1
|
Thevarajan S, Sun P, Wang P, Xu J, Chen J, Tan Y, Zheng J, Tong M. Morphological and Molecular Diversity of Phytoplankton in Beibu Gulf, Northern South China Sea. Ecol Evol 2025; 15:e71207. [PMID: 40212923 PMCID: PMC11981879 DOI: 10.1002/ece3.71207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
The Beibu Gulf, a vital region for marine biodiversity and aquaculture, is increasingly affected by nutrient-driven ecological shifts in the phytoplankton community. This study combined morphology and eDNA metabarcoding (18S rDNA V4) to investigate phytoplankton diversity and environmental drivers during summer and winter in the Beibu Gulf. Metabarcoding detected 3.5 times more phytoplankton species, contributing to higher species diversity and richness than morphology. Metabarcoding identified 200 phytoplankton genera from eight phyla, while morphology only identified 49 genera from six phyla. Both methods revealed different dominant phytoplankton communities. Bacillariophyta and Haptophyta dominated the phytoplankton community based on morphology, in summer and winter, respectively; meanwhile, Dinophyta dominated in both seasons under metabarcoding due to their high 18S rDNA copy number. Altogether, 83 HAB and/or toxic species were identified, among which 10 were dominant, suggesting a high risk of HAB outbreaks in the Beibu Gulf. Phytoplankton abundance increased from south to north and west to east in both seasons, following the high input of dissolved inorganic nitrogen (DIN) and silicate. Excess ammonium input can promote the dominance of Scrippsiella trochoidea and Heterocapsa circularisquama, positioning them as emerging HAB species, while excess DIN caused extreme phosphorus limitation and favored the dominance of Phaeocystis globosa in the Beibu Gulf. This study provided a comprehensive description of the influence of environmental drivers on the phytoplankton community in the Beibu Gulf.
Collapse
Affiliation(s)
- Shalini Thevarajan
- Ocean CollegeZhejiang UniversityZhoushanChina
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Pengfei Sun
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Pengbin Wang
- Ocean CollegeZhejiang UniversityZhoushanChina
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of OceanographyMinistry of Natural ResourcesHangzhouChina
| | - Jie Xu
- Centre for Regional Oceans & Department of Ocean Science and Technology, Faculty of Science and TechnologyUniversity of MacauMacauChina
| | - Jie Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Yongyu Tan
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Junjie Zheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of OceanographyMinistry of Natural ResourcesHangzhouChina
| | - Mengmeng Tong
- Ocean CollegeZhejiang UniversityZhoushanChina
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| |
Collapse
|
2
|
Rzehak T, Praeg N, Galla G, Seeber J, Hauffe HC, Illmer P. Comparison of commonly used software pipelines for analyzing fungal metabarcoding data. BMC Genomics 2024; 25:1085. [PMID: 39543483 PMCID: PMC11566164 DOI: 10.1186/s12864-024-11001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Metabarcoding targeting the internal transcribed spacer (ITS) region is commonly used to characterize fungal communities of various environments. Given their size and complexity, raw ITS sequences are necessarily processed and quality-filtered with bioinformatic pipelines. However, such pipelines are not yet standardized, especially for fungal communities, and those available may produce contrasting results. While some pipelines cluster sequences based on a specified percentage of base pair similarity into operational taxonomic units (OTUs), others utilize denoising techniques to infer amplicon sequencing variants (ASVs). While ASVs are now considered a more accurate representation of taxonomic diversity for prokaryote communities based on 16S rRNA amplicon sequencing, the applicability of this method for fungal ITS sequences is still debated. RESULTS Here we compared the performance of two commonly used pipelines DADA2 (inferring ASVs) and mothur (clustering OTUs) on fungal metabarcoding sequences originating from two different environmental sample types (fresh bovine feces and pasture soil). At a 99% OTU similarity threshold, mothur consistently identified a higher fungal richness compared to DADA2. In addition, mothur generated homogenous relative abundances across multiple technical replicates (n = 18), while DADA2 results for the same replicates were highly heterogeneous. CONCLUSIONS Our study highlights a potential pipeline-associated bias in fungal metabarcoding data analysis of environmental samples. Based on the homogeneity of relative abundances across replicates and the capacity to detect OTUs/ASVs, we suggest using OTU clustering with a similarity of 97% as the most appropriate option for processing fungal metabarcoding data.
Collapse
Affiliation(s)
- Theresa Rzehak
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria.
| | - Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Giulio Galla
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Julia Seeber
- Institute for Alpine Environment, EURAC Research, Bolzano, Italy
- Department of Ecology, Universität Innsbruck, Innsbruck, Austria
| | - Heidi Christine Hauffe
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
- National Biodiversity Future Center (NBFC), S.c.a.r.l., Palermo, Italy
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Gallone B, Kuyper TW, Nuytinck J. The genus Cortinarius should not (yet) be split. IMA Fungus 2024; 15:24. [PMID: 39138570 PMCID: PMC11321212 DOI: 10.1186/s43008-024-00159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
The genus Cortinarius (Agaricales, Basidiomycota) is one of the most species-rich fungal genera, with thousands of species reported. Cortinarius species are important ectomycorrhizal fungi and form associations with many vascular plants globally. Until recently Cortinarius was the single genus of the family Cortinariaceae, despite several attempts to provide a workable, lower-rank hierarchical structure based on subgenera and sections. The first phylogenomic study for this group elevated the old genus Cortinarius to family level and the family was split into ten genera, of which seven were described as new. Here, by careful re-examination of the recently published phylogenomic dataset, we detected extensive gene-tree/species-tree conflicts using both concatenation and multispecies coalescent approaches. Our analyses demonstrate that the Cortinarius phylogeny remains unresolved and the resulting phylogenomic hypotheses suffer from very short and unsupported branches in the backbone. We can confirm monophyly of only four out of ten suggested new genera, leaving uncertain the relationships between each other and the general branching order. Thorough exploration of the tree space demonstrated that the topology on which Cortinarius revised classification relies on does not represent the best phylogenetic hypothesis and should not be used as constrained topology to include additional species. For this reason, we argue that based on available evidence the genus Cortinarius should not (yet) be split. Moreover, considering that phylogenetic uncertainty translates to taxonomic uncertainty, we advise for careful evaluation of phylogenomic datasets before proposing radical taxonomic and nomenclatural changes.
Collapse
Affiliation(s)
- Brigida Gallone
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands.
| | - Thomas W Kuyper
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Soil Biology Group, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | - Jorinde Nuytinck
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
4
|
Xing RR, Bai WM, Hu D, Deng TT, Zhang JK, Chen Y. Using a DNA mini-barcode within the ITS region to identify toxic Amanita in mushroom poisoning cases. Appl Microbiol Biotechnol 2024; 108:376. [PMID: 38884656 PMCID: PMC11182838 DOI: 10.1007/s00253-024-13219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Mushroom poisoning contributes significantly to global foodborne diseases and related fatalities. Amanita mushrooms frequently cause such poisonings; however, identifying these toxic species is challenging due to the unavailability of fresh and intact samples. It is often necessary to analyze residues, vomitus, or stomach extracts to obtain DNA sequences for the identification of species responsible for causing food poisoning. This usually proves challenging to obtain usable DNA sequences that can be analyzed using conventional molecular biology techniques. Therefore, this study aimed to develop a DNA mini-barcoding method for the identification of Amanita species. Following the evaluation and optimization of universal primers for DNA mini-barcoding in Amanita mushrooms, we found that the internal transcribed spacer (ITS) gene sequence primer ITS-a was the most suitable DNA barcode primer for identifying Amanita species. Forty-three Amanita samples were subsequently amplified and sequenced. The sequences obtained were analyzed for intra- and inter-species genetic distances, and a phylogenetic tree was constructed. The findings indicated that the designed primers had strong universality among the Amanita samples and could accurately identify the target gene fragment with a length of 290 bp. Notably, the DNA mini-barcode accurately identified the 43 Amanita samples, demonstrating high consistency with the conventional DNA barcode. Furthermore, it effectively identified DNA from digested samples. In summary, this DNA mini-barcode is a promising tool for detecting accidental ingestion of toxic Amanita mushrooms. It may be used as an optimal barcode for species identification and traceability in events of Amanita-induced mushroom poisoning. KEY POINTS: • Development of a DNA mini-barcoding method for Amanita species identification without fresh samples. • The ITS-a primer set was optimized for robust universality in Amanita samples. • The mini-barcode is suitable for screening toxic mushroom species in mushroom poisoning cases.
Collapse
Affiliation(s)
- Ran-Ran Xing
- National Key Laboratory for Market Supervision (Food Authentication), Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Street, Daxing District, Beijing, 100176, China
| | - Wen-Ming Bai
- National Key Laboratory for Market Supervision (Food Authentication), Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Street, Daxing District, Beijing, 100176, China
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Di Hu
- National Key Laboratory for Market Supervision (Food Authentication), Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Street, Daxing District, Beijing, 100176, China
- Nanjing University of Finance and Economics, Nanjing, 210046, China
| | - Ting-Ting Deng
- National Key Laboratory for Market Supervision (Food Authentication), Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Street, Daxing District, Beijing, 100176, China
| | - Jiu-Kai Zhang
- National Key Laboratory for Market Supervision (Food Authentication), Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Street, Daxing District, Beijing, 100176, China
| | - Ying Chen
- National Key Laboratory for Market Supervision (Food Authentication), Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Street, Daxing District, Beijing, 100176, China.
| |
Collapse
|
5
|
McPolin MC, Kranabetter JM, Philpott TJ, Hawkins BJ. Sporocarp nutrition of ectomycorrhizal fungi indicates an important role for endemic species in a high productivity temperate rainforest. THE NEW PHYTOLOGIST 2024; 242:1603-1613. [PMID: 37771241 DOI: 10.1111/nph.19280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Endemic species of ectomycorrhizal fungi (EMF) are found throughout many biomes, but it is unclear whether their localized distribution is dictated by habitat filtering or geographical barriers to dispersal. We examined community composition (via long-read metabarcoding) and differences in sporocarp nutrition between endemic and cosmopolitan EMF species across perhumid temperate rainforests of British Columbia, characterized by soils with high nitrogen (N) supply alongside low phosphorus (P) and cation availability. Endemic EMF species, representing almost half of the community, had significantly greater sporocarp N (24% higher), potassium (+16%), and magnesium (+17%) concentrations than cosmopolitan species. Sporocarp P concentrations were comparatively low and did not differ by fungal range. However, sporocarp N% and P% were well correlated, supporting evidence for linkages in N and P acquisition. Endemics were more likely to occur on Tsuga heterophylla (a disjunct host genus) than Picea sitchensis (a circumpolar genus). The Inocybaceae and Thelephoraceae families had high proportions of endemic taxa, while species in Cortinariaceae were largely cosmopolitan, indicating some niche conservatism among genera. We conclude that superior adaptive traits in relation to perhumid soils were skewed toward the endemic community, underscoring the potentially important contribution of these localized fungi to rainforest nutrition and productivity.
Collapse
Affiliation(s)
- M Claire McPolin
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, PO Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada
| | - Tim J Philpott
- British Columbia Ministry of Forests, 200-640 Borland St., Williams Lake, BC, V2G 4T1, Canada
| | - Barbara J Hawkins
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
6
|
Huymann LR, Hannecker A, Giovanni T, Liimatainen K, Niskanen T, Probst M, Peintner U, Siewert B. Revised taxon definition in European Cortinarius subgenus Dermocybe based on phylogeny, chemotaxonomy, and morphology. Mycol Prog 2024; 23:26. [PMID: 38585620 PMCID: PMC10997704 DOI: 10.1007/s11557-024-01959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 04/09/2024]
Abstract
Cortinarius (Fr.) Fr. is one of the most species-rich genera in the Agaricales (Basidiomycota). Cortinarius subgen. Dermocybe (Fr.) Trog includes brightly coloured Cortinarii with anthraquinone pigments. The chemotaxonomic approach has always been as important as classical methods for species definition of Dermocybe and helped to improve overall species concepts. However, some species concepts within this group remain unclear. We therefore address this topic based on a combined phylogenetic, morphological, and pigment-chemical approach. For this, sequence data, HPLC-MS pigment profiles and spore sizes were included were included to obtain a better resolution of taxa. The study was based on 173 recent collections and 12 type specimens. A total of 117 rDNA ITS sequences were produced from the collections in this study, 102 sequences were retrieved from databases. We could detect and clearly delimit 19 Dermocybe species occurring in central European habitats, from which 16 are discussed in detail. Additionally, we grouped the detected anthraquinone pigments into four groups. This detailed analysis of dermocyboid Cortinarius species occurring in a restricted number of habitat types confirmed our hypothesis that species diversity is much higher than currently assumed. This high diversity is blurred by too wide and incorrect species concepts of several classical species like C. croceus and C. cinnamomeus. Molecular and chemotaxonomical studies carried out together with careful phenotypical analyses resulted in a good differentiation of species. A key is presented for these taxa to allow a better identification of Cortinarius subgenus Dermocybe spp. occurring in Central Europe mainly in the alpine range. Supplementary Information The online version contains supplementary material available at 10.1007/s11557-024-01959-z.
Collapse
Affiliation(s)
- Lesley Rosina Huymann
- Department of Microbiology, University Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
- Department of Pharmacognosy, Institute of Pharmacy, Center for Chemistry and Biomedicine, University Innsbruck, Innrain 80 - 82/IV, 6020 Innsbruck, Austria
| | - Anna Hannecker
- Department of Pharmacognosy, Institute of Pharmacy, Center for Chemistry and Biomedicine, University Innsbruck, Innrain 80 - 82/IV, 6020 Innsbruck, Austria
| | | | - Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB UK
| | - Tuula Niskanen
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland
| | - Maraike Probst
- Department of Microbiology, University Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Department of Microbiology, University Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Bianka Siewert
- Department of Pharmacognosy, Institute of Pharmacy, Center for Chemistry and Biomedicine, University Innsbruck, Innrain 80 - 82/IV, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Tedersoo L, Drenkhan R, Abarenkov K, Anslan S, Bahram M, Bitenieks K, Buegger F, Gohar D, Hagh‐Doust N, Klavina D, Makovskis K, Zusevica A, Pritsch K, Padari A, Põlme S, Rahimlou S, Rungis D, Mikryukov V. The influence of tree genus, phylogeny, and richness on the specificity, rarity, and diversity of ectomycorrhizal fungi. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13253. [PMID: 38575147 PMCID: PMC10994715 DOI: 10.1111/1758-2229.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
- College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Rein Drenkhan
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | | | - Sten Anslan
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mohammad Bahram
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Kriss Bitenieks
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Franz Buegger
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Research Unit Environmental SimulationNeuherbergGermany
| | - Daniyal Gohar
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Niloufar Hagh‐Doust
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Darta Klavina
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Kristaps Makovskis
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Austra Zusevica
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Karin Pritsch
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Research Unit Environmental SimulationNeuherbergGermany
| | - Allar Padari
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Sergei Põlme
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Natural History MuseumUniversity of TartuTartuEstonia
| | - Saleh Rahimlou
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Dainis Rungis
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Vladimir Mikryukov
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| |
Collapse
|
8
|
Long P, Zhou SY, Li SN, Liu FF, Chen ZH. Three new species of Cortinarius section Delibuti (Cortinariaceae, Agaricales) from China. MycoKeys 2024; 101:143-162. [PMID: 38274713 PMCID: PMC10809417 DOI: 10.3897/mycokeys.101.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
Three new species of CortinariussectionDelibuti, namely C.fibrillososalor, C.pseudosalor, and C.subtropicus are described as new to science based on morphological and phylogenetic evidences. Cortinariuspseudosalor is extremely morphologically similar to C.salor, but it differs from the latter by smaller coarsely verrucose basidiospores. Cortinariusfibrillososalor can be easily differentiated by its fibrillose pileus. The pileus of C.subtropicus becomes brown without lilac tint at maturity comparing with other members of section Delibuti. A combined dataset of ITS and LSU sequences was used for phylogenetic analysis. The phylogenetic reconstruction of section Delibuti revealed that these three new species clustered and formed independent lineages with full support respectively. A key to the three new species and related species of section Delibuti is provided in this work.
Collapse
Affiliation(s)
- Pan Long
- College of Life Science, Hunan Normal University, Changsha 410081, ChinaHunan Normal UniversityChangshaChina
| | - Song-Yan Zhou
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, ChinaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Sai-Nan Li
- College of Life Science, Hunan Normal University, Changsha 410081, ChinaHunan Normal UniversityChangshaChina
| | - Fei-Fei Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, ChinaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Zuo-Hong Chen
- College of Life Science, Hunan Normal University, Changsha 410081, ChinaHunan Normal UniversityChangshaChina
| |
Collapse
|
9
|
Brunes TO, Pinto FCS, Taucce PPG, Santos MTT, Nascimento LB, Carvalho DC, Oliveira G, Vasconcelos S, Leite FSF. Traditional taxonomy underestimates the number of species of Bokermannohyla (Amphibia: Anura: Hylidae) diverging in the mountains of southeastern Brazil since the Miocene. SYST BIODIVERS 2023. [DOI: 10.1080/14772000.2022.2156001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tuliana O. Brunes
- Laboratório de Herpetologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Felipe C. S. Pinto
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro P. G. Taucce
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Marcus Thadeu T. Santos
- Laboratório de Herpetologia, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, Rio Claro, Brazil
| | - Luciana B. Nascimento
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel C. Carvalho
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Felipe S. F. Leite
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Campus Florestal, Florestal, MG, Brazil
| |
Collapse
|
10
|
Olou BA, Hègbè ADMT, Piepenbring M, Yorou NS. Genetic diversity and population differentiation in Earliella scabrosa, a pantropical species of Polyporales. Sci Rep 2023; 13:23020. [PMID: 38155211 PMCID: PMC10754928 DOI: 10.1038/s41598-023-50398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Earliella scabrosa is a pantropical species of Polyporales (Basidiomycota) and well-studied concerning its morphology and taxonomy. However, its pantropical intraspecific genetic diversity and population differentiation is unknown. We initiated this study to better understand the genetic variation within E. scabrosa and to test if cryptic species are present. Sequences of three DNA regions, the nuclear ribosomal internal transcribed spacer (ITS), the large subunit ribosomal DNA (LSU), and the translation elongation factor (EF1α) were analysed for 66 samples from 15 geographical locations. We found a high level of genetic diversity (haplotype diversity, Hd = 0.88) and low nucleotide diversity (π = 0.006) across the known geographical range of E. scabrosa based on ITS sequences. The analysis of molecular variance (AMOVA) indicates that the genetic variability is mainly found among geographical populations. The results of Mantel tests confirmed that the genetic distance among populations of E. scabrosa is positively correlated with the geographical distance, which indicates that geographical isolation is an important factor for the observed genetic differentiation. Based on phylogenetic analyses of combined dataset ITS-LSU-EF1α, the low intraspecific divergences (0-0.3%), and the Automated Barcode Gap Discovery (ABGD) analysis, E. scabrosa can be considered as a single species with five different geographical populations. Each population might be in the process of allopatric divergence and in the long-term they may evolve and become distinct species.
Collapse
Affiliation(s)
- Boris Armel Olou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin.
| | - Apollon D M T Hègbè
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
| | - Meike Piepenbring
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Nourou Soulemane Yorou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
| |
Collapse
|
11
|
Simmons BC, Rhodes J, Rogers TR, Verweij PE, Abdolrasouli A, Schelenz S, Hemmings SJ, Talento AF, Griffin A, Mansfield M, Sheehan D, Bosch T, Fisher MC. Genomic Epidemiology Identifies Azole Resistance Due to TR 34/L98H in European Aspergillus fumigatus Causing COVID-19-Associated Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:1104. [PMID: 37998909 PMCID: PMC10672581 DOI: 10.3390/jof9111104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Aspergillus fumigatus has been found to coinfect patients with severe SARS-CoV-2 virus infection, leading to COVID-19-associated pulmonary aspergillosis (CAPA). The CAPA all-cause mortality rate is approximately 50% and may be complicated by azole resistance. Genomic epidemiology can help shed light on the genetics of A. fumigatus causing CAPA, including the prevalence of resistance-associated alleles. We present a population genomic analysis of 21 CAPA isolates from four European countries with these isolates compared against 240 non-CAPA A. fumigatus isolates from a wider population. Bioinformatic analysis and antifungal susceptibility testing were performed to quantify resistance and identify possible genetically encoded azole-resistant mechanisms. The phylogenetic analysis of the 21 CAPA isolates showed that they were representative of the wider A. fumigatus population with no obvious clustering. The prevalence of phenotypic azole resistance in CAPA was 14.3% (n = 3/21); all three CAPA isolates contained a known resistance-associated cyp51A polymorphism. The relatively high prevalence of azole resistance alleles that we document poses a probable threat to treatment success rates, warranting the enhanced surveillance of A. fumigatus genotypes in these patients. Furthermore, potential changes to antifungal first-line treatment guidelines may be needed to improve patient outcomes when CAPA is suspected.
Collapse
Affiliation(s)
- Benjamin C. Simmons
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
- UK Health Security Agency, London EP14 4PU, UK
| | - Johanna Rhodes
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Thomas R. Rogers
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Alireza Abdolrasouli
- Department of Infectious Diseases, Imperial College London, London W2 1NY, UK;
- Department of Infectious Diseases, King’s College Hospital, London SE5 9RS, UK
| | - Silke Schelenz
- Infection Sciences, King’s College Hospital, London SE5 9RS, UK;
- School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Samuel J. Hemmings
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
| | - Alida Fe Talento
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
- Department of Microbiology, Our Lady of Lourdes Hospital, A92 VW28 Drogheda, Ireland
- Department of Microbiology, Royal College of Surgeons, D02 YN77 Dublin, Ireland
| | - Auveen Griffin
- Department of Microbiology, St. James’ Hospital, D08 NHY1 Dublin, Ireland;
| | - Mary Mansfield
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
| | - David Sheehan
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
| | - Thijs Bosch
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Matthew C. Fisher
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
| |
Collapse
|
12
|
Harder CB, Hesling E, Botnen SS, Lorberau KE, Dima B, von Bonsdorff-Salminen T, Niskanen T, Jarvis SG, Ouimette A, Hester A, Hobbie EA, Taylor AFS, Kauserud H. Mycena species can be opportunist-generalist plant root invaders. Environ Microbiol 2023; 25:1875-1893. [PMID: 37188366 DOI: 10.1111/1462-2920.16398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Traditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions. Here, we focused on the widespread and speciose saprotrophic genus Mycena and performed (1) a systematic survey of their occurrences (in ITS1/ITS2 datasets) in mycorrhizal roots of 10 plant species, and (2) an analysis of natural abundances of 13 C/15 N stable isotope signatures of Mycena basidiocarps from five field locations to examine their trophic status. We found that Mycena was the only saprotrophic genus consistently found in 9 out of 10 plant host roots, with no indication that the host roots were senescent or otherwise vulnerable. Furthermore, Mycena basidiocarps displayed isotopic signatures consistent with published 13 C/15 N profiles of both saprotrophic and mutualistic lifestyles, supporting earlier laboratory-based studies. We argue that Mycena are widespread latent invaders of healthy plant roots and that Mycena species may form a spectrum of interactions besides saprotrophy also in the field.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Microbial Ecology, Lund University, Lund, Sweden
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, Denmark
| | - Emily Hesling
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Synnøve S Botnen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | - Kelsey E Lorberau
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
| | | | - Tuula Niskanen
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, UK
| | | | - Andrew Ouimette
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | - Andy F S Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- The James Hutton Institute, Aberdeen, UK
| | | |
Collapse
|
13
|
Rúa-Giraldo ÁL. Fungal taxonomy: A puzzle with many missing pieces. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:288-311. [PMID: 37721899 PMCID: PMC10588969 DOI: 10.7705/biomedica.7052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023]
Abstract
Fungi are multifaceted organisms found in almost all ecosystems on Earth, where they establish various types of symbiosis with other living beings. Despite being recognized by humans since ancient times, and the high number of works delving into their biology and ecology, much is still unknown about these organisms. Some criteria classically used for their study are nowadays limited, generating confusion in categorizing them, and even more, when trying to understand their genealogical relationships. To identify species within Fungi, phenotypic characters to date are not sufficient, and to construct a broad phylogeny or a phylogeny of a particular group, there are still gaps affecting the generated trees, making them unstable and easily debated. For health professionals, fungal identification at lower levels such as genus and species, is enough to select the most appropriate therapy for their control, understand the epidemiology of clinical pictures associated, and recognize outbreaks and antimicrobial resistance. However, the taxonomic location within the kingdom, information with apparently little relevance, can allow phylogenetic relationships to be established between fungal taxa, facilitating the understanding of their biology, distribution in nature, and pathogenic potential evolution. Advances in molecular biology and computer science techniques from the last 30 years have led to crucial changes aiming to establish the criteria to define a fungal species, allowing us to reach a kind of stable phylogenetic construction. However, there is still a long way to go, and it requires the joint work of the scientific community at a global level and support for basic research.
Collapse
|
14
|
Wilson AW, Eberhardt U, Nguyen N, Noffsinger CR, Swenie RA, Loucks JL, Perry BA, Herrera M, Osmundson TW, DeLong-Duhon S, Beker HJ, Mueller GM. Does One Size Fit All? Variations in the DNA Barcode Gaps of Macrofungal Genera. J Fungi (Basel) 2023; 9:788. [PMID: 37623559 PMCID: PMC10455624 DOI: 10.3390/jof9080788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The nuclear ribosomal internal transcribed spacer (nrITS) region has been widely used in fungal diversity studies. Environmental metabarcoding has increased the importance of the fungal DNA barcode in documenting fungal diversity and distribution. The DNA barcode gap is seen as the difference between intra- and inter-specific pairwise distances in a DNA barcode. The current understanding of the barcode gap in macrofungi is limited, inhibiting the development of best practices in applying the nrITS region toward research on fungal diversity. This study examined the barcode gap using 5146 sequences representing 717 species of macrofungi from eleven genera, eight orders and two phyla in datasets assembled by taxonomic experts. Intra- and inter-specific pairwise distances were measured from sequence and phylogenetic data. The results demonstrate that barcode gaps are influenced by differences in intra- and inter-specific variance in pairwise distances. In terms of DNA barcode behavior, variance is greater in the ITS1 than ITS2, and variance is greater in both relative to the combined nrITS region. Due to the difference in variance, the barcode gaps in the ITS2 region are greater than in the ITS1. Additionally, the taxonomic approach of "splitting" taxa into numerous taxonomic units produces greater barcode gaps when compared to "lumping". The results show variability in the barcode gaps between fungal taxa, demonstrating a need to understand the accuracy of DNA barcoding in quantifying species richness. For taxonomic studies, variability in nrITS sequence data supports the application of multiple molecular markers to corroborate the taxonomic and systematic delineation of species.
Collapse
Affiliation(s)
| | - Ursula Eberhardt
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Nhu Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, 3190 Maile Way, St. John 102, Honolulu, HI 96822, USA
| | - Chance R. Noffsinger
- Department of Ecology and Evolutionary Biology, University of Tennessee, Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
| | - Rachel A. Swenie
- Department of Ecology and Evolutionary Biology, University of Tennessee, Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
| | | | - Brian A. Perry
- Department of Biological Sciences, California State University East Bay, 25800 Carlos Bee Blvd., Hayward, CA 94542, USA
| | - Mariana Herrera
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA
| | - Todd W. Osmundson
- Biology Department, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | | | - Henry J. Beker
- Royal Holloway College, University of London, London WC1E 7HU, UK
- Plantentuin Meise, Nieuwelaan 38, B-1860 Meise, Belgium
| | | |
Collapse
|
15
|
Zhang QY, Jin C, Zhou HM, Ma ZY, Zhang YZ, Liang JQ, Si J, Li HJ. Enlargement of the knowledge of Cortinarius section Anomali (Agaricales, Basidiomycota): introducing three new species from China. Front Cell Infect Microbiol 2023; 13:1215579. [PMID: 37377645 PMCID: PMC10291886 DOI: 10.3389/fcimb.2023.1215579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Cortinarius is a globally distributed agaricoid genus that has been well studied in Europe and America with over 1,000 described species. However, as part of an ongoing effort to investigate the diversity of Cortinarius section Anomali in China, the resource investigation and classification research are still limited, and the species diversity has not been clarified by far. During the re-examination of the Chinese Cortinarius specimens, C. cinnamomeolilacinus, C. subclackamasensis, and C. tropicus, belonging to the sect. Anomali, were described in China as new to science based on morphological examination and phylogenetic analysis. The three new species are described and illustrated in detail according to the Chinese materials. The phylogenetic analysis based on internal transcribed spacer sequences confirmed the placement of the three species in the Cortinarius sect. Anomali clade. Phylogenetically related and morphologically similar species to these three new species are discussed.
Collapse
Affiliation(s)
- Qiu-Yue Zhang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Can Jin
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Hong-Min Zhou
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Zi-Yan Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yi-Zhe Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia-Qi Liang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Hai-Jiao Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
16
|
Fallopia japonica and Impatiens glandulifera are colonized by species-poor root-associated fungal communities but have minor impacts on soil properties in riparian habitats. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractFallopia japonica and Impatiens glandulifera are major plant invaders on a global scale that often become dominant in riparian areas. However, little is known about how these species affect interactions in soil–plant systems. The aim of this study was to investigate the impact of both species on abiotic and biotic soil properties, with a special focus on fungi. We investigated eight sites along small streams invaded by F. japonica and I. glandulifera, respectively, and compared each with nearby sites dominated by the native species Urtica dioica. Three different types of samples were collected: bulk soil, rhizosphere soil and roots from invasive and native stands at each site. Bulk soil samples were analysed for soil physicochemical, microbial properties (soil microbial respiration and ergosterol) and soil arthropod abundance (Acari and Collembola). Soil respiration was also evaluated in rhizosphere samples. The fungal community composition of both bulk soil and roots were analysed using a metabarcoding approach. Soil physicochemical properties as well as soil microbial activity, fungal biomass and soil fungal operational unit taxonomic unit (OTU) richness did not differ between invaded and native riparian habitats, indicating only minor belowground impacts of the two invasive plant species. Soil microbial activity, fungal biomass and soil fungal OTU richness were rather related to the soil physicochemical properties. In contrast, Acari abundance decreased by 68% in the presence of F. japonica, while Collembola abundance increased by 11% in I. glandulifera sites. Moreover, root-associated fungal communities differed between the invasive and native plants. In F. japonica roots, fungal OTU richness of all investigated ecological groups (mycorrhiza, endophytes, parasites, saprobes) were lower compared to U. dioica. However, in I. glandulifera roots only the OTU richness of mycorrhiza and saprobic fungi was lower. Overall, our findings show that F. japonica and I. glandulifera can influence the abundance of soil arthropods and are characterized by lower OTU richness of root-associated fungi.
Collapse
|
17
|
Schön ME, Abarenkov K, Garnica S. Host generalists dominate fungal communities associated with alpine knotweed roots: a study of Sebacinales. PeerJ 2022; 10:e14047. [PMID: 36217381 PMCID: PMC9547586 DOI: 10.7717/peerj.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/22/2022] [Indexed: 01/19/2023] Open
Abstract
Bistorta vivipara is a widespread herbaceous perennial plant with a discontinuous pattern of distribution in arctic, alpine, subalpine and boreal habitats across the northern Hemisphere. Studies of the fungi associated with the roots of B. vivipara have mainly been conducted in arctic and alpine ecosystems. This study examined the fungal diversity and specificity from root tips of B. vivipara in two local mountain ecosystems as well as on a global scale. Sequences were generated by Sanger sequencing of the internal transcribed spacer (ITS) region followed by an analysis of accurately annotated nuclear segments including ITS1-5.8S-ITS2 sequences available from public databases. In total, 181 different UNITE species hypotheses (SHs) were detected to be fungi associated with B. vivipara, 73 of which occurred in the Bavarian Alps and nine in the Swabian Alps-with one SH shared among both mountains. In both sites as well as in additional public data, individuals of B. vivipara were found to contain phylogenetically diverse fungi, with the Basidiomycota, represented by the Thelephorales and Sebacinales, being the most dominant. A comparative analysis of the diversity of the Sebacinales associated with B. vivipara and other co-occurring plant genera showed that the highest number of sebacinoid SHs were associated with Quercus and Pinus, followed by Bistorta. A comparison of B. vivipara with plant families such as Ericaceae, Fagaceae, Orchidaceae, and Pinaceae showed a clear trend: Only a few species were specific to B. vivipara and a large number of SHs were shared with other co-occurring non-B. vivipara plant species. In Sebacinales, the majority of SHs associated with B. vivipara belonged to the ectomycorrhiza (ECM)-forming Sebacinaceae, with fewer SHs belonging to the Serendipitaceae encompassing diverse ericoid-orchid-ECM-endophytic associations. The large proportion of non-host-specific fungi able to form a symbiosis with other non-B. vivipara plants could suggest that the high fungal diversity in B. vivipara comes from an active recruitment of their associates from the co-occurring vegetation. The non-host-specificity suggests that this strategy may offer ecological advantages; specifically, linkages with generalist rather than specialist fungi. Proximity to co-occurring non-B. vivipara plants can maximise the fitness of B. vivipara, allowing more rapid and easy colonisation of the available habitats.
Collapse
Affiliation(s)
- Max Emil Schön
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Sigisfredo Garnica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
18
|
Chen C, Qi J, He Y, Lu Y, Wang Y. Genomic and Chemical Profiling of B9, a Unique Penicillium Fungus Derived from Sponge. J Fungi (Basel) 2022; 8:jof8070686. [PMID: 35887442 PMCID: PMC9319512 DOI: 10.3390/jof8070686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study presented the first insights into the genomic and chemical profiles of B9, a specific Penicillium strain derived from sponges of the South China Sea that demonstrated the closest morphological and phylogenetic affinity to P. paxillin. Via the Illumina MiSeq sequencing platform, the draft genome was sequenced, along with structural assembly and functional annotation. There were 34 biosynthetic gene clusters (BGCs) predicted against the antiSMASH database, but only 4 gene clusters could be allocated to known BGCs (≥50% identities). Meanwhile, the comparison between B9 and P. paxillin ATCC 10480 demonstrated clear distinctions in morphology, which might be ascribed to the unique environmental adaptability of marine endosymbionts. In addition, two novel pyridinones, penicidihydropyridone A (2) and penicidihydropyridone B (3), were isolated from cultures of B9, and structurally characterized by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The absolute configurations were confirmed by comparison of experimental and calculated electronic circular dichroism (ECD) curves. In addition, structure-based molecular docking indicated that both neo-pyridinones might block the programmed cell death protein 1(PD-1) pathway by competitively binding a programmed cell death 1 ligand 1(PD-L1) dimer. This was verified by the significant inhibition rates of the PD-1/L1 interaction. These indicated that Penicillium sp. B9 possessed a potential source of active secondary metabolites.
Collapse
Affiliation(s)
| | | | | | - Yuanyuan Lu
- Correspondence: (Y.L.); (Y.W.); Tel.: +86-25-83271249 (Y.L.); +86-25-86185219 (Y.W.); Fax: +86-25-83271249 (Y.L. & Y.W.)
| | - Ying Wang
- Correspondence: (Y.L.); (Y.W.); Tel.: +86-25-83271249 (Y.L.); +86-25-86185219 (Y.W.); Fax: +86-25-83271249 (Y.L. & Y.W.)
| |
Collapse
|
19
|
Pristas P, Beck T, Piknova M, Gaperova S, Sebesta M, Gaper J. Intragenomic Variability of ITS Sequences in Bjerkandera adusta. J Fungi (Basel) 2022; 8:jof8070654. [PMID: 35887411 PMCID: PMC9319410 DOI: 10.3390/jof8070654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Bjerkandera adusta is a species of common white rot polyporoid fungi found worldwide. Despite playing an important role in deadwood decay, the species strains are used in bioremediation due to its ability to degrade polycyclic hydrocarbons and some of them are important etiological agents of chronic coughs and are associated with lung inflammations. In our experiments, diversity within the species was investigated using molecular approaches and we found that sequence diversity seen at ITS sequence level is not due to cryptic speciation but to intragenomic variability of ITS sequences in this species.
Collapse
Affiliation(s)
- Peter Pristas
- Institute of Biology and Ecology, Pavol Josef Safarik University in Kosice, Srobarova 2, 04101 Kosice, Slovakia; (P.P.); (M.P.)
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Soltesovej 4–6, 04001 Kosice, Slovakia
| | - Terezia Beck
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, 97401 Banska Bystrica, Slovakia;
- Correspondence:
| | - Maria Piknova
- Institute of Biology and Ecology, Pavol Josef Safarik University in Kosice, Srobarova 2, 04101 Kosice, Slovakia; (P.P.); (M.P.)
| | - Svetlana Gaperova
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, 97401 Banska Bystrica, Slovakia;
| | | | - Jan Gaper
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University, T. G. Masaryka 24, 96053 Zvolen, Slovakia;
| |
Collapse
|
20
|
Taxonomy and phylogeny of the phlegmacioid clade Camptori (Cortinarius s.l., Basidiomycota) in Europe with description of four new species. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractIn this study, we investigate the phylogeny and taxonomy of the /Camptori clade sensu Soop et al. (2019a). Based on combined nrDNA ITS phylogenetic, morphological, and ecological analyses, the clade includes six species in Europe, four of which are described here as new to science: Cortinarius malavalii, C. marklundii, C. violaceoserrulatus, and C. viridocaelestinus. We also provide a taxonomic revision of the two known species in the clade, C. camptoros and C. viridocoeruleus. In its current concept, the /Camptori clade is mostly represented in frondose woodlands of southern Europe and none of the species is found in the boreal coniferous zones of Northern Europe. Three species are strictly thermophilous Mediterranean-submediterranean species associated mainly with southern Quercus spp., whereas C. camptoros is found mainly in montane Abies forests, and C. marklundii reaches boreonemoral Tilia-Corylus sites in S Scandinavia and alpine Dryas sites in Spain. An identification key to the species is presented.
Collapse
|
21
|
|
22
|
Xie ML, Phukhamsakda C, Wei TZ, Li JP, Wang K, Wang Y, Ji RQ, Li Y. Morphological and Phylogenetic Evidence Reveal Five New Telamonioid Species of Cortinarius ( Agaricales) from East Asia. J Fungi (Basel) 2022; 8:257. [PMID: 35330259 PMCID: PMC8956052 DOI: 10.3390/jof8030257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Five new Cortinarius species, C. neobalaustinus, C. pseudocamphoratus, C. subnymphatus, C. wuliangshanensis and C. yanjiensis spp. nov., are proposed based on a combination of morphological and molecular evidence. Cortinarius neobalaustinus is characterized by a very weakly hygrophanous and yellowish-brown to brown pileus and small and weakly verrucose basidiospores. Cortinarius pseudocamphoratus can be characterized by a viscid pileus, a strongly unpleasant smell, amygdaloid to somewhat ellipsoid basidiospores and lageniform to subfusiform cheilocystidia. Cortinarius subnymphatus is identified by a strongly hygrophanous pileus that is reddish-brown with a black-brown umbo, a yellowish universal veil and ellipsoid to subamygdaloid basidiospores. Cortinarius wuliangshanensis is characterized by a moderately to strongly hygrophanous, translucently striated and yellowish to reddish-brown pileus and rather weakly and moderately verrucose basidiospores. Cortinarius yanjiensis is distinguished by a weakly to moderately hygrophanous and yellowish to brown pileus and moderately to rather strongly verrucose basidiospores. The phylogenetic analyses were performed with maximum likelihood and Bayesian inference methods based on the data set of nuc rDNA ITS1-5.8S-ITS2 (ITS), D1-D2 domains of nuc 28S rDNA (28S) and RNA polymerase II second largest subunit (rpb2), and the results show that C. neobalaustinus, C. wulianghsanensis and C. yanjiensis cluster in sect. Illumini, C. pseudocamporatus belongs to sect. Camphorati and C. subnymphatus belongs to sect. Laeti. In addition, a study of basidiospores under field emission scanning electron microscopy (FESEM) was conducted. An identification key for the five new species and related species from China is also provided.
Collapse
Affiliation(s)
- Meng-Le Xie
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (M.-L.X.); (C.P.); (J.-P.L.); (Y.W.)
- Life Science College, Northeast Normal University, Changchun 130024, China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (M.-L.X.); (C.P.); (J.-P.L.); (Y.W.)
| | - Tie-Zheng Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.-Z.W.); (K.W.)
| | - Ji-Peng Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (M.-L.X.); (C.P.); (J.-P.L.); (Y.W.)
| | - Ke Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.-Z.W.); (K.W.)
| | - Yang Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (M.-L.X.); (C.P.); (J.-P.L.); (Y.W.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Rui-Qing Ji
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (M.-L.X.); (C.P.); (J.-P.L.); (Y.W.)
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (M.-L.X.); (C.P.); (J.-P.L.); (Y.W.)
- Life Science College, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
23
|
Liimatainen K, Kim JT, Pokorny L, Kirk PM, Dentinger B, Niskanen T. Taming the beast: a revised classification of Cortinariaceae based on genomic data. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00499-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AbstractFamily Cortinariaceae currently includes only one genus, Cortinarius, which is the largest Agaricales genus, with thousands of species worldwide. The species are important ectomycorrhizal fungi and form associations with many vascular plant genera from tropicals to arctic regions. Genus Cortinarius contains a lot of morphological variation, and its complexity has led many taxonomists to specialize in particular on infrageneric groups. The previous attempts to divide Cortinarius have been shown to be unnatural and the phylogenetic studies done to date have not been able to resolve the higher-level classification of the group above section level. Genomic approaches have revolutionized our view on fungal relationships and provide a way to tackle difficult groups. We used both targeted capture sequencing and shallow whole genome sequencing to produce data and to perform phylogenomic analyses of 75 single-copy genes from 19 species. In addition, a wider 5-locus analysis of 245 species, from the Northern and Southern Hemispheres, was also done. Based on our results, a classification of the family Cortinariaceae into ten genera—Cortinarius, Phlegmacium, Thaxterogaster, Calonarius, Aureonarius, Cystinarius, Volvanarius, Hygronarius, Mystinarius, and Austrocortinarius—is proposed. Seven genera, 10 subgenera, and four sections are described as new to science and five subgenera are introduced as new combinations in a new rank. In addition, 41 section names and 514 species names are combined in new genera and four lecto- and epitypes designated. The position of Stephanopus in suborder Agaricineae remains to be studied. Targeted capture sequencing is used for the first time in fungal taxonomy in Basidiomycetes. It provides a cost-efficient way to produce -omics data in species-rich groups. The -omics data was produced from fungarium specimens up to 21 years old, demonstrating the value of museum specimens in the study of the fungal tree of life. This study is the first family revision in Agaricales based on genomics data and hopefully many others will soon follow.
Collapse
|
24
|
Xie X, Li B, Fan Y, Duan R, Gao C, Zheng Y, Tian E. Identification of Gyromitra infula: A Rapid and Visual Method Based on Loop-Mediated Isothermal Amplification. Front Microbiol 2022; 13:842178. [PMID: 35250953 PMCID: PMC8894891 DOI: 10.3389/fmicb.2022.842178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
With mushroom poisoning emerging as one of the most serious food safety problems worldwide, a rapid identification method of poisonous mushrooms is urgently required to investigate the source of poisoning. Gyromitra infula, a kind of poisonous mushroom, contains gyromitrin toxin, which causes epileptogenic neurotoxicity and hemolytic disease. This study aimed to establish a rapid and visual method of G. infula identification based on loop-mediated isothermal amplification (LAMP). A set of specific LAMP primers was designed, and its specificity in G. infula was confirmed against various mushroom species, including its closely related species and other macrofungi. The sensitivity assay showed that the minimum concentration of genomic DNA detected by LAMP was 1 ng/μl. The method's applicability was conducted by preparing mushroom samples that were boiled and digested in artificial gastric juice. The results showed that the content as low as 1% G. infula can be successfully detected. This method can be completed within 90 min, and the reaction results can be directly observed by the naked eyes. Hence, the identification method of G. infula established based on LAMP in this study is accurate, rapid, sensitive, and low-cost, which is required for clinical treatment or forensic analysis when mushroom poisoning occurs.
Collapse
Affiliation(s)
- Xiaomei Xie
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Bu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuguang Fan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Pharmacy, Hainan Medical University, Haikou, China
| | - Renhe Duan
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chonghua Gao
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuan Zheng
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Enjing Tian
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
25
|
Hammerle F, Steger LM, Zhou X, Bonnet S, Huymann L, Peintner U, Siewert B. Optimized isolation of 7,7'-biphyscion starting from Cortinarius rubrophyllus, a chemically unexplored fungal species rich in photosensitizers. Photochem Photobiol Sci 2022; 21:221-234. [PMID: 34971447 PMCID: PMC8863709 DOI: 10.1007/s43630-021-00159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 11/01/2022]
Abstract
Mushrooms such as the dermocyboid Cortinarius rubrophyllus are characterized by strikingly colorful fruiting bodies. The molecular dyes responsible for such colors recently experienced a comeback as photoactive compounds with remarkable photophysical and photobiological properties. One of them-7,7'-biphyscion-is a dimeric anthraquinone that showed promising anticancer effects in the low nanomolar range under blue-light irradiation. Compared to acidic anthraquinones, 7,7'-biphyscion was more efficiently taken up by cells and induced apoptosis after photoactivation. However, seasonal collection of mushrooms producing this compound, low extraction yields, and tricky fungal identification hamper further developments to the clinics. To bypass these limitations, we demonstrate here an alternative approach utilizing a precursor of 7,7'-biphyscion, i.e., the pre-anthraquinone flavomannin-6,6'-dimethyl ether, which is abundant in many species of the subgenus Dermocybe. Controlled oxidation of the crude extract significantly increased the yield of 7,7'-biphyscion by 100%, which eased the isolation process. We also present the mycochemical and photobiological characterization of the yet chemically undescribed species, i.e. C. rubrophyllus. In total, eight pigments (1-8) were isolated, including two new glycosylated anthraquinones (1 and 2). Light-dependent generation of singlet oxygen was detected for the first time for emodin-1-O-β-D-glucopyranoside (3) [photophysical measurement: Φ∆ = 0.11 (CD3OD)]. Furthermore, emodin (7) was characterized as promising compound in the photocytotoxicity assay with EC50-values in the low micromolar range under irradiation against cells of the cancer cell lines AGS, A549, and T24.
Collapse
Affiliation(s)
- Fabian Hammerle
- Pharmacology and Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Lisa-Maria Steger
- Pharmacology and Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Xuequan Zhou
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Sylvestre Bonnet
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Lesley Huymann
- University of Innsbruck, Microbiology, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Ursula Peintner
- University of Innsbruck, Microbiology, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Bianka Siewert
- Pharmacology and Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
26
|
Fedosov A, Achaz G, Gontchar A, Puillandre N. MOLD, a novel software to compile accurate and reliable DNA diagnoses for taxonomic descriptions. Mol Ecol Resour 2022; 22:2038-2053. [DOI: 10.1111/1755-0998.13590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Alexander Fedosov
- A.N. Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Leninsky prospect 33 119071 Moscow Russia
- Institut Systématique Evolution Biodiversité (ISYEB) Muséum national d'Histoire naturelle CNRS Sorbonne Université EPHE Université des Antilles 57 rue Cuvier, CP 26 75005 Paris France
| | - Guillaume Achaz
- Institut Systématique Evolution Biodiversité (ISYEB) Muséum national d'Histoire naturelle CNRS Sorbonne Université EPHE Université des Antilles 57 rue Cuvier, CP 26 75005 Paris France
- UMR7206 Eco‐Anthropologie Université de Paris‐CNRS‐MNHN Paris
- UMR7241 Centre Interdisciplinaire de Recherche en Biologie Collége de France‐CNRS‐INSERM Paris
| | - Andrey Gontchar
- Molecular Immunology Laboratory Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology Samory Mashela street 1 117997 Moscow Russia
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB) Muséum national d'Histoire naturelle CNRS Sorbonne Université EPHE Université des Antilles 57 rue Cuvier, CP 26 75005 Paris France
| |
Collapse
|
27
|
Tedersoo L, Mikryukov V, Anslan S, Bahram M, Khalid AN, Corrales A, Agan A, Vasco-Palacios AM, Saitta A, Antonelli A, Rinaldi AC, Verbeken A, Sulistyo BP, Tamgnoue B, Furneaux B, Ritter CD, Nyamukondiwa C, Sharp C, Marín C, Dai DQ, Gohar D, Sharmah D, Biersma EM, Cameron EK, De Crop E, Otsing E, Davydov EA, Albornoz FE, Brearley FQ, Buegger F, Gates G, Zahn G, Bonito G, Hiiesalu I, Hiiesalu I, Zettur I, Barrio IC, Pärn J, Heilmann-Clausen J, Ankuda J, Kupagme JY, Sarapuu J, Maciá-Vicente JG, Fovo JD, Geml J, Alatalo JM, Alvarez-Manjarrez J, Monkai J, Põldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K, Tchan KI, Armolaitis K, Hyde KD, Newsham KK, Panksep K, Adebola LA, Lamit LJ, Saba M, da Silva Cáceres ME, Tuomi M, Gryzenhout M, Bauters M, Bálint M, Wijayawardene N, Hagh-Doust N, Yorou NS, Kurina O, Mortimer PE, Meidl P, Nilsson RH, Puusepp R, Casique-Valdés R, Drenkhan R, Garibay-Orijel R, Godoy R, Alfarraj S, Rahimlou S, Põlme S, Dudov SV, Mundra S, Ahmed T, Netherway T, Henkel TW, Roslin T, Fedosov VE, Onipchenko VG, Yasanthika WAE, Lim YW, Piepenbring M, Klavina D, Kõljalg U, Abarenkov K. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00493-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Hammerle F, Quirós-Guerrero L, Rutz A, Wolfender JL, Schöbel H, Peintner U, Siewert B. Feature-Based Molecular Networking-An Exciting Tool to Spot Species of the Genus Cortinarius with Hidden Photosensitizers. Metabolites 2021; 11:791. [PMID: 34822449 PMCID: PMC8619139 DOI: 10.3390/metabo11110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Fungi have developed a wide array of defense strategies to overcome mechanical injuries and pathogen infections. Recently, photoactivity has been discovered by showing that pigments isolated from Cortinarius uliginosus produce singlet oxygen under irradiation. To test if this phenomenon is limited to dermocyboid Cortinarii, six colourful Cortinarius species belonging to different classical subgenera (i.e., Dermocybe, Leprocybe, Myxacium, Phlegmacium, and Telamonia) were investigated. Fungal extracts were explored by the combination of in vitro photobiological methods, UHPLC coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2), feature-based molecular networking (FBMN), and metabolite dereplication techniques. The fungi C. rubrophyllus (Dermocybe) and C. xanthophyllus (Phlegmacium) exhibited promising photobiological activity in a low concentration range (1-7 µg/mL). Using UHPLC-HRMS2-based metabolomic tools, the underlying photoactive principle was investigated. Several monomeric and dimeric anthraquinones were annotated as compounds responsible for the photoactivity. Furthermore, the results showed that light-induced activity is not restricted to a single subgenus, but rather is a trait of Cortinarius species of different phylogenetic lineages and is linked to the presence of fungal anthraquinones. This study highlights the genus Cortinarius as a promising source for novel photopharmaceuticals. Additionally, we showed that putative dereplication of natural photosensitizers can be done by FBMN.
Collapse
Affiliation(s)
- Fabian Hammerle
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, CCB—Innrain 80/82, 6020 Innsbruck, Austria;
| | - Luis Quirós-Guerrero
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (L.Q.-G.); (A.R.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Adriano Rutz
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (L.Q.-G.); (A.R.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (L.Q.-G.); (A.R.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Harald Schöbel
- Department of Biotechnology, MCI—The Entrepreneurial School, Maximilianstraße 2, 6020 Innsbruck, Austria;
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;
| | - Bianka Siewert
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, CCB—Innrain 80/82, 6020 Innsbruck, Austria;
| |
Collapse
|
29
|
Dima B, Liimatainen K, Niskanen T, Bojantchev D, Harrower E, Papp V, Nagy LG, Kovács GM, Ammirati JF. Type studies and fourteen new North American species of Cortinarius section Anomali reveal high continental species diversity. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01738-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractSection Anomali is a species-rich group in North America belonging to Cortinarius, the most diverse genus in the Agaricales. This study is based on extensive morphological investigations and molecular methods using 191 nrDNA ITS sequence data and recovered 43 phylogenetic species from which 14 are described here as new to science. We sequenced ten type materials which belonged to eight species. The synonymy of C. caesiellus with C. albidipes and C. copakensis with C. albocyaneus is proposed here. The North American occurrence of four species (C. albocyaneus, C. anomalus, C. caninus, and C. tabularis), so far known only from Europe, was confirmed. Thirteen species were not formally described here due to lack of relevant information. An identification key to the known Anomali species in North America is provided.
Collapse
|
30
|
Janowski D, Nara K. Unique host effect of Tilia japonica on ectomycorrhizal fungal communities independent of the tree’s dominance: A rare example of a generalist host? Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
31
|
Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini AJ, Gorjón SP, Gunde-Cimerman N, Hyde KD, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón JP, Verbeken A, Vizzini A, Yurkov AM, Zamora JC, Zhao RL. Delimiting species in Basidiomycota: a review. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Xie ML, Chen JL, Phukhamsakda C, Dima B, Fu YP, Ji RQ, Wang K, Wei TZ, Li Y. Cortinarius subsalor and C. tibeticisalor spp. nov., two new species from the section Delibuti from China. PeerJ 2021; 9:e11982. [PMID: 34616595 PMCID: PMC8459733 DOI: 10.7717/peerj.11982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
Cortinarius subsalor and C. tibeticisalor, belonging to the section Delibuti, are described from China as new to science. Cortinarius subsalor has been found to be associated with Lithocarpus trees in subtropical China and resembling C. salor, but it differs from the later by having slender basidiomata and the narrower basidiospores. Cortinarius tibeticisalor was collected from eastern Tibetan Plateau, associated with Abies. It differs from other species within sect. Delibuti by having olive tinge of mature or dried basidiomata and bigger basidiospores. The molecular data also support C. subsalor and C. tibeticisalor as new species. The phylogenetic analyses and biogeography of sect. Delibuti are discussed and a key to the species of this section currently known in the world is provided.
Collapse
Affiliation(s)
- Meng-Le Xie
- Life Science College, Northeast Normal University, Changchun, Jilin, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun-Liang Chen
- Science and Technology Research Center of Edible Fungi, Lishui, Zhejiang, China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Yong-Ping Fu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui-Qing Ji
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Ke Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Zheng Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Life Science College, Northeast Normal University, Changchun, Jilin, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
33
|
Nouhra E, Kuhar F, Truong C, Pastor N, Crespo E, Mujic A, Caiafa MV, Smith ME. Thaxterogaster revisited: A phylogenetic and taxonomic overview of sequestrate Cortinarius from Patagonia. Mycologia 2021; 113:1022-1055. [PMID: 34236939 DOI: 10.1080/00275514.2021.1894535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the Patagonian region, Cortinarius is the most diverse and abundant genus of ectomycorrhizal fungi with at least 250 species. Sequestrate forms were until recently documented within the genus Thaxterogaster, a genus now known to be polyphyletic, and many were consequently transferred to Cortinarius. Original descriptions were mostly available in German and Spanish and interpretations of morphological structures outdated. Despite recent advances in Cortinarius systematics, the current classification, diversity, and ecology of sequestrate "cortinarioid" fungi in Patagonia remain unclear. The objective of this study was to provide an update on sequestrate Cortinarius of southern South America. We documented each species with morphological descriptions, photographs, basidiospore scanning electron microscopy (SEM) images, and molecular characterization using nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and nuc 28S rDNA (28S) sequence data. Original descriptions of taxa were also translated to English and revised based on fresh collections. We documented 24 species from Patagonia based on molecular data and conducted morphological and phylogenetic analysis for 18 previously described species based on type and reference specimens. In addition, we formally described two new species. Four additional taxa were provisionally determined as new but require further study. New ITS sequence data were produced from eight type specimens. We also provide a new name, Cortinarius gloiodes, nom. nov., for the taxon previously described as Thaxterogaster gliocyclus. In addition to the species treated in detail, we provided additional reference information and discussion on six described species that remained incompletely known or for which no recent collections were found. Of the 24 taxa documented from Patagonia, 15 species were assigned to 12 current sections in the genus Cortinarius. Analysis of spore ultrastructure showed that sequestrate forms of Patagonian Cortinarius lack a true perisporium.
Collapse
Affiliation(s)
- Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Casilla de correo 495, Córdoba 5000, Argentina
| | - Francisco Kuhar
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Casilla de correo 495, Córdoba 5000, Argentina
| | - Camille Truong
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004, Australia
| | - Nicolás Pastor
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Casilla de correo 495, Córdoba 5000, Argentina
| | - Esteban Crespo
- Cátedra de Diversidad Vegetal I, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, CP 5700, San Luis, Argentina
| | - Alija Mujic
- Department of Biology, California State University Fresno, Fresno, California 93740.,Department of Plant Pathology, University of Florida, PO BOX 110680, Gainesville, Florida 32611
| | - Marcos V Caiafa
- Department of Plant Pathology, University of Florida, PO BOX 110680, Gainesville, Florida 32611
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, PO BOX 110680, Gainesville, Florida 32611
| |
Collapse
|
34
|
The bacterial and fungal nest microbiomes in populations of the social spider Stegodyphus dumicola. Syst Appl Microbiol 2021; 44:126222. [PMID: 34146923 DOI: 10.1016/j.syapm.2021.126222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/09/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
Social spiders of the species Stegodyphus dumicola live in communal nests with hundreds of individuals and are characterized by extremely low species-wide genetic diversity. The lack of genetic diversity in combination with group living imposes a potential threat for infection by pathogens. We therefore proposed that specific microbial symbionts inhabiting the spider nests may provide antimicrobial defense. To compare the bacterial and fungal diversity in 17 nests from three different locations in Namibia, we used 16S rRNA gene and internal transcribed spacer (ITS2) sequencing. The nest microbiomes differed between geographically distinct spider populations and appeared largely determined by the local environment. Nevertheless, we identified a core microbiome consisting of four bacterial genera (Curtobacterium, Modestobacter, Sphingomonas, Massilia) and four fungal genera (Aureobasidium, Didymella, Alternaria, Ascochyta), which likely are selected from surrounding soil and plants by the nest environment. We did not find indications for a strain- or species-specific symbiosis in the nests. Isolation of bacteria and fungi from nest material retrieved a few bacterial strains with antimicrobial activity but a number of antimicrobial fungi, including members of the fungal core microbiome. The significance of antimicrobial taxa in the nest microbiome for host protection remains to be shown.
Collapse
|
35
|
Loose Ends in the Cortinarius Phylogeny: Five New Myxotelamonoid Species Indicate a High Diversity of These Ectomycorrhizal Fungi with South American Nothofagaceae. Life (Basel) 2021; 11:life11050420. [PMID: 34063115 PMCID: PMC8148173 DOI: 10.3390/life11050420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
This paper is a contribution to the current knowledge of taxonomy, ecology and distribution of South American Cortinarius (Pers.) Gray. Cortinarius is among the most widely distributed and species-rich basidiomycete genera occurring with South American Nothofagaceae and species are found in many distinct habitats, including shrublands and forests. Due to their ectomycorrhizal role, Cortinarius species are critical for nutrient cycling in forests, especially at higher latitudes. Some species have also been reported as edible fungi with high nutritional quality. Our aim is to unravel the taxonomy of selected Cortinarius belonging to phlegmacioid and myxotelamonioid species based on morphological and molecular data. After widely sampling Cortinarius specimens in Patagonian Nothofagaceae forests and comparing them to reference collections (including holotypes), we propose five new species of Cortinarius in this work. Phylogenetic analyses of concatenated rDNA ITS-LSU and RPB1 sequences failed to place these new species into known Cortinarius sections or lineages. These findings highlight our knowledge gaps regarding the fungal diversity of South American Nothofagaceae forests. Due to the high diversity of endemic Patagonian taxa, it is clear that the South American Cortinarius diversity needs to be discovered and described in order to understand the evolutionary history of Cortinarius on a global scale.
Collapse
|
36
|
|
37
|
Wang N, Zhao Z, Gao J, Tian E, Yu W, Li H, Zhang J, Xie R, Zhao X, Chen A. Rapid and Visual Identification of Chlorophyllum molybdites With Loop-Mediated Isothermal Amplification Method. Front Microbiol 2021; 12:638315. [PMID: 33815325 PMCID: PMC8013719 DOI: 10.3389/fmicb.2021.638315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/10/2021] [Indexed: 11/14/2022] Open
Abstract
Chlorophyllum molybdites is a kind of common poisonous mushroom in China that is widely distributed in different areas. Food poisoning caused by accidentally eating C. molybdites has become more frequent in recent years. In 2019, there were 55 food poisoning incidents caused by eating this mushroom in China. Mushroom poisoning continues to be a common health issue of global concern. When mushroom poisoning occurs, an effective, simple, and rapid detection method is required for accurate clinical treatment or forensic analysis. For the first time, we established a loop-mediated isothermal amplification (LAMP) assay for the visual detection of C. molybdites. A set of specific LAMP primers was designed, and the specificity was confirmed against 43 different mushroom species. The LAMP method could detect as low as 1 pg of genomic DNA. Boiled mushrooms and artificial gastric-digested mushroom samples were prepared to test the applicability of the method, and the results showed that as low as 1% C. molybdites in boiled and digested samples could be successfully detected. The LAMP method can also be completed within 45 min, and the reaction results could be directly observed based on a color change under daylight by the naked eye. Therefore, the LAMP assay established in this study provides an accurate, sensitive, rapid, and low-cost method for the detection of C. molybdites.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyong Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Enjing Tian
- Institute of Mycology, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Jilin, China
| | - Wenjie Yu
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruibin Xie
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyan Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ailiang Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
McPolin MC, Kranabetter JM. Influence of endemic versus cosmopolitan species on the local assembly of ectomycorrhizal fungal communities. THE NEW PHYTOLOGIST 2021; 229:2395-2399. [PMID: 33091170 DOI: 10.1111/nph.17015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Affiliation(s)
- M Claire McPolin
- Centre for Forest Biology, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, PO Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada
| |
Collapse
|
39
|
|
40
|
Rahimi MJ, Cai F, Grujic M, Chenthamara K, Druzhinina IS. Molecular Identification of Trichoderma reesei. Methods Mol Biol 2021; 2234:157-175. [PMID: 33165788 DOI: 10.1007/978-1-0716-1048-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungi comprise one of the most diverse groups of eukaryotes with many cryptic species that are difficult to identify. In this chapter, we detail a protocol for the molecular identification of the most industrially relevant species of Trichoderma-T. reesei. We first describe how a single spore culture should be isolated and used for the sequencing of the diagnostic fragment of the tef1 gene. Then, we provide two alternative methods that can be used for molecular identification and offer the diagnostic oligonucleotide hallmark of the tef1 sequence that is present in sequences of all T. reesei strains known to date and that is therefore suitable for reliable and straightforward identification.
Collapse
Affiliation(s)
- Mohammad J Rahimi
- Fungal Genomics Laboratory (FungiG), The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Feng Cai
- Fungal Genomics Laboratory (FungiG), The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Marica Grujic
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Irina S Druzhinina
- Fungal Genomics Laboratory (FungiG), The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria.
| |
Collapse
|
41
|
Wu F, Li SJ, Dong CH, Dai YC, Papp V. The Genus Pachyma (Syn. Wolfiporia) Reinstated and Species Clarification of the Cultivated Medicinal Mushroom "Fuling" in China. Front Microbiol 2020; 11:590788. [PMID: 33424793 PMCID: PMC7793888 DOI: 10.3389/fmicb.2020.590788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
The fungus "Fuling" has been used in Chinese traditional medicine for more than 2000 years, and its sclerotia have a wide range of biological activities including antitumour, immunomodulation, anti-inflammation, antioxidation, anti-aging etc. This prized medicinal mushroom also known as "Hoelen" is resurrected from a piece of pre-Linnean scientific literature. Fries treated it as Pachyma hoelen Fr. and mentioned that it was cultivated on pine trees in China. However, this name had been almost forgotten, and Poria cocos (syn. Wolfiporia cocos), originally described from North America, and known as "Tuckahoe" has been applied to "Fuling" in most publications. Although Merrill mentioned a 100 years ago that Asian Pachyma hoelen and North American P. cocos are similar but different, no comprehensive taxonomical studies have been carried out on the East Asian Pachyma hoelen and its related species. Based on phylogenetic analyses and morphological examination on both the sclerotia and the basidiocarps which are very seldomly developed, the East Asian samples of Pachyma hoelen including sclerotia, commercial strains for cultivation and fruiting bodies, nested in a strongly supported, homogeneous lineage which clearly separated from the lineages of North American Wolfiporia cocos and other species. So we confirm that the widely cultivated "Fuling" Pachyma hoelen in East Asia is not conspecific with the North American Wolfiporia cocos. Based on the changes in Art. 59 of the International Code of Nomenclature for algae, fungi, and plants, the generic name Pachyma, which was sanctioned by Fries, has nomenclatural priority (ICN, Art. F.3.1), and this name well represents the economically important stage of the generic type. So we propose to use Pachyma rather than Wolfiporia, and subsequently Pachyma hoelen and Pachyma cocos are the valid names for "Fuling" in East Asia and "Tuckahoe" in North America, respectively. In addition, a new combination, Pachyma pseudococos, is proposed. Furthermore, it seems that Pachyma cocos is a species complex, and that three species exist in North America.
Collapse
Affiliation(s)
- Fang Wu
- Institute of Microbilogy, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shou-Jian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cai-Hong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Viktor Papp
- Institute of Horticultural Plant Biology, Szent István University, Budapest, Hungary
| |
Collapse
|
42
|
Vohník M. Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. MYCORRHIZA 2020; 30:671-695. [PMID: 33043410 PMCID: PMC7548138 DOI: 10.1007/s00572-020-00989-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/14/2020] [Indexed: 05/20/2023]
Abstract
Despite decades of intensive research (especially from 1970s to 1990s), the ericoid mycorrhizal (ErM) hair root is still largely terra incognita and this simplified guide is intended to revive and promote the study of its mycobiota. Basic theoretical knowledge on the ErM symbiosis is summarized, followed by practical advices on Ericaceae root sample collection and handling, microscopic observations and photo-documentation of root fungal colonization, mycobiont isolation, maintenance and identification and resynthesis experiments with ericoid plants. The necessity of a proper selection of the root material and its surface sterilization prior to mycobiont isolation is stressed, together with the need of including suitable control treatments in inoculation experiments. The culture-dependent approach employing plating of single short (~ 2 mm) hair root segments on nutrient media is substantiated as a useful tool for characterization of Ericaceae root-associated fungal communities; it targets living mycelium and provides metabolically active cultures that can be used in physiological experiments and taxonomic studies, thus providing essential reference material for culture-independent approaches. On the other hand, it is stressed that not every mycobiont isolated from an ericoid hair root necessarily represent an ErM fungus. Likewise, not every intracellular hyphal coil formed in the Ericaceae rhizodermis necessarily represents the ErM symbiosis. Taxonomy of the most important ericoid mycobionts is updated, mutualism in the ErM symbiosis is briefly discussed from the mycobiont perspective, and some interesting lines of possible future research are highlighted.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, 252 43, Czech Republic.
| |
Collapse
|
43
|
Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun G, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov Y, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de Lira CRS, Liu JK(J, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren Y, Ruiz RFC, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00461-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Mission impossible completed: unlocking the nomenclature of the largest and most complicated subgenus of Cortinarius, Telamonia. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00459-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractSo far approximately 144,000 species of fungi have been named but sequences of the majority of them do not exist in the public databases. Therefore, the quality and coverage of public barcode databases is a bottleneck that hinders the study of fungi. Cortinarius is the largest genus of Agaricales with thousands of species world-wide. The most diverse subgenus in Cortinarius is Telamonia and its species have been considered one of the most taxonomically challenging in the Agaricales. Its high diversity combined with convergent, similar appearing taxa have earned it a reputation of being an impossible group to study. In this study a total of 746 specimens, including 482 type specimens representing 184 species were sequenced. Also, a significant number of old types were successfully sequenced, 105 type specimens were over 50 years old and 18 type specimens over 100 years old. Altogether, 20 epi- or neotypes are proposed for recently commonly used older names. Our study doubles the number of reliable DNA-barcodes of species of C. subgenus Telamonia in the public sequence databases. This is also the first extensive phylogenetic study of the subgenus. A majority of the sections and species are shown in a phylogenetic context for the first time. Our study shows that nomenclatural problems, even in difficult groups like C. subgenus Telamonia, can be solved and consequently identification of species based on ITS barcodes becomes an easy task even for non-experts of the genus.
Collapse
|
45
|
Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K, Buegger F, Padari A, Hagh-Doust N, Mikryukov V, Gohar D, Amiri R, Hiiesalu I, Lutter R, Rosenvald R, Rähn E, Adamson K, Drenkhan T, Tullus H, Jürimaa K, Sibul I, Otsing E, Põlme S, Metslaid M, Loit K, Agan A, Puusepp R, Varik I, Kõljalg U, Abarenkov K. Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Front Microbiol 2020; 11:1953. [PMID: 33013735 PMCID: PMC7510051 DOI: 10.3389/fmicb.2020.01953] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 01/16/2023] Open
Abstract
Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Zoological Institute, Technische Universität Braunschweig, Brunswick, Germany
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Karin Pritsch
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Franz Buegger
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Allar Padari
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Niloufar Hagh-Doust
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vladimir Mikryukov
- Chair of Forest Management Planning and Wood Processing Technologies, Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Rasekh Amiri
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Indrek Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Reimo Lutter
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Raul Rosenvald
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Elisabeth Rähn
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Kalev Adamson
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Tiia Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia.,Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Hardi Tullus
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Katrin Jürimaa
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Ivar Sibul
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Eveli Otsing
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sergei Põlme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marek Metslaid
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Kaire Loit
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Ahto Agan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Rasmus Puusepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Inge Varik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Natural History Museum and Botanical Garden, University of Tartu, Tartu, Estonia
| | - Kessy Abarenkov
- Natural History Museum and Botanical Garden, University of Tartu, Tartu, Estonia
| |
Collapse
|
46
|
Xie ML, Wei TZ, Fu YP, Li D, Qi LL, Xing PJ, Cheng GH, Ji RQ, Li Y. Three new species of Cortinarius subgenus Telamonia (Cortinariaceae, Agaricales) from China. MycoKeys 2020; 69:91-109. [PMID: 32765184 PMCID: PMC7381714 DOI: 10.3897/mycokeys.69.49437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/23/2020] [Indexed: 11/12/2022] Open
Abstract
Cortinarius is an important ectomycorrhizal genus that forms a symbiotic relationship with certain trees, shrubs and herbs. Recently, we began studying Cortinarius in China and here we describe three new species of Cortinarius subg. Telamonia based on morphological and ecological characteristics, together with phylogenetic analyses. Cortinariuslaccariphyllussp. nov. (section Colymbadini) is associated with broadleaf trees, with strongly hygrophanous basidiomata, special Laccaria-like lamellae and white and extremely sparse universal veil. Cortinariusneotorvussp. nov. (section Telamonia) is associated with broadleaf trees and is easily confused with C.torvus, but can be distinguished by the colour of the fresh basidiomes and the stipe usually somewhat tapering towards the base. Cortinariussubfuscoperonatussp. nov. (section Fuscoperonati) is associated with coniferous trees, with subglobose to broadly ellipsoid spores and is closely related to C.fuscoperonatus. A key to the new species and similar species in sections Colymbadini, Telamonia and Fuscoperonati is provided.
Collapse
Affiliation(s)
- Meng-Le Xie
- Life Science College, Northeast Normal University, Changchun 130024, China Jilin Agricultural University Changchun China.,Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China Northeast Normal University Changchun China
| | - Tie-Zheng Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Institute of Microbiology Beijing China
| | - Yong-Ping Fu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China Northeast Normal University Changchun China
| | - Dan Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China Northeast Normal University Changchun China
| | - Liang-Liang Qi
- Microbiology Research Institute, Guangxi Academy of Agriculture Sciences, Nanning, 530007, China Guangxi Academy of Agriculture Sciences Nanning China
| | - Peng-Jie Xing
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China Northeast Normal University Changchun China
| | - Guo-Hui Cheng
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China Shenyang Agricultural University Shenyang China.,Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China Northeast Normal University Changchun China
| | - Rui-Qing Ji
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China Northeast Normal University Changchun China
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China Northeast Normal University Changchun China.,Life Science College, Northeast Normal University, Changchun 130024, China Jilin Agricultural University Changchun China
| |
Collapse
|
47
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
48
|
Nilsen AR, Wang XY, Soop K, Cooper JA, Ridley GS, Wallace M, Summerfield TC, Brown CM, Orlovich DA. Purple haze: Cryptic purple sequestrate Cortinarius in New Zealand. Mycologia 2020; 112:588-605. [PMID: 32315246 DOI: 10.1080/00275514.2020.1730120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CORTINARIUS is a species-rich ectomycorrhizal genus containing taxa that exhibit agaricoid or sequestrate basidiome morphologies. In New Zealand, one of the most recognizable and common Cortinarius species is the purple sequestrate fungus, C. porphyroideus. We used genome skimming of the almost 100-y-old type specimen from C. porphyroideus to obtain the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) and partial nuc rDNA 28S (28S) sequences. The phylogenetic position of C. porphyroideus was established, and we found that it represents a rarely collected species. Purple sequestrate Cortinarius comprise multiple cryptic species in several lineages. We describe four new species of Cortinarius with strong morphological similarity to C. porphyroideus: Cortinarius diaphorus, C. minorisporus, C. purpureocapitatus, and C. violaceocystidiatus. Based on molecular evidence, Thaxterogaster viola is recognized as Cortinarius violaceovolvatus var. viola. These species are associated with Nothofagus (southern beech) and have very similar morphology to C. porphyroideus but are all phylogenetically distinct based on molecular data.
Collapse
Affiliation(s)
- Andy R Nilsen
- Department of Botany, University of Otago , PO Box 56, Dunedin 9054, New Zealand
| | - Xin Yue Wang
- Department of Microbiology, University of Otago , Dunedin, New Zealand
| | - Karl Soop
- Department of Botany, Swedish Museum of Natural History , Stockholm, Sweden
| | | | - Geoff S Ridley
- Manaaki Whenua-Landcare Research , Wellington, New Zealand
| | | | - Tina C Summerfield
- Department of Botany, University of Otago , PO Box 56, Dunedin 9054, New Zealand
| | - Chris M Brown
- Department of Biochemistry, University of Otago , Dunedin, New Zealand
| | - David A Orlovich
- Department of Botany, University of Otago , PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
49
|
Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 2020; 39:107462. [DOI: 10.1016/j.biotechadv.2019.107462] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
|
50
|
Liimatainen K, Niskanen T, San-Fabian B, Mujic AB, Peintner U, Dresch P, Furci G, Nouhra E, Matheny PB, Smith ME. Cortinarius section Thaumasti in South American Nothofagaceae forests. Mycologia 2020; 112:329-341. [PMID: 31910130 DOI: 10.1080/00275514.2019.1689763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We studied the South American species of Cortinarius section Thaumasti based on morphological and molecular data. Members of this group can easily be identified in the field because the basidiomata are small and Phlegmacium-like with a bulbous stipe and the universal veil in most species forms a distinct volva at the base of the stipe. The phylogenetic delimitation of the clade was mostly in concordance with the earlier, morphology-based grouping of the South American taxa except that C. chrysophaeus was resolved outside of the clade. Altogether nine species were recognized in the section. Four species, C. chlorophanus, C. coleopus, C. cosmoxanthus, and C. vaginatus, were previously described by other authors, whereas three species, C. chlorosplendidus, C. olivaceovaginatus, and C. subcosmoxanthus, are described here as new. We were able to identify two remaining taxa, but we do not have sufficient morphological data to allow for a formal description. All of the species in C. section Thaumasti form ectomycorrhizal associations with Nothofagaceae. They have been documented from South America and New Zealand. The Patagonian species are considered endemic to the region. A key to the described species is provided.
Collapse
Affiliation(s)
- Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, United Kingdom
| | - Tuula Niskanen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, United Kingdom
| | - Beatriz San-Fabian
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, United Kingdom
| | - Alija B Mujic
- Department of Biology, California State University Fresno, 2555 East San Ramon Avenue M/S SB73, Fresno, California 93740
| | - Ursula Peintner
- Institute of Microbiology, University Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Philipp Dresch
- Institute of Microbiology, University Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Giuliana Furci
- Fundación Fungi, José Zapiola 8240 E, La Reina, Santiago, Chile
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, 334 Hesler Biology Building, Knoxville, Tennessee 37996
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville, Florida 32611
| |
Collapse
|