1
|
Waterworth SC, Solomons GM, Kalinski JCJ, Madonsela LS, Parker-Nance S, Dorrington RA. The unique and enigmatic spirochete symbiont of latrunculid sponges. mSphere 2024; 9:e0084524. [PMID: 39570026 DOI: 10.1128/msphere.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
Bacterial symbionts are critical members of many marine sponge holobionts. Some sponge-associated bacterial lineages, such as Poribacteria, sponge-associated unclassified lineage (SAUL), and Tethybacterales, appear to have broad-host ranges and associate with a diversity of sponge species, while others are more species-specific, having adapted to the niche environment of their host. Host-associated spirochete symbionts that are numerically dominant have been documented in several invertebrates including termites, starfish, and corals. However, dominant spirochete populations are rare in marine sponges, having thus far been observed only in Clathrina clathrus and various species within the Latrunculiidae family, where they are co-dominant alongside Tethybacterales symbionts. This study aimed to characterize these spirochetes and their potential role in the host sponge. Analysis of metagenome-assembled genomes from eight latrunculid sponges revealed that these unusual spirochetes are relatively recent symbionts and are phylogenetically distinct from other sponge-associated spirochetes. Functional comparative analysis suggests that the host sponge may have selected for these spirochetes due to their ability to produce terpenoids and/or possible structural contributions.IMPORTANCESouth African latrunculid sponges are host to co-dominant Tethybacterales and Spirochete symbionts. While the Tethybacterales are broad-host range symbionts, the spirochetes have not been reported as abundant in any other marine sponge except Clathrina clathrus. However, spirochetes are regularly the most dominant populations in marine corals and terrestrial invertebrates where they are predicted to serve as beneficial symbionts. Here, we interrogated eight metagenome-assembled genomes of the latrunculid-associated spirochetes and found that these symbionts are phylogenetically distinct from all invertebrate-associated spirochetes. The symbiosis between the spirochetes and their sponge host appears to have been established relatively recently.
Collapse
Affiliation(s)
- Samantha C Waterworth
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Gabriella M Solomons
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | | | - Luthando S Madonsela
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Shirley Parker-Nance
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Environmental Observation Network, Elwandle Coastal Node, Port Elizabeth, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
2
|
Wang X, Ganzert L, Bartholomäus A, Amen R, Yang S, Guzmán CM, Matus F, Albornoz MF, Aburto F, Oses-Pedraza R, Friedl T, Wagner D. The effects of climate and soil depth on living and dead bacterial communities along a longitudinal gradient in Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173846. [PMID: 38871316 DOI: 10.1016/j.scitotenv.2024.173846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Soil bacterial communities play a critical role in shaping soil stability and formation, exhibiting a dynamic interaction with local climate and soil depth. We employed an innovative DNA separation method to characterize microbial assemblages in low-biomass environments such as deserts and distinguish between intracellular DNA (iDNA) and extracellular DNA (eDNA) in soils. This approach, combined with analyses of physicochemical properties and co-occurrence networks, investigated soil bacterial communities across four sites representing diverse climatic gradients (i.e., arid, semi-arid, Mediterranean, and humid) along the Chilean Coastal Cordillera. The separation method yielded a distinctive unimodal pattern in the iDNA pool alpha diversity, increasing from arid to semi-arid climates and decreasing in humid environments, highlighting the rapid feedback of the iDNA community to increasing soil moisture. In the arid region, harsh surface conditions restrict bacterial growth, leading to peak iDNA abundance and diversity occurring in slightly deeper layers than the other sites. Our findings confirmed the association between specialist bacteria and ecosystem-functional traits. We observed transitions from Halomonas and Delftia, resistant to extreme arid environments, to Class AD3 and the genus Bradyrhizobium, associated with plants and organic matter in humid environments. The distance-based redundancy analysis (dbRDA) analysis revealed that soil pH and moisture were the key parameters that influenced bacterial community variation. The eDNA community correlated slightly better with the environment than the iDNA community. Soil depth was found to influence the iDNA community significantly but not the eDNA community, which might be related to depth-related metabolic activity. Our investigation into iDNA communities uncovered deterministic community assembly and distinct co-occurrence modules correlated with unique bacterial taxa, thereby showing connections with sites and key environmental factors. The study additionally revealed the effects of climatic gradients and soil depth on living and dead bacterial communities, emphasizing the need to distinguish between iDNA and eDNA pools.
Collapse
Affiliation(s)
- Xiuling Wang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Lars Ganzert
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Rahma Amen
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Department of Zoology, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Carolina Merino Guzmán
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, BIOREN, Universidad de La Frontera, Temuco 4780000, Chile
| | - Francisco Matus
- Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco 4780000, Chile; Network for Extreme Environmental Research (NEXER), Universidad de La Frontera, Temuco 4780000, Chile
| | - Maria Fernanda Albornoz
- Laboratorio de Investigación de Suelos, Aguas y Bosques (LISAB), Universidad de Concepción, Concepción, Chile
| | - Felipe Aburto
- Pedology and Soil Biogeochemistry Lab, Soil and Crop Sciences Department, Texas A&M University, College Station, TX, USA
| | - Rómulo Oses-Pedraza
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama, Universidad de Atacama (CRIDESAT UDA), Copayapu 484, Copiapó 1530000, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, 37073 Göttingen, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Moreno-Pino M, Manrique-de-la-Cuba MF, López-Rodríguez M, Parada-Pozo G, Rodríguez-Marconi S, Ribeiro CG, Flores-Herrera P, Guajardo M, Trefault N. Unveiling microbial guilds and symbiotic relationships in Antarctic sponge microbiomes. Sci Rep 2024; 14:6371. [PMID: 38493232 PMCID: PMC10944490 DOI: 10.1038/s41598-024-56480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.
Collapse
Affiliation(s)
- Mario Moreno-Pino
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
| | | | | | - Patricio Flores-Herrera
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Mariela Guajardo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile.
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile.
- FONDAP Center IDEAL- Dynamics of High Latitude Marine Ecosystem, Valdivia, Chile.
| |
Collapse
|
4
|
Díez-Vives C, Riesgo A. High compositional and functional similarity in the microbiome of deep-sea sponges. THE ISME JOURNAL 2024; 18:wrad030. [PMID: 38365260 PMCID: PMC10837836 DOI: 10.1093/ismejo/wrad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
Sponges largely depend on their symbiotic microbes for their nutrition, health, and survival. This is especially true in high microbial abundance (HMA) sponges, where filtration is usually deprecated in favor of a larger association with prokaryotic symbionts. Sponge-microbiome association is substantially less understood for deep-sea sponges than for shallow water species. This is most unfortunate, since HMA sponges can form massive sponge grounds in the deep sea, where they dominate the ecosystems, driving their biogeochemical cycles. Here, we assess the microbial transcriptional profile of three different deep-sea HMA sponges in four locations of the Cantabrian Sea and compared them to shallow water HMA and LMA (low microbial abundance) sponge species. Our results reveal that the sponge microbiome has converged in a fundamental metabolic role for deep-sea sponges, independent of taxonomic relationships or geographic location, which is shared in broad terms with shallow HMA species. We also observed a large number of redundant microbial members performing the same functions, likely providing stability to the sponge inner ecosystem. A comparison between the community composition of our deep-sea sponges and another 39 species of HMA sponges from deep-sea and shallow habitats, belonging to the same taxonomic orders, suggested strong homogeneity in microbial composition (i.e. weak species-specificity) in deep sea species, which contrasts with that observed in shallow water counterparts. This convergence in microbiome composition and functionality underscores the adaptation to an extremely restrictive environment with the aim of exploiting the available resources.
Collapse
Affiliation(s)
- Cristina Díez-Vives
- Department of Systems Biology, Centro Nacional de Biotecnología, c/ Darwin, 3, 28049 Madrid, Spain
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
5
|
Botté ES, Bennett H, Engelberts JP, Thomas T, Bell JJ, Webster NS, Luter HM. Future ocean conditions induce necrosis, microbial dysbiosis and nutrient cycling imbalance in the reef sponge Stylissa flabelliformis. ISME COMMUNICATIONS 2023; 3:53. [PMID: 37311801 PMCID: PMC10264452 DOI: 10.1038/s43705-023-00247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/22/2023] [Accepted: 04/14/2023] [Indexed: 06/15/2023]
Abstract
Oceans are rapidly warming and acidifying in the context of climate change, threatening sensitive marine biota including coral reef sponges. Ocean warming (OW) and ocean acidification (OA) can impact host health and associated microbiome, but few studies have investigated these effects, which are generally studied in isolation, on a specific component of the holobiont. Here we present a comprehensive view of the consequences of simultaneous OW and OA for the tropical sponge Stylissa flabelliformis. We found no interactive effect on the host health or microbiome. Furthermore, OA (pH 7.6 versus pH 8.0) had no impact, while OW (31.5 °C versus 28.5 °C) caused tissue necrosis, as well as dysbiosis and shifts in microbial functions in healthy tissue of necrotic sponges. Major taxonomic shifts included a complete loss of archaea, reduced proportions of Gammaproteobacteria and elevated relative abundances of Alphaproteobacteria. OW weakened sponge-microbe interactions, with a reduced capacity for nutrient exchange and phagocytosis evasion, indicating lower representations of stable symbionts. The potential for microbially-driven nitrogen and sulphur cycling was reduced, as was amino acid metabolism. Crucially, the dysbiosis annihilated the potential for ammonia detoxification, possibly leading to accumulation of toxic ammonia, nutrient imbalance, and host tissue necrosis. Putative defence against reactive oxygen species was greater at 31.5 °C, perhaps as microorganisms capable of resisting temperature-driven oxidative stress were favoured. We conclude that healthy symbiosis in S. flabelliformis is unlikely to be disrupted by future OA but will be deeply impacted by temperatures predicted for 2100 under a "business-as-usual" carbon emission scenario.
Collapse
Affiliation(s)
- Emmanuelle S Botté
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
- Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Victoria University of Wellington, Wellington, New Zealand
- Cawthron Institute, Nelson, New Zealand
| | - J Pamela Engelberts
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - James J Bell
- Victoria University of Wellington, Wellington, New Zealand
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Australian Antarctic Division, Hobart, Tasmania, Australia
| | - Heidi M Luter
- Australian Institute of Marine Science, Townsville, Queensland, Australia.
| |
Collapse
|
6
|
Roveta C, Calcinai B, Girolametti F, Fernandes Couceiro J, Puce S, Annibaldi A, Costa R. The prokaryotic community of Chondrosia reniformis Nardo, 1847: from diversity to mercury detection. ZOOLOGY 2023; 158:126091. [PMID: 37003141 DOI: 10.1016/j.zool.2023.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
Microbial communities inhabiting sponges are known to take part in many metabolic pathways, including nutrient cycles, and possibly also in the bioaccumulation of trace elements (TEs). Here, we used high-throughput, Illumina sequencing of 16S rRNA genes to characterize the prokaryotic communities present in the cortex and choanosome, respectively the external and internal body region of Chondrosia reniformis, and in the surrounding seawater. Furthermore, we estimated the total mercury content (THg) in these body regions of the sponge and in the corresponding microbial cell pellets. Fifteen prokaryotic phyla were detected in association with C. reniformis, 13 belonging to the domain Bacteria and two to the Archaea. No significant differences between the prokaryotic community composition of the two regions were found. Three lineages of ammonium-oxidizing organisms (Cenarchaeum symbiosum, Nitrosopumilus maritimus, and Nitrosococcus sp.) co-dominated the prokaryotic community, suggesting ammonium oxidation/nitrification as a key metabolic pathway within the microbiome of C. reniformis. In the sponge fractions, higher THg levels were found in the choanosome compared to the cortex. In contrast, comparable THg levels found in the microbial pellets obtained from both regions were significantly lower than those observed in the corresponding sponge fractions. Our work provides new insights into the prokaryotic communities and TEs distribution in different body parts of a model organism relevant for marine conservation and biotechnology. In this sense, this study paves the way for scientists to deepen the possible application of sponges not only as bioindicators, but also as bioremediation tools of metal polluted environments.
Collapse
Affiliation(s)
- Camilla Roveta
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Barbara Calcinai
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Federico Girolametti
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Joana Fernandes Couceiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Stefania Puce
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Portugal
| |
Collapse
|
7
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Palladino G, Burgsdorf I, Sizikov S, Steindler L, Webster NS, Thomas T. Functional characterization and taxonomic classification of novel gammaproteobacterial diversity in sponges. Syst Appl Microbiol 2023; 46:126401. [PMID: 36774720 DOI: 10.1016/j.syapm.2023.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Sponges harbour exceptionally diverse microbial communities, whose members are largely uncultured. The class Gammaproteobacteria often dominates the microbial communities of various sponge species, but most of its diversity remains functional and taxonomically uncharacterised. Here we reconstructed and characterised 32 metagenome-assembled genomes (MAGs) derived from three sponge species. These MAGs represent ten novel species and belong to seven orders, of which one is new. We propose nomenclature for all these taxa. These new species comprise sponge-specific bacteria with varying levels of host specificity. Functional gene profiling highlights significant differences in metabolic capabilities across the ten species, though each also often exhibited a large degree of metabolic diversity involving various nitrogen- and sulfur-based compounds. The genomic features of the ten species suggest they have evolved to form symbiotic interaction with their hosts or are well-adapted to survive within the sponge environment. These Gammaproteobacteria are proposed to scavenge substrates from the host environment, including metabolites or cellular components of the sponge. Their diverse metabolic capabilities may allow for efficient cycling of organic matter in the sponge environment, potentially to the benefit of the host and other symbionts.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Cawthron Institute, Nelson, New Zealand
| | - Giorgia Palladino
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia; Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Wei TS, Gao ZM, Gong L, Li QM, Zhou YL, Chen HG, He LS, Wang Y. Genome-centric view of the microbiome in a new deep-sea glass sponge species Bathydorus sp. Front Microbiol 2023; 14:1078171. [PMID: 36846759 PMCID: PMC9944714 DOI: 10.3389/fmicb.2023.1078171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Sponges are widely distributed in the global ocean and harbor diverse symbiotic microbes with mutualistic relationships. However, sponge symbionts in the deep sea remain poorly studied at the genome level. Here, we report a new glass sponge species of the genus Bathydorus and provide a genome-centric view of its microbiome. We obtained 14 high-quality prokaryotic metagenome-assembled genomes (MAGs) affiliated with the phyla Nitrososphaerota, Pseudomonadota, Nitrospirota, Bdellovibrionota, SAR324, Bacteroidota, and Patescibacteria. In total, 13 of these MAGs probably represent new species, suggesting the high novelty of the deep-sea glass sponge microbiome. An ammonia-oxidizing Nitrososphaerota MAG B01, which accounted for up to 70% of the metagenome reads, dominated the sponge microbiomes. The B01 genome had a highly complex CRISPR array, which likely represents an advantageous evolution toward a symbiotic lifestyle and forceful ability to defend against phages. A sulfur-oxidizing Gammaproteobacteria species was the second most dominant symbiont, and a nitrite-oxidizing Nitrospirota species could also be detected, but with lower relative abundance. Bdellovibrio species represented by two MAGs, B11 and B12, were first reported as potential predatory symbionts in deep-sea glass sponges and have undergone dramatic genome reduction. Comprehensive functional analysis indicated that most of the sponge symbionts encoded CRISPR-Cas systems and eukaryotic-like proteins for symbiotic interactions with the host. Metabolic reconstruction further illustrated their essential roles in carbon, nitrogen, and sulfur cycles. In addition, diverse putative phages were identified from the sponge metagenomes. Our study expands the knowledge of microbial diversity, evolutionary adaption, and metabolic complementarity in deep-sea glass sponges.
Collapse
Affiliation(s)
- Tao-Shu Wei
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Ming Gao
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China,*Correspondence: Zhao-Ming Gao ✉
| | - Lin Gong
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Qing-Mei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Ying-Li Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Hua-Guan Chen
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China,Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China,Yong Wang ✉
| |
Collapse
|
9
|
Zhang L, Zhuang T, Hu M, Liu S, Wu D, Ji B. Gut microbiota contributes to lignocellulose deconstruction and nitrogen fixation of the larva of Apriona swainsoni. Front Physiol 2022; 13:1072893. [PMID: 36620205 PMCID: PMC9816477 DOI: 10.3389/fphys.2022.1072893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Apriona swainsoni is a vital forest pest prevalent in China. The larvae of A. swainsoni live solely in the branches of trees and rely entirely on the xylem for nutrition. However, there is still a lack of in-depth research on the gut microbiota's use of almost nitrogen-free wood components to provide bio-organic macromolecular components needed for their growth. Thus, in this study, the metagenome, metaproteome, and metabolome of the A. swainsoni larvae in four gut segments (foregut; midgut; anterior hindgut; posterior hindgut) were analyzed by the multi-omics combined technology, to explore the metabolic utilization mechanism of the corresponding gut microbiota of A. swainsoni. Firstly, we found that the metagenome of different gut segments was not significantly different in general, but there were different combinations of dominant bacteria and genes in different gut segments, and the metaproteome and metabolome of four gut segments were significantly different in general. Secondly, the multi-omics results showed that there were significant gradient differences in the contents of cellulose and hemicellulose in different segments of A. swainsoni, and the expression of corresponding metabolic proteins was the highest in the midgut, suggesting the metabolic characteristics of these lignocellulose components in A. swainsoni gut segments. Finally, we found that the C/N ratio of woody food was significantly lower than that of frass, and metagenomic results showed that nitrogen fixation genes mainly existed in the foregut and two hindgut segments. The expression of the key nitrogen fixing gene nifH occurred in two hindgut parts, indicating the feature of nitrogen fixation of A. swainsoni. In conclusion, our results provide direct evidence that the larvae of A. swainsoni can adapt to the relatively harsh niche conditions through the highly organized gut microbiome in four gut segments, and may play a major role in their growth.
Collapse
Affiliation(s)
- Lei Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Tian Zhuang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Mengxue Hu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shuwen Liu
- The Administration Bureau of Dr. Sun Yat-sen’s Mausoleum, Nanjing, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Baozhong Ji
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Sugden S, Holert J, Cardenas E, Mohn WW, Stein LY. Microbiome of the freshwater sponge Ephydatia muelleri shares compositional and functional similarities with those of marine sponges. THE ISME JOURNAL 2022; 16:2503-2512. [PMID: 35906397 PMCID: PMC9562138 DOI: 10.1038/s41396-022-01296-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Sponges are known for hosting diverse communities of microbial symbionts, but despite persistent interest in the sponge microbiome, most research has targeted marine sponges; freshwater sponges have been the focus of less than a dozen studies. Here, we used 16 S rRNA gene amplicon sequencing and shotgun metagenomics to characterize the microbiome of the freshwater sponge Ephydatia muelleri and identify potential indicators of sponge-microbe mutualism. Using samples collected from the Sooke, Nanaimo, and Cowichan Rivers on Vancouver Island, British Columbia, we show that the E. muelleri microbiome is distinct from the ambient water and adjacent biofilms and is dominated by Sediminibacterium, Comamonas, and unclassified Rhodospirillales. We also observed phylotype-level differences in sponge microbiome taxonomic composition among different rivers. These differences were not reflected in the ambient water, suggesting that other environmental or host-specific factors may drive the observed geographic variation. Shotgun metagenomes and metagenome-assembled genomes further revealed that freshwater sponge-associated bacteria share many genomic similarities with marine sponge microbiota, including an abundance of defense-related proteins (CRISPR, restriction-modification systems, and transposases) and genes for vitamin B12 production. Overall, our results provide foundational information on the composition and function of freshwater sponge-associated microbes, which represent an important yet underappreciated component of the global sponge microbiome.
Collapse
Affiliation(s)
- Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada.
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Erick Cardenas
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Kelly JB, Carlson DE, Low JS, Thacker RW. Novel trends of genome evolution in highly complex tropical sponge microbiomes. MICROBIOME 2022; 10:164. [PMID: 36195901 PMCID: PMC9531527 DOI: 10.1186/s40168-022-01359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tropical members of the sponge genus Ircinia possess highly complex microbiomes that perform a broad spectrum of chemical processes that influence host fitness. Despite the pervasive role of microbiomes in Ircinia biology, it is still unknown how they remain in stable association across tropical species. To address this question, we performed a comparative analysis of the microbiomes of 11 Ircinia species using whole-metagenomic shotgun sequencing data to investigate three aspects of bacterial symbiont genomes-the redundancy in metabolic pathways across taxa, the evolution of genes involved in pathogenesis, and the nature of selection acting on genes relevant to secondary metabolism. RESULTS A total of 424 new, high-quality bacterial metagenome-assembled genomes (MAGs) were produced for 10 Caribbean Ircinia species, which were evaluated alongside 113 publicly available MAGs sourced from the Pacific species Ircinia ramosa. Evidence of redundancy was discovered in that the core genes of several primary metabolic pathways could be found in the genomes of multiple bacterial taxa. Across hosts, the metagenomes were depleted in genes relevant to pathogenicity and enriched in eukaryotic-like proteins (ELPs) that likely mimic the hosts' molecular patterning. Finally, clusters of steroid biosynthesis genes (CSGs), which appear to be under purifying selection and undergo horizontal gene transfer, were found to be a defining feature of Ircinia metagenomes. CONCLUSIONS These results illustrate patterns of genome evolution within highly complex microbiomes that illuminate how associations with hosts are maintained. The metabolic redundancy within the microbiomes could help buffer the hosts from changes in the ambient chemical and physical regimes and from fluctuations in the population sizes of the individual microbial strains that make up the microbiome. Additionally, the enrichment of ELPs and depletion of LPS and cellular motility genes provide a model for how alternative strategies to virulence can evolve in microbiomes undergoing mixed-mode transmission that do not ultimately result in higher levels of damage (i.e., pathogenicity) to the host. Our last set of results provides evidence that sterol biosynthesis in Ircinia-associated bacteria is widespread and that these molecules are important for the survival of bacteria in highly complex Ircinia microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Joseph B Kelly
- Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany.
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.
| | - David E Carlson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Jun Siong Low
- Institute of Microbiology,ETH Zürich, Zürich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Robert W Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama City, Republic of Panama
| |
Collapse
|
12
|
Assessing the genomic composition, putative ecological relevance and biotechnological potential of plasmids from sponge bacterial symbionts. Microbiol Res 2022; 265:127183. [PMID: 36108440 DOI: 10.1016/j.micres.2022.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Plasmid-mediated transfer of genes can have direct consequences in several biological processes within sponge microbial communities. However, very few studies have attempted genomic and functional characterization of plasmids from marine host-associated microbial communities in general and those of sponges in particular. In the present study, we used an endogenous plasmid isolation method to obtain plasmids from bacterial symbionts of the marine sponges Stylissa carteri and Paratetilla sp. and investigated the genomic composition, putative ecological relevance and biotechnological potential of these plasmids. In total, we isolated and characterized three complete plasmids, three plasmid prophages and one incomplete plasmid. Our results highlight the importance of plasmids to transfer relevant genetic traits putatively involved in microbial symbiont adaptation and host-microbe and microbe-microbe interactions. For example, putative genes involved in bacterial response to chemical stress, competition, metabolic versatility and mediation of bacterial colonization and pathogenicity were detected. Genes coding for enzymes and toxins of biotechnological potential were also detected. Most plasmid prophage coding sequences were, however, hypothetical proteins with unknown functions. Overall, this study highlights the ecological relevance of plasmids in the marine sponge microbiome and provides evidence that plasmids of sponge bacterial symbionts may represent an untapped resource of genes of biotechnological interest.
Collapse
|
13
|
Rusanova A, Fedorchuk V, Toshchakov S, Dubiley S, Sutormin D. An Interplay between Viruses and Bacteria Associated with the White Sea Sponges Revealed by Metagenomics. Life (Basel) 2021; 12:25. [PMID: 35054418 PMCID: PMC8777954 DOI: 10.3390/life12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 05/07/2023] Open
Abstract
Sponges are remarkable holobionts harboring extremely diverse microbial and viral communities. However, the interactions between the components within holobionts and between a holobiont and environment are largely unknown, especially for polar organisms. To investigate possible interactions within and between sponge-associated communities, we probed the microbiomes and viromes of cold-water sympatric sponges Isodictya palmata (n = 2), Halichondria panicea (n = 3), and Halichondria sitiens (n = 3) by 16S and shotgun metagenomics. We showed that the bacterial and viral communities associated with these White Sea sponges are species-specific and different from the surrounding water. Extensive mining of bacterial antiphage defense systems in the metagenomes revealed a variety of defense mechanisms. The abundance of defense systems was comparable in the metagenomes of the sponges and the surrounding water, thus distinguishing the White Sea sponges from those inhabiting the tropical seas. We developed a network-based approach for the combined analysis of CRISPR-spacers and protospacers. Using this approach, we showed that the virus-host interactions within the sponge-associated community are typically more abundant (three out of four interactions studied) than the inter-community interactions. Additionally, we detected the occurrence of viral exchanges between the communities. Our work provides the first insight into the metagenomics of the three cold-water sponge species from the White Sea and paves the way for a comprehensive analysis of the interactions between microbial communities and associated viruses.
Collapse
Affiliation(s)
- Anastasiia Rusanova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.R.); (S.D.)
| | - Victor Fedorchuk
- The Faculty of Geology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Stepan Toshchakov
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
| | - Svetlana Dubiley
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.R.); (S.D.)
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Dmitry Sutormin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.R.); (S.D.)
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
14
|
Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, Handley KM, Steindler L. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. THE ISME JOURNAL 2021; 16:1163-1175. [PMID: 34876682 PMCID: PMC8941161 DOI: 10.1038/s41396-021-01165-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023]
Abstract
Marine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation.
Collapse
Affiliation(s)
- I Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - S Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - V Squatrito
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - M Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - B M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - C Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - K M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - L Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
15
|
Ruocco N, Esposito R, Zagami G, Bertolino M, De Matteo S, Sonnessa M, Andreani F, Crispi S, Zupo V, Costantini M. Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis. Sci Rep 2021; 11:21151. [PMID: 34707182 PMCID: PMC8551288 DOI: 10.1038/s41598-021-00713-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Although the Mediterranean Sea covers approximately a 0.7% of the world's ocean area, it represents a major reservoir of marine and coastal biodiversity. Among marine organisms, sponges (Porifera) are a key component of the deep-sea benthos, widely recognized as the dominant taxon in terms of species richness, spatial coverage, and biomass. Sponges are evolutionarily ancient, sessile filter-feeders that harbor a largely diverse microbial community within their internal mesohyl matrix. In the present work, we firstly aimed at exploring the biodiversity of marine sponges from four different areas of the Mediterranean: Faro Lake in Sicily and "Porto Paone", "Secca delle fumose", "Punta San Pancrazio" in the Gulf of Naples. Eight sponge species were collected from these sites and identified by morphological analysis and amplification of several conserved molecular markers (18S and 28S RNA ribosomal genes, mitochondrial cytochrome oxidase subunit 1 and internal transcribed spacer). In order to analyze the bacterial diversity of symbiotic communities among these different sampling sites, we also performed a metataxonomic analysis through an Illumina MiSeq platform, identifying more than 1500 bacterial taxa. Amplicon Sequence Variants (ASVs) analysis revealed a great variability of the host-specific microbial communities. Our data highlight the occurrence of dominant and locally enriched microbes in the Mediterranean, together with the biotechnological potential of these sponges and their associated bacteria as sources of bioactive natural compounds.
Collapse
Affiliation(s)
- Nadia Ruocco
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Roberta Esposito
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giacomo Zagami
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | - Marco Bertolino
- grid.5606.50000 0001 2151 3065DISTAV, Università Degli Studi Di Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Sergio De Matteo
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | | | | | - Stefania Crispi
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources Naples, National Research Council of Italy, Naples, Italy
| | - Valerio Zupo
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Maria Costantini
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
16
|
Waterworth SC, Parker-Nance S, Kwan JC, Dorrington RA. Comparative Genomics Provides Insight into the Function of Broad-Host Range Sponge Symbionts. mBio 2021; 12:e0157721. [PMID: 34519538 PMCID: PMC8546597 DOI: 10.1128/mbio.01577-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
The fossil record indicates that the earliest evidence of extant marine sponges (phylum Porifera) existed during the Cambrian explosion and that their symbiosis with microbes may have begun in their extinct ancestors during the Precambrian period. Many symbionts have adapted to their sponge host, where they perform specific, specialized functions. There are also widely distributed bacterial taxa such as Poribacteria, SAUL, and Tethybacterales that are found in a broad range of invertebrate hosts. Here, we added 11 new genomes to the Tethybacterales order, identified a novel family, and show that functional potential differs between the three Tethybacterales families. We compare the Tethybacterales with the well-characterized Entoporibacteria and show that these symbionts appear to preferentially associate with low-microbial abundance (LMA) and high-microbial abundance (HMA) sponges, respectively. Within these sponges, we show that these symbionts likely perform distinct functions and may have undergone multiple association events, rather than a single association event followed by coevolution. IMPORTANCE Marine sponges often form symbiotic relationships with bacteria that fulfil a specific need within the sponge holobiont, and these symbionts are often conserved within a narrow range of related taxa. To date, there exist only three known bacterial taxa (Entoporibacteria, SAUL, and Tethybacterales) that are globally distributed and found in a broad range of sponge hosts, and little is known about the latter two. We show that the functional potential of broad-host range symbionts is conserved at a family level and that these symbionts have been acquired several times over evolutionary history. Finally, it appears that the Entoporibacteria are associated primarily with high-microbial abundance sponges, while the Tethybacterales associate with low-microbial abundance sponges.
Collapse
Affiliation(s)
- Samantha C. Waterworth
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Shirley Parker-Nance
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Environmental Observation Network, Elwandle Coastal Node, Gqeberha (Port Elizabeth), South Africa
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
17
|
The Roseibium album (Labrenzia alba) Genome Possesses Multiple Symbiosis Factors Possibly Underpinning Host-Microbe Relationships in the Marine Benthos. Microbiol Resour Announc 2021; 10:e0032021. [PMID: 34435855 PMCID: PMC8388533 DOI: 10.1128/mra.00320-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we announce the genomes of eight Roseibium album (synonym Labrenzia alba) strains that were obtained from the octocoral Eunicella labiata. Genome annotation revealed multiple symbiosis factors common to all genomes, such as eukaryotic-like repeat protein- and multidrug resistance-encoding genes, which likely underpin symbiotic relationships with marine invertebrate hosts.
Collapse
|
18
|
Jensen S, Frank JA, Arntzen MØ, Duperron S, Vaaje-Kolstad G, Hovland M. Endozoicomonadaceae symbiont in gills of Acesta clam encodes genes for essential nutrients and polysaccharide degradation. FEMS Microbiol Ecol 2021; 97:6275716. [PMID: 33988698 PMCID: PMC8755941 DOI: 10.1093/femsec/fiab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/12/2021] [Indexed: 01/29/2023] Open
Abstract
Gammaproteobacteria from the family Endozoicomonadaceae have emerged as widespread associates of dense marine animal communities. Their abundance in coral reefs involves symbiotic relationships and possibly host nutrition. We explored functions encoded in the genome of an uncultured Endozoicomonadaceae 'Candidatus Acestibacter aggregatus' that lives inside gill cells of large Acesta excavata clams in deep-water coral reefs off mid-Norway. The dominance and deep branching lineage of this symbiont was confirmed using 16S rRNA gene sequencing and phylogenomic analysis from shotgun sequencing data. The 4.5 Mb genome binned in this study has a low GC content of 35% and is enriched in transposon and chaperone gene annotations indicating ongoing adaptation. Genes encoding functions potentially involved with the symbiosis include ankyrins, repeat in toxins, secretion and nutritional systems. Complete pathways were identified for the synthesis of eleven amino acids and six B-vitamins. A minimal chitinolytic machinery was indicated from a glycosyl hydrolase GH18 and a lytic polysaccharide monooxygenase LPMO10. Expression of the latter was confirmed using proteomics. Signal peptides for secretion were identified for six polysaccharide degrading enzymes, ten proteases and three lipases. Our results suggest a nutritional symbiosis fuelled by enzymatic products from extracellular degradation processes.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Jeremy A Frank
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Magnus Ø Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Sébastien Duperron
- UMR 7245 Muséum National d'Histoire Naturelle/CNRS Molécules de Communication et Adaptation des Micro-organismes and Institut Universitaire de France, CP39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Martin Hovland
- Department of Biology, University of Bergen, PO Box 7803, 5020 Bergen, Norway.,Centre for Geobiology, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| |
Collapse
|
19
|
Sweet M, Villela H, Keller-Costa T, Costa R, Romano S, Bourne DG, Cárdenas A, Huggett MJ, Kerwin AH, Kuek F, Medina M, Meyer JL, Müller M, Pollock FJ, Rappé MS, Sere M, Sharp KH, Voolstra CR, Zaccardi N, Ziegler M, Peixoto R. Insights into the Cultured Bacterial Fraction of Corals. mSystems 2021; 6:e0124920. [PMID: 34156291 PMCID: PMC8269258 DOI: 10.1128/msystems.01249-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite their putative importance, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable bacteria isolated from corals originating from tropical, temperate, and cold-water habitats. A total of 3,055 isolates from 52 studies were considered by our metasurvey. Of these, 1,045 had full-length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterium-coral symbioses among the strains. Our analysis revealed >400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features-not previously described for coral-bacterium symbioses-potentially involved in host colonization and host-symbiont recognition, antiviral defense mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning and guide the selection of probiotic candidates to promote coral resilience and improve holistic and customized reef restoration and rehabilitation efforts. IMPORTANCE Our paper is the first study to synthesize currently available but decentralized data of cultured microbes associated with corals. We were able to collate 3,055 isolates across a number of published studies and unpublished collections from various laboratories and researchers around the world. This equated to 1,045 individual isolates which had full-length 16S rRNA gene sequences, after filtering of the original 3,055. We also explored which of these had genomes available. Originally, only 36 were available, and as part of this study, we added a further 38-equating to 74 in total. From this, we investigated potential genetic signatures that may facilitate a host-associated lifestyle. Further, such a resource is an important step in the selection of probiotic candidates, which are being investigated for promoting coral resilience and potentially applied as a novel strategy in reef restoration and rehabilitation efforts. In the spirit of open access, we have ensured this collection is available to the wider research community through the web site http://isolates.reefgenomics.org/ with the hope many scientists across the globe will ask for access to these cultures for future studies.
Collapse
Affiliation(s)
- Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Helena Villela
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB), University of Lisbon, Lisbon, Portugal
- Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), University of Lisbon, Lisbon, Portugal
- Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal
- Department of Energy, Joint Genome Institute and Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Stefano Romano
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - David G. Bourne
- College of Science and Engineering, James Cook University, Townsville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Megan J. Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
| | | | - Felicity Kuek
- Australian Institute of Marine Science, Townsville, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Julie L. Meyer
- Soil and Water Sciences Department, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak, Malaysia
| | - F. Joseph Pollock
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Hawaii and Palmyra Programs, The Nature Conservancy, Honolulu, Hawaii, USA
| | - Michael S. Rappé
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii, USA
| | - Mathieu Sere
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Koty H. Sharp
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, USA
| | | | - Nathan Zaccardi
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Raquel Peixoto
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
20
|
Genome Reduction and Secondary Metabolism of the Marine Sponge-Associated Cyanobacterium Leptothoe. Mar Drugs 2021; 19:md19060298. [PMID: 34073758 PMCID: PMC8225149 DOI: 10.3390/md19060298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.
Collapse
|
21
|
Tagirdzhanova G, Saary P, Tingley JP, Díaz-Escandón D, Abbott DW, Finn RD, Spribille T. Predicted Input of Uncultured Fungal Symbionts to a Lichen Symbiosis from Metagenome-Assembled Genomes. Genome Biol Evol 2021; 13:6163286. [PMID: 33693712 PMCID: PMC8355462 DOI: 10.1093/gbe/evab047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Basidiomycete yeasts have recently been reported as stably associated secondary
fungal symbionts of many lichens, but their role in the symbiosis remains
unknown. Attempts to sequence their genomes have been hampered both by the
inability to culture them and their low abundance in the lichen thallus
alongside two dominant eukaryotes (an ascomycete fungus and chlorophyte alga).
Using the lichen Alectoria sarmentosa, we selectively dissolved
the cortex layer in which secondary fungal symbionts are embedded to enrich
yeast cell abundance and sequenced DNA from the resulting slurries as well as
bulk lichen thallus. In addition to yielding a near-complete genome of the
filamentous ascomycete using both methods, metagenomes from cortex slurries
yielded a 36- to 84-fold increase in coverage and near-complete genomes for two
basidiomycete species, members of the classes Cystobasidiomycetes and
Tremellomycetes. The ascomycete possesses the largest gene repertoire of the
three. It is enriched in proteases often associated with pathogenicity and
harbors the majority of predicted secondary metabolite clusters. The
basidiomycete genomes possess ∼35% fewer predicted genes than the
ascomycete and have reduced secretomes even compared with close relatives, while
exhibiting signs of nutrient limitation and scavenging. Furthermore, both
basidiomycetes are enriched in genes coding for enzymes producing secreted
acidic polysaccharides, representing a potential contribution to the shared
extracellular matrix. All three fungi retain genes involved in dimorphic
switching, despite the ascomycete not being known to possess a yeast stage. The
basidiomycete genomes are an important new resource for exploration of lifestyle
and function in fungal–fungal interactions in lichen symbioses.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Saary
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jeffrey P Tingley
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - David Díaz-Escandón
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Hudspith M, Rix L, Achlatis M, Bougoure J, Guagliardo P, Clode PL, Webster NS, Muyzer G, Pernice M, de Goeij JM. Subcellular view of host-microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan-microbe symbiosis. MICROBIOME 2021; 9:44. [PMID: 33583434 PMCID: PMC7883440 DOI: 10.1186/s40168-020-00984-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/16/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Sponges are increasingly recognised as key ecosystem engineers in many aquatic habitats. They play an important role in nutrient cycling due to their unrivalled capacity for processing both dissolved and particulate organic matter (DOM and POM) and the exceptional metabolic repertoire of their diverse and abundant microbial communities. Functional studies determining the role of host and microbiome in organic nutrient uptake and exchange, however, are limited. Therefore, we coupled pulse-chase isotopic tracer techniques with nanoscale secondary ion mass spectrometry (NanoSIMS) to visualise the uptake and translocation of 13C- and 15N-labelled dissolved and particulate organic food at subcellular level in the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Halisarca caerulea. RESULTS The two sponge species showed significant enrichment of DOM- and POM-derived 13C and 15N into their tissue over time. Microbial symbionts were actively involved in the assimilation of DOM, but host filtering cells (choanocytes) appeared to be the primary site of DOM and POM uptake in both sponge species overall, via pinocytosis and phagocytosis, respectively. Translocation of carbon and nitrogen from choanocytes to microbial symbionts occurred over time, irrespective of microbial abundance, reflecting recycling of host waste products by the microbiome. CONCLUSIONS Here, we provide empirical evidence indicating that the prokaryotic communities of a high and a low microbial abundance sponge obtain nutritional benefits from their host-associated lifestyle. The metabolic interaction between the highly efficient filter-feeding host and its microbial symbionts likely provides a competitive advantage to the sponge holobiont in the oligotrophic environments in which they thrive, by retaining and recycling limiting nutrients. Sponges present a unique model to link nutritional symbiotic interactions to holobiont function, and, via cascading effects, ecosystem functioning, in one of the earliest metazoan-microbe symbioses. Video abstract.
Collapse
Affiliation(s)
- Meggie Hudspith
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Rix
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Michelle Achlatis
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Australia
| | - Peta L. Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Perth, Australia
- The UWA School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Nicole S. Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, Australia
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Pernice
- Climate Change Cluster (C3), Faculty of Science, University of Technology, Sydney, Australia
| | - Jasper M. de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| |
Collapse
|
23
|
Haber M, Burgsdorf I, Handley KM, Rubin-Blum M, Steindler L. Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges. Front Microbiol 2021; 11:622824. [PMID: 33537022 PMCID: PMC7848895 DOI: 10.3389/fmicb.2020.622824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free-living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications systems, enrichments previously reported also from bacterial sponge symbionts. Most thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely alters their cell surface and allows them to evade digestion by the host. All but one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid transporter system that was absent from the analyzed free-living thaumarchaeota suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique features found in sponge-associated Thaumarchaeota, were limited to only a few specific symbionts. These features included the presence of exopolyphosphatases and a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely highly specific interactions with their sponge host, which is supported by the limited number of host sponge species to which each of these symbionts is restricted.
Collapse
Affiliation(s)
- Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research Institute, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
24
|
Soldatova E, Dong Y, Li J, Liu Y, Zan J, Boeckx P, Sun Z. Nitrogen transformation and pathways in the shallow groundwater-soil system within agricultural landscapes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:441-459. [PMID: 33000346 DOI: 10.1007/s10653-020-00733-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The present study considers the behavior of nitrogen compounds in the shallow groundwater-soil system as necessary for the functioning of the nitrogen cycle within agricultural landscapes and one of the first steps of the formation of groundwater chemical composition. Data were collected in 2011-2018 within the Poyang Lake area (Jiangxi Province, China), where agricultural landscapes prevail. The soil and groundwater samples were taken in different periods of an agricultural season at the beginning of the agricultural season (spring) and after harvesting (autumn). The combined geochemical data on the chemical and microbiological composition of the soils and shallow groundwater and isotopic data on dissolved nitrate allowed researchers to resolve that nitrogen enters the system in the form of organic compounds, particularly, due to the soil fertilization at the beginning of the agricultural season. Organic nitrogen compounds transform into nitrate under the influence of nitrifiers in the soil before getting the shallow aquifer, where the occurrence of denitrification is suggested. Within the Ganjiang and Xiushui interfluve, reducing conditions, together with the formation of clay minerals from the aqueous solution, may serve a geochemical barrier for the accumulation of nitrogen compounds preventing the transformation of ammonium to nitrate and providing its sorption. It also should be noted that bacterial diversity in the shallow groundwater has a strong relation with the amount of nitrate in the system, whereas in the soil, it is connected with sampling depth.
Collapse
Affiliation(s)
- Evgeniya Soldatova
- Laboratory of Modeling Hydrogeochemical and Hydrothermal Processes, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, 119991, Moscow, Russia.
| | - Yihui Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Jiale Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Yajie Liu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Jinjing Zan
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Pascal Boeckx
- Isotope Bioscience Laboratory (ISOFYS), Ghent University, 9000, Ghent, Belgium
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
25
|
Borges N, Keller-Costa T, Sanches-Fernandes GMM, Louvado A, Gomes NCM, Costa R. Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annu Rev Anim Biosci 2020; 9:423-452. [PMID: 33256435 DOI: 10.1146/annurev-animal-062920-113114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aquaculture is the fastest-growing sector in food production worldwide. For decades, research on animal physiology, nutrition, and behavior established the foundations of best practices in land-based fish rearing and disease control. Current DNA sequencing, bioinformatics, and data science technologies now allow deep investigations of host-associated microbiomes in a tractable fashion. Adequate use of these technologies can illuminate microbiome dynamics and aid the engineering of microbiome-based solutions to disease prevention in an unprecedented manner. This review examines molecular studies of bacterial diversity, function, and host immunitymodulation at early stages of fish development, where microbial infections cause important economic losses. We uncover host colonization and virulence factors within a synthetic assemblage of fish pathogens using high-end comparative genomics and address the use of probiotics and paraprobiotics as applicable disease-prevention strategies in fish larval and juvenile rearing. We finally propose guidelines for future microbiome research of presumed relevance to fish larviculture.
Collapse
Affiliation(s)
- Nuno Borges
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Gracinda M M Sanches-Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - António Louvado
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Newton C M Gomes
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , , .,Centre of Marine Sciences, Algarve University, 8005-139 Faro, Portugal.,Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
26
|
Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts. ISME JOURNAL 2020; 15:503-519. [PMID: 33011742 DOI: 10.1038/s41396-020-00791-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/17/2023]
Abstract
The symbiosis between bacteria and sponges has arguably the longest evolutionary history for any extant metazoan lineage, yet little is known about bacterial evolution or adaptation in this process. An example of often dominant and widespread bacterial symbionts of sponges is a clade of uncultured and uncharacterised Proteobacteria. Here we set out to characterise this group using metagenomics, in-depth phylogenetic analyses, metatranscriptomics, and fluorescence in situ hybridisation microscopy. We obtained five metagenome-assembled-genomes (MAGs) from different sponge species that, together with a previously published MAG (AqS2), comprise two families within a new gammaproteobacterial order that we named UTethybacterales. Members of this order share a heterotrophic lifestyle but vary in their predicted ability to use various carbon, nitrogen and sulfur sources, including taurine, spermidine and dimethylsulfoniopropionate. The deep branching of the UTethybacterales within the Gammaproteobacteria and their almost exclusive presence in sponges suggests they have entered a symbiosis with their host relatively early in evolutionary time and have subsequently functionally radiated. This is reflected in quite distinct lifestyles of various species of UTethybacterales, most notably their diverse morphologies, predicted substrate preferences, and localisation within the sponge tissue. This study provides new insight into the evolution of metazoan-bacteria symbiosis.
Collapse
|
27
|
Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, van Oevelen D, Escrig S, Meibom A, Hentschel U. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. THE ISME JOURNAL 2020; 14:2554-2567. [PMID: 32601480 PMCID: PMC7490408 DOI: 10.1038/s41396-020-0706-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
Abstract
Sponges are the oldest known extant animal-microbe symbiosis. These ubiquitous benthic animals play an important role in marine ecosystems in the cycling of dissolved organic matter (DOM), the largest source of organic matter on Earth. The conventional view on DOM cycling through microbial processing has been challenged by the interaction between this efficient filter-feeding host and its diverse and abundant microbiome. Here we quantify, for the first time, the role of host cells and microbial symbionts in sponge heterotrophy. We combined stable isotope probing and nanoscale secondary ion mass spectrometry to compare the processing of different sources of DOM (glucose, amino acids, algal-produced) and particulate organic matter (POM) by a high-microbial abundance (HMA) and low-microbial abundance (LMA) sponge with single-cell resolution. Contrary to common notion, we found that both microbial symbionts and host choanocyte (i.e. filter) cells and were active in DOM uptake. Although all DOM sources were assimilated by both sponges, higher microbial biomass in the HMA sponge corresponded to an increased capacity to process a greater variety of dissolved compounds. Nevertheless, in situ feeding data demonstrated that DOM was the primary carbon source for both the LMA and HMA sponge, accounting for ~90% of their heterotrophic diets. Microbes accounted for the majority (65-87%) of DOM assimilated by the HMA sponge (and ~60% of its total heterotrophic diet) but <5% in the LMA sponge. We propose that the evolutionary success of sponges is due to their different strategies to exploit the vast reservoir of DOM in the ocean.
Collapse
Affiliation(s)
- Laura Rix
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Marta Ribes
- Department of Marine Biology and Oceanography, Institute of Marine Science, ICM-CSIC, Barcelona, Spain
| | - Rafel Coma
- Department of Marine Ecology, Centre for Advanced Studies, CEAB-CSIC, Blanes, Spain
| | - Martin T Jahn
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Dick van Oevelen
- Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, PO Box 140, 4400 AC, Yerseke, The Netherlands
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Ute Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Christian-Albrechts-University of Kiel (CAU), Kiel, Germany
| |
Collapse
|
28
|
Sizikov S, Burgsdorf I, Handley KM, Lahyani M, Haber M, Steindler L. Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin-antitoxin modules as features of host-associated Opitutales. Environ Microbiol 2020; 22:4669-4688. [PMID: 32840024 DOI: 10.1111/1462-2920.15210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Bacteria of the phylum Verrucomicrobia are ubiquitous in marine environments and can be found as free-living organisms or as symbionts of eukaryotic hosts. Little is known about host-associated Verrucomicrobia in the marine environment. Here we reconstructed two genomes of symbiotic Verrucomicrobia from bacterial metagenomes derived from the Atlanto-Mediterranean sponge Petrosia ficiformis and three genomes from strains that we isolated from offshore seawater of the Eastern Mediterranean Sea. Phylogenomic analysis of these five strains indicated that they are all members of Verrucomicrobia subdivision 4, order Opitutales. We compared these novel sponge-associated and seawater-isolated genomes to closely related Verrucomicrobia. Genomic analysis revealed that Planctomycetes-Verrucomicrobia microcompartment gene clusters are enriched in the genomes of symbiotic Opitutales including sponge symbionts but not in free-living ones. We hypothesize that in sponge symbionts these microcompartments are used for degradation of l-fucose and l-rhamnose, which are components of algal and bacterial cell walls and therefore may be found at high concentrations in the sponge tissue. Furthermore, we observed an enrichment of toxin-antitoxin modules in symbiotic Opitutales. We suggest that, in sponges, verrucomicrobial symbionts utilize these modules as a defence mechanism against antimicrobial activity deriving from the abundant microbial community co-inhabiting the host.
Collapse
Affiliation(s)
- Sofia Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim Marie Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Matan Lahyani
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
29
|
Helber SB, Steinert G, Wu YC, Rohde S, Hentschel U, Muhando CA, Schupp PJ. Sponges from Zanzibar host diverse prokaryotic communities with potential for natural product synthesis. FEMS Microbiol Ecol 2020; 95:5369420. [PMID: 30830220 DOI: 10.1093/femsec/fiz026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/02/2019] [Indexed: 11/13/2022] Open
Abstract
Sponges are one of the most dominant organisms in marine ecosystems. One reason for their success is their association with microorganisms that are besides the host itself responsible for the chemical defence. Sponge abundances have been increasing on coral reefs in the Western Indian Ocean (WIO) and are predicted to increase further with rising anthropogenic impacts on coral reefs. However, there is a paucity of information on chemical ecology of sponges from the WIO and their prokaryotic community composition. We used a combination of Illumina sequencing and a predictive metagenomic analysis to (i) assess the prokaryotic community composition of sponges from Zanzibar, (ii) predict the presence of KEGG metabolic pathways responsible for bioactive compound production and (iii) relate their presence to the degree of observed chemical defence in their respective sponge host. We found that sponges from Zanzibar host diverse prokaryotic communities that are host species-specific. Sponge-species and respective specimens that showed strong chemical defences in previous studies were also predicted to be highly enriched in various pathways responsible for secondary metabolite production. Hence, the combined sequencing and predictive metagenomic approach proved to be a useful indicator for the metabolic potential of sponge holobionts.
Collapse
Affiliation(s)
- Stephanie B Helber
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany.,Leibniz Center for Tropical Marine Research (ZMT) GmbH, Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany
| | - Yu-Chen Wu
- GEOMAR Helmholtz Centre for Ocean Research, Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Christopher A Muhando
- Institute of Marine Sciences (IMS), Mizingani Road, P.O Box 668, Stonetown, Zanzibar, Tanzania
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky University of Oldenburg, Ammerländer Heeerstr. 231, 26129 Oldenburg, Germany
| |
Collapse
|
30
|
Li Z, Hentschel U, Webste N, Olson J, Häggblom M. Editorial: special issue on sponge microbiome. FEMS Microbiol Ecol 2020; 96:5828102. [PMID: 32359069 DOI: 10.1093/femsec/fiaa075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 01/22/2023] Open
Affiliation(s)
- Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, P.R. China
| | - Ute Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Nicole Webste
- Australian Institute of Marine Science, PMB 3, Townsville MC QLD 4810, Australia
| | - Julie Olson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Max Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, School of Environmental and Biological Sciences, 76 Lipman Drive, New Brunswick NJ 08901, USA
| |
Collapse
|
31
|
Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. Characterization of a sponge microbiome using an integrative genome-centric approach. THE ISME JOURNAL 2020; 14:1100-1110. [PMID: 31992859 PMCID: PMC7174397 DOI: 10.1038/s41396-020-0591-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 11/09/2022]
Abstract
Marine sponges often host diverse and species-specific communities of microorganisms that are critical for host health. Previous functional genomic investigations of the sponge microbiome have focused primarily on specific symbiont lineages, which frequently make up only a small fraction of the overall community. Here, we undertook genome-centric analysis of the symbiont community in the model species Ircinia ramosa and analyzed 259 unique, high-quality metagenome-assembled genomes (MAGs) that comprised 74% of the I. ramosa microbiome. Addition of these MAGs to genome trees containing all publicly available microbial sponge symbionts increased phylogenetic diversity by 32% within the archaea and 41% within the bacteria. Metabolic reconstruction of the MAGs showed extensive redundancy across taxa for pathways involved in carbon fixation, B-vitamin synthesis, taurine metabolism, sulfite oxidation, and most steps of nitrogen metabolism. Through the acquisition of all major taxa present within the I. ramosa microbiome, we were able to analyze the functional potential of a sponge-associated microbial community in unprecedented detail. Critical functions, such as carbon fixation, which had previously only been assigned to a restricted set of sponge-associated organisms, were actually spread across diverse symbiont taxa, whereas other essential pathways, such as ammonia oxidation, were confined to specific keystone taxa.
Collapse
Affiliation(s)
- J Pamela Engelberts
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Manuel Aranda
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sara C Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| |
Collapse
|
32
|
Knobloch S, Jóhannsson R, Marteinsson VÞ. Genome analysis of sponge symbiont 'Candidatus Halichondribacter symbioticus' shows genomic adaptation to a host-dependent lifestyle. Environ Microbiol 2019; 22:483-498. [PMID: 31747724 DOI: 10.1111/1462-2920.14869] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022]
Abstract
The marine sponge Halichondria panicea inhabits coastal areas around the globe and is a widely studied sponge species in terms of its biology, yet the ecological functions of its dominant bacterial symbiont 'Candidatus Halichondribacter symbioticus' remain unknown. Here, we present the draft genome of 'Ca. H. symbioticus' HS1 (2.8 Mbp, ca. 87.6% genome coverage) recovered from the sponge metagenome of H. panicea in order to study functions and symbiotic interactions at the genome level. Functional genome comparison of HS1 against closely related free-living seawater bacteria revealed a reduction of genes associated with carbohydrate transport and transcription regulation, pointing towards a limited carbohydrate metabolism, and static transcriptional dynamics reminiscent of other bacterial symbionts. In addition, HS1 was enriched in sponge symbiont specific gene families related to host-symbiont interactions and defence. Similarity in the functional gene repertoire between HS1 and a phylogenetically more distant symbiont in the marine sponge Aplysina aerophoba, based on COG category distribution, suggest a convergent evolution of symbiont specific traits and general metabolic features. This warrants further investigation into convergent genomic evolution of symbionts across different sponge species and habitats.
Collapse
Affiliation(s)
- Stephen Knobloch
- Microbiology Group, Department of Research and Innovation, Matís ohf, 113, Reykjavik, Iceland.,Faculty of Life and Environmental Sciences, University of Iceland, 101, Reykjavík, Iceland
| | - Ragnar Jóhannsson
- Marine and Freshwater Research Institute, Hafrannsóknastofnun, 101, Reykjavik, Iceland
| | - Viggó Þór Marteinsson
- Microbiology Group, Department of Research and Innovation, Matís ohf, 113, Reykjavik, Iceland.,Faculty of Food Science and Nutrition, University of Iceland, 101, Reykjavik, Iceland
| |
Collapse
|
33
|
Cleary DFR, Polónia ARM, Huang YM, Swierts T. Compositional variation between high and low prokaryotic diversity coral reef biotopes translates to different predicted metagenomic gene content. Antonie van Leeuwenhoek 2019; 113:563-587. [PMID: 31802337 DOI: 10.1007/s10482-019-01364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
In a previous study, we identified host species that housed high and low diversity prokaryotic communities. In the present study, we expand on this and assessed the prokaryotic communities associated with seawater, sediment and 11 host species from 7 different phyla in a Taiwanese coral reef setting. The host taxa sampled included hard, octo- and black corals, molluscs, bryozoans, flatworms, fish and sea urchins. There were highly significant differences in composition among host species and all host species housed distinct communities from those found in seawater and sediment. In a hierarchical clustering analysis, samples from all host species, with the exception of the coral Galaxea astreata, formed significantly supported clusters. In addition to this, the coral G. astreata and the bryozoan Triphyllozoon inornatum on the one hand and the coral Tubastraea coccinea, the hermit crab Calcinus laevimanus and the flatworm Thysanozoon nigropapillosum on the other formed significantly supported clusters. In addition to composition, there were highly pronounced differences in richness and evenness among host species from the most diverse species, the bryozoan T. inornatum at 2518 ± 240 OTUs per 10,000 sequences to the least diverse species, the octocoral Cladiella sp. at 142 ± 14 OTUs per 10,000 sequences. In line with the differences in composition, there were significant differences in predicted metagenomic gene counts among host species. Furthermore, there were pronounced compositional and predicted functional differences between high diversity hosts (Liolophura japonica, G. astreata, T. coccinea, C. laevimanus, T. inornatum) and low diversity hosts (Antipathes sp., Pomacentrus coelestis, Modiolus auriculatus, T. nigropapillosum, Cladiella sp. and Diadema savigny). In particular, we found that all tested low diversity hosts were predicted to be enriched for the phosphotransferase system compared to high diversity hosts.
Collapse
Affiliation(s)
- Daniel F R Cleary
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Ana Rita M Polónia
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Yusheng M Huang
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, Penghu, Taiwan.,Department of Marine Recreation, University of Science and Technology, Penghu, Taiwan
| | - Thomas Swierts
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| |
Collapse
|
34
|
Sauvage T, Schmidt WE, Yoon HS, Paul VJ, Fredericq S. Promising prospects of nanopore sequencing for algal hologenomics and structural variation discovery. BMC Genomics 2019; 20:850. [PMID: 31722669 PMCID: PMC6854639 DOI: 10.1186/s12864-019-6248-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The MinION Access Program (MAP, 2014-2016) allowed selected users to test the prospects of long nanopore reads for diverse organisms and applications through the rapid development of improving chemistries. In 2014, faced with a fragmented Illumina assembly for the chloroplast genome of the green algal holobiont Caulerpa ashmeadii, we applied to the MAP to test the prospects of nanopore reads to investigate such intricacies, as well as further explore the hologenome of this species with native and hybrid approaches. RESULTS The chloroplast genome could only be resolved as a circular molecule in nanopore assemblies, which also revealed structural variants (i.e. chloroplast polymorphism or heteroplasmy). Signal and Illumina polishing of nanopore-assembled organelle genomes (chloroplast and mitochondrion) reflected the importance of coverage on final quality and current limitations. In hybrid assembly, our modest nanopore data sets showed encouraging results to improve assembly length, contiguity, repeat content, and binning of the larger nuclear and bacterial genomes. Profiling of the holobiont with nanopore or Illumina data unveiled a dominant Rhodospirillaceae (Alphaproteobacteria) species among six putative endosymbionts. While very fragmented, the cumulative hybrid assembly length of C. ashmeadii's nuclear genome reached 24.4 Mbp, including 2.1 Mbp in repeat, ranging closely with GenomeScope's estimate (> 26.3 Mbp, including 4.8 Mbp in repeat). CONCLUSION Our findings relying on a very modest number of nanopore R9 reads as compared to current output with newer chemistries demonstrate the promising prospects of the technology for the assembly and profiling of an algal hologenome and resolution of structural variation. The discovery of polymorphic 'chlorotypes' in C. ashmeadii, most likely mediated by homing endonucleases and/or retrohoming by reverse transcriptases, represents the first report of chloroplast heteroplasmy in the siphonous green algae. Improving contiguity of C. ashmeadii's nuclear and bacterial genomes will require deeper nanopore sequencing to greatly increase the coverage of these larger genomic compartments.
Collapse
Affiliation(s)
| | - William E. Schmidt
- Biology Department, University of Louisiana at Lafayette, Louisiana, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | | | - Suzanne Fredericq
- Biology Department, University of Louisiana at Lafayette, Louisiana, USA
| |
Collapse
|
35
|
Griffiths SM, Antwis RE, Lenzi L, Lucaci A, Behringer DC, Butler MJ, Preziosi RF. Host genetics and geography influence microbiome composition in the sponge Ircinia campana. J Anim Ecol 2019; 88:1684-1695. [PMID: 31325164 PMCID: PMC6899969 DOI: 10.1111/1365-2656.13065] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Marine sponges are hosts to large, diverse communities of microorganisms. These microbiomes are distinct among sponge species and from seawater bacterial communities, indicating a key role of host identity in shaping its resident microbial community. However, the factors governing intraspecific microbiome variability are underexplored and may shed light on the evolutionary and ecological relationships between host and microbiome. Here, we examined the influence of genetic variation and geographic location on the composition of the Ircinia campana microbiome. We developed new microsatellite markers to genotype I. campana from two locations in the Florida Keys, USA, and characterized their microbiomes using V4 16S rRNA amplicon sequencing. We show that microbial community composition and diversity is influenced by host genotype, with more genetically similar sponges hosting more similar microbial communities. We also found that although I. campana was not genetically differentiated between sites, microbiome composition differed by location. Our results demonstrate that both host genetics and geography influence the composition of the sponge microbiome. Host genotypic influence on microbiome composition may be due to stable vertical transmission of the microbial community from parent to offspring, making microbiomes more similar by descent. Alternatively, sponge genotypic variation may reflect variation in functional traits that influence the acquisition of environmental microbes. This study reveals drivers of microbiome variation within and among locations, and shows the importance of intraspecific variability in mediating eco-evolutionary dynamics of host-associated microbiomes.
Collapse
Affiliation(s)
- Sarah M. Griffiths
- Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Rachael E. Antwis
- School of Environment and Life SciencesUniversity of SalfordSalfordUK
| | - Luca Lenzi
- Centre for Genomic Research, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Anita Lucaci
- Centre for Genomic Research, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Donald C. Behringer
- Fisheries and Aquatic SciencesUniversity of FloridaGainesvilleFLUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Mark J. Butler
- Department of Biological SciencesOld Dominion UniversityNorfolkVAUSA
| | - Richard F. Preziosi
- Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
36
|
Indraningrat AAG, Micheller S, Runderkamp M, Sauerland I, Becking LE, Smidt H, Sipkema D. Cultivation of Sponge-Associated Bacteria from Agelas sventres and Xestospongia muta Collected from Different Depths. Mar Drugs 2019; 17:E578. [PMID: 31614540 PMCID: PMC6836257 DOI: 10.3390/md17100578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 01/15/2023] Open
Abstract
Sponge-associated bacteria have been mostly cultured from shallow water (≤30 m) sponges, whereas only few studies targeted specimens from below 30 m. This study assessed the cultivability of bacteria from two marine sponges Xestospongia muta and Agelas sventres collected from shallow (<30 m), upper mesophotic (30-60 m), and lower mesophotic (60-90 m) reefs. Sponge-associated bacteria were cultivated on six different media, and replicate plates were used to pick individual colonies or to recover the entire biomass. Prokaryotic community analysis was conducted using Illumina MiSeq sequencing of 16S rRNA gene amplicons. A total of 144 bacterial isolates were picked following a colony morphology coding scheme and subsequently identified by 16S rRNA gene sequence analysis. Sponge individuals at each depth-range harboured specific cultivable bacteria that were not retrieved from specimens collected at other depths. However, there were substantial differences in the number of colonies obtained for replicate sponges of the same species. In addition, source of inoculum and cultivation medium had more impact on the cultured prokaryotic community than sample collection depth. This suggests that the "plate count anomaly" is larger than differences in sponge-associated prokaryotic community composition related to depth.
Collapse
Affiliation(s)
- Anak Agung Gede Indraningrat
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- Faculty of Medicine and Health Science, Warmadewa University, Jln Terompong 24, Denpasar 80239, Bali, Indonesia.
| | - Sebastian Micheller
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Mandy Runderkamp
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Ina Sauerland
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- Wageningen Marine Research, Wageningen University & Research, Ankerpark 27, 1781 AG Den Helder, The Netherlands.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
37
|
Zhang F, Jonas L, Lin H, Hill RT. Microbially mediated nutrient cycles in marine sponges. FEMS Microbiol Ecol 2019; 95:5582607. [DOI: 10.1093/femsec/fiz155] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023] Open
Abstract
ABSTRACTEfficient nutrient cycles mediated by symbiotic microorganisms with their hosts are vital to support the high productivity of coral reef ecosystems. In these ecosystems, marine sponges are important habitat-forming organisms in the benthic community and harbor abundant microbial symbionts. However, few studies have reviewed the critical microbially mediated nutrient cycling processes in marine sponges. To bridge this gap, in this review article, we summarize existing knowledge and recent advances in understanding microbially mediated carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycles in sponges, propose a conceptual model that describes potential interactions and constraints in the major nutrient cycles, and suggest that shifting redox state induced by animal behavior like sponge pumping can exert great influence on the activities of symbiotic microbial communities. Constraints include the lack of knowledge on spatial and temporal variations and host behavior; more studies are needed in these areas. Sponge microbiomes may have a significant impact on the nutrient cycles in the world’s coral reef ecosystems.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| | - Lauren Jonas
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| | - Hanzhi Lin
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| | - Russell T Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| |
Collapse
|
38
|
Zhang S, Song W, Wemheuer B, Reveillaud J, Webster N, Thomas T. Comparative Genomics Reveals Ecological and Evolutionary Insights into Sponge-Associated Thaumarchaeota. mSystems 2019; 4:e00288-19. [PMID: 31409660 PMCID: PMC6697440 DOI: 10.1128/msystems.00288-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
Thaumarchaeota are frequently reported to associate with marine sponges (phylum Porifera); however, little is known about the features that distinguish them from their free-living thaumarchaeal counterparts. In this study, thaumarchaeal metagenome-assembled genomes (MAGs) were reconstructed from metagenomic data sets derived from the marine sponges Hexadella detritifera, Hexadella cf. detritifera, and Stylissa flabelliformis Phylogenetic and taxonomic analyses revealed that the three thaumarchaeal MAGs represent two new species within the genus Nitrosopumilus and one novel genus, for which we propose the names "Candidatus UNitrosopumilus hexadellus," "Candidatus UNitrosopumilus detritiferus," and "Candidatus UCenporiarchaeum stylissum" (the U superscript indicates that the taxon is uncultured). Comparison of these genomes to data from the Sponge Earth Microbiome Project revealed that "Ca UCenporiarchaeum stylissum" has been exclusively detected in sponges and can hence be classified as a specialist, while "Ca UNitrosopumilus detritiferus" and "Ca UNitrosopumilus hexadellus" are also detected outside the sponge holobiont and likely lead a generalist lifestyle. Comparison of the sponge-associated MAGs to genomes of free-living Thaumarchaeota revealed signatures that indicate functional features of a sponge-associated lifestyle, and these features were related to nutrient transport and metabolism, restriction-modification, defense mechanisms, and host interactions. Each species exhibited distinct functional traits, suggesting that they have reached different stages of evolutionary adaptation and/or occupy distinct ecological niches within their sponge hosts. Our study therefore offers new evolutionary and ecological insights into the symbiosis between sponges and their thaumarchaeal symbionts.IMPORTANCE Sponges represent ecologically important models to understand the evolution of symbiotic interactions of metazoans with microbial symbionts. Thaumarchaeota are commonly found in sponges, but their potential adaptations to a host-associated lifestyle are largely unknown. Here, we present three novel sponge-associated thaumarchaeal species and compare their genomic and predicted functional features with those of closely related free-living counterparts. We found different degrees of specialization of these thaumarchaeal species to the sponge environment that is reflected in their host distribution and their predicted molecular and metabolic properties. Our results indicate that Thaumarchaeota may have reached different stages of evolutionary adaptation in their symbiosis with sponges.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Weizhi Song
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Bernd Wemheuer
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Torsten Thomas
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
39
|
Silva SG, Blom J, Keller‐Costa T, Costa R. Comparative genomics reveals complex natural product biosynthesis capacities and carbon metabolism across host‐associated and free‐living
Aquimarina
(
Bacteroidetes, Flavobacteriaceae
) species. Environ Microbiol 2019; 21:4002-4019. [DOI: 10.1111/1462-2920.14747] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/12/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Sandra G. Silva
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa Lisbon Portugal
| | - Jochen Blom
- Bioinformatics and Systems Biology Justus‐Liebig‐University Giessen 35392 Giessen Germany
| | - Tina Keller‐Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa Lisbon Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa Lisbon Portugal
- Centre of Marine Sciences (CCMAR) Algarve University 8005‐139 Faro Portugal
| |
Collapse
|
40
|
Gutleben J, Koehorst JJ, McPherson K, Pomponi S, Wijffels RH, Smidt H, Sipkema D. Diversity of tryptophan halogenases in sponges of the genus Aplysina. FEMS Microbiol Ecol 2019; 95:fiz108. [PMID: 31276591 PMCID: PMC6644159 DOI: 10.1093/femsec/fiz108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Marine sponges are a prolific source of novel enzymes with promising biotechnological potential. Especially halogenases, which are key enzymes in the biosynthesis of brominated and chlorinated secondary metabolites, possess interesting properties towards the production of pharmaceuticals that are often halogenated. In this study we used a polymerase chain reaction (PCR)-based screening to simultaneously examine and compare the richness and diversity of putative tryptophan halogenase protein sequences and bacterial community structures of six Aplysina species from the Mediterranean and Caribbean seas. At the phylum level, bacterial community composition was similar amongst all investigated species and predominated by Actinobacteria, Chloroflexi, Cyanobacteria, Gemmatimonadetes, and Proteobacteria. We detected four phylogenetically diverse clades of putative tryptophan halogenase protein sequences, which were only distantly related to previously reported halogenases. The Mediterranean species Aplysina aerophoba harbored unique halogenase sequences, of which the most predominant was related to a sponge-associated Psychrobacter-derived sequence. In contrast, the Caribbean species shared numerous novel halogenase sequence variants and exhibited a highly similar bacterial community composition at the operational taxonomic unit (OTU) level. Correlations of relative abundances of halogenases with those of bacterial taxa suggest that prominent sponge symbiotic bacteria, including Chloroflexi and Actinobacteria, are putative producers of the detected enzymes and may thus contribute to the chemical defense of their host.
Collapse
Affiliation(s)
- Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Kyle McPherson
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Shirley Pomponi
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
- Florida Atlantic University – Harbor Branch, 5600 U.S. 1, Fort Pierce, FL 34946, the United States
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
41
|
Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. Comparative Genomics of Marine Sponge-Derived Streptomyces spp. Isolates SM17 and SM18 With Their Closest Terrestrial Relatives Provides Novel Insights Into Environmental Niche Adaptations and Secondary Metabolite Biosynthesis Potential. Front Microbiol 2019; 10:1713. [PMID: 31404169 PMCID: PMC6676996 DOI: 10.3389/fmicb.2019.01713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Abstract
The emergence of antibiotic resistant microorganisms has led to an increased need for the discovery and development of novel antimicrobial compounds. Frequent rediscovery of the same natural products (NPs) continues to decrease the likelihood of the discovery of new compounds from soil bacteria. Thus, efforts have shifted toward investigating microorganisms and their secondary metabolite biosynthesis potential, from diverse niche environments, such as those isolated from marine sponges. Here we investigated at the genomic level two Streptomyces spp. strains, namely SM17 and SM18, isolated from the marine sponge Haliclona simulans, with previously reported antimicrobial activity against clinically relevant pathogens; using single molecule real-time (SMRT) sequencing. We performed a series of comparative genomic analyses on SM17 and SM18 with their closest terrestrial relatives, namely S. albus J1074 and S. pratensis ATCC 33331 respectively; in an effort to provide further insights into potential environmental niche adaptations (ENAs) of marine sponge-associated Streptomyces, and on how these adaptations might be linked to their secondary metabolite biosynthesis potential. Prediction of secondary metabolite biosynthetic gene clusters (smBGCs) indicated that, even though the marine isolates are closely related to their terrestrial counterparts at a genomic level; they potentially produce different compounds. SM17 and SM18 displayed a better ability to grow in high salinity medium when compared to their terrestrial counterparts, and further analysis of their genomes indicated that they possess a pool of 29 potential ENA genes that are absent in S. albus J1074 and S. pratensis ATCC 33331. This ENA gene pool included functional categories of genes that are likely to be related to niche adaptations and which could be grouped based on potential biological functions such as osmotic stress, defense; transcriptional regulation; symbiotic interactions; antimicrobial compound production and resistance; ABC transporters; together with horizontal gene transfer and defense-related features.
Collapse
Affiliation(s)
| | | | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
42
|
Burgsdorf I, Handley KM, Bar-Shalom R, Erwin PM, Steindler L. Life at Home and on the Roam: Genomic Adaptions Reflect the Dual Lifestyle of an Intracellular, Facultative Symbiont. mSystems 2019; 4:e00057-19. [PMID: 31086829 PMCID: PMC6506613 DOI: 10.1128/msystems.00057-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
"Candidatus Synechococcus feldmannii" is a facultative intracellular symbiont of the Atlanto-Mediterranean sponge Petrosia ficiformis. Genomic information of sponge-associated cyanobacteria derives thus far from the obligate and extracellular symbiont "Candidatus Synechococcus spongiarum." Here we utilized a differential methylation-based approach for bacterial DNA enrichment combined with metagenomics to obtain the first draft genomes of "Ca. Synechococcus feldmannii." By comparative genomics, we revealed that some genomic features (e.g., iron transport mediated by siderophores, eukaryotic-like proteins, and defense mechanisms, like CRISPR-Cas [clustered regularly interspaced short palindromic repeats-associated proteins]) are unique to both symbiont types and absent or rare in the genomes of taxonomically related free-living cyanobacteria. These genomic features likely enable life under the conditions found inside the sponge host. Interestingly, there are many genomic features that are shared by "Ca. Synechococcus feldmannii" and free-living cyanobacteria, while they are absent in the obligate symbiont "Ca. Synechococcus spongiarum." These include genes related to cell surface structures, genetic regulation, and responses to environmental stress, as well as the composition of photosynthetic genes and DNA metabolism. We speculate that the presence of these genes confers on "Ca. Synechococcus feldmannii" its facultative nature (i.e., the ability to respond to a less stable environment when free-living). Our comparative analysis revealed that distinct genomic features depend on the nature of the symbiotic interaction: facultative and intracellular versus obligate and extracellular. IMPORTANCE Given the evolutionary position of sponges as one of the earliest phyla to depart from the metazoan stem lineage, studies on their distinct and exceptionally diverse microbial communities should yield a better understanding of the origin of animal-bacterium interactions. While genomes of several extracellular sponge symbionts have been published, the intracellular symbionts have, so far, been elusive. Here we compare the genomes of two unicellular cyanobacterial sponge symbionts that share an ancestor but followed different evolutionary paths-one became intracellular and the other extracellular. Counterintuitively, the intracellular cyanobacteria are facultative, while the extracellular ones are obligate. By sequencing the genomes of the intracellular cyanobacteria and comparing them to the genomes of the extracellular symbionts and related free-living cyanobacteria, we show how three different cyanobacterial lifestyles are reflected by adaptive genomic features.
Collapse
Affiliation(s)
- Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Patrick M. Erwin
- Department of Biology and Marine Biology, Centre for Marine Science, University of North Carolina—Wilmington, Wilmington, North Carolina, USA
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
43
|
Feng G, Zhang F, Banakar S, Karlep L, Li Z. Analysis of functional gene transcripts suggests active CO2 assimilation and CO oxidation by diverse bacteria in marine sponges. FEMS Microbiol Ecol 2019; 95:5513993. [DOI: 10.1093/femsec/fiz087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/08/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guofang Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Fengli Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Shivakumar Banakar
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Liisi Karlep
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Ehitajate 5, Tallinn 19086, Estonia
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| |
Collapse
|
44
|
Tian Y, Ma X, Li Y, Cheng C, Ge F, An D. Relationship between microbial diversity and nitrogenase activity of Stipagrostis pennata rhizosheath. J Cell Biochem 2019; 120:13501-13508. [PMID: 30938883 DOI: 10.1002/jcb.28625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 11/09/2022]
Abstract
Nitrogen is the key factor for plant survival and growth, especially in the desert. Stipagrostis pennata, a sand born drought-resistant plant, could colonize pioneerly in Gurbantunggut Desert during revegetation. One strategy for their environment adaptation was the rhizosheath formatted by root-hair, mucilaginous exudates, microbial components, and soil particles, for which not only provides a favorable living microenvironment but also supplies essential nutrients. To understand the relationship between microorganisms living in rhizosheaths and the nitrogen nutrition supply, the microbial diversity and nitrogenase activity was estimated during the growth of S. pennata. Five samples of the rhizosheath, which based on the development periods of the plant, regreen, flowering, filling, seed maturating, and withering period, were collected. The nitrogenase activity was estimated by acetylene reduction and the microbial diversity was analyzed by 16S rRNA high-throughput sequencing. The results showed that the nitrogenase activity was increased slowly during regreen to flowering, while reached a peak rapidly at filling sample and then decreased gradually. A total of 274 operational taxonomic units (OTUs) were identified and significant differences in community structure and composition at each growth period. Among them, the main phyla included Actinobacteria and Proteus, which were the most abundant phyla in all periods. In addition, the microbial diversity in the grain filling period was higher than other periods in view of the analysis of alpha diversity and beta diversity. Furthermore, principal component analysis (PCA) analysis showed that the microbial communities in the filling period was low in similarity with other periods. Most importantly, the OTUs associated with nitrogen fixation is the most during the filling period, involving Phagecidae and Fucoraceae. Overall, the study not only revealed the differences in nitrogenase activity among different developmental periods in S. pennata, but also explored the potential bridges between it and community structure and diversity of bacteria.
Collapse
Affiliation(s)
- Yongzhi Tian
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Xiaolin Ma
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Yuanting Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Cong Cheng
- Jiangsu Key Laboratory of Microbiology and Functional Genomics, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Fengwei Ge
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Dengdi An
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
45
|
Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria. Sci Rep 2019; 9:1999. [PMID: 30760820 PMCID: PMC6374434 DOI: 10.1038/s41598-019-38737-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Marine sponges are early-branching, filter-feeding metazoans that usually host complex microbiomes comprised of several, currently uncultivatable symbiotic lineages. Here, we use a low-carbon based strategy to cultivate low-abundance bacteria from Spongia officinalis. This approach favoured the growth of Alphaproteobacteria strains in the genera Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria and Pseudovibrio, besides two likely new genera in the Rhodobacteraceae family. Mapping of complete genomes against the metagenomes of S. officinalis, seawater, and sediments confirmed the rare status of all the above-mentioned lineages in the marine realm. Remarkably, this community of low-abundance Alphaproteobacteria possesses several genomic attributes common to dominant, presently uncultivatable sponge symbionts, potentially contributing to host fitness through detoxification mechanisms (e.g. heavy metal and metabolic waste removal, degradation of aromatic compounds), provision of essential vitamins (e.g. B6 and B12 biosynthesis), nutritional exchange (especially regarding the processing of organic sulphur and nitrogen) and chemical defence (e.g. polyketide and terpenoid biosynthesis). None of the studied taxa displayed signs of genome reduction, indicative of obligate mutualism. Instead, versatile nutrient metabolisms along with motility, chemotaxis, and tight-adherence capacities - also known to confer environmental hardiness – were inferred, underlying dual host-associated and free-living life strategies adopted by these diverse sponge-associated Alphaproteobacteria.
Collapse
|