell adhesion molecule 1 [VCAM-1], and control). TICs were generated using average pixel intensity within the injured region of the spinal cord. TIC shape analysis found similar curves were produced while targeting P-selectin and VCAM-1, both demonstrating rapid and sustained enhancement. Control injections demonstrated no enhancement. ICAM-1 injections demonstrated limited enhancement and a shape similar to the control.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Christopher D. Kanner
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - D. Michele Basso
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
Abstract
BACKGROUND Contrast-enhanced ultrasound imaging is increasingly being used in clinical applications, particularly for cardiovascular and liver diagnostics. In this context the availability of new molecular contrast agents and the initiation of clinical translation promises new options for pathomechanistic diagnostics. MATERIAL AND METHODS Analysis of the current literature on the development of molecular ultrasound contrast agents, the detection methods as well as the applications in preclinical and clinical studies. RESULTS Molecular contrast agents have become established in preclinical research for the detection of inflammation and angiogenesis and have been continuously refined over recent years. They consist of gas filled microbubbles with a diameter of 1-5 µm and the gas core is stabilized by a shell made of lipids, proteins or polymers to which biomolecules are conjugated that determine the target specificity. The agent BR55 is the first clinically evaluated molecular ultrasound contrast agent. It binds to the angiogenesis marker vascular endothelial growth factor receptor 2 (VEGFR2) and has been studied in several preclinical and clinical phase I and II studies on tumor diagnostics and characterization. CONCLUSION Molecular ultrasound imaging is rapidly evolving in preclinical research for a broad field of applications. Translation to clinical practice is conceivable for many indications and is already ongoing for BR55.
Collapse
Affiliation(s)
- A Rix
- Institut für Experimentelle Molekulare Bildgebung, Pauwelsstrasse 30, 52074, Aachen, Deutschland
| | - M Palmowski
- Institut für Experimentelle Molekulare Bildgebung, Pauwelsstrasse 30, 52074, Aachen, Deutschland
| | - F Kiessling
- Institut für Experimentelle Molekulare Bildgebung, Pauwelsstrasse 30, 52074, Aachen, Deutschland.
| |
Collapse
|
30
|
Mott B, Packwood W, Xie A, Belcik JT, Taylor RP, Zhao Y, Davidson BP, Lindner JR. Echocardiographic Ischemic Memory Imaging Through Complement-Mediated Vascular Adhesion of Phosphatidylserine-Containing Microbubbles. JACC Cardiovasc Imaging 2016; 9:937-46. [DOI: 10.1016/j.jcmg.2015.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 11/24/2022]
|
31
|
Contrast Ultrasound Ischemic Memory Imaging. JACC Cardiovasc Imaging 2016; 9:947-9. [DOI: 10.1016/j.jcmg.2015.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/23/2022]
|
32
|
Steinl DC, Xu L, Khanicheh E, Ellertsdottir E, Ochoa-Espinosa A, Mitterhuber M, Glatz K, Kuster GM, Kaufmann BA. Noninvasive Contrast-Enhanced Ultrasound Molecular Imaging Detects Myocardial Inflammatory Response in Autoimmune Myocarditis. Circ Cardiovasc Imaging 2016; 9:CIRCIMAGING.116.004720. [DOI: 10.1161/circimaging.116.004720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
Abstract
Background—
Cardiac tests for diagnosing myocarditis lack sensitivity or specificity. We hypothesized that contrast-enhanced ultrasound molecular imaging could detect myocardial inflammation and the recruitment of specific cellular subsets of the inflammatory response in murine myocarditis.
Methods and Results—
Microbubbles (MB) bearing antibodies targeting lymphocyte CD4 (MB
CD4
), endothelial P-selectin (MB
PSel
), or isotype control antibody (MB
Iso
) and MB with a negative electric charge for targeting of leukocytes (MB
Lc
) were prepared. Attachment of MB
CD4
was validated in vitro using murine spleen CD4+ T cells. Twenty-eight mice were studied after the induction of autoimmune myocarditis by immunization with α-myosin-peptide; 20 mice served as controls. Contrast-enhanced ultrasound molecular imaging of the heart was performed. Left ventricular function was assessed by conventional and deformation echocardiography, and myocarditis severity graded on histology. Animals were grouped into no myocarditis, moderate myocarditis, and severe myocarditis. In vitro, attachment of MB
CD4
to CD4+ T cells was significantly greater than of MB
Iso
. Of the left ventricular ejection fraction or strain and strain rate readouts, only longitudinal strain was significantly different from control animals in severe myocarditis. In contrast, contrast-enhanced ultrasound molecular imaging showed increased signals for all targeted MB versus MB
Iso
both in moderate and severe myocarditis, and MB
CD4
signal correlated with CD4+ T-lymphocyte infiltration in the myocardium.
Conclusions—
Contrast-enhanced ultrasound molecular imaging can detect endothelial inflammation and leukocyte infiltration in myocarditis in the absence of a detectable decline in left ventricular performance by functional imaging. In particular, imaging of CD4+ T cells involved in autoimmune responses could be helpful in diagnosing myocarditis.
Collapse
Affiliation(s)
- David C. Steinl
- From the Department of Biomedicine (D.C.S., L.X., E.K., E.E., A.O.-E., M.M., G.M.K., B.A.K.), Institute for Pathology University Hospital (K.G.), and Division of Cardiology, University Hospital (G.M.K., B.A.K.), University of Basel, Switzerland
| | - Lifen Xu
- From the Department of Biomedicine (D.C.S., L.X., E.K., E.E., A.O.-E., M.M., G.M.K., B.A.K.), Institute for Pathology University Hospital (K.G.), and Division of Cardiology, University Hospital (G.M.K., B.A.K.), University of Basel, Switzerland
| | - Elham Khanicheh
- From the Department of Biomedicine (D.C.S., L.X., E.K., E.E., A.O.-E., M.M., G.M.K., B.A.K.), Institute for Pathology University Hospital (K.G.), and Division of Cardiology, University Hospital (G.M.K., B.A.K.), University of Basel, Switzerland
| | - Elin Ellertsdottir
- From the Department of Biomedicine (D.C.S., L.X., E.K., E.E., A.O.-E., M.M., G.M.K., B.A.K.), Institute for Pathology University Hospital (K.G.), and Division of Cardiology, University Hospital (G.M.K., B.A.K.), University of Basel, Switzerland
| | - Amanda Ochoa-Espinosa
- From the Department of Biomedicine (D.C.S., L.X., E.K., E.E., A.O.-E., M.M., G.M.K., B.A.K.), Institute for Pathology University Hospital (K.G.), and Division of Cardiology, University Hospital (G.M.K., B.A.K.), University of Basel, Switzerland
| | - Martina Mitterhuber
- From the Department of Biomedicine (D.C.S., L.X., E.K., E.E., A.O.-E., M.M., G.M.K., B.A.K.), Institute for Pathology University Hospital (K.G.), and Division of Cardiology, University Hospital (G.M.K., B.A.K.), University of Basel, Switzerland
| | - Katharina Glatz
- From the Department of Biomedicine (D.C.S., L.X., E.K., E.E., A.O.-E., M.M., G.M.K., B.A.K.), Institute for Pathology University Hospital (K.G.), and Division of Cardiology, University Hospital (G.M.K., B.A.K.), University of Basel, Switzerland
| | - Gabriela M. Kuster
- From the Department of Biomedicine (D.C.S., L.X., E.K., E.E., A.O.-E., M.M., G.M.K., B.A.K.), Institute for Pathology University Hospital (K.G.), and Division of Cardiology, University Hospital (G.M.K., B.A.K.), University of Basel, Switzerland
| | - Beat A. Kaufmann
- From the Department of Biomedicine (D.C.S., L.X., E.K., E.E., A.O.-E., M.M., G.M.K., B.A.K.), Institute for Pathology University Hospital (K.G.), and Division of Cardiology, University Hospital (G.M.K., B.A.K.), University of Basel, Switzerland
| |
Collapse
|
33
|
Xie F, Li ZP, Wang HW, Fei X, Jiao ZY, Tang WB, Tang J, Luo YK. Evaluation of Liver Ischemia-Reperfusion Injury in Rabbits Using a Nanoscale Ultrasound Contrast Agent Targeting ICAM-1. PLoS One 2016; 11:e0153805. [PMID: 27120181 PMCID: PMC4847801 DOI: 10.1371/journal.pone.0153805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/04/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To assess the feasibility of ultrasound molecular imaging in the early diagnosis of liver ischemia-reperfusion injury (IRI) using a nanoscale contrast agent targeting anti-intracellular adhesion molecule-1 (anti-ICAM-1). METHODS The targeted nanobubbles containing anti-ICAM-1 antibody were prepared using the avidin-biotin binding method. Human hepatic sinusoidal endothelial cells (HHSECs) were cultured at the circumstances of hypoxia/reoxygenation (H/R) and low temperature. The rabbit liver IRI model (I/R group) was established using the Pringle's maneuver. The time-intensity curve of the liver contrast ultrasonographic images was plotted and the peak intensity, time to peak, and time of duration were calculated. RESULTS The size of the targeted nanobubbles were 148.15 ± 39.75 nm and the concentration was 3.6-7.4 × 109/ml, and bound well with the H/R HHSECs. Animal contrast enhanced ultrasound images showed that the peak intensity and time of duration of the targeted nanobubbles were significantly higher than that of common nanobubbles in the I/R group, and the peak intensity and time of duration of the targeted nanobubbles in the I/R group were also significantly higher than that in the SO group. CONCLUSION The targeted nanobubbles have small particle size, stable characteristic, and good targeting ability, which can assess hepatic ischemia-reperfusion injury specifically, noninvasively, and quantitatively at the molecular level.
Collapse
Affiliation(s)
- Fang Xie
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
- Department of Ultrasound, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhi-Ping Li
- Pharmacology Research Department, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hong-Wei Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Xiang Fei
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Zi-Yu Jiao
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Wen-Bo Tang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jie Tang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
- * E-mail: (YKL); (JT)
| | - Yu-Kun Luo
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
- * E-mail: (YKL); (JT)
| |
Collapse
|
34
|
Yeh JSM, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos P. Quantitative ultrasound molecular imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2478-2496. [PMID: 26044707 DOI: 10.1016/j.ultrasmedbio.2015.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Ultrasound molecular imaging using targeting microbubbles is predominantly a semi-quantitative tool, thus limiting its potential diagnostic power and clinical applications. In the work described here, we developed a novel method for acoustic quantification of molecular expression. E-Selectin expression in the mouse heart was induced by lipopolysaccharide. Real-time ultrasound imaging of E-selectin expression in the heart was performed using E-selectin-targeting microbubbles and a clinical ultrasound scanner in contrast pulse sequencing mode at 14 MHz, with a mechanical index of 0.22-0.26. The level of E-selectin expression was quantified using a novel time-signal intensity curve analytical method based on bubble elimination, which consisted of curve-fitting the bi-exponential equation [Formula: see text] to the elimination phase of the myocardial time-signal intensity curve. Ar and Af represent the maximum signal intensities of the retained and freely circulating bubbles in the myocardium, respectively; λr and λf represent the elimination rate constants of the retained and freely circulating bubbles in the myocardium, respectively. Ar correlated strongly with the level of E-selectin expression (|r|>0.8), determined using reverse transcriptase real-time quantitative polymerase chain reaction, and the duration of post-lipopolysaccharide treatment-both linearly related to cell surface E-selectin protein (actual bubble target) concentration in the expression range imaged. Compared with a conventional acoustic quantification method (which used retained bubble signal intensity at 20 min post-bubble injection), this new approach exhibited greater dynamic range and sensitivity and was able to simultaneously quantify other useful characteristics (e.g., the microbubble half-life). In conclusion, quantitative determination of the level of molecular expression is feasible acoustically using a time-signal intensity curve analytical method based on bubble elimination.
Collapse
Affiliation(s)
- James Shue-Min Yeh
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Cardiology, Hammersmith Hospital, London, UK; Imaging Sciences Department, Medical Research Council, Imperial College London, London, UK
| | - Charles A Sennoga
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, UK; Department of Chemistry, Imperial College London, London, UK
| | - Ellen McConnell
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Eckersley
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, UK
| | - Sussan Nourshargh
- National Heart and Lung Institute, Imperial College London, London, UK; William Harvey Research Institute, Queen Mary, University of London, London, UK
| | - John M Seddon
- Department of Chemistry, Imperial College London, London, UK
| | - Dorian O Haskard
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Petros Nihoyannopoulos
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Cardiology, Hammersmith Hospital, London, UK.
| |
Collapse
|
35
|
Barsanti C, Lenzarini F, Kusmic C. Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World J Diabetes 2015; 6:792-806. [PMID: 26131322 PMCID: PMC4478576 DOI: 10.4239/wjd.v6.i6.792] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/23/2014] [Accepted: 04/14/2015] [Indexed: 02/05/2023] Open
Abstract
Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed.
Collapse
|
36
|
Chitgupi U, Zhang Y, Lo CY, Shao S, Song W, Geng J, Neelamegham S, Lovell JF. Sulfonated Polyethylenimine for Photosensitizer Conjugation and Targeting. Bioconjug Chem 2015; 26:1633-9. [PMID: 26057017 DOI: 10.1021/acs.bioconjchem.5b00241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polysulfonated macromolecules are known to bind selectins, adhesion membrane proteins which are broadly implicated in inflammation. Commercially available branched polyethylenimine (PEI) was reacted with chlorosulfonic acid to generate sulfonated PEI with varying degrees of sulfonation. Remaining unreacted amine groups were then used for straightforward conjugation with pyropheophoribide-a, a near-infrared photosensitizer. Photosensitizer-labeled sulfonated PEI conjugates inhibited blood coagulation and were demonstrated to specifically bind to cells genetically programmed to overexpress L-selectin (CD62L) or P-selectin (CD62P). In vitro, following targeting, selectin-expressing cells could be destroyed via photodynamic therapy.
Collapse
Affiliation(s)
- Upendra Chitgupi
- †Department of Biomedical Engineering and ‡Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Yumiao Zhang
- †Department of Biomedical Engineering and ‡Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Chi Y Lo
- †Department of Biomedical Engineering and ‡Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Shuai Shao
- †Department of Biomedical Engineering and ‡Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Wentao Song
- †Department of Biomedical Engineering and ‡Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Jumin Geng
- †Department of Biomedical Engineering and ‡Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Sriram Neelamegham
- †Department of Biomedical Engineering and ‡Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Jonathan F Lovell
- †Department of Biomedical Engineering and ‡Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
37
|
Steinl DC, Kaufmann BA. Ultrasound imaging for risk assessment in atherosclerosis. Int J Mol Sci 2015; 16:9749-69. [PMID: 25938969 PMCID: PMC4463615 DOI: 10.3390/ijms16059749] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 01/28/2023] Open
Abstract
Atherosclerosis and its consequences like acute myocardial infarction or stroke are highly prevalent in western countries, and the incidence of atherosclerosis is rapidly rising in developing countries. Atherosclerosis is a disease that progresses silently over several decades before it results in the aforementioned clinical consequences. Therefore, there is a clinical need for imaging methods to detect the early stages of atherosclerosis and to better risk stratify patients. In this review, we will discuss how ultrasound imaging can contribute to the detection and risk stratification of atherosclerosis by (a) detecting advanced and early plaques; (b) evaluating the biomechanical consequences of atherosclerosis in the vessel wall;
Collapse
Affiliation(s)
- David C Steinl
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel 4031, Switzerland.
| | - Beat A Kaufmann
- Division of Cardiology, University Hospital Basel, Petersgraben 4, Basel 4031, Switzerland.
| |
Collapse
|
38
|
Abou-Elkacem L, Bachawal SV, Willmann JK. Ultrasound molecular imaging: Moving toward clinical translation. Eur J Radiol 2015; 84:1685-93. [PMID: 25851932 DOI: 10.1016/j.ejrad.2015.03.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging.
Collapse
Affiliation(s)
- Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
van Rooij T, Daeichin V, Skachkov I, de Jong N, Kooiman K. Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. Int J Hyperthermia 2015; 31:90-106. [PMID: 25707815 DOI: 10.3109/02656736.2014.997809] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ultrasound contrast agents (UCAs) are used routinely in the clinic to enhance contrast in ultrasonography. More recently, UCAs have been functionalised by conjugating ligands to their surface to target specific biomarkers of a disease or a disease process. These targeted UCAs (tUCAs) are used for a wide range of pre-clinical applications including diagnosis, monitoring of drug treatment, and therapy. In this review, recent achievements with tUCAs in the field of molecular imaging, evaluation of therapy, drug delivery, and therapeutic applications are discussed. We present the different coating materials and aspects that have to be considered when manufacturing tUCAs. Next to tUCA design and the choice of ligands for specific biomarkers, additional techniques are discussed that are applied to improve binding of the tUCAs to their target and to quantify the strength of this bond. As imaging techniques rely on the specific behaviour of tUCAs in an ultrasound field, it is crucial to understand the characteristics of both free and adhered tUCAs. To image and quantify the adhered tUCAs, the state-of-the-art techniques used for ultrasound molecular imaging and quantification are presented. This review concludes with the potential of tUCAs for drug delivery and therapeutic applications.
Collapse
Affiliation(s)
- Tom van Rooij
- Department of Biomedical Engineering, Thoraxcenter , Erasmus MC, Rotterdam , the Netherlands
| | | | | | | | | |
Collapse
|
40
|
Moudgil R, Dick AJ. Regenerative Cell Imaging in Cardiac Repair. Can J Cardiol 2014; 30:1323-34. [DOI: 10.1016/j.cjca.2014.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 01/03/2023] Open
|
41
|
High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice. Biomaterials 2014; 36:80-9. [PMID: 25301636 DOI: 10.1016/j.biomaterials.2014.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/16/2014] [Indexed: 01/25/2023]
Abstract
Targeted contrast-enhanced ultrasound (CEU) using microbubble agents is a promising non-invasive imaging technique to evaluate atherosclerotic lesions. In this study, we decipher the diagnostic and therapeutic potential of targeted-CEU with soluble glycoprotein (GP)-VI in vivo. Microbubbles were conjugated with the recombinant fusion protein GPVI-Fc (MBGPVI) that binds with high affinity to atherosclerotic lesions. MBGPVI or control microbubbles (MBC) were intravenously administered into ApoE(-/-) or wild type mice and binding of the microbubbles to the vessel wall was visualized by high-resolution CEU. CEU molecular imaging signals of MBGPVI were substantially enhanced in the aortic arch and in the truncus brachiocephalicus in ApoE(-/-) as compared to wild type mice. High-frequency ultrasound (HFU)-guided disruption of MBGPVI enhanced accumulation of GPVI in the atherosclerotic lesions, which may interfere with atheroprogression. Thus, we establish targeted-CEU with soluble GPVI as a novel non-invasive molecular imaging method for atherosclerosis. Further, HFU-guided disruption of GPVI-targeted microbubbles is an innovate therapeutic approach that potentially prevents progression of atherosclerotic disease.
Collapse
|
42
|
Davidson BP, Chadderdon SM, Belcik JT, Gupta S, Lindner JR. Ischemic memory imaging in nonhuman primates with echocardiographic molecular imaging of selectin expression. J Am Soc Echocardiogr 2014; 27:786-793.e2. [PMID: 24774222 PMCID: PMC4065817 DOI: 10.1016/j.echo.2014.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Selectins are adhesion molecules that are expressed by the vascular endothelium upon activation and may be an imaging target for detecting myocardial ischemia long after resolution. The aim of this study was to test the hypothesis that molecular imaging of selectins with myocardial contrast echocardiographic (MCE) molecular imaging could be used to detect recent brief ischemia in closed-chest nonhuman primates. METHODS Myocardial ischemia was produced in anesthetized adult rhesus macaques (n = 6) by percutaneous balloon catheter occlusion of the left anterior descending or circumflex coronary artery for 5 to 10 min. Three separate macaques served as nonischemic controls. MCE perfusion imaging was performed during coronary occlusion to measure risk area and at 100 to 110 min to exclude infarction. MCE molecular imaging was performed at 30 and 90 min after reperfusion using a lipid microbubble bearing dimeric recombinant human P-selectin glycoprotein ligand-1 (MB-YSPSL). Collection of blood for safety data, electrocardiography, and echocardiography were performed at baseline and before and 10 min after each MB-YSPSL injection. RESULTS Vital signs, oxygen saturation, electrocardiographic results, ventricular systolic function, pulmonary vascular resistance, and serum safety markers were unchanged by intravenous injection of MB-YSPSL. On echocardiography, left ventricular dysfunction in the risk area had resolved by 30 min, and there was no evidence of infarction on MCE perfusion imaging. On selectin-targeted MCE molecular imaging, signal enhancement was greater (P < .05) in the risk area than remote territory at 30 min (25 ± 11 vs 11 ± 4 IU) and 90 min (13 ± 3 vs 3 ± 2 IU) after ischemia. There was no enhancement (<1 IU) in control nonischemic subjects. CONCLUSIONS In primates, MCE molecular imaging of selectins using MB-YSPSL, a recombinant ligand appropriate for humans, is both safe and effective for imaging recent myocardial ischemia. This technique may be useful for detecting recent ischemia in patients with chest pain even in the absence of necrosis.
Collapse
Affiliation(s)
- Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.
| | - Scott M Chadderdon
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Saurabh Gupta
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
43
|
Ren J, Zhang P, Tian J, Zhou Z, Liu X, Wang D, Wang Z. A targeted ultrasound contrast agent carrying gene and cell-penetrating peptide: preparation and gene transfection in vitro. Colloids Surf B Biointerfaces 2014; 121:362-70. [PMID: 24985759 DOI: 10.1016/j.colsurfb.2014.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Targeted and high efficient gene delivery is a main issue in gene treatment. Taking advantage of ischemic memory target P-selectin and our previous study-synergistic effects of ultrasound-targeted microbubble destruction (UTMD) and TAT peptide on gene transfection, which were characterized by targeted aggregation and high efficient gene transfection, we set up a 'smart' gene delivery system-targeted ultrasound contrast agent (UCA) carrying gene and cell-permeable peptides (CPP). Such UCA had a strong binding force with DNA which was protected from being hydrolysed by nuclease. Moreover, synergistic effects of UTMD and TAT peptide increased gene transfection. Specifically, the UCA were reacted with an ischemic memory target P-selectin overexpressed by ischemic issues (including ischemic heart disease) and loaded with gene and CPP, which enabled targeted localization and gene delivery to ischemic cells overexpressing P-selectin. We demonstrated their targeting affinity for hypoxia human umbilical vein endothelial cell (HUVEC) and gene transfection in vitro. The results of confocal laser scanning microscopy (CLSM) showed that gene and CPP were distributed on the shell of UCA. Red fluorescence was observed on the surface of targeted UCA using immunofluorescent microscopy, which demonstrated that the antibody was successfully connected to the UCA. The targeted UCA was specifically and tightly binded to hypoxia HUVEC, while there were no or little non-targeted UCA binding around hypoxia HUVEC. 24h after transfection, gene transfection efficiency detected by FCM was higher in targeted group than non-targeted group. Overall, the targeted UCA carrying gene and CPP was prepared successfully. It had a strong target binding capacity to hypoxia HUVEC and high efficient gene transfection, which maybe provide a novel strategy for gene therapy.
Collapse
Affiliation(s)
- Jianli Ren
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Ping Zhang
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Ju Tian
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Zhiyi Zhou
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China.
| | - Xingzhao Liu
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Dong Wang
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| |
Collapse
|
44
|
Leng X, Wang J, Carson A, Chen X, Fu H, Ottoboni S, Wagner WR, Villanueva FS. Ultrasound Detection of Myocardial Ischemic Memory Using an E-Selectin Targeting Peptide Amenable to Human Application. Mol Imaging 2014. [DOI: 10.2310/7290.2014.00006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiaoping Leng
- From the Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Center for Ultrasound Molecular Imaging and Therapeutics and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; and Depomed, Inc., Newark, CA
| | - Jianjun Wang
- From the Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Center for Ultrasound Molecular Imaging and Therapeutics and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; and Depomed, Inc., Newark, CA
| | - Andrew Carson
- From the Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Center for Ultrasound Molecular Imaging and Therapeutics and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; and Depomed, Inc., Newark, CA
| | - Xucai Chen
- From the Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Center for Ultrasound Molecular Imaging and Therapeutics and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; and Depomed, Inc., Newark, CA
| | - Huili Fu
- From the Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Center for Ultrasound Molecular Imaging and Therapeutics and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; and Depomed, Inc., Newark, CA
| | - Susanne Ottoboni
- From the Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Center for Ultrasound Molecular Imaging and Therapeutics and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; and Depomed, Inc., Newark, CA
| | - William R. Wagner
- From the Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Center for Ultrasound Molecular Imaging and Therapeutics and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; and Depomed, Inc., Newark, CA
| | - Flordeliza S. Villanueva
- From the Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Center for Ultrasound Molecular Imaging and Therapeutics and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; and Depomed, Inc., Newark, CA
| |
Collapse
|
45
|
Kilroy JP, Patil AV, Rychak JJ, Hossack JA. An IVUS transducer for microbubble therapies. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:441-9. [PMID: 24569249 PMCID: PMC4136497 DOI: 10.1109/tuffc.2014.2929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is interest in examining the potential of modified intravascular ultrasound (IVUS) catheters to facilitate dual diagnostic and therapeutic roles using ultrasound plus microbubbles for localized drug delivery to the vessel wall. The goal of this study was to design, prototype, and validate an IVUS transducer for microbubble-based drug delivery. A 1-D acoustic radiation force model and finite element analysis guided the design of a 1.5-MHz IVUS transducer. Using the IVUS transducer, biotinylated microbubbles were displaced in water and bovine whole blood to the streptavidin-coated wall of a flow phantom by a 1.5-MHz center frequency, peak negative pressure = 70 kPa pulse with varying pulse repetition frequency (PRF) while monitoring microbubble adhesion with ultrasound. A fit was applied to the RF data to extract a time constant (τ). As PRF was increased in water, the time constant decreased (τ = 32.6 s, 1 kHz vs. τ = 8.2 s, 6 kHz), whereas in bovine whole blood an adhesion-no adhesion transition was found for PRFs ≥ 8 kHz. Finally, a fluorophore was delivered to an ex vivo swine artery using microbubbles and the IVUS transducer, resulting in a 6.6-fold increase in fluorescence. These results indicate the importance of PRF (or duty factor) for IVUS acoustic radiation force microbubble displacement and the potential for IVUS and microbubbles to provide localized drug delivery.
Collapse
Affiliation(s)
- Joseph P. Kilroy
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | | | - Joshua J. Rychak
- Targeson Inc. and the Department of Bioengineering, University of California, San Diego, CA
| | - John A. Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|
46
|
Inaba Y, Davidson BP, Kim S, Liu YN, Packwood W, Belcik JT, Xie A, Lindner JR. Echocardiographic evaluation of the effects of stem cell therapy on perfusion and function in ischemic cardiomyopathy. J Am Soc Echocardiogr 2014; 27:192-9. [PMID: 24315764 PMCID: PMC3946830 DOI: 10.1016/j.echo.2013.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Small animal models of ischemic left ventricular (LV) dysfunction are important for the preclinical optimization of stem cell therapy. The aim of this study was to test the hypothesis that temporal changes in LV function and regional perfusion after cell therapy can be assessed in mice using echocardiographic imaging. METHODS Wild-type mice (n = 25) were studied 7 and 28 days after permanent ligation of the left anterior descending coronary artery. Animals were randomized to receive closed-chest ultrasound-guided intramyocardial delivery of saline (n = 13) or 5 × 10(5) multipotential adult progenitor cells (MAPCs; n = 12) on day 7. LV end-diastolic and end-systolic volumes, LV ejection fraction, and stroke volume were measured using high-frequency echocardiography. Multiplanar assessments of perfusion and defect area size were made using myocardial contrast echocardiography. RESULTS Between days 7 and 28, MAPC-treated animals had 40% to 50% reductions in defect size (P < .001) and 20% to 30% increases in total perfusion (P < .01). Perfusion did not change in nontreated controls. Both LV end-diastolic and end-systolic volumes increased between days 7 and 28 in both groups, but LV end-systolic volume increased to a lesser degree in MAPC-treated compared with control mice (+4.2 ± 7.9 vs +19.2 ± 22.0 μL, P < .05). LV ejection fraction increased in the MAPC-treated mice and decreased in control mice (+3.0 ± 4.3% vs -5.6 ± 5.9%, P < .01). There was a significant linear relation between the change in LV ejection fraction and the change in either defect area size or total perfusion. CONCLUSIONS High-frequency echocardiography and myocardial contrast echocardiography in murine models of ischemic LV dysfunction can be used to assess the response to stem cell therapy and to characterize the relationship among spatial flow, ventricular function, and ventricular remodeling.
Collapse
Affiliation(s)
- Yoichi Inaba
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Sajeevani Kim
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Ya Ni Liu
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
47
|
Leong-Poi H. Contrast ultrasound and targeted microbubbles: diagnostic and therapeutic applications in progressive diabetic nephropathy. Semin Nephrol 2013; 32:494-504. [PMID: 23062991 DOI: 10.1016/j.semnephrol.2012.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy remains one of the most common causes for end-stage renal disease worldwide. Although therapies aimed at optimizing glycemic control and systemic blood pressure have benefit, the reduction in progressive nephropathy remains modest at best. Thus, research continues to focus on newer therapies to address the unmet needs for additional renal protective strategies. The ability to noninvasively image the molecular and cellular processes that underlie diabetic nephropathy would be useful in risk stratifying patients with diabetes, and more importantly would aid in the evaluation of novel therapies to prevent and treat nephropathy. In addition, the development of ultrasound technologies that allow targeted gene delivery using high-power ultrasound and DNA-bearing microbubbles may have applicability for gene therapy to prevent diabetic nephropathy. This review highlights contrast-enhanced ultrasound imaging techniques for the evaluation of renal pathologies, including perfusion and molecular imaging techniques, and ultrasound-mediated gene delivery for therapeutic applications in diabetic nephropathy, that have potential for translation to clinical practice.
Collapse
Affiliation(s)
- Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Echocardiography and Vascular Ultrasound: New Developments and Future Directions. Can J Cardiol 2013; 29:304-16. [DOI: 10.1016/j.cjca.2012.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/22/2012] [Accepted: 11/02/2012] [Indexed: 12/15/2022] Open
|
49
|
Ryu JC, Davidson BP, Xie A, Qi Y, Zha D, Belcik JT, Caplan ES, Woda JM, Hedrick CC, Hanna RN, Lehman N, Zhao Y, Ting A, Lindner JR. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation 2013; 127:710-9. [PMID: 23307829 DOI: 10.1161/circulationaha.112.116103] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stem cells are thought to enhance vascular remodeling in ischemic tissue in part through paracrine effects. Using molecular imaging, we tested the hypothesis that treatment of limb ischemia with multipotential adult progenitor cells (MAPCs) promotes recovery of blood flow through the recruitment of proangiogenic monocytes. METHODS AND RESULTS Hind-limb ischemia was produced in mice by iliac artery ligation, and MAPCs were administered intramuscularly on day 1. Optical imaging of luciferase-transfected MAPCs indicated that cells survived for 1 week. Contrast-enhanced ultrasound on days 3, 7, and 21 showed a more complete recovery of blood flow and greater expansion of microvascular blood volume in MAPC-treated mice than in controls. Fluorescent microangiography demonstrated more complete distribution of flow to microvascular units in MAPC-treated mice. On ultrasound molecular imaging, expression of endothelial P-selectin and intravascular recruitment of CX(3)CR-1-positive monocytes were significantly higher in MAPC-treated mice than in the control groups at days 3 and 7 after arterial ligation. Muscle immunohistology showed a >10-fold-greater infiltration of monocytes in MAPC-treated than control-treated ischemic limbs at all time points. Intravital microscopy of ischemic or tumor necrosis factor-α-treated cremaster muscle demonstrated that MAPCs migrate to perimicrovascular locations and potentiate selectin-dependent leukocyte rolling. In vitro migration of human CD14(+) monocytes was 10-fold greater in response to MAPC-conditioned than basal media. CONCLUSIONS In limb ischemia, MAPCs stimulate the recruitment of proangiogenic monocytes through endothelial activation and enhanced chemotaxis. These responses are sustained beyond the MAPC lifespan, suggesting that paracrine effects promote flow recovery by rebalancing the immune response toward a more regenerative phenotype.
Collapse
Affiliation(s)
- Jae Choon Ryu
- Division of Cardiovascular Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Molecular Targeting of Imaging and Drug Delivery Probes in Atherosclerosis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-417150-3.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|