1
|
Liang W, Huang B, Shi Q, Yang X, Zhang H, Chen W. Circulating MicroRNAs as potential biomarkers for cerebral collateral circulation in symptomatic carotid stenosis. Front Physiol 2024; 15:1403598. [PMID: 39552721 PMCID: PMC11563797 DOI: 10.3389/fphys.2024.1403598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Background Cerebral collateral circulation (CCC) considerably improves the prognosis of patients with symptomatic carotid stenosis (SCS). This study evaluated the diagnostic value of plasma microRNAs (miRNAs) in determining CCC status in patients with SCS. Methods This single-center observational study enrolled patients with ≥50% carotid artery stenosis diagnosed using Doppler ultrasound. CCC was assessed using cerebrovascular digital subtraction angiography (DSA). Quantitative reverse transcription-polymerase chain reaction was used to determine the expression levels of plasma miRNAs. A multivariate logistic regression model and receiver operating characteristic (ROC) curve were used to analyze the diagnostic value of plasma miRNA expression in determining CCC status. Results A total of 43 patients were enrolled (28 with CCC and 15 without CCC). The plasma expression levels of miR-126-3p, miR-132-3p, and miR-210-3p were significantly higher and those of miR-16-3p and miR-92-3p were significantly lower in patients with CCC. After adjusting for age, gender, drinking history, comorbidities and degree of SCS, miR-92a-3p, miR-126-3p, miR-132-3p, and miR-210-3p were found to be significantly associated with CCC establishment (p < 0.05). ROC curve analysis indicated a high diagnostic value of these miRNAs in determining CCC status [area under the curve (AUC): 0.918-0.965], with miR-126-3p exhibiting the highest predictive performance (AUC: 0.965). Subgroup analysis revealed that patients with CCC who had 50%-70% stenosis showed significantly higher expression level of miR-126-3p, whereas those with CCC who had 70%-99% stenosis showed significantly higher expression levels of miR-126-3p, miR-132-3p, and miR-210-3p as well as significantly lower expression levels of miR-15a-3p, miR-16-3p, and miR-92a-3p. Conclusion The results indicate that these six plasma miRNAs have promising diagnostic value in determining CCC status in varying degrees of SCS. These miRNAs can serve as biomarkers for CCC status following SCS, with miR-126-3p showing the strongest positive correlation.
Collapse
Affiliation(s)
- Wenwen Liang
- Department of Radiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Bingcang Huang
- Department of Radiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Qin Shi
- Department of General Practice, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Xuelian Yang
- Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Hanwen Zhang
- Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Wei Chen
- Department of Radiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
2
|
Kowara M, Kopka M, Kopka K, Głowczyńska R, Mitrzak K, Kim DA, Sadowski KA, Cudnoch-Jędrzejewska A. MicroRNA Inhibiting Atheroprotective Proteins in Patients with Unstable Angina Comparing to Chronic Coronary Syndrome. Int J Mol Sci 2024; 25:10621. [PMID: 39408950 PMCID: PMC11476700 DOI: 10.3390/ijms251910621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Patients with unstable angina present clinical characteristics of atherosclerotic plaque vulnerability, contrary to chronic coronary syndrome patients. The process of athersclerotic plaque destabilization is also regulated by microRNA particles. In this study, the investigation on expression levels of microRNAs inhibiting the expression of proteins that protect from atherosclerotic plaque progression (miR-92a inhibiting KLF2, miR-10b inhibiting KLF4, miR-126 inhibiting MerTK, miR-98 inhibiting IL-10, miR-29b inhibiting TGFβ1) was undertaken. A number of 62 individuals were enrolled-unstable angina (UA, n = 14), chronic coronary syndrome (CCS, n = 38), and healthy volunteers (HV, n = 10). Plasma samples were taken, and microRNAs expression levels were assessed by qRT-PCR. As a result, the UA patients presented significantly increased miR-10b levels compared to CCS patients (0.097 vs. 0.058, p = 0.033). Moreover, in additional analysis when UA patients were grouped together with stable patients with significant plaque in left main or proximal left anterior descending ("UA and LM/proxLAD" group, n = 29 patients) and compared to CCS patients with atherosclerotic lesions in other regions of coronary circulation ("CCS other" group, n = 25 patients) the expression levels of both miR-10b (0.104 vs. 0.046; p = 0.0032) and miR-92a (92.64 vs. 54.74; p = 0.0129) were significantly elevated. In conclusion, the study revealed significantly increased expression levels of miR-10b and miR-92a, a regulator of endothelial protective KLF factors (KLF4 and KLF2, respectively) in patients with more vulnerable plaque phenotypes.
Collapse
Affiliation(s)
- Michał Kowara
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| | - Michał Kopka
- Department of Methodology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Karolina Kopka
- Department of Methodology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Renata Głowczyńska
- 1st Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Karolina Mitrzak
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
- 1st Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Dan-ae Kim
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| | - Karol Artur Sadowski
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| |
Collapse
|
3
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Nappi F, Avtaar Singh SS, Jitendra V, Alzamil A, Schoell T. The Roles of microRNAs in the Cardiovascular System. Int J Mol Sci 2023; 24:14277. [PMID: 37762578 PMCID: PMC10531750 DOI: 10.3390/ijms241814277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The discovery of miRNAs and their role in disease represent a significant breakthrough that has stimulated and propelled research on miRNAs as targets for diagnosis and therapy. Cardiovascular disease is an area where the restrictions of early diagnosis and conventional pharmacotherapy are evident and deserve attention. Therefore, miRNA-based drugs have significant potential for development. Research and its application can make considerable progress, as seen in preclinical and clinical trials. The use of miRNAs is still experimental but has a promising role in diagnosing and predicting a variety of acute coronary syndrome presentations. Its use, either alone or in combination with currently available biomarkers, might be adopted soon, particularly if there is diagnostic ambiguity. In this review, we examine the current understanding of miRNAs as possible targets for diagnosis and treatment in the cardiovascular system. We report on recent advances in recognising and characterising miRNAs with a focus on clinical translation. The latest challenges and perspectives towards clinical application are discussed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | | | - Vikram Jitendra
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK;
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | - Thibaut Schoell
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| |
Collapse
|
5
|
Kramna D, Riedlova P, Jirik V. MicroRNAs as a Potential Biomarker in the Diagnosis of Cardiovascular Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1329. [PMID: 37512140 PMCID: PMC10386031 DOI: 10.3390/medicina59071329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death in most developed countries. MicroRNAs (miRNAs) are highly investigated molecules not only in CVD but also in other diseases. Several studies on miRNAs continue to reveal novel miRNAs that may play a role in CVD, in their pathogenesis in diagnosis or prognosis, but evidence for clinical implementation is still lacking. The aim of this study is to clarify the diagnostic potential of miRNAs in some CVDs.
Collapse
Affiliation(s)
- Dagmar Kramna
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic; (P.R.); (V.J.)
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic
| | - Petra Riedlova
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic; (P.R.); (V.J.)
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic
| | - Vitezslav Jirik
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic; (P.R.); (V.J.)
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic
| |
Collapse
|
6
|
Mo ZZ, Yuan Z, Peng YY, Zhou WL, Dai W, Wang G, Tang J, Zhang W, Chen BL. miR-6076 rs1463411 polymorphisms are associated with bleeding during clopidogrel treatment in patients with acute coronary syndrome. Eur J Med Res 2023; 28:96. [PMID: 36829258 PMCID: PMC9951409 DOI: 10.1186/s40001-023-01068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Bleeding is a major adverse event during clopidogrel treatment in patients with acute coronary syndrome (ACS). However, the potential mechanism affecting bleeding among individuals is unclear. Herein, we investigated the involvement of CYP2C19*2 and CYP2C19*3, as well as 10 miRNA polymorphisms, in bleeding in Chinese patients with ACS during the first year of clopidogrel treatment. The miR-6076 rs1463411 G polymorphism was significantly associated with the risk of bleeding (P < 0.001), and the rs1463411 GT + GG genotype significantly increased the risk of bleeding (adjusted odds ratio, 6.09; 95% confidence interval, 1.09-34.0; P < 0.001). Dual luciferase assay showed that miR-6076 significantly decreased the mRNA expression of P2RY12 (P < 0.05). P2RY12 mRNA and protein levels were significantly lower in cells transfected with miR-6076-G than in cells transfected with miR-6076-T (P < 0.05). The findings indicate that miR-6076 targets P2RY12 mRNA and that miR-6076 rs1463411 T/G polymorphisms differentially regulate P2RY12 mRNA and protein levels in cells. rs1463411 G polymorphism may increase the risk of bleeding during clopidogrel treatment in patients with ACS.
Collapse
Affiliation(s)
- Zhen-Zhen Mo
- grid.216417.70000 0001 0379 7164Department of Geriatrics, National Geriatrics Clinic Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 People’s Republic of China
| | - Zhen Yuan
- grid.216417.70000 0001 0379 7164Department of Geriatrics, National Geriatrics Clinic Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 People’s Republic of China
| | - Yuan-Yuan Peng
- grid.216417.70000 0001 0379 7164Department of Geriatrics, National Geriatrics Clinic Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 People’s Republic of China
| | - Wan-Lu Zhou
- grid.216417.70000 0001 0379 7164Department of Geriatrics, National Geriatrics Clinic Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 People’s Republic of China
| | - Wei Dai
- grid.216417.70000 0001 0379 7164Department of Geriatrics, National Geriatrics Clinic Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 People’s Republic of China
| | - Guo Wang
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 People’s Republic of China
| | - Jie Tang
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 People’s Republic of China
| | - Wei Zhang
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 People’s Republic of China
| | - Bi-Lian Chen
- Department of Geriatrics, National Geriatrics Clinic Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
| |
Collapse
|
7
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Pei J, Liu C, Yang Z, Lai Y, Zhang S, Guan T, Shen Y. Association of KATP variants with CMD and RAP in CAD patients with increased serum lipoprotein(a) levels. J Clin Endocrinol Metab 2022; 108:1061-1074. [PMID: 36469795 DOI: 10.1210/clinem/dgac709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
CONTEXT Refractory angina pectoris (RAP) is a specific subtype of coronary artery disease (CAD). Lipoprotein(a) [Lp(a)] and its induced coronary microvascular dysfunction (CMD) play an important role in pathogenesis of RAP, but its metabolism was mostly genetically determined. ATP-sensitive potassium channels (KATP) is involved in lipid metabolism and microvascular homeostasis, and becomes a promising target for the management of Lp(a) and its related RAP. OBJECTIVE To investigate associations of KATP variants with hyperlipoprotein(a)emia, CMD and RAP in CAD patients. DESIGN, PATIENTS, SETTINGS A total of 1,148 newly diagnosed CAD patients were prospectively selected, and divided into control [Lp(a) < 180 mg/dL] and case [Lp(a) ≥ 180 mg/dL, hyperlipoprotein(a)emia] group. METHODS 9 KATP variants were genotyped by MassARRAY system. The expression profile of exosome-derived microRNAs (exo-miRs) was identified by next-generation sequencing, and the expression levels of differentially expressed exo-miRs were evaluated by qRT-PCR in verification cohort. RESULTS Three KATP variants were associated with increased risk of hyperlipoprotein(a)emia in CAD patients as follows: rs2285676 (AA + GA genotype, adjusted OR = 1.44, 95% CI: 1.10-1.88, P = 0.008), rs1799858 (CC genotype, adjusted OR = 1.33, 95% CI: 1.03-1.73, P = 0.030), and rs141294036 (CC genotype, adjusted OR = 1.43, 95% CI: 1.10-1.87, P = 0.008). Only rs141294036 was associated with increased risk of CMD (CC genotype, adjusted OR = 1.62, 95% CI: 1.23-2.13, P = 0.001), and further with increased RAP risk (CC genotype, adjusted HR = 2.05, 95% CI: 1.22-3.43, P = 0.007) after median follow-up of 50.6-months. Between the two genotypes of rs141294036, 152 exo-miRs were significantly differentially expressed, only 10 exo-miRs (miR-7110-3p, miR-548az-5p, miR-214-3p, let-7i-5p, miR-218-5p, miR-128-3p, miR-378i, miR-625-3p, miR-128-1-5p and miR-3187-3p) were further confirmed in RAP patients with hyperlipoprotein(a)emia and CMD. CONCLUSION KATP rs141294036 may serve a potential genetic marker for hyperlipoprotein(a)emia, CMD and RAP in CAD patients.
Collapse
Affiliation(s)
- Jingxian Pei
- Department of Cardiology, the second affiliated hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Zhengxia Yang
- Department of Electronic Business, School of Economics and Finance, South China University of Technology, Guangzhou 510006, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Shenghui Zhang
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
9
|
Rozhkov AN, Shchekochikhin DY, Ashikhmin YI, Mitina YO, Evgrafova VV, Zhelankin AV, Gognieva DG, Akselrod AS, Kopylov PY. The Profile of Circulating Blood microRNAs in Outpatients with Vulnerable and Stable Atherosclerotic Plaques: Associations with Cardiovascular Risks. Noncoding RNA 2022; 8:ncrna8040047. [PMID: 35893230 PMCID: PMC9326687 DOI: 10.3390/ncrna8040047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs reflect many biological processes in the human body, including athero-sclerosis. In a cardiology outpatient department cohort (N = 83), we aimed to compare the levels of circulating microRNAs in groups with vulnerable plaques (N = 22), stable plaques (N = 23) and plaque-free (N = 17) depending on coronary computed tomography angiography and to evaluate associations of microRNA levels with calculated cardiovascular risks (CVR), based on the SCORE2 (+OP), ACC/AHA, ATP-III and MESA scales. Coronary computed tomography was performed on a 640-slice computed tomography scanner. Relative plasma levels of microRNA were assessed via a real-time polymerase chain reaction. We found significant differences in miR-143-3p levels (p = 0.0046 in plaque-free vs. vulnerable plaque groups) and miR-181b-5p (p = 0.0179 in stable vs. vulnerable plaques groups). Analysis of microRNA associations with CVR did not show significant differences for SCORE2 (+OP) and ATPIII scales. MiR-126-5p and miR-150-5p levels were significantly higher (p < 0.05) in patients with ACC/AHA risk >10% and miR-145-5p had linear relationships with ACC/AHA score (adjusted p = 0.0164). The relative plasma level of miR-195 was higher (p < 0.05) in patients with MESA risk > 7.5% and higher (p < 0.05) in patients with zero coronary calcium index (p = 0.036). A linear relationship with coronary calcium was observed for miR-126-3p (adjusted p = 0.0484). A positive correlation with high coronary calcium levels (> 100 Agatson units) was found for miR-181-5p (p = 0.036). Analyzing the biological pathways of these microRNAs, we suggest that miR-143-3p and miR-181-5p can be potential markers of the atherosclerosis process. Other miRNAs (miR-126-3p, 126-5p, 145-5p, 150-5p, 195-5p) can be considered as potential cardiovascular risk modifiers, but it is necessary to validate our results in a large prospective trial.
Collapse
Affiliation(s)
- Andrey N. Rozhkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.G.G.); (P.Y.K.)
- Correspondence: ; Tel.: +7-915-085-32-95
| | - Dmitry Yu. Shchekochikhin
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Yaroslav I. Ashikhmin
- International Medical Cluster, 40 Bolshoy Boulevard Skolkovo Innovation Center, 121205 Moscow, Russia;
| | - Yulia O. Mitina
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Veronika V. Evgrafova
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Andrey V. Zhelankin
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Daria G. Gognieva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.G.G.); (P.Y.K.)
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Anna S. Akselrod
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Philippe Yu. Kopylov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.G.G.); (P.Y.K.)
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| |
Collapse
|
10
|
Decoding microRNA drivers in Atherosclerosis. Biosci Rep 2022; 42:231479. [PMID: 35758143 PMCID: PMC9289798 DOI: 10.1042/bsr20212355] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
An estimated 97% of the human genome consists of non-protein-coding sequences. As our understanding of genome regulation improves, this has led to the characterization of a diverse array of non-coding RNAs (ncRNA). Among these, micro-RNAs (miRNAs) belong to the short ncRNA class (22–25 nucleotides in length), with approximately 2500 miRNA genes encoded within the human genome. From a therapeutic perspective, there is interest in exploiting miRNA as biomarkers of disease progression and response to treatments, as well as miRNA mimics/repressors as novel medicines. miRNA have emerged as an important class of RNA master regulators with important roles identified in the pathogenesis of atherosclerotic cardiovascular disease. Atherosclerosis is characterized by a chronic inflammatory build-up, driven largely by low-density lipoprotein cholesterol accumulation within the artery wall and vascular injury, including endothelial dysfunction, leukocyte recruitment and vascular remodelling. Conventional therapy focuses on lifestyle interventions, blood pressure-lowering medications, high-intensity statin therapy and antiplatelet agents. However, a significant proportion of patients remain at increased risk of cardiovascular disease. This continued cardiovascular risk is referred to as residual risk. Hence, a new drug class targeting atherosclerosis could synergise with existing therapies to optimise outcomes. Here, we review our current understanding of the role of ncRNA, with a focus on miRNA, in the development and progression of atherosclerosis, highlighting novel biological mechanisms and therapeutic avenues.
Collapse
|
11
|
Zhang C, Owen LA, Lillvis JH, Zhang SX, Kim IK, DeAngelis MM. AMD Genomics: Non-Coding RNAs as Biomarkers and Therapeutic Targets. J Clin Med 2022; 11:jcm11061484. [PMID: 35329812 PMCID: PMC8954267 DOI: 10.3390/jcm11061484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that is the world’s leading cause of blindness in the aging population. Although the clinical stages and forms of AMD have been elucidated, more specific prognostic tools are required to determine when patients with early and intermediate AMD will progress into the advanced stages of AMD. Another challenge in the field has been the appropriate development of therapies for intermediate AMD and advanced atrophic AMD. After numerous negative clinical trials, an anti-C5 agent and anti-C3 agent have recently shown promising results in phase 3 clinical trials, in terms of slowing the growth of geographic atrophy, an advanced form of AMD. Interestingly, both drugs appear to be associated with an increased incidence of wet AMD, another advanced form of the disease, and will require frequent intravitreal injections. Certainly, there remains a need for other therapeutic agents with the potential to prevent progression to advanced stages of the disease. Investigation of the role and clinical utility of non-coding RNAs (ncRNAs) is a major advancement in biology that has only been minimally applied to AMD. In the following review, we discuss the clinical relevance of ncRNAs in AMD as both biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Charles Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
| | - Leah A. Owen
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
| | - John H. Lillvis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Sarah X. Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (I.K.K.); (M.M.D.)
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: (I.K.K.); (M.M.D.)
| |
Collapse
|
12
|
Vavassori C, Cipriani E, Colombo GI. Circulating MicroRNAs as Novel Biomarkers in Risk Assessment and Prognosis of Coronary Artery Disease. Eur Cardiol 2022; 17:e06. [PMID: 35321524 PMCID: PMC8924954 DOI: 10.15420/ecr.2021.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease is among the leading causes of death worldwide. Nevertheless, available cardiovascular risk prediction algorithms still miss a significant portion of individuals at-risk. Thus, the search for novel non-invasive biomarkers to refine cardiovascular risk assessment is both an urgent need and an attractive topic, which may lead to a more accurate risk stratification and/or prognostic score definition for coronary artery disease. A new class of such non-invasive biomarkers is represented by extracellular microRNAs (miRNAs) circulating in the blood. MiRNAs are non-coding RNA of 22–25 nucleotides in length that play a significant role in both cardiovascular physiology and pathophysiology. Given their high stability and conservation, resistance to degradative enzymes, and detectability in body fluids, circulating miRNAs are promising emerging biomarkers, and specific expression patterns have already been associated with a wide range of cardiovascular conditions. In this review, an overview of the role of blood miRNAs in risk assessment and prognosis of coronary artery disease is given.
Collapse
Affiliation(s)
- Chiara Vavassori
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eleonora Cipriani
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | |
Collapse
|
13
|
Zhang L, Zhang J, Qin Z, Liu N, Zhang Z, Lu Y, Xu Y, Zhang J, Tang J. Diagnostic and Predictive Values of Circulating Extracellular Vesicle-Carried microRNAs in Ischemic Heart Disease Patients With Type 2 Diabetes Mellitus. Front Cardiovasc Med 2022; 9:813310. [PMID: 35295267 PMCID: PMC8918773 DOI: 10.3389/fcvm.2022.813310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic heart disease patients with diabetes mellitus (IHD-DM) have a higher risk of cardiovascular events than those without DM. Rapid identification of IHD-DM can enable early access to medical treatment and reduce the occurrence of cardiovascular adverse events. In the present study, we identified and examined extracellular vesicle (EV)-carried microRNAs (miRNAs) as the possible diagnostic biomarkers of IHD-DM. Small RNA sequencing was performed to analyze the EV-carried miRNAs spectrum, and differentially expressed miRNAs were further confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Through small RNA sequencing, we identified 138 differentially expressed EV-carried miRNAs between IHD-DM patients and healthy controls. Furthermore, we identified that five EV-carried miRNAs (miR-15a-3p, miR-18a-5p, miR-133a-3p, miR-155-5p, and miR-210-3p) were significantly down-regulated and one (miR-19a-3p) was significantly up-regulated in the IHD-DM patients compared to healthy controls. The receiver–operating characteristic curve analysis showed that the above six EV-carried miRNAs have excellent diagnostic efficacy of IHD-DM. Our findings indicated that the circulating EV-miRNAs might be promising biomarkers for the convenient and rapid diagnosis of IHD-DM.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Zhen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Na Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zenglei Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yongzheng Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yanyan Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
- Jinying Zhang
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
- *Correspondence: Junnan Tang
| |
Collapse
|
14
|
Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, Papazoglou AS, Karagiannidis E, Chatzidimitriou M, Papa A, Sianos G, Angelis L, Chatzidimitriou D, Vizirianakis IS. Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022; 11:cells11040607. [PMID: 35203258 PMCID: PMC8870388 DOI: 10.3390/cells11040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA–gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.
Collapse
Affiliation(s)
- Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
- Labnet Laboratories, Department of Molecular Biology and Genetics, 54638 Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Christos I. Papagiannopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Andreas S. Papazoglou
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Efstratios Karagiannidis
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Georgios Sianos
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
- Correspondence: or
| |
Collapse
|
15
|
Wang H, Lian X, Gao W, Gu J, Shi H, Ma Y, Li Y, Fan Y, Wang Q, Wang L. Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/SMAD4 axis. Bioengineered 2022; 13:3826-3839. [PMID: 35139769 PMCID: PMC8973863 DOI: 10.1080/21655979.2021.2017564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Sustained cardiac hypertrophy (CH) contributes to many heart diseases. Long noncoding RNAs (lncRNAs) collectively play critical roles in cardiovascular diseases (CVDs). However, the roles of lncRNA H19 in CH are still unclear. A CH model was constructed utilizing isoproterenol (ISO). We demonstrated H19 could participate in regulating ISO-induced CH development both in vivo and in vitro. The online databases DIANA and TargetScan were used to predict the targets of H19 and MicroRNA-145-3p (miR-145-3p), respectively. Luciferase reporter assay was used to verify the downstream targets. The results showed that H19 was decreased under ISO stimulation. The H19 overexpression resulted in significant decrease in mouse heart size and weight, left ventricular systolic dysfunction, left ventricular posterior wall thickness and cardiac hypertrophic growth, while promoted the increase of left ventricular ejection fraction and left ventricle fraction shortening. H19 also inhibited protein expression levels of CH markers, such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and MYH7. Luciferase assays results showed that miR-145-3p was a target of H19 and SMAD4 was a target of miR-145-3p. We found that H19 regulated SMAD4 by sponging miR-145-3p. Knockout of miR-145-3p or overexpression of SMAD4 facilitated H19-induced decreases in ANP, BNP, and MYH7. Collectively, our findings have indicated that the H19/miR-145-3p/SMAD4 axis should be a negative regulator involved in CH progression.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqing Lian
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Gu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haojie Shi
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Ma
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yafei Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiming Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liansheng Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Xu K, Chen C, Wu Y, Wu M, Lin L. Advances in miR-132-Based Biomarker and Therapeutic Potential in the Cardiovascular System. Front Pharmacol 2021; 12:751487. [PMID: 34795586 PMCID: PMC8594750 DOI: 10.3389/fphar.2021.751487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerotic cardiovascular disease and subsequent heart failure threaten global health and impose a huge economic burden on society. MicroRNA-132 (miR-132), a regulatory RNA ubiquitously expressed in the cardiovascular system, is up-or down-regulated in the plasma under various cardiac conditions and may serve as a potential diagnostic or prognostic biomarker. More importantly, miR-132 in the myocardium has been demonstrated to be a master regulator in many pathological processes of ischemic or nonischemic heart failure in the past decade, such as myocardial hypertrophy, fibrosis, apoptosis, angiogenesis, calcium handling, neuroendocrine activation, and oxidative stress, through downregulating target mRNA expression. Preclinical and clinical phase 1b studies have suggested antisense oligonucleotide targeting miR-132 may be a potential therapeutic approach for ischemic or nonischemic heart failure in the future. This review aims to summarize recent advances in the physiological and pathological functions of miR-132 and its possible diagnostic and therapeutic potential in cardiovascular disease.
Collapse
Affiliation(s)
- Kaizu Xu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Chungui Chen
- Department of Radiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Ying Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Meifang Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Liming Lin
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| |
Collapse
|
17
|
Ban E, Kwon H, Seo HS, Yoo YS, Song EJ. Screening of miRNAs in plasma as a diagnostic biomarker for cardiac disease based on optimization of extraction and qRT-PCR condition assay through amplification efficiency. BMC Biotechnol 2021; 21:50. [PMID: 34399741 PMCID: PMC8366012 DOI: 10.1186/s12896-021-00710-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/04/2021] [Indexed: 02/11/2023] Open
Abstract
Background Although quantitative real-time PCR (qRT-PCR) is a common and sensitive method for miRNAs analysis, it is necessary to optimize conditions and minimize qRT-PCR inhibitors to achieve reliable results. The aim of this study was to minimize interference by contaminants in qRT-PCR, maximize product yields for miRNA analyses, and optimize PCR conditions for the reliable screening of miRNAs in plasma. Methods The annealing temperature was first optimized by assessing amplification efficiencies. The effects of extraction conditions on levels of inhibitors that interfere with PCR were evaluated. The tested extraction conditions were the volume of the upper layer taken, number of chloroform extractions, and the inclusion of ethanol washing, a process that reduces PCR interference during RNA extraction using TRIzol. Results An acceptable amplification efficiency of RT-qPCR was achieved by the optimization of the annealing temperature of the tested miRNAs and by the collection a supernatant volume corresponding to about 50% of the volume of TRIzol with triple chloroform extraction. These optimal extraction and PCR conditions were successfully applied to plasma miRNA screening to detect biomarker candidates for the diagnosis of acute myocardial infarction. Conclusion This is the first study to optimize extraction and qRT-PCR conditions, while improving miRNA yields and minimizing the loss of extracted miRNA by evaluations of the amplification efficiency.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Haejin Kwon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Korea University Medicine, Seoul, 08308, Republic of Korea
| | - Young Sook Yoo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
18
|
Chen L, Bai J, Liu J, Lu H, Zheng K. A Four-MicroRNA Panel in Peripheral Blood Identified as an Early Biomarker to Diagnose Acute Myocardial Infarction. Front Physiol 2021; 12:669590. [PMID: 34305636 PMCID: PMC8293270 DOI: 10.3389/fphys.2021.669590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Objective: This study aimed to evaluate suitable circulating microRNAs (miRNAs) as diagnostic biomarkers of acute myocardial infarction (AMI). Methods: Patients with AMI were enrolled as study participants. All patients with AMI coming from the Second Affiliated Hospital of Nantong University between October 1, 2017 and May 31, 2019 were screened. At the same time, 80 patients with coronary angiographic stenosis <50% during the same period were selected as the control group. Peripheral blood samples were collected at different time points (0, 6, 12, and 24 h after disease onset) to detect the expression of a previously identified promising four-microRNA panel. The expression levels of miRNAs were tested by real-time polymerase chain reaction (RT-PCR), and the receiver operating characteristic curve (ROC) was used to analyze the diagnostic value of circulating miRNAs. Results: Based on the inclusion and exclusion criteria, 80 patients with AMI and 80 controls were enrolled in this study. The expression of circulating miR-1291, miR-217, miR-455-3p, and miR-566 was significantly downregulated in patients with AMI compared with controls. The area under the ROC curve (AUC) of circulating miR-1291, miR-217, miR-455-3p, and miR-566 were 0.82, 0.79, 0.82, and 0.83, respectively. The AUC of these four miRNAs was 0.87 with 83% sensitivity and 87% specificity. The expression peaks of these four miRNAs occurred earlier than those of cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB). Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the targets of these four miRNAs were significantly enriched in several signaling pathways associated with AMI progression. Conclusion: Circulating miR-1291, miR-217, miR-455-3p, and miR-566 expression levels were significantly lower in patients with AMI; and combined, this panel of four miRNAs acted as a novel and potential early diagnostic biomarker of AMI.
Collapse
Affiliation(s)
- Liang Chen
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Bai
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Liu
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Huihe Lu
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
A Brief Review on the Biology and Effects of Cellular and Circulating microRNAs on Cardiac Remodeling after Infarction. Int J Mol Sci 2021; 22:ijms22094995. [PMID: 34066757 PMCID: PMC8125864 DOI: 10.3390/ijms22094995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Despite advances in diagnostic, prognostic, and treatment modalities, myocardial infarction (MI) remains a leading cause of morbidity and mortality. Impaired cellular signaling after an MI causes maladaptive changes resulting in cardiac remodeling. MicroRNAs (miRNAs/miR) along with other molecular components have been investigated for their involvement in cellular signaling in the pathogenesis of various cardiac conditions like MI. miRNAs are small non-coding RNAs that negatively regulate gene expression. They bind to complementary mRNAs and regulate the rate of protein synthesis by altering the stability of their targeted mRNAs. A single miRNA can modulate several cellular signaling pathways by targeting hundreds of mRNAs. This review focuses on the biogenesis and beneficial effects of cellular and circulating (exosomal) miRNAs on cardiac remodeling after an MI. Particularly, miR-1, -133, 135, and -29 that play an essential role in cardiac remodeling after an MI are described in detail. The limitations that will need to be addressed in the future for the further development of miRNA-based therapeutics for cardiovascular conditions will also be discussed.
Collapse
|
20
|
Charles S, Natarajan J. Integrated regulatory network based on lncRNA-miRNA-mRNA-TF reveals key genes and sub-networks associated with dilated cardiomyopathy. Comput Biol Chem 2021; 92:107500. [PMID: 33940530 DOI: 10.1016/j.compbiolchem.2021.107500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022]
Abstract
Dilated Cardiomyopathy (DCM) is a multifactorial condition often leading to heart failure in many clinical cases. Due to the high number of DCMincidence reported as familial, a gene level network based study was conducted utilizing high throughput next generation sequencing data. We exploited the exome and transcriptome sequencing data in NCBI-SRA database to construct a high confidence scale-free regulatory network consisting of lncRNA, miRNA, mRNA and Transcription Factors (TFs). Analysis of RNA-Seq data revealed 477 differentially expressed coding transcripts and 77 lncRNAs. 268 miRNAs regulated either lncRNAs or mRNAs. Out of the 477 coding transcripts that are deregulated, 82 were TFs. We identified three major hub nodeslncRNA (XIST), miRNA (hsa-miR-195-5p) and mRNA (NOVA1) from the network. We also found putative disease associations of DCM with diabetes and DCM with hypoventillation syndrome. Five highly connected modules were also identified from the network. The hubs showed significant connectivity with the modules.Through this study we were able to gain insights into the underlying lncRNA-miRNA-mRNA-TF network. From a high throughput dataset we have isolated a handful of probable targets that may be utilized for studying the mechanisms of DCM development and progression to heart failure.
Collapse
Affiliation(s)
- Sona Charles
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India.
| |
Collapse
|
21
|
Role of Selected miRNAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocardial Infarction and Atherosclerosis. J Cardiovasc Dev Dis 2021; 8:jcdd8020022. [PMID: 33669699 PMCID: PMC7923109 DOI: 10.3390/jcdd8020022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide in different cohorts. It is well known that miRNAs have a crucial role in regulating the development of cardiovascular physiology, thus impacting the pathophysiology of heart diseases. MiRNAs also have been reported to be associated with cardiac reactions, leading to myocardial infarction (MCI) and ultimately heart failure (HF). To prevent these heart diseases, proper and timely diagnosis of cardiac dysfunction is pivotal. Though there are many symptoms associated with an irregular heart condition and though there are some biomarkers available that may indicate heart disease, authentic, specific and sensitive markers are the need of the hour. In recent times, miRNAs have proven to be promising candidates in this regard. They are potent biomarkers as they can be easily detected in body fluids (blood, urine, etc.) due to their remarkable stability and presence in apoptotic bodies and exosomes. Existing studies suggest the role of miRNAs as valuable biomarkers. A single biomarker may be insufficient to diagnose coronary artery disease (CAD) or acute myocardial infarction (AMI); thus, a combination of different miRNAs may prove fruitful. Therefore, this review aims to highlight the role of circulating miRNA as diagnostic and prognostic biomarkers in cardiovascular diseases such as coronary artery disease (CAD), myocardial infarction (MI) and atherosclerosis.
Collapse
|
22
|
Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res 2021; 116:1113-1124. [PMID: 31782762 DOI: 10.1093/cvr/cvz302] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The aim of this systematic review was to assess dysregulated miRNA biomarkers in coronary artery disease (CAD). Dysregulated microRNA (miRNAs) have been shown to be linked to cardiovascular pathologies including CAD and may have utility as diagnostic and prognostic biomarkers. We compared miRNAs identified in acute coronary syndrome (ACS) compared with stable CAD and control populations. We conducted a systematic search of controlled vocabulary and free text terms related to ACS, stable CAD and miRNA in Biosis Previews (OvidSP), The Cochrane Library (Wiley), Embase (OvidSP), Global Health (OvidSP), Medline (PubMed and OvidSP), Web of Science (Clarivate Analytics), and ClinicalTrials.gov which yielded 7370 articles. Of these, 140 original articles were appropriate for data extraction. The most frequently reported miRNAs in any CAD (miR-1, miR-133a, miR-208a/b, and miR-499) are expressed abundantly in the heart and play crucial roles in cardiac physiology. In studies comparing ACS cases with stable CAD patients, miR-21, miR-208a/b, miR-133a/b, miR-30 family, miR-19, and miR-20 were most frequently reported to be dysregulated in ACS. While a number of miRNAs feature consistently across studies in their expression in both ACS and stable CAD, when compared with controls, certain miRNAs were reported as biomarkers specifically in ACS (miR-499, miR-1, miR-133a/b, and miR-208a/b) and stable CAD (miR-215, miR-487a, and miR-502). Thus, miR-21, miR-133, and miR-499 appear to have the most potential as biomarkers to differentiate the diagnosis of ACS from stable CAD, especially miR-499 which showed a correlation between the level of their concentration gradient and myocardial damage. Although these miRNAs are potential diagnostic biomarkers, these findings should be interpreted with caution as the majority of studies conducted predefined candidate-driven assessments of a limited number of miRNAs (PROSPERO registration: CRD42017079744).
Collapse
Affiliation(s)
- Amanpreet Kaur
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada
| | - Sharon T Mackin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kenny Schlosser
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Fui Lin Wong
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Malik Elharram
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Natalie Dayan
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Tara Landry
- Medical Library, Montreal General Hospital, McGill University Health Centre, Montreal, Canada
| | - Louise Pilote
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
23
|
Saini V, Dawar R, Suneja S, Gangopadhyay S, Kaur C. Can microRNA become next-generation tools in molecular diagnostics and therapeutics? A systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-020-00125-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
MicroRNAs (miRNAs) represent a novel class of single-stranded RNA molecules of 18–22 nucleotides that serve as powerful tools in the regulation of gene expression. They are important regulatory molecules in several biological processes.
Main body
Alteration in the expression profiles of miRNAs have been found in several diseases. It is anticipated that miRNA expression profiling can become a novel diagnostic tool in the future.
Hence, this review evaluates the implications of miRNAs in various diseases and the recent advances in miRNA expression level detection and their target identification. A systematic approach to review existing literature available on databases such as Medline, PubMed, and EMBASE was conducted to have a better understanding of mechanisms mediating miRNA-dependent gene regulation and their role as diagnostic markers and therapeutic agents.
Conclusion
A clear understanding of the complex multilevel regulation of miRNA expression is a prerequisite to explicate the origin of a wide variety of diseases. It is understandable that miRNAs offer potential targets both in diagnostics and therapeutics of a multitude of diseases. The inclusion of specific miRNA expression profiles as biomarkers may lead to crucial advancements in facilitating disease diagnosis and classification, monitoring its prognosis, and treatment. However, standardization of methods has a pivotal role in the success of extensive use of miRNA expression profiling in routine clinical settings.
Collapse
|
24
|
Abstract
Atherosclerotic cardiovascular disease (ASCVD) proceeds through a series of stages: initiation, progression (or regression), and complications. By integrating known biology regarding molecular signatures of each stage with recent advances in high-dimensional molecular data acquisition platforms (to assay the genome, epigenome, transcriptome, proteome, metabolome, and gut microbiome), snapshots of each phase of atherosclerotic cardiovascular disease development can be captured. In this review, we will summarize emerging approaches for assessment of atherosclerotic cardiovascular disease risk in humans using peripheral blood molecular signatures and molecular imaging approaches. We will then discuss the potential (and challenges) for these snapshots to be integrated into a personalized movie providing dynamic readouts of an individual's atherosclerotic cardiovascular disease risk status throughout the life course.
Collapse
Affiliation(s)
- Matthew Nayor
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kemar J. Brown
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine & Epidemiology, and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA; Department of Epidemiology, Boston University School of Public Health; Boston University Center for Computing and Data Sciences
| |
Collapse
|
25
|
Biener M, Giannitsis E, Thum T, Bär C, Costa A, Andrzejewski T, Stoyanov KM, Vafaie M, Meder B, Katus HA, de Gonzalo-Calvo D, Mueller-Hennessen M. Diagnostic value of circulating microRNAs compared to high-sensitivity troponin T for the detection of non-ST-segment elevation myocardial infarction. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2021; 10:653-660. [PMID: 33580779 DOI: 10.1093/ehjacc/zuaa034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
AIMS To assess the diagnostic value of microRNAs (miRNAs) for the detection of non-ST-segment elevation myocardial infarction (NSTEMI). METHODS AND RESULTS A total of 1042 patients presenting between August 2014 and April 2017 to the emergency department with the suspected acute coronary syndrome were included. Non-ST-segment elevation myocardial infarction was diagnosed per criteria of the fourth Universal definition of myocardial infarction (UDMI) using high-sensitivity troponin T (hs-cTnT). Expression levels of eleven microRNAs (miR-21, miR-22, miR-29a, miR-92a, miR-122, miR-126, miR-132, miR-133, miR-134, miR-191, and miR-423) were determined using RT-qPCR. Discrimination of NSTEMI was assessed for individual and a panel of miRNAs compared to the hs-cTnT reference using C-statistics and reclassification analysis. NSTEMI was diagnosed in 137 (13.1%) patients. The area under the curve (AUC) of the hs-cTnT based reference was 0.937. In a multivariate model, three miRNAs (miR-122, miR-133, and miR-134) were found to be associated with NSTEMI with AUCs between 0.506 and 0.656. A panel consisting of these miRNAs revealed an AUC of 0.662 for the diagnosis of NSTEMI. The AUC of the combination of the miRNA panel and troponin reference was significantly lower than the reference standard (AUC: 0.897 vs. 0.937, P = 0.006). Despite a significant improvement of NSTEMI reclassification measured by IDI and NRI, miRNAs did not improve the specificity of hs-cTnT kinetic changes for the diagnosis of NSTEMI (ΔAUC: 0.04). CONCLUSION Although single miRNAs are significantly associated with the diagnosis of NSTEMI a miRNA panel does not add diagnostic accuracy to the hs-cTnT reference considering baseline values and kinetic changes as recommended by the fourth version of UDMI. CLINICAL TRIALS IDENTIFIER NCT02116153.
Collapse
Affiliation(s)
- Moritz Biener
- Zentrum für Innere Medizin, Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany
| | - Evangelos Giannitsis
- Zentrum für Innere Medizin, Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Andrzejewski
- Zentrum für Innere Medizin, Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany
| | - Kiril M Stoyanov
- Zentrum für Innere Medizin, Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany
| | - Mehrshad Vafaie
- Zentrum für Innere Medizin, Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany
| | - Benjamin Meder
- Zentrum für Innere Medizin, Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany
| | - Hugo A Katus
- Zentrum für Innere Medizin, Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany
| | - David de Gonzalo-Calvo
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Matthias Mueller-Hennessen
- Zentrum für Innere Medizin, Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany
| |
Collapse
|
26
|
Krychtiuk KA, Speidl WS, Giannitsis E, Gigante B, Gorog DA, Jaffe AS, Mair J, Möckel M, Mueller C, Storey RF, Vilahur G, Wojta J, Huber K, Halvorsen S, Geisler T, Morais J, Lindahl B, Thygesen K. Biomarkers of coagulation and fibrinolysis in acute myocardial infarction: a joint position paper of the Association for Acute CardioVascular Care and the European Society of Cardiology Working Group on Thrombosis. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2020; 10:343-355. [PMID: 33620437 DOI: 10.1093/ehjacc/zuaa025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
The formation of a thrombus in an epicardial artery may result in an acute myocardial infarction (AMI). Despite major advances in acute treatment using network approaches to allocate patients to timely reperfusion and optimal antithrombotic treatment, patients remain at high risk for thrombotic complications. Ongoing activation of the coagulation system as well as thrombin-mediated platelet activation may both play a crucial role in this context. Whether measurement of circulating biomarkers of coagulation and fibrinolysis could be useful for risk stratification in secondary prevention is currently not fully understood. In addition, measurement of such biomarkers could be helpful to identify thrombus formation as the leading mechanism for AMI. The introduction of biomarkers of myocardial injury such as high-sensitivity cardiac troponins made rule-out of AMI even more precise. However, elevated markers of myocardial injury cannot provide proof of a type 1 AMI, let alone thrombus formation. The combined measurement of markers of myocardial injury with biomarkers reflecting ongoing thrombus formation might be helpful for the fast and correct diagnosis of an atherothrombotic type 1 AMI. This position paper gives an overview of the current knowledge and possible role of biomarkers of coagulation and fibrinolysis for the diagnosis of AMI, risk stratification, and individualized treatment strategies in patients with AMI.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter S Speidl
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Evangelos Giannitsis
- Department of Internal Medicine III, Cardiology, Angiology, Pulmonology, Medical University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Bruna Gigante
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden.,Department of Clinical Science, Danderyds Hospital, Entrévägen 2, 182 57 Danderyd, Sweden
| | - Diana A Gorog
- Department of Medicine, National Heart & Lung Institute, Imperial College, Guy Scadding Building, Dovehouse St, Chelsea, London SW3 6LY, UK.,Postgraduate Medical School, University of Hertfordshire, Hatfield, UK
| | - Allan S Jaffe
- Department of Cardiology, Mayo Clinic, 1216 2nd St SW Rochester, MN 55902, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, 1216 2nd St SW Rochester, MN 55902, USA
| | - Johannes Mair
- Department of Internal Medicine III - Cardiology and Angiology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Martin Möckel
- Division of Emergency and Acute Medicine and Chest Pain Units, Charite - Universitätsmedizin Berlin, Campus Mitte and Virchow, Augustenburger Pl. 1, 13353 Berlin, Germany
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
| | - Robert F Storey
- Cardiovascular Research Unit, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Rd, Sheffield S10 2RX, UK
| | - Gemma Vilahur
- Cardiovascular Program ICCC - Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Carrer de Sant Quintí, 89, 08041 Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Johann Wojta
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria.,3rd Medical Department of Cardiology and Intensive Care Medicine, Wilhelminenhospital, Montleartstraße 37, 1160 Vienna, Austria
| | - Sigrun Halvorsen
- Department of Cardiology, Oslo University Hospital Ulleval, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Tobias Geisler
- University Hospital Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Joao Morais
- Division of Cardiology, Santo Andre's Hospital, R. de Santo André, 2410-197 Leiria, Portugal
| | - Bertil Lindahl
- Department of Medical Sciences, Uppsala Clinical Research Center, Dag Hammarskjölds Väg 38, 751 85 Uppsala University, Uppsala, Sweden
| | - Kristian Thygesen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus N, Denmark
| |
Collapse
|
27
|
Greco S, Madè A, Gaetano C, Devaux Y, Emanueli C, Martelli F. Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. J Transl Med 2020; 18:408. [PMID: 33129318 PMCID: PMC7602761 DOI: 10.1186/s12967-020-02582-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022] Open
Abstract
COronaVIrus Disease 19 (COVID-19) is caused by the infection of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are respiratory, many patients also display acute myocardial injury and chronic damage to the cardiovascular system. Understanding both direct and indirect damage caused to the heart and the vascular system by SARS-CoV-2 infection is necessary to identify optimal clinical care strategies. The homeostasis of the cardiovascular system requires a tight regulation of the gene expression, which is controlled by multiple types of RNA molecules, including RNA encoding proteins (messenger RNAs) (mRNAs) and those lacking protein-coding potential, the noncoding-RNAs. In the last few years, dysregulation of noncoding-RNAs has emerged as a crucial component in the pathophysiology of virtually all cardiovascular diseases. Here we will discuss the potential role of noncoding RNAs in COVID-19 disease mechanisms and their possible use as biomarkers of clinical use.
Collapse
Affiliation(s)
- S Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - A Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - C Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Y Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - C Emanueli
- Imperial College London, National Heart and Lung Institute, Hammersmith Campus, London, W12 0NN, UK
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy.
| |
Collapse
|
28
|
Non-coding RNAs: The key detectors and regulators in cardiovascular disease. Genomics 2020; 113:1233-1246. [PMID: 33164830 DOI: 10.1016/j.ygeno.2020.10.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is an important cause of disease-related death worldwide. One of its main pathological bases is imbalances in gene expression. Non-coding RNAs are a class of transcripts that do not encode proteins. They include microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA). They have important biological functions such as regulating transcription and translation, as well as interacting with DNA, RNA, and proteins. They are also closely associated with pathological processes in CVD. This review will focus on the expression and function of miRNA, lncRNA, circRNA, as well as on their roles and molecular mechanisms in CVDs such as cardiac hypertrophy, heart failure, arrhythmia, myocardial infarction, atherosclerosis, rheumatic heart disease, myocardial fibrosis, pulmonary arterial hypertension. This review will outline concepts provide bases for early diagnosis and targeted treatment of CVDs.
Collapse
|
29
|
Ambrosini S, Mohammed SA, Costantino S, Paneni F. Disentangling the epigenetic landscape in cardiovascular patients: a path toward personalized medicine. Minerva Cardiol Angiol 2020; 69:331-345. [PMID: 32996305 DOI: 10.23736/s2724-5683.20.05326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite significant advances in our understanding of cardiovascular disease (CVD) we are still far from having developed breakthrough strategies to combat coronary atherosclerosis and heart failure, which account for most of CV deaths worldwide. Available cardiovascular therapies have failed to show to be equally effective in all patients, suggesting that inter-individual diversity is an important factor when it comes to conceive and deliver effective personalized treatments. Genome mapping has proved useful in identifying patients who could benefit more from specific drugs depending on genetic variances; however, our genetic make-up determines only a limited part of an individual's risk profile. Recent studies have demonstrated that epigenetic changes - defined as dynamic changes of DNA and histones which do not affect DNA sequence - are key players in the pathophysiology of cardiovascular disease and may participate to delineate cardiovascular risk trajectories over the lifetime. Epigenetic modifications include changes in DNA methylation, histone modifications and non-coding RNAs and these epigenetic signals have shown to cooperate in modulating chromatin accessibility to transcription factors and gene expression. Environmental factors such as air pollution, smoking, psychosocial context, and unhealthy diet regimens have shown to significantly modify the epigenome thus leading to altered transcriptional programs and CVD phenotypes. Therefore, the integration of genetic and epigenetic information might be invaluable to build individual maps of cardiovascular risk and hence, could be employed for the design of customized diagnostic and therapeutic strategies. In the present review, we discuss the growing importance of epigenetic information and its putative implications in cardiovascular precision medicine.
Collapse
Affiliation(s)
- Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland - .,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Effect of Lentivirus-Mediated miR-499a-3p on Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9372961. [PMID: 32908925 PMCID: PMC7471807 DOI: 10.1155/2020/9372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022]
Abstract
Objective To explore the possible role of miR-499a-3p in the function of primary human umbilical vein endothelial cells (HUVECs) and the expression of ADAM10 in primary HUVEC. Method miR-499a-3p was first transfected into primary HUVECs via lentivirus vector. The viability, proliferation, and migration of stable transfected primary HUVEC were then determined by flow cytometry, CCK8 assays, scratch tests, and Transwell tests. The transcription of miR-499a-3p and ADAM10 was examined by reverse transcription-polymerase chain reaction (RT-PCR), and the expression of ADAM10 was examined by Western blot (WB). Results After transfection, miR-499a-3p transcription was significantly increased (P < 0.01), compared to the blank and nonspecific control (NC) groups, while both ADAM10 transcription and expression were significantly decreased (P < 0.05). In contrast, in the inhibitors group, miR-499a-3p transcription was significantly reduced (P < 0.05) whereas both ADAM10 transcription and expression were significantly increased (P < 0.05). The viability, proliferation, and migration of primary HUVECs were significantly impaired (P < 0.05) by the transfection of miR-499a-3p but enhanced by miR-499a-3p inhibitors (P < 0.05). Conclusions Upregulation of miR-499a-3p transcription will inhibit the expression of ADAM10 in HUVECs; cell migration and proliferation, however, promote apoptosis. And reverse effects were established by downregulation of miR-499a-3p transcription. All these effects may be achieved by regulating the transcription and expression of ADAM10. These results combined suggested that miR-499a-3p may affect the proliferation, migration, and apoptosis of endothelial cells and regulate AS by regulating ADAM10. miR-499a-3p may become a candidate biomarker for the diagnosis of unstable angina pectoris (UA).
Collapse
|
31
|
The Role of MicroRNAs in Regulating Cytokines and Growth Factors in Coronary Artery Disease: The Ins and Outs. J Immunol Res 2020; 2020:5193036. [PMID: 32775466 PMCID: PMC7397388 DOI: 10.1155/2020/5193036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022] Open
Abstract
Coronary artery diseases (CAD), as a leading cause of mortality around the world, has attracted the researchers' attention for years to find out its underlying mechanisms and causes. Among the various key players in the pathogenesis of CAD cytokines, microRNAs (miRNAs) are crucial. In this study, besides providing a comprehensive overview of the involvement of cytokines, growth factors, and miRNAs in CAD, the interplay between miRNA with cytokine or growth factors during the development of CAD is discussed.
Collapse
|
32
|
de Gonzalo-Calvo D, Martínez-Camblor P, Bär C, Duarte K, Girerd N, Fellström B, Schmieder RE, Jardine AG, Massy ZA, Holdaas H, Rossignol P, Zannad F, Thum T. Improved cardiovascular risk prediction in patients with end-stage renal disease on hemodialysis using machine learning modeling and circulating microribonucleic acids. Theranostics 2020; 10:8665-8676. [PMID: 32754270 PMCID: PMC7392028 DOI: 10.7150/thno.46123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/29/2022] Open
Abstract
Rationale: To test whether novel biomarkers, such as microribonucleic acids (miRNAs), and nonstandard predictive models, such as decision tree learning, provide useful information for medical decision-making in patients on hemodialysis (HD). Methods: Samples from patients with end-stage renal disease receiving HD included in the AURORA trial were investigated (n=810). The study included two independent phases: phase I (matched cases and controls, n=410) and phase II (unmatched cases and controls, n=400). The composite endpoint was cardiovascular death, nonfatal myocardial infarction or nonfatal stroke. miRNA quantification was performed using miRNA sequencing and RT-qPCR. The CART algorithm was used to construct regression tree models. A bagging-based procedure was used for validation. Results: In phase I, miRNA sequencing in a subset of samples (n=20) revealed miR-632 as a candidate (fold change=2.9). miR-632 was associated with the endpoint, even after adjusting for confounding factors (HR from 1.43 to 1.53). These findings were not reproduced in phase II. Regression tree models identified eight patient subgroups with specific risk patterns. miR-186-5p and miR-632 entered the tree by redefining two risk groups: patients older than 64 years and with hsCRP<0.827 mg/L and diabetic patients younger than 64 years. miRNAs improved the discrimination accuracy at the beginning of the follow-up (24 months) compared to the models without miRNAs (integrated AUC [iAUC]=0.71). Conclusions: The circulating miRNA profile complements conventional risk factors to identify specific cardiovascular risk patterns among patients receiving maintenance HD.
Collapse
|
33
|
Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res 2020; 115:1732-1756. [PMID: 31389987 DOI: 10.1093/cvr/cvz203] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/14/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis underlies the predominant number of cardiovascular diseases and remains a leading cause of morbidity and mortality worldwide. The development, progression and formation of clinically relevant atherosclerotic plaques involves the interaction of distinct and over-lapping mechanisms which dictate the roles and actions of multiple resident and recruited cell types including endothelial cells, vascular smooth muscle cells, and monocyte/macrophages. The discovery of non-coding RNAs (ncRNAs) including microRNAs, long non-coding RNAs, and circular RNAs, and their identification as key mechanistic regulators of mRNA and protein expression has piqued interest in their potential contribution to atherosclerosis. Accruing evidence has revealed ncRNAs regulate pivotal cellular and molecular processes during all stages of atherosclerosis including cell invasion, growth, and survival; cellular uptake and efflux of lipids, expression and release of pro- and anti-inflammatory intermediaries, and proteolytic balance. The expression profile of ncRNAs within atherosclerotic lesions and the circulation have been determined with the aim of identifying individual or clusters of ncRNAs which may be viable therapeutic targets alongside deployment as biomarkers of atherosclerotic plaque progression. Consequently, numerous in vivo studies have been convened to determine the effects of moderating the function or expression of select ncRNAs in well-characterized animal models of atherosclerosis. Together, clinicopathological findings and studies in animal models have elucidated the multifaceted and frequently divergent effects ncRNAs impose both directly and indirectly on the formation and progression of atherosclerosis. From these findings' potential novel therapeutic targets and strategies have been discovered which may pave the way for further translational studies and possibly taken forward for clinical application.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar-Technical University Munich, Biedersteiner Strasse 29, Munich, Germany
| | - Karina Di Gregoli
- Laboratory of Cardiovascular Pathology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar-Technical University Munich, Biedersteiner Strasse 29, Munich, Germany.,Molecular Vascular Medicine, Karolinska Institute, Center for Molecular Medicine L8:03, 17176 Stockholm, Sweden.,German Center for Cardiovascular Research (DZHK), Partner Site Munich (Munich Heart Alliance), Munich, Germany
| | - Jason L Johnson
- Laboratory of Cardiovascular Pathology, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
34
|
Wang X, Dong Y, Fang T, Wang X, Chen L, Zheng C, Kang Y, Jiang L, You X, Gai S, Wang Z, Cao H. Circulating MicroRNA-423-3p Improves the Prediction of Coronary Artery Disease in a General Population - Six-Year Follow-up Results From the China-Cardiovascular Disease Study. Circ J 2020; 84:1155-1162. [PMID: 32404537 DOI: 10.1253/circj.cj-19-1181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Circulating microRNAs (miRNA) are potential prognostic biomarkers for cardiovascular disease. We aimed to identify serum miRNA as an effective predictor for coronary artery disease (CAD) events in a general population cohort. METHODS AND RESULTS Serum miRNAs associated with CAD were determined by small RNA sequencing and quantitative RT-PCR. Further, the predictive ability of identified serum miRNAs was measured in a general population of 2,812 people. As a main outcome measure, CAD events were collected for 6 years and included acute myocardial infarction and subsequent myocardial infarction. Out of the 48 miRNA candidates, 5 miRNAs (miR-10a-5p, miR-126-3p, miR-210-3p, miR-423-3p and miR-92a-3p) showed better reliability and repeatability in serum. Then, the association of serum levels of the 5 miRNAs with CAD was validated. Furthermore, miR-10a-5p and miR-423-3p, which showed better performance, were tested in the large cohort, with a median follow up of 6.0 years. In multivariable Cox regression analysis, only miR-423-3p (P for trend<0.001) was able to precisely predict CAD events. Moreover, the addition of circulating miR-423-3p with the traditional risk factors together markedly improved the various model performance measures, including the area under the operating characteristics curve (0.782 vs. 0.806), Akaike Information Criterion (965.845 vs. 943.113) and net reclassification improvement (19.18%). CONCLUSIONS Circulating miR-423-3p can improve the prediction of primary CAD outcomes on the basis of a traditional risk factor model in general population.
Collapse
Affiliation(s)
- Xin Wang
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Chaoyang Hospital, Capital Medical University
| | - Tian Fang
- Institute of Molecular Medicine, Peking University
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University
| | - Lu Chen
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Congyi Zheng
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Yuting Kang
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Linlin Jiang
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Xin You
- Department of Laboratory Medicine, The Affiliated Hospital of Yanbian University
| | - Shujie Gai
- State Key of Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Pecking Union Medical College
| | - Zengwu Wang
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Huiqing Cao
- Institute of Molecular Medicine, Peking University
| |
Collapse
|
35
|
microRNA neural networks improve diagnosis of acute coronary syndrome (ACS). J Mol Cell Cardiol 2020; 151:155-162. [PMID: 32305360 DOI: 10.1016/j.yjmcc.2020.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cardiac troponins are the preferred biomarkers of acute myocardial infarction. Despite superior sensitivity, serial testing of Troponins to identify patients suffering acute coronary syndromes is still required in many cases to overcome limited specificity. Moreover, unstable angina pectoris relies on reported symptoms in the troponin-negative group. In this study, we investigated genome-wide miRNA levels in a prospective cohort of patients with clinically suspected ACS and determined their diagnostic value by applying an in silico neural network. METHODS PAXgene blood and serum samples were drawn and hsTnT was measured in patients at initial presentation to our Chest-Pain Unit. After clinical and diagnostic workup, patients were adjudicated by senior cardiologists in duty to their final diagnosis: STEMI, NSTEMI, unstable angina pectoris and non-ACS patients. ACS patients and a cohort of healthy controls underwent deep transcriptome sequencing. Machine learning was implemented to construct diagnostic miRNA classifiers. RESULTS We developed a neural network model which incorporates 34 validated ACS miRNAs, showing excellent classification results. By further developing additional machine learning models and selecting the best miRNAs, we achieved an accuracy of 0.96 (95% CI 0.96-0.97), sensitivity of 0.95, specificity of 0.96 and AUC of 0.99. The one-point hsTnT value reached an accuracy of 0.89, sensitivity of 0.82, specificity of 0.96, and AUC of 0.96. CONCLUSIONS Here we show the concept of neural network based biomarkers for ACS. This approach also opens the possibility to include multi-modal data points to further increase precision and perform classification of other ACS differential diagnoses.
Collapse
|
36
|
Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Tsigkou V, Paschou SA, Vlasis K, Marinos G, Vavuranakis M, Stefanadis C, Tousoulis D. MicroRNAs in cardiovascular disease. Hellenic J Cardiol 2020; 61:165-173. [PMID: 32305497 DOI: 10.1016/j.hjc.2020.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains the predominant cause of human morbidity and mortality in developed countries. Currently, microRNAs have been investigated in many diseases as well-promising biomarkers for diagnosis, prognosis, and disease monitoring. Plenty studies have been designed so as to elucidate the properties of microRNAs in the classification and risk stratification of patients with CVD and also to evaluate their potentials in individualized management and guide treatment decisions. Therefore, in this review article, we aimed to present the most recent data concerning the role of microRNAs as potential novel biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- Gerasimos Siasos
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Evanthia Bletsa
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiota K Stampouloglou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Vasiliki Tsigkou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Stavroula A Paschou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Vlasis
- Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Marinos
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Manolis Vavuranakis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Christodoulos Stefanadis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitris Tousoulis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
37
|
Noncoding RNAs versus Protein Biomarkers in Cardiovascular Disease. Trends Mol Med 2020; 26:583-596. [PMID: 32470385 DOI: 10.1016/j.molmed.2020.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
The development of more sensitive protein biomarker assays results in continuous improvements in detectability, extending the range of clinical applications to the detection of subclinical cardiovascular disease (CVD). However, these efforts have not yet led to improvements in risk assessment compared with existing risk scores. Noncoding RNAs (ncRNAs) have been assessed as biomarkers, and miRNAs have attracted most attention. More recently, other ncRNA classes have been identified, including long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). Here, we compare emerging ncRNA biomarkers in the cardiovascular field with protein biomarkers for their potential in clinical application, focusing on myocardial injury.
Collapse
|
38
|
Liu S, Guo X, Zhong W, Weng R, Liu J, Gu X, Zhong Z. Circulating MicroRNA Expression Profiles in Patients with Stable and Unstable Angina. Clinics (Sao Paulo) 2020; 75:e1546. [PMID: 32667489 PMCID: PMC7337223 DOI: 10.6061/clinics/2020/e1546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES High incidence and case fatality of unstable angina (UA) is, to a large extent, a consequence of the lack of highly sensitive and specific non-invasive markers. Circulating microRNAs (miRNAs) have been widely recommended as potential biomarkers for numerous diseases. In the present study, we characterized distinctive miRNA expression profiles in patients with stable angina (SA), UA, and normal coronary arteries (NCA), and identified promising candidates for UA diagnosis. METHODS Serum was collected from patients with SA, UA, and NCA who visited the Department of Cardiovascular Diseases of the Meizhou People's Hospital. Small RNA sequencing was carried out on an Illumina HiSeq 2500 platform. miRNA expression in different groups of patients was profiled and then confirmed based on that in an independent set of patients. Functions of differentially expressed miRNAs were predicted using gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis. RESULTS Our results indicated that circulating miRNA expression profiles differed between SA, UA, and NCA patients. A total of 36 and 161 miRNAs were dysregulated in SA and UA patients, respectively. miRNA expression was validated by reverse transcription quantitative polymerase chain reaction. CONCLUSION The results suggest that circulating miRNAs are potential biomarkers of UA.
Collapse
Affiliation(s)
- Sudong Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Xuemin Guo
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
| | - Ruiqiang Weng
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Jing Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Xiaodong Gu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- *Corresponding author. E-mail:
| |
Collapse
|
39
|
MicroRNA-150 deficiency accelerates intimal hyperplasia by acting as a novel regulator of macrophage polarization. Life Sci 2020; 240:116985. [DOI: 10.1016/j.lfs.2019.116985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022]
|
40
|
Abstract
OBJECTIVE Individuals with HIV suffer a higher burden of cardiovascular diseases. Traditional cardiovascular risk scores consistently underestimate cardiovascular risk in this population. Subsets of microRNAs (miRNAs) are differentially expressed among individuals with cardiovascular disease and individuals infected with HIV. However, no study has clarified whether specific miRNAs may be biomarkers for cardiovascular disease in individuals with HIV. DESIGN/METHODS We compared the miRNA expression profiles of 34 HIV-positive individuals who had experienced clinically adjudicated type I myocardial infarctions (MI) with the profiles of 76 HIV-positive controls matched by traditional cardiovascular risk factors and HIV-specific measures. Using the elastic net algorithm, we selected miRNAs most strongly associated with incident MI and then used conditional Cox proportional hazards regression and cross-validation to evaluate miRNAs and their association with incident MI. We evaluated whether miRNA markers would improve risk classification relative to the Framingham Risk Score. RESULTS Higher miR-125a-5p and miR-139-5p expression levels were each associated with increased risk of developing MI after adjustment for Framingham Risk Score and HIV-related factors (hazard ratio 2.43, P = 0.018; hazard ratio 2.13, P = 0.048, respectively). Compared with the Framingham Risk Score alone, adding expression levels of miR-125a-5p or miR-139-5p resulted in an integrated discrimination improvement of 10.1 or 5.8%, respectively. CONCLUSION MiR-125a-5p and miR-139-5p, transcripts known to be differentially expressed in HIV-positive individuals, may serve as unique biomarkers predictive of cardiovascular disease in these patients and may help clarify processes because of HIV infection that contribute to cardiovascular disorders in this population.
Collapse
|
41
|
Zhou WL, Mo ZZ, Xiao FY, Dai W, Wang G, Zhou G, Zhang W, Chen BL. microRNA-605 rs2043556 polymorphisms affect clopidogrel therapy through modulation of CYP2B6 and P2RY12 in acute coronary syndrome patients. Platelets 2019; 31:897-905. [PMID: 31766967 DOI: 10.1080/09537104.2019.1696455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wan-Lu Zhou
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Zhen Mo
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fei-Yan Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Dai
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Lian Chen
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Kukava NG, Shkhnovich RM, Osmak GZ, Baulina NM, Matveeva NA, Favorova OO. [The Role of microRNA in the Development of Ischemic Heart Disease]. ACTA ACUST UNITED AC 2019; 59:78-87. [PMID: 31615390 DOI: 10.18087/cardio.2019.10.n558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 11/18/2022]
Abstract
Coronary artery disease is the most clinically significant manifestation of atherosclerosis and the main cause of morbidity and mortality around the world. Atherogenesis is a complex process, involving various types of cells and regulatory molecules. MicroRNA molecules were discovered at the end of the 20th century, and nowadays are the important regulators of several pathophysiological processes of atherogenesis. The review examines data on the participation of various microRNAs in the development of atherosclerosis and its main clinical manifestations and discusses the possibility of using microRNAs as diagnostic markers for these diseases.
Collapse
Affiliation(s)
- N G Kukava
- Institute of Clinical Cardiology named after A.L. Myasnikov, National Cardiology Research Center
| | - R M Shkhnovich
- Institute of Clinical Cardiology named after A.L. Myasnikov, National Cardiology Research Center; Medical Academy of Continuing Education Russian Medical Academy of Postgraduate Education
| | - G Z Osmak
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology
| | - N M Baulina
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology
| | - N A Matveeva
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology
| | - O O Favorova
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology
| |
Collapse
|
43
|
Borghini A, Pulignani S, Mercuri A, Vecoli C, Turchi S, Carpeggiani C, Andreassi MG. Influence of genetic polymorphisms in DICER and XPO5 genes on the risk of coronary artery disease and circulating levels of vascular miRNAs. Thromb Res 2019; 180:32-36. [DOI: 10.1016/j.thromres.2019.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
|
44
|
Saadatian Z, Nariman-Saleh-Fam Z, Bastami M, Mansoori Y, Khaheshi I, Parsa SA, Daraei A, Vahed SZ, Yousefi B, Kafil HS, Eyvazi S, Ghaderian SMH, Omrani MD. Dysregulated expression of STAT1, miR-150, and miR-223 in peripheral blood mononuclear cells of coronary artery disease patients with significant or insignificant stenosis. J Cell Biochem 2019; 120:19810-19824. [PMID: 31318097 DOI: 10.1002/jcb.29286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Coronary artery disease (CAD) is a multicellular disease characterized by chronic inflammation. Peripheral blood-mononuclear cells (PBMCs), as a critical component of immune system, actively cross-talk with pathophysiological conditions induced by endothelial cell injury, reflecting in perturbed PBMC expression. STAT1 is believed to be relevant to CAD pathogenesis through regulating key inflammatory processes and modulating STAT1 expression play key roles in fine-tuning CAD-related inflammatory processes. This study evaluated PBMC expressions of STAT1, and its regulators (miR-150 and miR-223) in a cohort including 72 patients with CAD with significant ( ≥ 50%) stenosis, 30 patients with insignificant ( < 50%) coronary stenosis (ICAD), and 74 healthy controls, and assessed potential of PBMC expressions to discriminate between patients and controls. We designed quantitative real-time polymerase chain reaction (RT-qPCR) assays and identified stable reference genes for normalizing PBMC quantities of miR-150, miR-223, and STAT1 applying geNorm algorithm to six small RNAs and five mRNAs. There was no significant difference between CAD and ICAD patients regarding STAT1 expression. However, both groups of patients had higher levels of STAT1 than healthy controls. miR-150 and miR-223 were differently expressed across three groups of subjects and were downregulated in patients compared with healthy controls, with the lowest expression levels being observed in patients with ICAD. ROC curves suggested that PBMC expressions may separate between different groups of study subjects. PBMC expressions also discriminated different clinical manifestations of CAD from ICADs or healthy controls. In conclusion, the present study reported PBMC dysregulations of STAT1, miR-150, and miR-223, in patients with significant or insignificant coronary stenosis and suggested that these changes may have diagnostic implications.
Collapse
Affiliation(s)
- Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Isa Khaheshi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Alipour Parsa
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Circulating miRNAs as predictors for morbidity and mortality in coronary artery disease. Mol Biol Rep 2019; 46:5661-5665. [PMID: 31290056 DOI: 10.1007/s11033-019-04963-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
Micro ribonucleic acids (miRNAs) are small non-coding RNA molecules that control gene expression by translational inhibition. They have been identified to play a role in a multitude of physiological and pathophysiological cellular processes amongst others in the heart. Due to their ability to be released into the blood as well as their stability in body fluids, they appear suitable as biomarkers. This review discusses the role of selected miRNA that currently emerge as biomarkers for coronary artery disease, their potential to discriminate between different diseases, as well as how they might be used as predictive tools for cardiac events or disease outcome. Furthermore, we propose procedural steps of miRNA analysis, to allow better comparison between studies in the future.
Collapse
|
46
|
Li Z, Wu J, Wei W, Cai X, Yan J, Song J, Wang C, Wang J. Association of Serum miR-186-5p With the Prognosis of Acute Coronary Syndrome Patients After Percutaneous Coronary Intervention. Front Physiol 2019; 10:686. [PMID: 31231239 PMCID: PMC6560170 DOI: 10.3389/fphys.2019.00686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Circulating miR-186-5p is an emerging biomarker for acute coronary syndrome (ACS) patients. However, its kinetic signatures and prognostic values in ACS patients undergoing percutaneous coronary intervention (PCI) remain unclear. Levels of serum miR-186-5p were determined in 96 healthy controls and 92 ACS patients before and after PCI by qRT-PCR, and the physiologic state of miR-186-5p was analyzed by comparing its absolute concentrations in isolated exosomes and exosome-depleted supernatants. An average of 1 year of follow-up for ACS patients after PCI was performed. MiR-186-5p levels in the myocardium and serum of rats following left anterior descending coronary artery (LAD) ligation were measured. Serum miR-186-5p levels were found to be significantly increased in ACS patients upon admission compared with those of controls, but these high miR-186-5p levels gradually decreased within 1 week after PCI. Serum miR-186-5p was mainly present in an exosome-free form rather than membrane-bound exosomes. Within 1 year of follow-up, ACS patients with higher miR-186-5p levels upon admission exhibited a higher incidence of MACE after PCI. Different statistical analyzes further validated the independent prognostic values of serum miR-186-5p in ACS patients after PCI. Serum miR-186-5p levels in rats following LAD ligation were increased, and there was a decrease in myocardial miR-186-5p levels. Kyoto encyclopedia of genes and genomes (KEGG) analysis was performed to predict the related pathways of target genes of miR-186-5p, which suggested that miR-186-5p might be involved in ACS by regulating the inflammatory status and D-glucose metabolism. In conclusion, a distinctive expression signature of serum miR-186-5p may contribute to monitoring the clinical condition and assessing the prognosis of ACS patients undergoing PCI.
Collapse
Affiliation(s)
- Zhuoling Li
- Department of Clinical Laboratory, Jinling Hospital, School of Medical, Nanjing University, Nanjing, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jia Wu
- Department of Clinical Laboratory, Jinling Hospital, School of Medical, Nanjing University, Nanjing, China
| | - Weishi Wei
- Department of Clinical Laboratory, Jinling Hospital, School of Medical, Nanjing University, Nanjing, China
| | - Xiaomin Cai
- Department of Cardiology, Jinling Hospital, School of Medical, Nanjing University, Nanjing, China
| | - Jing Yan
- Department of Clinical Laboratory, Jinling Hospital, School of Medical, Nanjing University, Nanjing, China
| | - Jiaxi Song
- Department of Clinical Laboratory, Jinling Hospital, School of Medical, Nanjing University, Nanjing, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, School of Medical, Nanjing University, Nanjing, China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, School of Medical, Nanjing University, Nanjing, China
| |
Collapse
|
47
|
Abstract
Traditional circulating biomarkers play a fundamental role in the diagnosis and prognosis of acute myocardial infarction (AMI). However, they have several limitations. microRNAs (miRs), a class of RNA molecules that do not encode proteins, function directly at the RNA level by inhibiting the translation of messenger RNAs. Due to their significant roles in disease development, they can be used as biomarkers. Accumulating evidence has revealed an attractive role of miRs as biomarkers of AMI and its associated symptoms, including vulnerable atherosclerotic plaques, and their role in disease diagnosis, platelet activation monitoring, and prognostic outcome prediction. This manuscript will highlight the recent updates regarding the involvement of miRs as biomarkers in AMI and emphasize their value in vulnerable atherosclerotic plaque prediction and monitoring of platelet activation.
Collapse
|
48
|
Hijmans JG, Levy M, Garcia V, Lincenberg GM, Diehl KJ, Greiner JJ, Stauffer BL, DeSouza CA. Insufficient sleep is associated with a pro-atherogenic circulating microRNA signature. Exp Physiol 2019; 104:975-982. [PMID: 31016755 DOI: 10.1113/ep087469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of the study Is habitual short sleep associated with altered circulating levels of specific inflammation- and vascular-related microRNAs? What is the main finding and its importance? Circulating levels of miR-125a, miR-126 and miR-146a were significantly lower in the short sleep compared with the normal sleep group. Altered circulating profiles of these vascular-related microRNAs have been linked to vascular inflammation, dysfunction and increased cardiovascular disease events. Sleep-related changes in these microRNAs are consistent with, and might play a role in, the aberrant vascular physiology and increased vascular risk associated with short sleep. ABSTRACT Habitual short sleep duration (<7 h night-1 ) is associated with increased morbidity and mortality attributable, in large part, to increased inflammatory burden and endothelial dysfunction. MicroRNAs (miRNAs) play a key role in regulating vascular health, and circulating levels are now recognized to be sensitive and specific biomarkers of cardiovascular function, inflammation and disease. The aim of this study was to determine whether the expression of circulating miR-34a, miR-92a, miR-125a, miR-126, miR-145, miR-146a and miR-150 is disrupted in adults who habitually sleep <7 h night-1 (short sleep). These were chosen based upon their well-established links with vascular inflammation, function and, in turn, cardiovascular risk. Twenty-four adults were studied: 12 with normal nightly sleep duration (six men and six women; age, 55 ± 3 years old; sleep duration, ≥7.0 h night-1 ) and 12 with short nightly sleep duration (seven men and five women; 55 ± 2 years old; sleep duration, <7 h night-1 ), and circulating miRNA expression was assayed by RT-PCR. All subjects were non-smokers, normolipidaemic, non-medicated and free of overt cardiovascular disease. Circulating levels of miR-125a (3.07 ± 1.98 versus 7.34 ± 5.34 a.u.), miR-126 [1.28 (0.42-2.51) versus 1.78 (1.29-4.80) a.u.] and miR-146a [2.55 (1.00-4.80) versus 6.46 (1.50-11.44) a.u.] were significantly lower (∼60, 40 and 60%, respectively) in the short compared with the normal sleep group. However, there were no significant group differences in circulating levels of miR-34a, miR-92a, miR-145 and miR-150. In summary, chronic short sleep is associated with a marked reduction in circulating levels of miR-125a, miR-126 and miR-146a. Dysregulation of these miRNAs might contribute to the increased inflammatory burden and endothelial dysfunction associated with habitual insufficient sleep.
Collapse
Affiliation(s)
- Jamie G Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Ma'ayan Levy
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Vinicius Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Grace M Lincenberg
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Kyle J Diehl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Brian L Stauffer
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Denver, CO, 80262, USA.,Denver Health Medical Center, Denver, CO, 80204, USA
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Denver, CO, 80262, USA
| |
Collapse
|
49
|
Plasma miR-22-5p, miR-132-5p, and miR-150-3p Are Associated with Acute Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5012648. [PMID: 31179325 PMCID: PMC6507259 DOI: 10.1155/2019/5012648] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/31/2019] [Indexed: 12/26/2022]
Abstract
Circulating microRNAs (miRNAs) are potential biomarkers for cardiovascular diseases. Our study aimed to determine whether miR-22-5p, miR-132-5p, and miR-150-3p represent novel biomarkers for acute myocardial infarction (AMI). Plasma samples were isolated from 35 AMI patients and 55 matched controls. Total RNA was extracted, and quantitative real-time PCR and ELISA were performed to investigate the expressions of miRNAs and cardiac troponin I (cTnI), respectively. We found that plasma levels of miR-22-5p and miR-150-3p were significantly higher during the early stage of AMI and their expression levels peaked earlier than cTnI. Conversely, circulating miR-132-5p was sustained at a low level during the early phase of AMI. All three circulating miRNAs were correlated with plasma cTnI levels. A receiver operating characteristic (ROC) analysis suggested that each single miRNA had considerable diagnostic efficacy for AMI. Moreover, combining the three miRNAs improved their diagnostic efficacy. Furthermore, neither heparin nor medications for coronary heart disease (CHD) affected plasma levels of miR-22-5p and miR-132-5p, but circulating miR-150-3p was downregulated by medications for CHD. We concluded that plasma miR-22-5p, miR-132-5p, and miR-150-3p may serve as candidate diagnostic biomarkers for early diagnosis of AMI. Moreover, a panel consisting of these three miRNAs may achieve a higher diagnostic value.
Collapse
|
50
|
Akat KM, Lee YA, Hurley A, Morozov P, Max KE, Brown M, Bogardus K, Sopeyin A, Hildner K, Diacovo TG, Neurath MF, Borggrefe M, Tuschl T. Detection of circulating extracellular mRNAs by modified small-RNA-sequencing analysis. JCI Insight 2019; 5:127317. [PMID: 30973829 DOI: 10.1172/jci.insight.127317] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extracellular mRNAs (ex-mRNAs) potentially supersede extracellular miRNAs (ex-miRNAs) and other RNA classes as biomarkers. We performed conventional small-RNA-sequencing (sRNA-seq) and sRNA-seq with T4 polynucleotide kinase (PNK) end-treatment of total exRNA isolated from serum and platelet-poor EDTA, ACD, and heparin plasma to study the effect on ex-mRNA capture. Compared to conventional sRNA-seq PNK-treatment increased the detection of informative ex-mRNAs reads up to 50-fold. The exRNA pool was dominated by hematopoietic cells and platelets, with additional contribution from the liver. About 60% of the 15- to 42-nt reads originated from the coding sequences, in a pattern reminiscent of ribosome-profiling. Blood sample type had a considerable influence on the exRNA profile. On average approximately 350 to 1,100 distinct ex-mRNA transcripts were detected depending on plasma type. In serum, additional transcripts from neutrophils and hematopoietic cells increased this number to near 2,300. EDTA and ACD plasma showed a destabilizing effect on ex mRNA and non-coding RNA ribonucleoprotein complexes compared to other plasma types. In a proof-of-concept study, we investigated differences between the exRNA profiles of patients with acute coronary syndrome (ACS) and healthy controls. The improved tissue resolution of ex mRNAs after PNK-treatment enabled us to detect a neutrophil-signature in ACS that escaped detection by ex miRNA analysis.
Collapse
Affiliation(s)
| | | | - Arlene Hurley
- Center for Translational Science, The Rockefeller University, New York, New York, USA
| | | | | | | | | | | | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Bavaria, Germany
| | - Thomas G Diacovo
- Departments of Pediatrics and Cell Biology and Pathology, Columbia University Medical Center, New York, New York, USA
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Bavaria, Germany
| | - Martin Borggrefe
- First Department of Medicine, University Medical Center Mannheim, Faculty of Medicine Mannheim, University of Heidelberg, European Center for AngioScience, and DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Baden-Wuerttemberg, Germany
| | | |
Collapse
|