1
|
Ganta PK, Huang F, Halima TB, Kamaraj R, Chu YT, Tseng HC, Ding S, Wu KH, Chen HY. Evolution of aluminum aminophenolate complexes in the ring-opening polymerization of ε-caprolactone: electronic and amino-chelating effects. Dalton Trans 2025; 54:511-532. [PMID: 39648948 DOI: 10.1039/d4dt02923b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
A series of aluminum complexes bearing phenolate (O-Al and O2-Al), biphenolate (OO-Al type), aminophenolate (ON-Al), aminobiphenolate (ONO-Al), bis(phenolato)bis(amine) (NNOO-Al), and Salan (ONNO-Al) type ligands were synthesized. ε-Caprolactone (CL) polymerization using these aluminum complexes as catalysts was investigated. The overall polymerization rates of Al catalysts with different ligands were found to be in the following order (kobs values): ONBr-Al (0.124 min-1) ≥ OBr2-Al (0.121 min-1) > ONNOBr-Al (0.054 min-1) > NNOBr-Al (0.044 min-1) ≥ ONOBr-Al (0.043 min-1) > OBr-Al (0.033 min-1) > NNOOBr-Al (0.015 min-1) ≥ BuONNOBu-Al (0.001 min-1) = OOBr-Al (0.001 min-1). In addition, Al complexes with electron-donating substituents on ligands exhibited higher catalytic activity than those with bromo substituents. Density functional theory (DFT) calculations revealed that a dinuclear Al complex with two bridging methoxides had to rearrange to a phenolate bridged dinuclear Al complex with terminal methoxides. This is due to the low initiating ability of two bridging benzyl alkoxides. Combining the polymerization data and DFT results, it was concluded that the electron-donating substituents on the phenolate ring and chelating amino group enhance the electron density of the Al center. This may prevent the formation of a less active dinuclear Al complex with two bridging alkoxides (initiators) or facilitate its structural rearrangement. OOMe-Al has been established as a powerful candidate with a high polymerization rate and it exhibits well-controlled polymerization for synthesizing the mPEG-b-PCL copolymer.
Collapse
Affiliation(s)
- Prasanna Kumar Ganta
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Fei Huang
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Taoufik Ben Halima
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Rajiv Kamaraj
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Yu-Ting Chu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Hsi-Ching Tseng
- College of Science Instrumentation Center, National Taiwan University, Taipei, Taiwan, 106319, Republic of China
| | - Shangwu Ding
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Kuo-Hui Wu
- Department of Chemistry, National Central University, Taoyuan, Taiwan, 32001, Republic of China
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- National Pingtung University of Science and Technology, Pingtung, Taiwan 91201, Republic of China
| |
Collapse
|
2
|
Ye S, Lu Y, Li G, Li D, Wu Y, Yao Y. Stenotrophomonas maltophilia Isolated from the Gut Symbiotic Community of the Plastic-Eating Tenebrio molitor. Appl Biochem Biotechnol 2024; 196:7805-7815. [PMID: 38558277 DOI: 10.1007/s12010-024-04921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Polyvinyl chloride (PVC) waste is a major environmental challenge. In this study, we found that a PVC-eating insect, Tenebrio molitor, could survive by consuming PVC as a dietary supplement. To understand the gut symbiotic community, metagenomic analysis was performed to reveal the biodiversity of a symbiotic community in the midgut of Tenebrio molitor. Among them, seven genera were enriched from the midgut of the insect under culture conditions with PVC as carbon source. A strain of Stenotrophomonas maltophilia was isolated from the midgut symbiotic community of the plastic-eating Tenebrio molitor. To unravel the functional gene for the biodegradation enzyme, we sequenced the whole genome of Stenotrophomonas maltophilia and found that orf00390, annotated as a hydrolase, was highly expressed in the PVC culture niche.
Collapse
Affiliation(s)
- Shasha Ye
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yi Lu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guo Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Dongfang Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Hangzhou Qizhen Testing Co.Ltd., Hangzhou, 311215, China
| | - Yujin Wu
- Hangzhou Qizhen Testing Co.Ltd., Hangzhou, 311215, China
| | - Yuan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
3
|
Wu LJ, Kottalanka RK, Chu YT, Lin ZI, Chang CJ, Ding S, Chen HY, Wu KH, Chen CK. A comparative study of titanium complexes bearing 2-(arylideneamino)phenolates and 2-((arylimino)methyl)phenolates as catalysts for ring-opening polymerization of ε-caprolactone and L-lactide. Dalton Trans 2024; 53:15660-15673. [PMID: 39247970 DOI: 10.1039/d4dt02282c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Titanium complexes bearing 2-(arylideneamino)phenolates and 2-((arylimino)methyl)phenolates were synthesized, and their catalytic activities in the polymerization of ε-caprolactone and L-lactide were studied. Among five-membered ring Ti complexes bearing 2-(arylideneamino)phenolates, FCl-Ti exhibited the highest level of catalytic activity ([CL] : [FCl-Ti] = 100 : 1, where [CL] = 2 M, and conv. = 86% at 60 °C after 9 h). For six-membered ring Ti complexes bearing 2-((arylimino)methyl)phenolates, SCl-Ti exhibited the highest level of catalytic activity ([CL] : [SCl-Ti] = 100 : 1, where [CL] = 2 M, and conv. = 88% at 60 °C after 118 h). The five-membered ring Ti complexes bearing 2-(arylideneamino)phenolates exhibited a higher level of catalytic activity (6.1-12.8 fold for the polymerization of ε-caprolactone and 6.2-23.0 fold for the polymerization of L-lactide) than the six-membered ring Ti complexes bearing 2-((arylimino)methyl)phenolates. The density functional theory (DFT) results revealed that the free energy of the first transition state FH-Ti-TS1 is 36.49 kcal mol-1 which is lower than that of SH-Ti-TS1 (46.58 kcal mol-1), which was ascribed to the fact that the Ti-Nim bond (2.742 Å) of FH-Ti-TS1 is longer than that of SH-Ti-TS1 (2.229 Å) and reduces the repulsion between ligands.
Collapse
Affiliation(s)
- Ling-Jo Wu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Ravi Kumar Kottalanka
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| | - Yu-Ting Chu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chun-Juei Chang
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Shangwu Ding
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuo-Hui Wu
- Department of Chemistry, National Central University, Taoyuan, Taiwan, 32001, Republic of China
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
4
|
Wu J, Wang J, Zeng Y, Sun X, Yuan Q, Liu L, Shen X. Biodegradation: the best solution to the world problem of discarded polymers. BIORESOUR BIOPROCESS 2024; 11:79. [PMID: 39110313 PMCID: PMC11306678 DOI: 10.1186/s40643-024-00793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The widespread use of polymers has made our lives increasingly convenient by offering a more convenient and dependable material. However, the challenge of efficiently decomposing these materials has resulted in a surge of polymer waste, posing environment and health risk. Currently, landfill and incineration treatment approaches have notable shortcomings, prompting a shift towards more eco-friendly and sustainable biodegradation approaches. Biodegradation primarily relies on microorganisms, with research focusing on both solitary bacterial strain and multi-strain communities for polymer biodegradation. Furthermore, directed evolution and rational design of enzyme have significantly contributed to the polymer biodegradation process. However, previous reviews often undervaluing the role of multi-strain communities. In this review, we assess the current state of these three significant fields of research, provide practical solutions to issues with polymer biodegradation, and outline potential future directions for the subject. Ultimately, biodegradation, whether facilitated by single bacteria, multi-strain communities, or engineered enzymes, now represents the most effective method for managing waste polymers.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yicheng Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Pires CS, Costa L, Barbosa SG, Sequeira JC, Cachetas D, Freitas JP, Martins G, Machado AV, Cavaleiro AJ, Salvador AF. Microplastics Biodegradation by Estuarine and Landfill Microbiomes. MICROBIAL ECOLOGY 2024; 87:88. [PMID: 38943017 PMCID: PMC11213754 DOI: 10.1007/s00248-024-02399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.
Collapse
Affiliation(s)
- Cristina S Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sónia G Barbosa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Diogo Cachetas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José P Freitas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Gilberto Martins
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Vera Machado
- IPC - Institute for Polymers and Composites, University of Minho, Guimarães, Portugal
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Zampolli J, Vezzini D, Brocca S, Di Gennaro P. Insights into the biodegradation of polycaprolactone through genomic analysis of two plastic-degrading Rhodococcus bacteria. Front Microbiol 2024; 14:1284956. [PMID: 38235436 PMCID: PMC10791956 DOI: 10.3389/fmicb.2023.1284956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Polycaprolactone (PCL) is an aliphatic polyester often utilized as a model to investigate the biodegradation potential of bacteria and the involved catabolic enzymes. This study aims to characterize PCL biodegradative metabolic potential and correlate it to genomic traits of two plastic-degrading bacteria-Rhodococcus erythropolis D4 strain, a new isolate from plastic-rich organic waste treatment plant, and Rhodococcus opacus R7, known for its relevant biodegradative potential on polyethylene and similar compounds. After preliminary screening for bacteria capable of hydrolyzing tributyrin and PCL, the biodegradation of PCL was evaluated in R. erythropolis D4 and R. opacus R7 by measuring their growth and the release of PCL catabolism products up to 42 days. After 7 days, an increase of at least one order of magnitude of cell number was observed. GC-MS analyses of 28-day culture supernatants showed an increase in carboxylic acids in both Rhodococcus cultures. Furthermore, hydrolytic activity (~5 U mg-1) on short/medium-chain p-nitrophenyl esters was detected in their supernatant. Finally, a comparative genome analysis was performed between two Rhodococcus strains. A comparison with genes annotated in reference strains revealed hundreds of gene products putatively related to polyester biodegradation. Based on additional predictive analysis of gene products, gene expression was performed on a smaller group of genes, revealing that exposure to PCL elicits the greatest increase in transcription for a single gene in strain R7 and two genes, including that encoding a putative lipase, in strain D4. This work exhibits a multifaceted experimental approach to exploit the broad potential of Rhodococcus strains in the field of plastic biodegradation.
Collapse
Affiliation(s)
| | | | | | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
7
|
Degli-Innocenti F, Breton T, Chinaglia S, Esposito E, Pecchiari M, Pennacchio A, Pischedda A, Tosin M. Microorganisms that produce enzymes active on biodegradable polyesters are ubiquitous. Biodegradation 2023; 34:489-518. [PMID: 37354274 DOI: 10.1007/s10532-023-10031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Biodegradability standards measure ultimate biodegradation of polymers by exposing the material under test to a natural microbial inoculum. Available tests developed by the International Organization for Standardization (ISO) use inoculums sampled from different environments e.g. soil, marine sediments, seawater. Understanding whether each inoculum is to be considered as microbially unique or not can be relevant for the interpretation of tests results. In this review, we address this question by consideration of the following: (i) the chemical nature of biodegradable plastics (virtually all biodegradable plastics are polyesters) (ii) the diffusion of ester bonds in nature both in simple molecules and in polymers (ubiquitous); (iii) the diffusion of decomposers capable of producing enzymes, called esterases, which accelerate the hydrolysis of esters, including polyesters (ubiquitous); (iv) the evidence showing that synthetic polyesters can be depolymerized by esterases (large and growing); (v) the evidence showing that these esterases are ubiquitous (growing and confirmed by bioinformatics studies). By combining the relevant available facts it can be concluded that if a certain polyester shows ultimate biodegradation when exposed to a natural inoculum, it can be considered biodegradable and need not be retested using other inoculums. Obviously, if the polymer does not show ultimate biodegradation it must be considered recalcitrant, until proven otherwise.
Collapse
Affiliation(s)
| | - Tony Breton
- Novamont S.p.A., via Fauser 8, 28100, Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Howard SA, Carr CM, Sbahtu HI, Onwukwe U, López MJ, Dobson ADW, McCarthy RR. Enrichment of native plastic-associated biofilm communities to enhance polyester degrading activity. Environ Microbiol 2023; 25:2698-2718. [PMID: 37515381 PMCID: PMC10947123 DOI: 10.1111/1462-2920.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Plastic pollution is an increasing worldwide problem urgently requiring a solution. While recycling rates are increasing globally, only 9% of all plastic waste has been recycled, and with the cost and limited downstream uses of recycled plastic, an alternative is needed. Here, we found that expanded polystyrene (EPS) promoted high levels of bacterial biofilm formation and sought out environmental EPS waste to characterize these native communities. We demonstrated that the EPS attached communities had limited plastic degrading activity. We then performed a long-term enrichment experiment where we placed a robust selection pressure on these communities by limiting carbon availability such that the waste plastic was the only carbon source. Seven of the resulting enriched bacterial communities had increased plastic degrading activity compared to the starting bacterial communities. Pseudomonas stutzeri was predominantly identified in six of the seven enriched communities as the strongest polyester degrader. Sequencing of one isolate of P. stutzeri revealed two putative polyesterases and one putative MHETase. This indicates that waste plastic-associated biofilms are a source for bacteria that have plastic-degrading potential, and that this potential can be unlocked through selective pressure and further in vitro enrichment experiments, resulting in biodegradative communities that are better than nature.
Collapse
Affiliation(s)
- Sophie A. Howard
- Centre for Inflammation Research and Translational Medicine, Division of Biosciences, Department of Life Sciences, College of Health and Life SciencesBrunel University LondonUxbridgeUK
| | - Clodagh M. Carr
- School of MicrobiologyUniversity College CorkCorkIreland
- SSPC‐SFI Research Centre for PharmaceuticalsUniversity College CorkCorkIreland
| | - Habteab Isaack Sbahtu
- Centre for Inflammation Research and Translational Medicine, Division of Biosciences, Department of Life Sciences, College of Health and Life SciencesBrunel University LondonUxbridgeUK
| | - Uchechukwu Onwukwe
- Experimental Techniques Centre, College of Engineering, Design and Physical SciencesBrunel University LondonUxbridgeUK
| | - Maria J. López
- Department of Biology and Geology, CITE II‐BUniversity of Almería, Agrifood Campus of International Excellence ceiA3, CIAIMBITALAlmeriaSpain
| | - Alan D. W. Dobson
- School of MicrobiologyUniversity College CorkCorkIreland
- SSPC‐SFI Research Centre for PharmaceuticalsUniversity College CorkCorkIreland
| | - Ronan R. McCarthy
- Centre for Inflammation Research and Translational Medicine, Division of Biosciences, Department of Life Sciences, College of Health and Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
9
|
Ganta PK, Teja MR, Chang CJ, Sambandam A, Kamaraj R, Chu YT, Ding S, Chen HY, Chen HY. Improvement of catalytic activity of aluminum complexes for the ring-opening polymerization of ε-caprolactone: aluminum thioamidate and thioureidate systems. Dalton Trans 2023; 52:17132-17147. [PMID: 37929915 DOI: 10.1039/d3dt03198e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In this study, a series of Al complexes bearing amidates, thioamidates, ureidates, and thioureidates were synthesized and their catalytic activity for ε-caprolactone (CL) polymerization was evaluated. SPr-Al exhibited a higher catalytic activity than OPr-Al (3.2 times as high for CL polymerization; [CL] : [SPr-Al] : [BnOH] = 100 : 0.5 : 2; [SPr-Al] = 10 mM, conv. = 93% after 14 min at 25 °C), and USCl-Al exhibited a higher catalytic activity than UCl-Al (4.6 times as high for CL polymerization; [CL] : [USCl-Al] : [BnOH] = 100 : 0.5 : 2; [USCl-Al] = 10 mM, conv. = 90% after 15 min at 25 °C). Regardless of whether aluminum amidates or ureidates were present, thioligands improved the polymerization rate of aluminum catalysts. Density functional theory calculations revealed that the eight-membered ring [SPr-AlOMe2]2 decomposed into the four-membered ring SPr-AlOMe2. However, [OPr-AlOMe2]2 did not decompose because of its strong bridging Al-O bond. The overall activation energy required for CL polymerization was lower when using [SPr-AlOMe2]2 (18.1 kcal mol-1) as a catalyst than when using [OPr-AlOMe2]2 (23.9 kcal mol-1). This is because the TS2a transition state of SPr-AlOMe2 had a more open coordination geometry with a small N-Al-S angle (72.91°) than did TS3c of [OPr-AlOMe2]2, the crowded highest-energy transition state of [OPr-AlOMe2]2 with a larger N-Al-O angle (99.63°).
Collapse
Affiliation(s)
- Prasanna Kumar Ganta
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Mallemadugula Ravi Teja
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Chun-Juei Chang
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of International Ph.D. Program for Science, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, Republic of China
| | - Anandan Sambandam
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Rajiv Kamaraj
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Yu-Ting Chu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Shangwu Ding
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
10
|
Kang X, Zhao X, Song X. Analysis of a novel strain Brevundimonas KX-1 capable of degrading 3-chlorocarbazole based on the whole genome sequence. Antonie Van Leeuwenhoek 2023; 116:577-593. [PMID: 37186067 DOI: 10.1007/s10482-023-01831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
In this study, a strain was isolated from a sewage treatment plant in Jiangsu Province, China. The strain was identified as Brevundimonas sp. KX-1. After 5 days, 50.2% 3-chlorocarbazole (3-CCZ) was degraded under the optimum condition as follows: 1 g/L starch, 30 °C, pH 6.5 and 50 mg/L 3-CCZ. The degradation of 3-CCZ by KX-1 conformed to the first-order kinetic model under different initial concentrations in this experiment. The intermediate product of 3-CCZ degradation was identified as (2E,4Z)-6-(2-amino-5-chlorophenyl)-2-hydroxy-6-oxohexa-2,4-dienoic acid. The activities of the meta-cleavage enzymes for biphenyl-2,3-diol (the analogs of intermediate product 2'-amino-5'-chloro-[1,1'-biphenyl]-2,3-diol) were measured with the crude extracts of cells grown in the presence of 3-CCZ. The complete genome of KX-1 was sequenced and compared with the Brevundimonas diminuta BZC3. BZC3 and KX-1 belonged to the same species, displaying the genetic similarity of 99%. But BZC3 could efficiently degrade gentamicin for the potential microbial function analysis. Compared with BZC3, KX-1 possessed the primary function annotations about transportation and metabolism of amino acids (6.65%) and the transportation and metabolism of carbohydrates (5.96%). In addition, KX-1 was rich in sucrose and starch metabolism pathways (ko00500) compared with the genome of BZC3, indicating the high efficiency of KX-1 for starch utilization during degradation. This article reveals the difference between strain KX-1 and bacteria of the same genus in terms of the whole genome sequence, demonstrating that KX-1 is a novel strain Brevundimonas with the ability to degrade 3-CCZ.
Collapse
Affiliation(s)
- Xin Kang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
- , Bldg. 4, 2999 Renmin North Road, Songjiang District, Shanghai, 201620, People's Republic of China.
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
11
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
12
|
Su RR, Ganta PK, Cheng CA, Hu YT, Chang YC, Chang CJ, Ding S, Chen HY, Wu KH. Ring-opening polymerization of ε-caprolactone and L-lactide using ethyl salicylate-bearing zinc complexes as catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Wu LJ, Lee W, Kumar Ganta P, Chang YL, Chang YC, Chen HY. Multinuclear metal catalysts in ring-opening polymerization of ε‑caprolactone and lactide: Cooperative and electronic effects between metal centers. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Chang CJ, Lee W, Liou YC, Chang YL, Lai YC, Ding S, Chen HY, Chen HY, Chang YC. Synergy Effect of Aluminum Complexes During the Ring-Opening Polymerization of ε-Caprolactone: Inductive Effects Between Dinuclear Metal Catalysts. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Bher A, Mayekar PC, Auras RA, Schvezov CE. Biodegradation of Biodegradable Polymers in Mesophilic Aerobic Environments. Int J Mol Sci 2022; 23:12165. [PMID: 36293023 PMCID: PMC9603655 DOI: 10.3390/ijms232012165] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 08/29/2023] Open
Abstract
Finding alternatives to diminish plastic pollution has become one of the main challenges of modern life. A few alternatives have gained potential for a shift toward a more circular and sustainable relationship with plastics. Biodegradable polymers derived from bio- and fossil-based sources have emerged as one feasible alternative to overcome inconveniences associated with the use and disposal of non-biodegradable polymers. The biodegradation process depends on the environment's factors, microorganisms and associated enzymes, and the polymer properties, resulting in a plethora of parameters that create a complex process whereby biodegradation times and rates can vary immensely. This review aims to provide a background and a comprehensive, systematic, and critical overview of this complex process with a special focus on the mesophilic range. Activity toward depolymerization by extracellular enzymes, biofilm effect on the dynamic of the degradation process, CO2 evolution evaluating the extent of biodegradation, and metabolic pathways are discussed. Remarks and perspectives for potential future research are provided with a focus on the current knowledge gaps if the goal is to minimize the persistence of plastics across environments. Innovative approaches such as the addition of specific compounds to trigger depolymerization under particular conditions, biostimulation, bioaugmentation, and the addition of natural and/or modified enzymes are state-of-the-art methods that need faster development. Furthermore, methods must be connected to standards and techniques that fully track the biodegradation process. More transdisciplinary research within areas of polymer chemistry/processing and microbiology/biochemistry is needed.
Collapse
Affiliation(s)
- Anibal Bher
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA
- Instituto de Materiales de Misiones, CONICET-UNaM, Posadas 3300, Misiones, Argentina
| | - Pooja C. Mayekar
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA
| | - Rafael A. Auras
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA
| | - Carlos E. Schvezov
- Instituto de Materiales de Misiones, CONICET-UNaM, Posadas 3300, Misiones, Argentina
| |
Collapse
|
16
|
Aoki M, Miyashita Y, Miwa T, Watari T, Yamaguchi T, Syutsubo K, Hayashi K. Manganese oxidation and prokaryotic community analysis in a polycaprolactone-packed aerated biofilm reactor operated under seawater conditions. 3 Biotech 2022; 12:187. [PMID: 35875177 PMCID: PMC9304527 DOI: 10.1007/s13205-022-03250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Biogenic manganese oxides (BioMnOx) have been receiving increasing attention for the removal of environmental contaminants and recovery of minor metals from water environments. However, the enrichment of heterotrophic Mn(II)-oxidizing microorganisms for BioMnOx production in the presence of fast-growing coexisting heterotrophs is challenging. In our previous work, we revealed that polycaprolactone (PCL), a biodegradable aliphatic polyester, can serve as an effective solid organic substrate to enrich Mn-oxidizing microbial communities under seawater conditions. However, marine BioMnOx-producing bioreactor systems utilizing PCL have not yet been established. Therefore, a laboratory-scale continuous-flow PCL-packed aerated biofilm (PAB) reactor was operated for 238 days to evaluate its feasibility for BioMnOx production under seawater conditions. After the start-up of the reactor, the average dissolved Mn removal rates of 0.4-2.3 mg/L/day, likely caused by Mn(II) oxidation, were confirmed under different influent dissolved Mn concentrations (2.5-14.0 mg/L on average) and theoretical hydraulic retention time (0.19-0.77 day) conditions. The 16S rRNA gene amplicon sequencing analysis suggested the presence of putative Mn(II)-oxidizing and PCL-degrading bacterial lineages in the reactor. Two highly dominant operational units (OTUs) in the packed PCL-associated biofilm were assigned to the genera Marinobacter and Pseudohoeflea, whereas the genus Lewinella and unclassified Alphaproteobacteria OTUs were highly dominant in the MnOx-containing black/dark brown precipitate-associated biofilm formed in the reactor. Excitation-emission matrix fluorescence spectroscopy analysis revealed the production of tyrosine- and tryptophane-like components, which may serve as soluble heterotrophic organic substrates in the reactor. Our findings indicate that PAB reactors are potentially applicable to BioMnOx production under seawater conditions.
Collapse
Affiliation(s)
- Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| | - Yukina Miyashita
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| | - Toru Miwa
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Hayashi
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| |
Collapse
|
17
|
Delangiz N, Aliyar S, Pashapoor N, Nobaharan K, Asgari Lajayer B, Rodríguez-Couto S. Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges? CHEMOSPHERE 2022; 294:133709. [PMID: 35074325 DOI: 10.1016/j.chemosphere.2022.133709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Increasing world population and industrial activities have enhanced anthropogenic pollution, plastic pollution being especially alarming. So, plastics should be recycled and/or make them biodegradable. Chemical and physical remediating methods are usually energy consuming and costly. In addition, they are not ecofriendly and usually produce toxic byproducts. Bioremediation is a proper option as it is cost-efficient and environmentally friendly. Plastic production and consumption are increasing daily, and, as a consequence, more microorganisms are exposed to these nonbiodegradable polymers. Therefore, investigating new efficient microorganisms and increasing the knowledge about their biology can pave the way for efficient and feasible plastic bioremediation processes. In this sense, omics, systems biology and bioinformatics are three important fields to analyze the biodegradation pathways in microorganisms. Based on the above-mentioned technologies, researchers can engineer microorganisms with specific desired properties to make bioremediation more efficient.
Collapse
Affiliation(s)
- Nasser Delangiz
- Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sajad Aliyar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Neda Pashapoor
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
18
|
High poly ε-caprolactone biodegradation activity by a new Acinetobacter seifertii isolate. Folia Microbiol (Praha) 2022; 67:659-669. [PMID: 35384558 DOI: 10.1007/s12223-022-00964-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
Abstract
Poly(ε-caprolactone; PCL) is an attractive biodegradable polymer that has been increasingly used to solve environmental problems caused by plastic wastes. In the present study, 468 bacterial isolates were recovered from soil samples and screened for PCL degradation activity. Of the isolates, 37 (7.9%) showed PCL depolymerase activity on PCL agar medium, with the highest activity being by isolate S22 which was identified using 16S rRNA and rpoB gene sequencing as Acinetobacter seifertii. Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed the degradation of PCL films after treatment with A. seifertii S22. The PCL depolymerase activity of A. seifertii S22 relied on the activity of esterase which occurred at an optimum temperature of 30-40 °C. The highest PCL depolymerase activity (35.5 ± 0.7 U/mL) was achieved after culturing A. seifertii S22 for 6 h in mineral salt medium (MSM) containing 0.1% Tween 20 and 0.02% ammonium sulfate as the carbon and nitrogen sources, respectively, which was approximately 20-fold higher than for cultivation in MSM supplemented with 0.1% PCL as sole carbon source. The results suggested that A. seifertii S22 or its enzymes could be used for PCL bioplastic degradation.
Collapse
|
19
|
Melchor-Martínez EM, Macías-Garbett R, Alvarado-Ramírez L, Araújo RG, Sosa-Hernández JE, Ramírez-Gamboa D, Parra-Arroyo L, Alvarez AG, Monteverde RPB, Cazares KAS, Reyes-Mayer A, Yáñez Lino M, Iqbal HMN, Parra-Saldívar R. Towards a Circular Economy of Plastics: An Evaluation of the Systematic Transition to a New Generation of Bioplastics. Polymers (Basel) 2022; 14:1203. [PMID: 35335534 PMCID: PMC8955033 DOI: 10.3390/polym14061203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Plastics have become an essential part of the modern world thanks to their appealing physical and chemical properties as well as their low production cost. The most common type of polymers used for plastic account for 90% of the total production and are made from petroleum-based nonrenewable resources. Concerns over the sustainability of the current production model and the environmental implications of traditional plastics have fueled the demand for greener formulations and alternatives. In the last decade, new plastics manufactured from renewable sources and biological processes have emerged from research and have been established as a commercially viable solution with less adverse effects. Nevertheless, economic and legislative challenges for biobased plastics hinder their widespread implementation. This review summarizes the history of plastics over the last century, including the most relevant bioplastics and production methods, the environmental impact and mitigation of the adverse effects of conventional and emerging plastics, and the regulatory landscape that renewable and recyclable bioplastics face to reach a sustainable future.
Collapse
Affiliation(s)
- Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.M.M.-M.); (R.M.-G.); (L.A.-R.); (R.G.A.); (J.E.S.-H.); (D.R.-G.); (L.P.-A.)
| | - Rodrigo Macías-Garbett
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.M.M.-M.); (R.M.-G.); (L.A.-R.); (R.G.A.); (J.E.S.-H.); (D.R.-G.); (L.P.-A.)
| | - Lynette Alvarado-Ramírez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.M.M.-M.); (R.M.-G.); (L.A.-R.); (R.G.A.); (J.E.S.-H.); (D.R.-G.); (L.P.-A.)
| | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.M.M.-M.); (R.M.-G.); (L.A.-R.); (R.G.A.); (J.E.S.-H.); (D.R.-G.); (L.P.-A.)
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.M.M.-M.); (R.M.-G.); (L.A.-R.); (R.G.A.); (J.E.S.-H.); (D.R.-G.); (L.P.-A.)
| | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.M.M.-M.); (R.M.-G.); (L.A.-R.); (R.G.A.); (J.E.S.-H.); (D.R.-G.); (L.P.-A.)
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.M.M.-M.); (R.M.-G.); (L.A.-R.); (R.G.A.); (J.E.S.-H.); (D.R.-G.); (L.P.-A.)
| | - Abraham Garza Alvarez
- Cadena Comercial OXXO S.A de C.V., Monterrey 64480, Nuevo Leon, Mexico; (A.G.A.); (R.P.B.M.); (K.A.S.C.)
| | | | | | - Adriana Reyes-Mayer
- Centro de Caracterización e Investigación en Materiales S.A. de C.V., Jiutepec 62578, Morelos, Mexico;
| | - Mauricio Yáñez Lino
- Polymer Solutions & Innovation S.A. de C.V., Jiutepec 62578, Morelos, Mexico;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.M.M.-M.); (R.M.-G.); (L.A.-R.); (R.G.A.); (J.E.S.-H.); (D.R.-G.); (L.P.-A.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.M.M.-M.); (R.M.-G.); (L.A.-R.); (R.G.A.); (J.E.S.-H.); (D.R.-G.); (L.P.-A.)
| |
Collapse
|
20
|
Urbanek AK, Arroyo M, de la Mata I, Mirończuk AM. Identification of novel extracellular putative chitinase and hydrolase from Geomyces sp. B10I with the biodegradation activity towards polyesters. AMB Express 2022; 12:12. [PMID: 35122534 PMCID: PMC8818076 DOI: 10.1186/s13568-022-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Cold-adapted filamentous fungal strain Geomyces sp. B10I has been reported to decompose polyesters such as poly(e-caprolactone) (PCL), poly(butylene succinate) (PBS) and poly(butylene succinate-co-butylene adipate) (PBSA). Here, we identified the enzymes of Geomyces sp. B10I, which appear to be responsible for its biodegradation activity. We compared their amino acid sequences with sequences of well-studied fungal enzymes. Partial purification of an extracellular mixture of the two enzymes, named hydrGB10I and chitGB10I, using ammonium sulfate precipitation and ionic exchange chromatography gave 14.16-fold purity. The amino acid sequence of the proteins obtained from the MALDI-TOF analysis determined the molecular mass of 77.2 kDa and 46.5 kDa, respectively. Conserved domain homology analysis revealed that both proteins belong to the class of hydrolases; hydrGB10I belongs to the glycosyl hydrolase 81 superfamily, while chitGB10I contains the domain of the glycosyl hydrolase 18 superfamily. Phylogenetic analysis suggests a distinct nature of the hydrGB10I and chitGB10I of Geomyces sp. B10I when compared with other fungal polyester-degrading enzymes described to date.
Collapse
|
21
|
Peng W, Wang Z, Shu Y, Lü F, Zhang H, Shao L, He P. Fate of a biobased polymer via high-solid anaerobic co-digestion with food waste and following aerobic treatment: Insights on changes of polymer physicochemical properties and the role of microbial and fungal communities. BIORESOURCE TECHNOLOGY 2022; 343:126079. [PMID: 34610428 DOI: 10.1016/j.biortech.2021.126079] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Degradation of bioplastics in food-waste-treating anaerobic digestion (AD) plants is becoming an increasingly concerning issue as they are inevitably mixed with food waste during the waste collection process. The aim of this study was to assess the degradation of PBAT/PLA based biopolymer bags during mesophilic and thermophilic AD, co-digested with food waste, and subsequent aerobic post-treatment. After the AD process, no discernable biological degradation was observed for all of the PBAT/PLA polymers. The comparison of FTIR, XRD, TG analysis and contact angle analysis between raw and degraded PBAT/PLA polymer revealed structural changes after anaerobic incubation. Subsequent aerobic treatment facilitated the degradation of the PBAT/PLA polymers from thermophilic AD, which was attributed to the polymer-degrading microorganisms Brevundimonas and Sphingobacterium. Physical disintegration of the PBAT/PLA polymer was observed under thermophilic conditions. Those undegraded polymer fragments could affect digestate quality and increase the risk of releasing microplastics into the environment.
Collapse
Affiliation(s)
- Wei Peng
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Zhijie Wang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Yinhui Shu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China.
| |
Collapse
|
22
|
Nikolaivits E, Pantelic B, Azeem M, Taxeidis G, Babu R, Topakas E, Brennan Fournet M, Nikodinovic-Runic J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. Front Bioeng Biotechnol 2021; 9:696040. [PMID: 34239864 PMCID: PMC8260098 DOI: 10.3389/fbioe.2021.696040] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Brana Pantelic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Ramesh Babu
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Willis JR, Saus E, Iraola-Guzmán S, Cabello-Yeves E, Ksiezopolska E, Cozzuto L, Bejarano LA, Andreu-Somavilla N, Alloza-Trabado M, Blanco A, Puig-Sola A, Broglio E, Carolis C, Ponomarenko J, Hecht J, Gabaldón T. Citizen-science based study of the oral microbiome in Cystic fibrosis and matched controls reveals major differences in diversity and abundance of bacterial and fungal species. J Oral Microbiol 2021; 13:1897328. [PMID: 34104346 PMCID: PMC8143623 DOI: 10.1080/20002297.2021.1897328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: Cystic fibrosis (CF) is an autosomal genetic disease, associated with the production of excessively thick mucosa and with life-threatening chronic lung infections. The microbiota of the oral cavity can act as a reservoir or as a barrier for infectious microorganisms that can colonize the lungs. However, the specific composition of the oral microbiome in CF is poorly understood.Methods: In collaboration with CF associations in Spain, we collected oral rinse samples from 31 CF persons (age range 7-47) and matched controls, and then performed 16S rRNA metabarcoding and high-throughput sequencing, combined with culture and proteomics-based identification of fungi to survey the bacterial and fungal oral microbiome.Results: We found that CF is associated with less diverse oral microbiomes, which were characterized by higher prevalence of Candida albicans and differential abundances of a number of bacterial taxa that have implications in both the connection to lung infections in CF, as well as potential oral health concerns, particularly periodontitis and dental caries.Conclusion: Overall, our study provides a first global snapshot of the oral microbiome in CF. Future studies are required to establish the relationships between the composition of the oral and lung microbiomes in CF.
Collapse
Affiliation(s)
- Jesse R Willis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Cabello-Yeves
- Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Bejarano
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Andreu-Somavilla
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miriam Alloza-Trabado
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrea Blanco
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Puig-Sola
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elisabetta Broglio
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Urbanek AK, Strzelecki MC, Mirończuk AM. The potential of cold-adapted microorganisms for biodegradation of bioplastics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:72-81. [PMID: 33045489 DOI: 10.1016/j.wasman.2020.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Due to the extensive use of plastics, their quantity in the environment is constantly increasing, which creates a global problem. In the present study, we sought to isolate, test and identify Antarctic microorganisms which possess the ability to biodegrade bioplastics such as poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBS) and poly(butylene succinate-co-butylene adipate) (PBSA) at low temperatures. 161 bacterial and 38 fungal isolates were isolated from 22 Antarctic soil samples. Among them, 92.16% of bacterial and 77.27% of fungal isolates formed a clear zone on emulsified PBSA, 98.04% and 81.82% on PBS and 100% and 77.27% on PCL as an additive to minimal medium at 20 °C. Based on the 16S and 18S rRNA sequences, bacterial strains were identified as species belonging to Pseudomonas and Bacillus and fungal strains as species belonging to Geomyces, Sclerotinia, Fusarium and Mortierella, while the yeast strain was identified as Hansenula anomala. In the biodegradation process conducted under laboratory conditions at 14, 20 and 28 °C, Sclerotinia sp. B11IV and Fusarium sp. B3'M strains showed the highest biodegradation activity at 20 °C (49.68% for PBSA and 33.7% for PCL, 45.99% for PBSA and 49.65% for PCL, respectively). The highest biodegradation rate for Geomyces sp. B10I was noted at 14 °C (25.67% for PBSA and 5.71% for PCL), which suggested a preference for lower temperatures (at 20 °C the biodegradation rate was only 11.34% for PBSA, and 4.46% for PCL). These data showed that microorganisms isolated from Antarctic regions are good candidates for effective plastic degradation at low temperatures.
Collapse
Affiliation(s)
- Aneta K Urbanek
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Mateusz C Strzelecki
- Institute of Geography and Regional Development, University of Wroclaw, pl. Uniwersytecki 1, 50-137 Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland.
| |
Collapse
|
25
|
Ashar M, Fraser MA, Li J, Wang C, Huang W, Zhang D, Zhang C. Interaction between microbial communities and various plastic types under different aquatic systems. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105151. [PMID: 32956972 DOI: 10.1016/j.marenvres.2020.105151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the physicochemical surface changes of various plastics caused by indigenous communities. The first invading microbes on plastics in 4 different aquatic communities including seawater, freshwater, marine sediments and lake sediments were developed in microcosm incubation experiments. A mixture of weathered plastics (PE, PS, PET) was incubated with different indigenous communities under their respective habitat simulations. All microbial communities were able to form populations on all plastic surfaces with time-dependent development. Biofilm also affected floatation of plastics and the communities on PE foam (PF) were dominated by genera affiliated with plastic and hydrocarbon degraders. The results showed that indigenous populations were able to degrade plastic pieces and utilize them as carbon sources where the weight of PF was reduced more effectively than PS and PET. Besides, carbonyl groups that were seen with FTIR on initial PF disappeared after microbial treatment along with signs of bioerosion on the plastic surface.
Collapse
Affiliation(s)
- Muhammad Ashar
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Maria A Fraser
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Jingjing Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
26
|
Long-Term Evaluation of Dip-Coated PCL-Blend-PEG Coatings in Simulated Conditions. Polymers (Basel) 2020; 12:polym12030717. [PMID: 32213843 PMCID: PMC7183267 DOI: 10.3390/polym12030717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 11/17/2022] Open
Abstract
Our study focused on the long-term degradation under simulated conditions of coatings based on different compositions of polycaprolactone-polyethylene glycol blends (PCL-blend-PEG), fabricated for titanium implants by a dip-coating technique. The degradation behavior of polymeric coatings was evaluated by polymer mass loss measurements of the PCL-blend-PEG during immersion in SBF up to 16 weeks and correlated with those yielded from electrochemical experiments. The results are thoroughly supported by extensive compositional and surface analyses (FTIR, GIXRD, SEM, and wettability investigations). We found that the degradation behavior of PCL-blend-PEG coatings is governed by the properties of the main polymer constituents: the PEG solubilizes fast, immediately after the immersion, while the PCL degrades slowly over the whole period of time. Furthermore, the results evidence that the alteration of blend coatings is strongly enhanced by the increase in PEG content. The biological assessment unveiled the beneficial influence of PCL-blend-PEG coatings for the adhesion and spreading of both human-derived mesenchymal stem cells and endothelial cells.
Collapse
|
27
|
Satti SM, Shah AA. Polyester-based biodegradable plastics: an approach towards sustainable development. Lett Appl Microbiol 2020; 70:413-430. [PMID: 32086820 DOI: 10.1111/lam.13287] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/29/2022]
Abstract
Non-degradability of conventional plastics, filling of landfill sites, raising water and land pollution and rapid depletion of fossil resources have raised the environmental issues and global concerns. The current demand and production of plastics is putting immense pressure on fossil resources, consuming about 6% of the global oil and is expected to grow up to 20%. The polyester-based biodegradable plastics (BPs) are considered as a remedy to the issue of plastics waste in the environment. BPs appear to manage the overflow of plastics by providing new means of waste management system and help in securing the non-renewable resources of nature. This review comprehensively presents the environmental burdens due to conventional plastics as well as production of polyester-based BPs as an alternative to conventional commodity plastics. The diversity of micro-organisms and their enzymes that degrade various polyester-based BPs (PLA, PCL, PHB/PHBV and PET) has also been described in detail. Moreover, the impact of plastics degradation products on soil ecology and ecosystem functions has critically been discussed. The report ends with special focus on future recommendations for the development of sustainable waste management strategies to control pollution due to plastics waste. SIGNIFICANCE AND IMPACT OF THE STUDY: Polyester-based BPs considered as a solution to current plastic waste problem as well as leading polymers in terms of biodegradability and sustainability has been critically discussed. The role of microorganisms and their enzymes involved in the biodegradation of these polymers and ecotoxicological impact of degradation products of BPs on soil microbial community and biogeochemical cycles has also been described. This report will provide an insight on the key research areas to bridge the gap for development of simulated systems as an effective and emerging strategy to divert the overflow of plastic in the environment as well as for the greener solution to the plastic waste management problems.
Collapse
Affiliation(s)
- S M Satti
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - A A Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
28
|
Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140315. [DOI: 10.1016/j.bbapap.2019.140315] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023]
|
29
|
Preisler AC, Pereira AE, Campos EV, Dalazen G, Fraceto LF, Oliveira HC. Atrazine nanoencapsulation improves pre-emergence herbicidal activity against Bidens pilosa without enhancing long-term residual effect on Glycine max. PEST MANAGEMENT SCIENCE 2020; 76:141-149. [PMID: 31081245 DOI: 10.1002/ps.5482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Poly(ϵ-caprolactone) nanocapsules (NC + ATZ) are an efficient carrier system for atrazine and were developed as an alternative to reduce the harmful environmental effects of this herbicide. Here, we analyzed the pre-emergence herbicidal activity of NC + ATZ against Bidens pilosa and evaluated its residual effect on soybean plants after different periods of soil treatment with the formulations. RESULTS In contrast to non-nanoatrazine, NC + ATZ treatment led to very high mortality rates of B. pilosa seedlings even after a tenfold dilution, which suggests that atrazine nanoencapsulation improved its pre-emergence herbicidal activity. In a short-term assay (17 days), soil treatment with all atrazine-containing formulations resulted in intense toxicity to soybean plants. NC + ATZ at 200 g ha-1 had the same inhibitory effects on the physiological and growth parameters of soybean plants compared with non-nanoatrazine at 2000 g ha-1 , which suggests that atrazine nanoencapsulation increased the short-term residual effect of the herbicide. In a long-term assay (60 days), a gradual recovery of soybean plants from atrazine phytotoxicity was observed. When comparing the effects of nano- and non-nanoatrazine at the same concentrations, the growth and physiological parameters of soybean plants were mainly affected to the same extent. This indicates that encapsulation of atrazine into poly(ϵ-caprolactone) nanocapsules did not enhance the long-term residual effect of the herbicide on soybean. CONCLUSION NC + ATZ could be applied for efficient weed control without additional phytotoxicity to susceptible crops compared with non-nanoatrazine, provided that a safe interval is respected from atrazine application to sowing. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana C Preisler
- Department of Animal and Plant Biology, State University of Londrina, Londrina, Brazil
| | - Anderson Es Pereira
- Department of Environmental Engineering, São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Sorocaba, Brazil
| | - Estefânia Vr Campos
- Department of Environmental Engineering, São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Sorocaba, Brazil
| | - Giliardi Dalazen
- Department of Agronomy, State University of Londrina, Londrina, Brazil
| | - Leonardo F Fraceto
- Department of Environmental Engineering, São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Sorocaba, Brazil
| | - Halley C Oliveira
- Department of Animal and Plant Biology, State University of Londrina, Londrina, Brazil
| |
Collapse
|
30
|
Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. In silico Screening and Heterologous Expression of a Polyethylene Terephthalate Hydrolase (PETase)-Like Enzyme (SM14est) With Polycaprolactone (PCL)-Degrading Activity, From the Marine Sponge-Derived Strain Streptomyces sp. SM14. Front Microbiol 2019; 10:2187. [PMID: 31632361 PMCID: PMC6779837 DOI: 10.3389/fmicb.2019.02187] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Plastics, such as the polyethylene terephthalate (PET), are widely used for various industrial applications, due to their physicochemical properties which are particularly useful in the packaging industry. However, due to improper plastic waste management and difficulties in recycling, post-consumer plastic waste has become a pressing issue for both the environment and for human health. Hence, novel technologies and methods of processing plastic waste are required to address these issues. Enzymatic-assisted hydrolysis of synthetic polymers has been proposed as a potentially more efficient and environment-friendly alternative to the currently employed methods. Recently, a number of PET hydrolases have been described, and in particular a PETase derived from Ideonella sakaiensis 201-F6 (IsPETase), which appears to be the most efficient and substrate-specific bacterial PET hydrolase enzyme discovered to date. In order to further investigate this class of PETase-like enzymes, we employed an in silico-based screening approach on the biotechnologically relevant genus Streptomyces, including terrestrial and marine isolates; in a search for potential PETase homologs. From a total of 52 genomes analyzed, we were able to identify three potential PETase-like enzymes, all of which were derived from marine-sponge associated Streptomyces isolates. A candidate PETase-like gene (SM14est) was identified in Streptomyces sp. SM14. Further in silico characterization of the SM14est protein sequence and its predicted three-dimensional structure were performed and compared to the well-characterized IsPETase. Both the serine hydrolase motif Gly-x1-Ser-x2-Gly and the catalytic triad Ser, Asp, His are conserved in both sequences. Molecular docking experiments indicated that the SM14est enzyme possessed the capacity to bind plastics as substrates. Finally, polyesterase activity was confirmed using a polycaprolactone (PCL) plate clearing assay which is a model substrate for the degradation of plastics; following heterologous expression of SM14est in Escherichia coli, with secretion being facilitated by the native Streptomyces signal peptide. These findings provide further insights into this important class of PETase-like enzymes.
Collapse
Affiliation(s)
| | | | - Stephen A Jackson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Al Hosni AS, Pittman JK, Robson GD. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 97:105-114. [PMID: 31447017 DOI: 10.1016/j.wasman.2019.07.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/04/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Plastics are an indispensable material but also a major environmental pollutant. In contrast, biodegradable polymers have the potential to be compostable. The biodegradation of four polymers as discs, polycaprolactone (PCL), polyhydroxybutyrate (PHB), polylactic acid (PLA) and poly(1,4 butylene) succinate (PBS) was compared in soil and compost over a period of more than 10 months at 25 °C, 37 °C and 50 °C. Degradation rates varied between the polymers and incubation temperatures but PCL showed the fastest degradation rate under all conditions and was completely degraded when buried in compost and incubated at 50 °C after 91 days. Furthermore, PCL strips showed a significant reduction in tensile strength in just 2 weeks when incubated in compost >45 °C. Various fungal strains growing on the polymer surfaces were identified by sequence analysis. Aspergillus fumigatus was most commonly found at 25 °C and 37 °C, while Thermomyces lanuginosus, which was abundant at 50 °C, was associated with PCL degradation.
Collapse
Affiliation(s)
- Asma S Al Hosni
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jon K Pittman
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | - Geoffrey D Robson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
32
|
Song M, Wang Y, Jiang L, Peng K, Wei Z, Zhang D, Li Y, Zhang G, Luo C. The complex interactions between novel DEHP-metabolising bacteria and the microbes in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:733-740. [PMID: 30743959 DOI: 10.1016/j.scitotenv.2019.01.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The indigenous microorganisms with the ability of metabolising di-(2-ethylhexyl) phthalate (DEHP) in agricultural soils and their interactions with non-degrading microbes were revealed by DNA-based stable isotope probing coupled with molecular ecological network. Aside from the previously reported DEHP degraders (family Planococcaceae and genus Sphingobacterium), five OTUs representing bacteria affiliated with genus Brevundimona, class Spartobacteria, genus Singulisphaera, genus Dyella and class Ktedonobacteria were linked with DEHP biodegradation. The analysis of the constructed ecological network based on soil microbial communities demonstrated the negative relationships between DEHP degraders and the dominant family Oxalobacteraceae in soils. Additionally, two cultivable bacteria isolated from the same soils, Rhizobium-1 and Ensifer-1, had strong capabilities in degrading DEHP but their involvement in in situ DEHP degradation was questioned, as their DNA was not labelled with 13C from DEHP. These findings provide deeper understanding on the indigenous DEHP-degrading communities and will benefit the remediation of phthalate esters contaminated soils.
Collapse
Affiliation(s)
- Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ke Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zikai Wei
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongtao Li
- Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Lee MC, Liu EJ, Yang CH, Hsiao LJ, Wu TM, Li SY. Co-Expression of ORF Cma with PHB Depolymerase (PhaZ Cma ) in Escherichia coli Induces Efficient Whole-Cell Biodegradation of Polyesters. Biotechnol J 2018; 13:e1700560. [PMID: 29337429 DOI: 10.1002/biot.201700560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/10/2017] [Indexed: 11/07/2022]
Abstract
Whole-cell degradation of polyesters not only avoids the tedious process of enzyme separation, but also allows the degraded product to be reused as a carbon source. In this study, Escherichia coli BL21(DE3) harboring phaZCma , a gene encoding poly(3-hydroxybutyrate) (PHB) depolymerase from Caldimonas manganoxidans, is constructed. The extra-cellular fraction of E. coli/pPHAZ exhibits a fast PHB degradation rate where it only took 35 h to completely degrade PHB films, while C. manganoxidans takes 81 h to do the same. The co-expression of ORFCma (a putative periplasmic substrate binding protein that is within the same operon of phaZCma ) further improves the PHB degradation. While 28 h is needed for E. coli/pPHAZ to cause an 80% weight loss in PHB films, E. coli/pORFPHAZ needs only 21 h. Furthermore, it is able to degrade at-least four different polyesters, PHB, poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(butylene succinate-co-adipate) (PBSA). Testing of the time course of 3-hydroxybutyrate concentration and the turbidity of the degradation solutions over time shows that PhaZCma has both exo- and endo-enzymatic activity. The whole-cell E. coli/pORFPHAZ can be used for recycling various polyesters while ORFCma can potentially be a universal element for enhancing the secretion of recombinant protein.
Collapse
Affiliation(s)
- Ming-Chieh Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - En-Jung Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Cheng-Han Yang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Li-Jung Hsiao
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Tzong-Ming Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
34
|
Suzuki M, Tachibana Y, Kazahaya JI, Takizawa R, Muroi F, Kasuya KI. Difference in environmental degradability between poly(ethylene succinate) and poly(3-hydroxybutyrate). JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1383-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Illumina sequencing of bacterial 16S rDNA and 16S rRNA reveals seasonal and species-specific variation in bacterial communities in four moss species. Appl Microbiol Biotechnol 2017; 101:6739-6753. [DOI: 10.1007/s00253-017-8391-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 11/27/2022]
|