1
|
Ma C, Wu J, Li F. Impacts of combined water-saving irrigation and controlled-release urea on CH 4 emission and its associated microbial communities and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154724. [PMID: 35331759 DOI: 10.1016/j.scitotenv.2022.154724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 06/08/2023]
Abstract
Water-saving irrigation and controlled-release nitrogen fertilizer are used in rice farming. The aim of this study was to understand the effects of water-saving irrigation and controlled-release urea on methane (CH4) emission and its associated microbial communities and function. A field experiment was conducted with two nitrogen treatments (NU 100% normal urea, CU 60% normal urea and 40% controlled-release urea, total N amount was the same) and three irrigation modes (CI continuous flooding irrigation, AI alternate wetting and drying irrigation, RI ridge irrigation). CH4 fluxes, organic acid contents and enzyme activities were measured, and soil microbial communities and function were investigated by whole-genome shotgun sequencing analysis, and then their relationships were analyzed by Spearman correlation analysis, redundancy analysis and mantel test. Compared to CI, AI and RI decreased cumulative CH4 emissions by 43.5% and 25.8% in NU, and 64.9% and 13.3% in CU, respectively. Among all treatments, AICU had the lowest CH4 emission and reduced it by 72.2% compared to CINU. AI and RI had higher contents of some organic acids than CI. Compared to CINU, AICU decreased the relative abundance of Methanosarcina barkeri and associated genes in the CO2-reduction methanogenesis pathway by 83.4% and 91.0%. Both abundance of methanogens and associated genes in the CO2-reduction methanogenesis pathway were positively correlated with cumulative CH4 emission, but negatively correlated with most soil organic acids. Thus AICU can mitigate CH4 emission by decreasing the abundance of methanogens and associated genes in the CO2-reduction methanogenesis pathway.
Collapse
Affiliation(s)
- Chenlei Ma
- College of Agriculture, Guangxi University, Nanning 530005, China
| | - Jiafa Wu
- College of Agriculture, Guangxi University, Nanning 530005, China; School of Marine Sciences and Biotechnology and Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, China
| | - Fusheng Li
- College of Agriculture, Guangxi University, Nanning 530005, China.
| |
Collapse
|
2
|
Xing T, Liu P, Ji M, Deng Y, Liu K, Wang W, Liu Y. Sink or Source: Alternative Roles of Glacier Foreland Meadow Soils in Methane Emission Is Regulated by Glacier Melting on the Tibetan Plateau. Front Microbiol 2022; 13:862242. [PMID: 35387086 PMCID: PMC8977769 DOI: 10.3389/fmicb.2022.862242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Glacier foreland soils have long been considered as methane (CH4) sinks. However, they are flooded by glacial meltwater annually during the glacier melting season, altering their redox potential. The impacts of this annual flooding on CH4 emission dynamics and methane-cycling microorganisms are not well understood. Herein, we measured in situ methane flux in glacier foreland soils during the pre-melting and melting seasons on the Tibetan Plateau. In addition, high-throughput sequencing and qPCR were used to investigate the diversity, taxonomic composition, and the abundance of methanogenic archaea and methanotrophic bacteria. Our results showed that the methane flux ranged from -10.11 to 4.81 μg·m-2·h-1 in the pre-melting season, and increased to 7.48-22.57 μg·m-2·h-1 in the melting season. This indicates that glacier foreland soils change from a methane sink to a methane source under the impact of glacial meltwater. The extent of methane flux depends on methane production and oxidation conducted by methanogens and methanotrophs. Among all the environmental factors, pH (but not moisture) is dominant for methanogens, while both pH and moisture are not that strong for methanotrophs. The dominant methanotrophs were Methylobacter and Methylocystis, whereas the methanogens were dominated by methylotrophic Methanomassiliicoccales and hydrogenotrophic Methanomicrobiales. Their distributions were also affected by microtopography and environmental factor differences. This study reveals an alternative role of glacier foreland meadow soils as both methane sink and source, which is regulated by the annual glacial melt. This suggests enhanced glacial retreat may positively feedback global warming by increasing methane emission in glacier foreland soils in the context of climate change.
Collapse
Affiliation(s)
- Tingting Xing
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing, China.,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Wenqiang Wang
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Looby CI, Martin PH. Diversity and function of soil microbes on montane gradients: the state of knowledge in a changing world. FEMS Microbiol Ecol 2021; 96:5891232. [PMID: 32780840 DOI: 10.1093/femsec/fiaa122] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
Mountains have a long history in the study of diversity. Like macroscopic taxa, soil microbes are hypothesized to be strongly structured by montane gradients, and recently there has been important progress in understanding how microbes are shaped by these conditions. Here, we summarize this literature and synthesize patterns of microbial diversity on mountains. Unlike flora and fauna that often display a mid-elevation peak in diversity, we found a decline (34% of the time) or no trend (33%) in total microbial diversity with increasing elevation. Diversity of functional groups also varied with elevation (e.g. saprotrophic fungi declined 83% of the time). Most studies (82%) found that climate and soils (especially pH) were the primary mechanisms driving shifts in composition, and drivers differed across taxa-fungi were mostly determined by climate, while bacteria (48%) and archaea (71%) were structured primarily by soils. We hypothesize that the central role of soils-which can vary independently of other abiotic and geographic gradients-in structuring microbial communities weakens diversity patterns expected on montane gradients. Moving forward, we need improved cross-study comparability of microbial diversity indices (i.e. standardizing sequencing) and more geographic replication using experiments to broaden our knowledge of microbial biogeography on global gradients.
Collapse
Affiliation(s)
- Caitlin I Looby
- Department of Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, Saint Paul, MN 55108, USA
| | - Patrick H Martin
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
4
|
Mutschlechner M, Praeg N, Illmer P. Soil-Derived Inocula Enhance Methane Production and Counteract Common Process Failures During Anaerobic Digestion. Front Microbiol 2020; 11:572759. [PMID: 33193175 PMCID: PMC7606279 DOI: 10.3389/fmicb.2020.572759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Although soil-borne methanogens are known to be highly diverse and adapted to extreme environments, their application as potential (anaerobic) inocula to improve anaerobic digestion has not been investigated until now. The present study aimed at evaluating if soil-derived communities can be beneficial for biogas (methane, CH4) production and endure unfavorable conditions commonly associated with digestion failure. Nine study sites were chosen and tested for suitability as inoculation sources to improve biogas production via in situ measurements (CH4 fluxes, physical and chemical soil properties, and abundance of methanogens) and during a series of anaerobic digestions with (a) combinations of both sterile or unsterile soil and diluted fermenter sludge, and (b) pH-, acetate-, propionate-, and ammonium-induced disturbance. Amplicon sequencing was performed to assess key microbial communities pivotal for successful biogas production. Four out of nine tested soil inocula exerted sufficient methanogenic activity and repeatedly allowed satisfactory CH4/biogas production even under deteriorated conditions. Remarkably, the significantly highest CH4 production was observed using unsterile soil combined with sterile sludge, which coincided with both a higher relative abundance of methanogens and predicted genes involved in CH4 metabolism in these variants. Different bacterial and archaeal community patterns depending on the soil/sludge combinations and disturbance variations were established and these patterns significantly impacted CH4 production. Methanosarcina spp. seemed to play a key role in CH4 formation and prevailed even under stressed conditions. Overall, the results provided evidence that soil-borne methanogens can be effective in enhancing digestion performance and stability and, thus, harbor vast potential for further exploitation.
Collapse
Affiliation(s)
| | - Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Praeg N, Pauli H, Illmer P. Microbial Diversity in Bulk and Rhizosphere Soil of Ranunculus glacialis Along a High-Alpine Altitudinal Gradient. Front Microbiol 2019; 10:1429. [PMID: 31338073 PMCID: PMC6629913 DOI: 10.3389/fmicb.2019.01429] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Serving as “natural laboratories”, altitudinal gradients can be used to study changes in the distribution of microorganisms in response to changing environmental conditions that typically occur over short geographical distances. Besides, rhizosphere zones of plants are known to be hot-spots for microbial diversity and to contain different microbial communities when compared with surrounding bulk soil. To discriminate the effects of altitude and plants, we investigated the microbial communities in the rhizosphere of Ranunculus glacialis and bulk soil along a high-alpine altitudinal gradient (2,600–3,400 m a.s.l.). The research area of this study was Mount (Mt.) “Schrankogel” in the Central Alps of Tyrol (Austria). Our results point to significantly different microbial diversities and community compositions in the different altitudinal belts. In the case of prokaryotes, environmental parameters could explain 41% of the total variation of soil communities, with pH and temperature being the strongest influencing factors. Comparing the effects derived from fraction (bulk vs. rhizosphere soil) and environmental factors, the effects of the roots of R. glacialis accounted for about one third of the explained variation. Fungal communities on the other hand were nearly exclusively influenced by environmental parameters accounting for 37.4% of the total variation. Both, for altitudinal zones as well as for bulk and rhizosphere fractions a couple of very specific biomarker taxa could be identified. Generally, the patterns of abundance of several taxa did not follow a steady increased or decreased trend along the altitudinal gradient but in many cases a maximal or minimal occurrence was established at mid-altitudes (3,000–3,100 m). This mid-altitudinal zone is a transition zone (the so-called alpine-nival ecotone) between the (lower) alpine grassland/tundra zone and the (upper) sparsely vegetated nival zone and was shown to correspond with the summer snow line. Climate change and the associated increase in temperature will shift this transition zone and thus, might also shift the described microbial patterns and biomarkers.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Harald Pauli
- Department of Integrative Biology and Biodiversity Research, Institute for Interdisciplinary Mountain Research and University of Natural Resources and Life Sciences Vienna, Austrian Academy of Sciences, Vienna, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Nagler M, Kozjek K, Etemadi M, Insam H, Podmirseg SM. Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants. J Biotechnol 2019; 300:1-10. [PMID: 31082412 DOI: 10.1016/j.jbiotec.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/30/2023]
Abstract
In biogas plants, lignocellulose-rich biomass (LCB) is particularly slowly degraded, causing high hydraulic retention times. This fact lowers the interests for such substrates. To enhance LCB-degradation, cattle rumen fluid, a highly active microbial resource accruing in the growing meat industry, might be used as a potential source for bioaugmentation. This study compares 0%, 20% and 40% rumen liquid in a batch anaerobic digestion approach. Moreover, it determines the biogas- and methane-potentials as well as degradation-speeds of corn straw, co-digested with cattle manure. It inspects microbial communities via marker-gene sequencing, qPCR and RNA-DGGE and draws attention on possible beneficial effects of rumen addition on the biogas-producing community. Bioaugmentation with 20% and 40% v/v rumen liquid accelerated methane yields by 5 and 6 days, respectively (i.e. reaching 90% of total methane production). It also enhanced LCB- as well as (hemi)cellulose- and volatile fatty acid degradation. These results are supported by increased abundances of bacteria, methanogens and anaerobic fungi in treatments with rumen liquid amendment, and point towards the persistence of specific rumen-borne microorganisms especially during the first phase of the experiment. The results suggest that rumen liquid addition is a promising strategy for enhanced and accelerated exploitation of LCB for biomethanisation.
Collapse
Affiliation(s)
- Magdalena Nagler
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.
| | - Katja Kozjek
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Mohammad Etemadi
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Heribert Insam
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Sabine Marie Podmirseg
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
7
|
Mutschlechner M, Praeg N, Illmer P. The influence of cattle grazing on methane fluxes and engaged microbial communities in alpine forest soils. FEMS Microbiol Ecol 2018; 94:4838982. [PMID: 29415174 DOI: 10.1093/femsec/fiy019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/02/2018] [Indexed: 11/13/2022] Open
Abstract
Recent dynamics and uncertainties in global methane budgets necessitate a dissemination of current knowledge on the controls of sources and sinks of atmospheric methane. Forest soils are considered to be efficient methane sinks; however, as they are microbially mediated they are sensitive to anthropogenic influences and tend to switch from being sinks to being methane sources. With regard to global changes in land use, the present study aimed at (i) investigating the influence of grazing on flux rates of methane in forest soils, (ii) deducing possible (a)biotic factors regulating these fluxes, and (iii) gaining an insight into the complex interactions between methane-cycling microorganisms and ecosystem functioning. Here we show that extensive grazing significantly mitigated the soil's sink strength for atmospheric methane through alterations of both microbial activity and community composition. In situ flux measurements revealed that all native, non-grazed areas were net methane consumers, while the adjacent, grazed areas were net methane producers. Whereas neither parent material nor soil properties including moisture and organic matter showed any correlation to the ascertained fluxes, significantly higher archaeal abundances at the grazed study sites indicated that small inputs of methanogens associated with cattle grazing may be sufficient to sustainably increase methane emissions.
Collapse
Affiliation(s)
- Mira Mutschlechner
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020 Innsbruck, Austria
| | - Nadine Praeg
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020 Innsbruck, Austria
| | - Paul Illmer
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Wagner AO, Janetschek J, Illmer P. Using Digestate Compost as a Substrate for Anaerobic Digestion. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andreas Otto Wagner
- University of Innsbruck; Institute of Microbiology; Technikerstrasse 25d 6020 Innsbruck Austria
| | - Julian Janetschek
- University of Innsbruck; Institute of Microbiology; Technikerstrasse 25d 6020 Innsbruck Austria
| | - Paul Illmer
- University of Innsbruck; Institute of Microbiology; Technikerstrasse 25d 6020 Innsbruck Austria
| |
Collapse
|
9
|
Genet H, He Y, Lyu Z, McGuire AD, Zhuang Q, Clein J, D'Amore D, Bennett A, Breen A, Biles F, Euskirchen ES, Johnson K, Kurkowski T, Kushch Schroder S, Pastick N, Rupp TS, Wylie B, Zhang Y, Zhou X, Zhu Z. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:5-27. [PMID: 29044791 DOI: 10.1002/eap.1641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/26/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e., 1,237,774 km2 ), are influencing and will influence state-wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and biogeochemical models to assess the relative effects of changing atmospheric carbon dioxide (CO2 ), climate, logging and fire regimes on the historical and future C balance of upland ecosystems for the four main Landscape Conservation Cooperatives (LCCs) of Alaska. At the end of the historical period (1950-2009) of our analysis, we estimate that upland ecosystems of Alaska store ~50 Pg C (with ~90% of the C in soils), and gained 3.26 Tg C/yr. Three of the LCCs had gains in total ecosystem C storage, while the Northwest Boreal LCC lost C (-6.01 Tg C/yr) because of increases in fire activity. Carbon exports from logging affected only the North Pacific LCC and represented less than 1% of the state's net primary production (NPP). The analysis for the future time period (2010-2099) consisted of six simulations driven by climate outputs from two climate models for three emission scenarios. Across the climate scenarios, total ecosystem C storage increased between 19.5 and 66.3 Tg C/yr, which represents 3.4% to 11.7% increase in Alaska upland's storage. We conducted additional simulations to attribute these responses to environmental changes. This analysis showed that atmospheric CO2 fertilization was the main driver of ecosystem C balance. By comparing future simulations with constant and with increasing atmospheric CO2 , we estimated that the sensitivity of NPP was 4.8% per 100 ppmv, but NPP becomes less sensitive to CO2 increase throughout the 21st century. Overall, our analyses suggest that the decreasing CO2 sensitivity of NPP and the increasing sensitivity of heterotrophic respiration to air temperature, in addition to the increase in C loss from wildfires weakens the C sink from upland ecosystems of Alaska and will ultimately lead to a source of CO2 to the atmosphere beyond 2100. Therefore, we conclude that the increasing regional C sink we estimate for the 21st century will most likely be transitional.
Collapse
Affiliation(s)
- Hélène Genet
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| | - Yujie He
- Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Zhou Lyu
- Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - A David McGuire
- U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| | - Qianlai Zhuang
- Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Joy Clein
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| | - David D'Amore
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Juneau, Alaska, 99801, USA
| | - Alec Bennett
- Scenarios Network for Alaska and Arctic Planning, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| | - Amy Breen
- Scenarios Network for Alaska and Arctic Planning, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| | - Frances Biles
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Juneau, Alaska, 99801, USA
| | - Eugénie S Euskirchen
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| | - Kristofer Johnson
- U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pennsylvania, 19073, USA
| | - Tom Kurkowski
- Scenarios Network for Alaska and Arctic Planning, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| | - Svetlana Kushch Schroder
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Neal Pastick
- Stinger Ghaffarian Technologies Inc., contractor to the U.S. Geological Survey, Sioux Falls, South Dakota, 57198, USA
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - T Scott Rupp
- Scenarios Network for Alaska and Arctic Planning, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| | - Bruce Wylie
- U.S. Geological Survey, The Earth Resources Observation Systems Center, Sioux Falls, South Dakota, 57198, USA
| | | | - Xiaoping Zhou
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Oregon, 97208, USA
| | - Zhiliang Zhu
- U.S. Geological Survey, Reston, Virginia, 12201, USA
| |
Collapse
|
10
|
Butterfield CN, Li Z, Andeer PF, Spaulding S, Thomas BC, Singh A, Hettich RL, Suttle KB, Probst AJ, Tringe SG, Northen T, Pan C, Banfield JF. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 2016; 4:e2687. [PMID: 27843720 PMCID: PMC5103831 DOI: 10.7717/peerj.2687] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/14/2016] [Indexed: 01/03/2023] Open
Abstract
Annually, half of all plant-derived carbon is added to soil where it is microbially respired to CO2. However, understanding of the microbiology of this process is limited because most culture-independent methods cannot link metabolic processes to the organisms present, and this link to causative agents is necessary to predict the results of perturbations on the system. We collected soil samples at two sub-root depths (10–20 cm and 30–40 cm) before and after a rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a Mediterranean climate. From ten samples, we reconstructed 198 metagenome-assembled genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed that after the rain event the concentrations of many sugars and amino acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for methylotrophy. We infer that these abundant organisms contribute substantially to carbon turnover in the soil, given that methylotrophy proteins were among the most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino acid degradation. Many of the other bacteria appear to breakdown other components of plant biomass, as evidenced by the prevalence of various sugar and amino acid transporters and corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-resolved insight into the spatial distribution of bacteria and archaea whose activities combine to degrade plant-derived organics, limiting the transport of methanol, amino acids and sugars into underlying weathered rock. The new insights into the soil carbon cycle during an intense period of carbon turnover, including biogeochemical roles to previously little known soil microbes, were made possible via the combination of metagenomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Cristina N Butterfield
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Zhou Li
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN , Unites States
| | - Peter F Andeer
- Lawrence Berkeley National Laboratory , Berkeley , CA , United States
| | - Susan Spaulding
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Brian C Thomas
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Andrea Singh
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN , Unites States
| | - Kenwyn B Suttle
- Department of Ecology and Evolutionary Biology, University of California , Santa Cruz , CA , United States
| | - Alexander J Probst
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | | | - Trent Northen
- Lawrence Berkeley National Laboratory , Berkeley , CA , United States
| | - Chongle Pan
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN , Unites States
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
11
|
Elster J, Margesin R, Wagner D, Häggblom M. Editorial: Polar and Alpine Microbiology—Earth's cryobiosphere. FEMS Microbiol Ecol 2016; 93:fiw221. [DOI: 10.1093/femsec/fiw221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/12/2022] Open
|