1
|
Wang M, Lamit LJ, Lilleskov EA, Basiliko N, Moore TR, Bubier JL, Guo G, Juutinen S, Larmola T. Peatland Fungal Community Responses to Nutrient Enrichment: A Story Beyond Nitrogen. GLOBAL CHANGE BIOLOGY 2024; 30:e17562. [PMID: 39492595 DOI: 10.1111/gcb.17562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Anthropogenically elevated inputs of nitrogen (N), phosphorus (P), and potassium (K) can affect the carbon (C) budget of nutrient-poor peatlands. Fungi are intimately tied to peatland C budgets due to their roles in organic matter decomposition and symbioses with primary producers; however, the influence of fertilization on peatland fungal composition and diversity remains unclear. Here, we examined the effect of fertilization over 10 years on fungal diversity, composition, and functional guilds along an acrotelm (10-20 cm), mesotelm (30-40 cm), and catotelm (60-70 cm) depth gradient at the Mer Bleue bog, Canada. Simultaneous N and PK additions decreased the relative abundance of ericoid mycorrhizal fungi and increased ectomycorrhizal fungi and lignocellulose-degrading fungi. Fertilization effects were not more pronounced in the acrotelm relative to the catotelm, nor was there a shift toward nitrophilic taxa after N addition. The direct effect of fertilization significantly decreased the abundance of Sphagnum-associated fungi, primarily owing to the overarching role of limiting nutrients rather than a decline in Sphagnum cover. Increased nutrient loading may threaten peatland C stocks if lignocellulose-degrading fungi become abundant and accelerate decomposition of recalcitrant organic matter. Additionally, future changes in plant communities, strong water table fluctuations, and peat subsidence after long-term nutrient loading may also influence fungal functional guilds and depth-dependencies of fungal community structure.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, Jilin, China
| | - Louis J Lamit
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Erik A Lilleskov
- USDA Forest Service, Northern Research Station, Houghton, Michigan, USA
| | - Nathan Basiliko
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
- Vale Living With Lakes Centre, Laurentian University, Sudbury, Ontario, Canada
| | - Tim R Moore
- Department of Geography, McGill University, Montreal, Quebec, Canada
| | - Jill L Bubier
- Department of Environmental Studies, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Galen Guo
- Vale Living With Lakes Centre, Laurentian University, Sudbury, Ontario, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sari Juutinen
- Finnish Meteorological Institute, Climate System Research, Helsinki, Finland
| | - Tuula Larmola
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
2
|
Muturi EJ, Dunlap CA, Perry WL, Rhykerd RL. Cover crop species influences soil fungal species richness and community structure. PLoS One 2024; 19:e0308668. [PMID: 39264892 PMCID: PMC11392335 DOI: 10.1371/journal.pone.0308668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 09/14/2024] Open
Abstract
Despite the well documented link between cover cropping and soil microbiology, the influence of specific cover crop species on soil microbes remains poorly understood. We evaluated how soil fungal communities in a no till system respond to four cover crop treatments: no cover crop (REF), cereal ryegrass (CRYE), wild pennycress (WPEN), and a mix of pea, clover, radish, and oat (PCRO). Soil samples were collected from experimental plots following termination of cover crops from depths of 0-2 cm and 2-4 cm where cover crops had significantly increased soil organic matter. There was no significant interaction between soil depth and cover crop treatment on either alpha diversity or beta diversity. All cover crop treatments (CRYE, PCRO, and WPEN) enhanced soil fungal richness but only CRYE enhanced soil fungal diversity and altered the fungal community structure. Soil depth altered the fungal community structure but had no effect on fungal diversity and richness. Genus Fusarium which includes some of the most economically destructive pathogens was more abundant in REF and PCRO treatments compared to CRYE and WPEN. In contrast, genus Mortierella which is known to promote plant health was more abundant in all cover crop treatments relative to the REF. These findings demonstrate that cover cropping can increase soil fungal species richness and alter fungal community structure, potentially promoting the abundance of beneficial fungi and reducing the abundance of some plant pathogens within the genus Fusarium. These effects are dependent on cover crop species, a factor that should be considered when selecting appropriate cover crops for a particular cropping system.
Collapse
Affiliation(s)
- Ephantus J Muturi
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, Illinois, United States of America
| | - Christopher A Dunlap
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, Illinois, United States of America
| | - William L Perry
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Robert L Rhykerd
- Department of Agriculture, Illinois State University, Normal, Illinois, United States of America
| |
Collapse
|
3
|
Runnel K, Tamm H, Kohv M, Pent M, Vellak K, Lodjak J, Lõhmus A. Short-term responses of the soil microbiome and its environment indicate an uncertain future of restored peatland forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118879. [PMID: 37659362 DOI: 10.1016/j.jenvman.2023.118879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Restoring peatland ecosystems involves significant uncertainty due to complex ecological and socio-economic feedbacks as well as alternative stable ecological states. The primary aim of this study was to investigate to what extent the natural functioning of drainage-affected peat soils can be restored, and to examine role of soil microbiota in this recovery process. To address these questions, a large-scale before-after-control-impact (BACI) experiment was conducted in drained peatland forests in Estonia. The restoration treatments included ditch closure and partial tree cutting to raise the water table and restore stand structure. Soil samples and environmental data were collected before and 3-4 years after the treatments; the samples were subjected to metabarcoding to assess fungal and bacterial communities and analysed for their chemical properties. The study revealed some indicators of a shift toward the reference state (natural mixotrophic bog-forests): the spatial heterogeneity in soil fungi and bacteria increased, as well as the relative abundance of saprotrophic fungi; while nitrogen content in the soil decreased significantly. However, a general stability of other physico-chemical properties (including pH remaining elevated by ca. one unit) and annual fluctuations in the microbiome suggested that soil recovery will remain incomplete and patchy for decades. The main implication is the necessity to manage hydrologically restored peatland forests while explicitly considering an uncertain future and diverse outcomes. This includes their continuous monitoring and the adoption of a precautionary approach to prevent further damage both to these ecosystems and to surrounding intact peatlands.
Collapse
Affiliation(s)
- Kadri Runnel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia.
| | - Heidi Tamm
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Marko Kohv
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Kai Vellak
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Jaanis Lodjak
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Asko Lõhmus
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
4
|
Tian J, Huang X, Chen H, Kang X, Wang Y. Homogeneous selection is stronger for fungi in deeper peat than in shallow peat in the low-temperature fens of China. ENVIRONMENTAL RESEARCH 2022; 212:113312. [PMID: 35513061 DOI: 10.1016/j.envres.2022.113312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Peatlands have accumulated enormous amounts of carbon over millennia, and climate changes threatens the release of this carbon into the atmosphere. Fungi are crucial drivers of global carbon cycling because they are the principal decomposer of organic matter in peatlands. However, the fungal community composition and ecological preferences in peat remain unclear, which restricts our ability to evaluate the role of the fungal community in peat biogeochemical functions. We investigated 54 soils from 6 low-temperature peatlands across China to fill this knowledge gap. The peat was divided into above-water table (AWT) and below-water table (BWT) layers based on the water table fluctuation. We investigated fungal community assembly processes and drivers for each peat layer. The results showed that fungal communities differed significantly among peat layers. The relative abundance of symbiotrophs was significantly higher in the AWT (17.4%) than in the BWT (9.0%), while the abundances of yeast and litter saprotrophs were obviously lower in the AWT than in the BWT. Our results revealed that the assemblage of both fungal taxonomic and phylogenetic communities was mainly governed by stochastic processes in both AWT (87.8%) and BWT (58.6%) layers. However, in the BWT, the relative importance of deterministic processes (28.4%) significantly increased, indicating a potential deterministic environmental selection induced by permanently anaerobic condition. Mean annual precipitation and mean annual temperature were the most critical drives for the assemblage of the fungal community in the BWT. These observations collectively indicate that fungal community assembly is depth-dependent, implying different community assembly mechanisms and ecological functions along the peat profile. These findings highlight the importance of climate driven deep peat fungal community composition assemblages and suggest the potential to project the changes in fungal diversity with ongoing climate change.
Collapse
Affiliation(s)
- Jianqing Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xinya Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanfen Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Chen KH, Nelson J. A scoping review of bryophyte microbiota: diverse microbial communities in small plant packages. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4496-4513. [PMID: 35536989 DOI: 10.1093/jxb/erac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Plant health depends not only on the condition of the plant itself but also on its diverse community of microbes, or microbiota. Just like the better-studied angiosperms, bryophytes (mosses, liverworts, and hornworts) harbor diverse communities of bacteria, archaea, fungi, and other microbial eukaryotes. Bryophytes are increasingly recognized as important model systems for understanding plant evolution, development, physiology, and symbiotic interactions. Much of the work on bryophyte microbiota in the past focused on specific symbiont types for each bryophyte group, but more recent studies are taking a broader view acknowledging the coexistence of diverse microbial communities in bryophytes. Therefore, this review integrates studies of bryophyte microbes from both perspectives to provide a holistic view of the existing research for each bryophyte group and on key themes. The systematic search also reveals the taxonomic and geographic biases in this field, including a severe under-representation of the tropics, very few studies on viruses or eukaryotic microbes beyond fungi, and a focus on mycorrhizal fungi studies in liverworts. Such gaps may have led to errors in conclusions about evolutionary patterns in symbiosis. This analysis points to a wealth of future research directions that promise to reveal how the distinct life cycles and physiology of bryophytes interact with their microbiota.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jessica Nelson
- Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Hupperts SF, Lilleskov EA. Predictors of taxonomic and functional composition of black spruce seedling ectomycorrhizal fungal communities along peatland drainage gradients. MYCORRHIZA 2022; 32:67-81. [PMID: 35034180 DOI: 10.1007/s00572-021-01060-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Many trees depend on symbiotic ectomycorrhizal fungi for nutrients in exchange for photosynthetically derived carbohydrates. Trees growing in peatlands, which cover 3% of the earth's terrestrial surface area yet hold approximately one-third of organic soil carbon stocks, may benefit from ectomycorrhizal fungi that can efficiently forage for nutrients and degrade organic matter using oxidative enzymes such as class II peroxidases. However, such traits may place a higher carbon cost on both the fungi and host tree. To investigate these trade-offs that might structure peatland ectomycorrhizal fungal communities, we sampled black spruce (Picea mariana (Mill.)) seedlings along 100-year-old peatland drainage gradients in Minnesota, USA, that had resulted in higher soil nitrogen and canopy density. Structural equation models revealed that the relative abundance of the dominant ectomycorrhizal fungal genus, Cortinarius, which is known for relatively high fungal biomass coupled with elevated class II peroxidase potential, was negatively linked to site fertility but more positively affected by recent host stem radial growth, suggesting carbon limitation. In contrast, Cenococcum, known for comparatively lower fungal biomass and less class II peroxidase potential, was negatively linked to host stem radial growth and unrelated to site fertility. Like Cortinarius, the estimated relative abundance of class II peroxidase genes in the ectomycorrhizal community was more related to host stem radial growth than site fertility. Our findings indicate a trade-off between symbiont foraging traits and associated carbon costs that consequently structure seedling ectomycorrhizal fungal communities in peatlands.
Collapse
Affiliation(s)
- Stefan F Hupperts
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Erik A Lilleskov
- Forestry Sciences Laboratory, USDA Forest Service, Northern Research Station, Houghton, MI, USA.
| |
Collapse
|
7
|
Li W, Luo M, Shi R, Feng D, Yang Z, Chen H, Hu B. Variations in bacterial and archaeal community structure and diversity along the soil profiles of a peatland in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2276-2286. [PMID: 34365597 DOI: 10.1007/s11356-021-15774-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
As bacteria and archaea are key components in the ecosystem, information on their dynamics in soil profiles is important for understanding the biogeochemical cycles in peatlands. However, little is known about the vertical distribution patterns of bacteria and archaea in the Bitahai peatland, or about their relationships with soil chemical properties. Here, bacterial and archaeal abundance, diversity, and composition of the Bitahai peatlands at 0-100 cm soil depths were analyzed by sequencing of 16S rRNA genes (Illumina, MiSeq). Soil pH, total C, N, and P concentrations and stoichiometric ratios were also estimated. The results revealed that total C and total N contents, as well as C:P and N:P ratios, significantly increased with increasing peatland soil depths, while total P decreased. The top three dominant phyla were Proteobacteria (39.64%), Acidobacteria (12.93%), and Chloroflexi (12.81%) in bacterial communities, and were Crenarchaeota (58.67%), Thaumarchaeota (14.34%), and Euryarchaeota (10.82%) in archaeal communities in the Bitahai peatland, respectively. The total relative abundance of methanogenic groups and ammonia-oxidizing microorganisms all significantly decreased with soil depth. Both bacterial and archaeal diversities were significantly affected by the soil depth. Soil C, N, and P concentrations and stoichiometric ratios markedly impacted the community structure and diversity in archaea, but not in bacteria. Therefore, these results highlighted that the microbial community structure and diversity depended on soil depth for the Bitahai peatlands, and the factors affecting bacteria and archaea in the Bitahai peatlands were different.
Collapse
Affiliation(s)
- Wei Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, 650091, Kunming, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, 650091, Kunming, China
| | - Mingmo Luo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, 650091, Kunming, China
| | - Rui Shi
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650091, China
| | - Defeng Feng
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, 650224, China.
| | - Zhenan Yang
- College of Life Science, China West Normal University, Nanchong, 637002, China
| | - Huai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bin Hu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, 650091, Kunming, China.
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, 650091, Kunming, China.
| |
Collapse
|
8
|
Lamit LJ, Romanowicz KJ, Potvin LR, Lennon JT, Tringe SG, Chimner RA, Kolka RK, Kane ES, Lilleskov EA. Peatland microbial community responses to plant functional group and drought are depth-dependent. Mol Ecol 2021; 30:5119-5136. [PMID: 34402116 DOI: 10.1111/mec.16125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Peatlands store one-third of Earth's soil carbon, the stability of which is uncertain due to climate change-driven shifts in hydrology and vegetation, and consequent impacts on microbial communities that mediate decomposition. Peatland carbon cycling varies over steep physicochemical gradients characterizing vertical peat profiles. However, it is unclear how drought-mediated changes in plant functional groups (PFGs) and water table (WT) levels affect microbial communities at different depths. We combined a multiyear mesocosm experiment with community sequencing across a 70-cm depth gradient, to test the hypotheses that vascular PFGs (Ericaceae vs. sedges) and WT (high vs. low) structure peatland microbial communities in depth-dependent ways. Several key results emerged. (i) Both fungal and prokaryote (bacteria and archaea) community structure shifted with WT and PFG manipulation, but fungi were much more sensitive to PFG whereas prokaryotes were much more sensitive to WT. (ii) PFG effects were largely driven by Ericaceae, although sedge effects were evident in specific cases (e.g., methanotrophs). (iii) Treatment effects varied with depth: the influence of PFG was strongest in shallow peat (0-10, 10-20 cm), whereas WT effects were strongest at the surface and middle depths (0-10, 30-40 cm), and all treatment effects waned in the deepest peat (60-70 cm). Our results underline the depth-dependent and taxon-specific ways that plant communities and hydrologic variability shape peatland microbial communities, pointing to the importance of understanding how these factors integrate across soil profiles when examining peatland responses to climate change.
Collapse
Affiliation(s)
- Louis J Lamit
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Karl J Romanowicz
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Lynette R Potvin
- USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Susannah G Tringe
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rodney A Chimner
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Randall K Kolka
- USDA Forest Service Northern Research Station, Grand Rapids, Minnesota, USA
| | - Evan S Kane
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA.,USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| | - Erik A Lilleskov
- USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| |
Collapse
|
9
|
The Rhizosphere Responds: Rich Fen Peat and Root Microbial Ecology after Long-Term Water Table Manipulation. Appl Environ Microbiol 2021; 87:e0024121. [PMID: 33811029 DOI: 10.1128/aem.00241-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrologic shifts due to climate change will affect the cycling of carbon (C) stored in boreal peatlands. Carbon cycling in these systems is carried out by microorganisms and plants in close association. This study investigated the effects of experimentally manipulated water tables (lowered and raised) and plant functional groups on the peat and root microbiomes in a boreal rich fen. All samples were sequenced and processed for bacterial, archaeal (16S DNA genes; V4), and fungal (internal transcribed spacer 2 [ITS2]) DNA. Depth had a strong effect on microbial and fungal communities across all water table treatments. Bacterial and archaeal communities were most sensitive to the water table treatments, particularly at the 10- to 20-cm depth; this area coincides with the rhizosphere or rooting zone. Iron cyclers, particularly members of the family Geobacteraceae, were enriched around the roots of sedges, horsetails, and grasses. The fungal community was affected largely by plant functional group, especially cinquefoils. Fungal endophytes (particularly Acephala spp.) were enriched in sedge and grass roots, which may have underappreciated implications for organic matter breakdown and cycling. Fungal lignocellulose degraders were enriched in the lowered water table treatment. Our results were indicative of two main methanogen communities, a rooting zone community dominated by the archaeal family Methanobacteriaceae and a deep peat community dominated by the family Methanomicrobiaceae. IMPORTANCE This study demonstrated that roots and the rooting zone in boreal fens support organisms likely capable of methanogenesis, iron cycling, and fungal endophytic association and are directly or indirectly affecting carbon cycling in these ecosystems. These taxa, which react to changes in the water table and associate with roots and, particularly, graminoids, may gain greater biogeochemical influence, as projected higher precipitation rates could lead to an increased abundance of sedges and grasses in boreal fens.
Collapse
|
10
|
Borg Dahl M, Krebs M, Unterseher M, Urich T, Gaudig G. Temporal dynamics in the taxonomic and functional profile of the Sphagnum-associated fungi (mycobiomes) in a Sphagnum farming field site in Northwestern Germany. FEMS Microbiol Ecol 2020; 96:5917977. [PMID: 33016319 DOI: 10.1093/femsec/fiaa204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
The drainage of peatlands for their agricultural use leads to huge emissions of greenhouse gases. One sustainable alternative is the cultivation of peat mosses after rewetting ('Sphagnum farming'). Environmental parameters of such artificial systems may differ from those of natural Sphagnum ecosystems which host a rich fungal community. We studied the fungal community at a 4 ha Sphagnum farming field site in Northwestern Germany and compared it with that of natural Sphagnum ecosystems. Additionally, we asked if any fungi occur with potentially negative consequences for the commercial production and/or use of Sphagnum biomass. Samples were collected every 3 months within 1 year. High-throughput sequencing of the fungal ITS2 barcode was used to obtain a comprehensive community profile of the fungi. The dominant taxa in the fungal community of the Sphagnum farming field site were all commonly reported from natural Sphagnum ecosystems. While the taxonomic composition showed clear differences between seasons, a stable functional community profile was identified across seasons. Additionally, nutrient supply seems to affect composition of fungal community. Despite a rather high abundance of bryophyte parasites, and the occurrence of both Sphagnum-species-specific and general plant pathogens, their impact on the productivity and usage of Sphagnum biomass as raw material for growing media was considered to be low.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, Partner in the Greifswald Mire Centre, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Matthias Krebs
- Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany
| | - Martin Unterseher
- Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany.,Montessori-Schule, Helsinkiring 5, 17493, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Partner in the Greifswald Mire Centre, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Greta Gaudig
- Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany
| |
Collapse
|
11
|
Kujala K, Mikkonen A, Saravesi K, Ronkanen AK, Tiirola M. Microbial diversity along a gradient in peatlands treating mining-affected waters. FEMS Microbiol Ecol 2019; 94:5066165. [PMID: 30137344 DOI: 10.1093/femsec/fiy145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/02/2018] [Indexed: 01/27/2023] Open
Abstract
Peatlands are used for the purification of mining-affected waters in Northern Finland. In Northern climate, microorganisms in treatment peatlands (TPs) are affected by long and cold winters, but studies about those microorganisms are scarce. Thus, the bacterial, archaeal and fungal communities along gradients of mine water influence in two TPs were investigated. The TPs receive waters rich in contaminants, including arsenic (As), sulfate (SO42-) and nitrate (NO3-). Microbial diversity was high in both TPs, and microbial community composition differed between the studied TPs. Bacterial communities were dominated by Proteobacteria, Actinobacteria, Chloroflexi and Acidobacteria, archaeal communities were dominated by Methanomicrobia and the Candidate phylum Bathyarchaeota, and fungal communities were dominated by Ascomycota (Leotiomycetes, Dothideomycetes, Sordariomycetes). The functional potential of the bacterial and archaeal communities in TPs was predicted using PICRUSt. Sampling points affected by high concentrations of As showed higher relative abundance of predicted functions related to As resistance. Functions potentially involved in nitrogen and SO42- turnover in TPs were predicted for both TPs. The results obtained in this study indicate that (i) diverse microbial communities exist in Northern TPs, (ii) the functional potential of the peatland microorganisms is beneficial for contaminant removal in TPs and (iii) microorganisms in TPs are likely well-adapted to high contaminant concentrations as well as to the Northern climate.
Collapse
Affiliation(s)
- Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, PO Box 4300, FI-90014 Oulu, Finland
| | - Anu Mikkonen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, PO Box 35, FI-40014 University of Jyväskylä, Finland
| | - Karita Saravesi
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Anna-Kaisa Ronkanen
- Water Resources and Environmental Engineering Research Unit, University of Oulu, PO Box 4300, FI-90014 Oulu, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, PO Box 35, FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
12
|
Graham EB, Yang F, Bell S, Hofmockel KS. High Genetic Potential for Proteolytic Decomposition in Northern Peatland Ecosystems. Appl Environ Microbiol 2019; 85:e02851-18. [PMID: 30850433 PMCID: PMC6498154 DOI: 10.1128/aem.02851-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 11/28/2022] Open
Abstract
Nitrogen (N) is a scarce nutrient commonly limiting primary productivity. Microbial decomposition of complex carbon (C) into small organic molecules (e.g., free amino acids) has been suggested to supplement biologically fixed N in northern peatlands. We evaluated the microbial (fungal, bacterial, and archaeal) genetic potential for organic N depolymerization in peatlands at Marcell Experimental Forest (MEF) in northern Minnesota. We used guided gene assembly to examine the abundance and diversity of protease genes and further compared them to those of N fixation (nifH) genes in shotgun metagenomic data collected across depths and in two distinct peatland environments (bogs and fens). Microbial protease genes greatly outnumbered nifH genes, with the most abundant genes (archaeal M1 and bacterial trypsin [S01]) each containing more sequences than all sequences attributed to nifH Bacterial protease gene assemblies were diverse and abundant across depth profiles, indicating a role for bacteria in releasing free amino acids from peptides through depolymerization of older organic material and contrasting with the paradigm of fungal dominance in depolymerization in forest soils. Although protease gene assemblies for fungi were much less abundant overall than those for bacteria, fungi were prevalent in surface samples and therefore may be vital in degrading large soil polymers from fresh plant inputs during the early stage of depolymerization. In total, we demonstrate that depolymerization enzymes from a diverse suite of microorganisms, including understudied bacterial and archaeal lineages, are prevalent within northern peatlands and likely to influence C and N cycling.IMPORTANCE Nitrogen (N) is a common limitation on primary productivity, and its source remains unresolved in northern peatlands that are vulnerable to environmental change. Decomposition of complex organic matter into free amino acids has been proposed as an important N source, but the genetic potential of microorganisms mediating this process has not been examined. Such information can inform possible responses of northern peatlands to environmental change. We show high genetic potential for microbial production of free amino acids across a range of microbial guilds in northern peatlands. In particular, the abundance and diversity of bacterial genes encoding proteolytic activity suggest a predominant role for bacteria in regulating productivity and contrasts with a paradigm of fungal dominance of organic N decomposition. Our results expand our current understanding of coupled carbon and nitrogen cycles in northern peatlands and indicate that understudied bacterial and archaeal lineages may be central in this ecosystem's response to environmental change.
Collapse
Affiliation(s)
- Emily B Graham
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Fan Yang
- Department of Agricultural & Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Sheryl Bell
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
13
|
Schlatter DC, Kahl K, Carlson B, Huggins DR, Paulitz T. Fungal community composition and diversity vary with soil depth and landscape position in a no-till wheat-based cropping system. FEMS Microbiol Ecol 2019; 94:5003378. [PMID: 29800123 DOI: 10.1093/femsec/fiy098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/23/2018] [Indexed: 11/14/2022] Open
Abstract
Soil edaphic characteristics are major drivers of fungal communities, but there is a lack of information on how communities vary with soil depth and landscape position in no-till cropping systems. Eastern Washington is dominated by dryland wheat grown on a highly variable landscape with steep, rolling hills. High-throughput sequencing of fungal ITS1 amplicons was used to characterize fungal communities across soil depth profiles (0 to 100 cm from the soil surface) among distinct landscape positions and aspects across a no-till wheat field. Fungal communities were highly stratified with soil depth, where deeper depths harbored distinct fungal taxa and more variable, less diverse fungal communities. Fungal communities from deep soils harbored a greater portion of taxa inferred to have pathotrophic or symbiotrophic in addition to saprotrophic lifestyles. Co-occurrence networks of fungal taxa became smaller and denser as soil depth increased. In contrast, differences between fungal communities from north-facing and south-facing slopes were relatively minor, suggesting that plant host, tillage, and fertilizer may be stronger drivers of fungal communities than landscape position.
Collapse
Affiliation(s)
- Daniel C Schlatter
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, United States
| | - Kendall Kahl
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844 United States
| | - Bryan Carlson
- USDA-ARS, Northwest Sustainable Agroecosystems Research Unit, Pullman, WA 99164, United States
| | - David R Huggins
- USDA-ARS, Northwest Sustainable Agroecosystems Research Unit, Pullman, WA 99164, United States
| | - Timothy Paulitz
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, United States
| |
Collapse
|