1
|
Menendez-Gil P, Veleva D, Virgo M, Zhang J, Ramalhete R, Ho BT. Modulation of Vibrio cholerae gene expression through conjugative delivery of engineered regulatory small RNAs. J Bacteriol 2024; 206:e0014224. [PMID: 39292012 PMCID: PMC11500501 DOI: 10.1128/jb.00142-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The increase in antibiotic resistance in bacteria has prompted the efforts in developing new alternative strategies for pathogenic bacteria. We explored the feasibility of targeting Vibrio cholerae by neutralizing bacterial cellular processes rather than outright killing the pathogen. We investigated the efficacy of delivering engineered regulatory small RNAs (sRNAs) to modulate gene expression through DNA conjugation. As a proof of concept, we engineered several sRNAs targeting the type VI secretion system (T6SS), several of which were able to successfully knockdown the T6SS activity at different degrees. Using the same strategy, we modulated exopolysaccharide production and motility. Lastly, we delivered an sRNA targeting T6SS into V. cholerae via conjugation and observed a rapid knockdown of the T6SS activity. Coupling conjugation with engineered sRNAs represents a novel way of modulating gene expression in V. cholerae opening the door for the development of novel prophylactic and therapeutic applications. IMPORTANCE Given the prevalence of antibiotic resistance, there is an increasing need to develop alternative approaches to managing pathogenic bacteria. In this work, we explore the feasibility of modulating the expression of various cellular systems in Vibrio cholerae using engineered regulatory sRNAs delivered into cells via DNA conjugation. These sRNAs are based on regulatory sRNAs found in V. cholerae and exploit its native regulatory machinery. By delivering these sRNAs conjugatively along with a real-time marker for DNA transfer, we found that complete knockdown of a targeted cellular system could be achieved within one cell division cycle after sRNA gene delivery. These results indicate that conjugative delivery of engineered regulatory sRNAs is a rapid and robust way of precisely targeting V. cholerae.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Diana Veleva
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Mollie Virgo
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Jige Zhang
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Rita Ramalhete
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Brian T. Ho
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Lee D, Choi H, Son S, Bae J, Joo J, Kim DW, Kim EJ. Expression of Cholera Toxin (CT) and the Toxin Co-Regulated Pilus (TCP) by Variants of ToxT in Vibrio cholerae Strains. Toxins (Basel) 2023; 15:507. [PMID: 37624264 PMCID: PMC10467113 DOI: 10.3390/toxins15080507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The expression of the two major virulence genes of Vibrio cholerae-tcpA (the major subunit of the toxin co-regulated pilus) and ctxAB (cholera toxin)-is regulated by the ToxR regulon, which is triggered by environmental stimuli during infection within the human small intestine. Special culture methods are required to induce the expression of virulence genes in V. cholerae in the laboratory setting. In the present study, induction of the expression of virulence genes by two point mutations (65th and 139th amino acids) in toxT, which is produced by the ToxR regulon and activates the transcription of the virulence genes in V. cholerae, under laboratory culture conditions has been investigated. Each of the four toxT alleles assessed displayed different transcriptional activator functions in a given V. cholerae strain. Although the ToxR regulon has been known to not be expressed by El Tor biotype V. cholerae strains cultured under standard laboratory conditions, the variant toxT alleles that we assessed in this study enabled the expression virulence genes in El Tor biotype strains grown under simple culture conditions comprising shake culture in LB medium, suggesting that the regulation of virulence gene expression may be regulated more complexly than previously thought and may involve additional factors beyond the production of ToxT by the ToxR regulon.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jayun Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
3
|
Bina XR, Bina JE. Vibrio cholerae RND efflux systems: mediators of stress responses, colonization and pathogenesis. Front Cell Infect Microbiol 2023; 13:1203487. [PMID: 37256112 PMCID: PMC10225521 DOI: 10.3389/fcimb.2023.1203487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Resistance Nodulation Division (RND) efflux systems are ubiquitous transporters in gram-negative bacteria that provide protection against antimicrobial agents and thereby enhance survival in virtually all environments these prokaryotes inhabit. Vibrio cholerae is a dual lifestyle enteric pathogen that spends much of its existence in aquatic environments. An unwitting encounter with a human host can lead to V. cholerae intestinal colonization by strains that encode cholera toxin and toxin co-regulated pilus virulence factors leading to potentially fatal cholera diarrhea and dissemination in the environment. Adaptive response mechanisms to host factors encountered by these pathogens are therefore critical both to engage survival mechanisms such as RND-mediated transporters and to induce timely expression of virulence factors. Sensing of cues encountered in the host may therefore activate more than protective responses such as efflux systems, but also be coordinated to initiate expression of virulence factors. This review summarizes recent advances that contribute towards the understanding of RND efflux physiological functions and how the transport systems interface with the regulation of virulence factor production in V. cholerae.
Collapse
Affiliation(s)
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Muhammad AY, Amonov M, Murugaiah C, Baig AA, Yusoff M. Intestinal colonization against Vibrio cholerae: host and microbial resistance mechanisms. AIMS Microbiol 2023; 9:346-374. [PMID: 37091815 PMCID: PMC10113163 DOI: 10.3934/microbiol.2023019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Vibrio cholerae is a non-invasive enteric pathogen known to cause a major public health problem called cholera. The pathogen inhabits the aquatic environment while outside the human host, it is transmitted into the host easily through ingesting contaminated food and water containing the vibrios, thus causing diarrhoea and vomiting. V. cholerae must resist several layers of colonization resistance mechanisms derived from the host or the gut commensals to successfully survive, grow, and colonize the distal intestinal epithelium, thus causing an infection. The colonization resistance mechanisms derived from the host are not specific to V. cholerae but to all invading pathogens. However, some of the gut commensal-derived colonization resistance may be more specific to the pathogen, making it more challenging to overcome. Consequently, the pathogen has evolved well-coordinated mechanisms that sense and utilize the anti-colonization factors to modulate events that promote its survival and colonization in the gut. This review is aimed at discussing how V. cholerae interacts and resists both host- and microbe-specific colonization resistance mechanisms to cause infection.
Collapse
Affiliation(s)
| | - Malik Amonov
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
- * Correspondence: ; Tel: +60189164478
| | | | - Atif Amin Baig
- University Institute of Public Health, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Marina Yusoff
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| |
Collapse
|
5
|
Xu K, Wang Y, Yang W, Cai H, Zhang Y, Huang L. Strategies for Prevention and Control of Vibriosis in Asian Fish Culture. Vaccines (Basel) 2022; 11:vaccines11010098. [PMID: 36679943 PMCID: PMC9862775 DOI: 10.3390/vaccines11010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
It is estimated that vibriosis account for about half of the economic losses in Asian fish culture. Consequently, the prevention and control of vibriosis is one of the priority research topics in the field of Asian fish culture disease. Relevant measures have been proposed to control some Vibrios that pose a threat to Asian fish culture, but there are currently only a few effective vaccines available to combat these Vibrios. The purpose of our review is to sum up the main prevention methods and the latest control strategies of seven Vibrio species that cause great harm to Asian aquaculture, including Vibrio harveyi, Vibrio vulnificus, Vibrio parahaemolyticus, Vibrio mimicus, Vibrio anguillarum, Vibrio alginolyticus and Vibrio cholerae. Strategies such as antibiotics, probiotics, bacteriophages, antimicrobials from plants and other natural sources, as well as vaccines, are compared and discussed here. We expect this review will provide some new views and recommendations for the future better prevention and control of vibriosis in Asian fish culture.
Collapse
Affiliation(s)
- Kangping Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Yushu Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Wangxiaohan Yang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Hongyan Cai
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (Y.Z.); (L.H.)
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
- Correspondence: (Y.Z.); (L.H.)
| |
Collapse
|
6
|
Angulo C, Sanchez V, Delgado K, Monreal-Escalante E, Hernández-Adame L, Angulo M, Tello-Olea M, Reyes-Becerril M. Oral organic nanovaccines against bacterial and viral diseases. Microb Pathog 2022; 169:105648. [PMID: 35728750 DOI: 10.1016/j.micpath.2022.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
Vaccines have saved millions of humans and animals from deadly diseases. Many vaccines are still under development to fight against lethal diseases. Indeed, subunit vaccines are a versatile approach with several advantageous attributes, but they lack strong immunogenicity. Nanotechnology is an avenue to vaccine development because nanoparticles may serve as nanocarriers and adjuvants, which are critical aspects for oral vaccines. This review provides an update of oral organic nanovaccines, describing suitable nanomaterials for oral vaccine design and recent (last five-year view) oral nanovaccine developments to fight against those principal pathogens causing human and animal diseases.
Collapse
Affiliation(s)
- Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico.
| | - Veronica Sanchez
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Karen Delgado
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico; Cátedras-CONACYT. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Luis Hernández-Adame
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico; Cátedras-CONACYT. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Marlene Tello-Olea
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| |
Collapse
|
7
|
Lemos Rocha LF, Peters K, Biboy J, Depelteau JS, Briegel A, Vollmer W, Blokesch M. The VarA-CsrA regulatory pathway influences cell shape in Vibrio cholerae. PLoS Genet 2022; 18:e1010143. [PMID: 35344548 PMCID: PMC8989286 DOI: 10.1371/journal.pgen.1010143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
Despite extensive studies on the curve-shaped bacterium Vibrio cholerae, the causative agent of the diarrheal disease cholera, its virulence-associated regulatory two-component signal transduction system VarS/VarA is not well understood. This pathway, which mainly signals through the downstream protein CsrA, is highly conserved among gamma-proteobacteria, indicating there is likely a broader function of this system beyond virulence regulation. In this study, we investigated the VarA-CsrA signaling pathway and discovered a previously unrecognized link to the shape of the bacterium. We observed that varA-deficient V. cholerae cells showed an abnormal spherical morphology during late-stage growth. Through peptidoglycan (PG) composition analyses, we discovered that these mutant bacteria contained an increased content of disaccharide dipeptides and reduced peptide crosslinks, consistent with the atypical cellular shape. The spherical shape correlated with the CsrA-dependent overproduction of aspartate ammonia lyase (AspA) in varA mutant cells, which likely depleted the cellular aspartate pool; therefore, the synthesis of the PG precursor amino acid meso-diaminopimelic acid was impaired. Importantly, this phenotype, and the overall cell rounding, could be prevented by means of cell wall recycling. Collectively, our data provide new insights into how V. cholerae use the VarA-CsrA signaling system to adjust its morphology upon unidentified external cues in its environment.
Collapse
Affiliation(s)
- Leonardo F. Lemos Rocha
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jamie S. Depelteau
- Microbial Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Microbial Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
8
|
Biswas Q, Purohit A, Kumar A, Rakshit D, Maiti D, Das B, Bhadra RK. Genetic and mutational analysis of virulence traits and their modulation in an environmental toxigenic Vibrio cholerae non-O1/non-O139 strain, VCE232. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35113781 DOI: 10.1099/mic.0.001135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae O1 and O139 isolates deploy cholera toxin (CT) and toxin-coregulated pilus (TCP) to cause the diarrhoeal disease cholera. The ctxAB and tcpA genes encoding CT and TCP are part of two acquired genetic elements, the CTX phage and Vibrio pathogenicity island-1 (VPI-1), respectively. ToxR and ToxT proteins are the key regulators of virulence genes of V. cholerae O1 and O139. V. cholerae isolates belonging to serogroups other than O1/O139, called non-O1/non-O139, are usually devoid of virulence-related elements and are non-pathogenic. Here, we have analysed the available whole genome sequence of an environmental toxigenic V. cholerae non-O1/non-O139 strain, VCE232, carrying the CTX phage and VPI-1. Extensive bioinformatics and phylogenetic analyses indicated high similarity of the VCE232 genome sequence with the genome of V. cholerae O1 strains, including organization of the VPI-1 locus, ctxAB, tcpA and toxT genes, and promoters. We established that the VCE232 strain produces an optimal amount of CT at 30 °C under AKI conditions. To investigate the role of ToxT and ToxR in the regulation of virulence factors, we constructed ΔtoxT, ΔtoxR and ΔtoxTΔtoxR deletion mutants of VCE232. Extensive genetic analyses of these mutants indicated that the toxT and toxR genes of VCE232 are crucial for CT and TCP production. However, unlike O1 isolates, the presence of either toxT or toxR gene is sufficient for optimal CT production in VCE232. In addition, the VCE232 ΔtoxR mutant showed differential regulation of the major outer membrane proteins, OmpT and OmpU. This is the first attempt to explore the regulation of expression of major virulence genes and regulators in an environmental toxigenic V. cholerae non-O1/non-O139 strain.
Collapse
Affiliation(s)
- Quoelee Biswas
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Ayushi Purohit
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dipayan Rakshit
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Diganta Maiti
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
9
|
Pauer H, Teixeira FL, Robinson AV, Parente TE, De Melo MAF, Lobo LA, Domingues RMCP, Allen-Vercoe E, Ferreira RBR, Antunes LCM. Bioactive small molecules produced by the human gut microbiome modulate Vibrio cholerae sessile and planktonic lifestyles. Gut Microbes 2021; 13:1-19. [PMID: 34006192 PMCID: PMC8143261 DOI: 10.1080/19490976.2021.1918993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humans live in symbiosis with a diverse community of microorganisms, which has evolved to carry out many specific tasks that benefit the host, including protection against invading pathogens. Within the chemical diversity of the gastrointestinal tract, small molecules likely constitute chemical cues for the communication between the microbiota and pathogens. Therefore, we sought to investigate if molecules produced by the human gut microbiota show biological activity against the human pathogen Vibrio cholerae. To probe the effects of the gut metabolome on V. cholerae, we investigated its response to small-molecule extracts from human feces, from a complex bacterial community cultivated in vitro, and from culture supernatants of Enterocloster citroniae, Bacteroides thetaiotaomicron, and Bacteroides vulgatus. Using RNA sequencing, we determined the impact of the human gut metabolome on V. cholerae global gene expression. Among the genes downregulated in the presence of the fecal extract, the most overrepresented functional category was cell motility, which accounted for 39% of repressed genes. Repression of V. cholerae motility by the fecal extract was confirmed phenotypically, and E. citroniae extracts reproduced this phenotype. A complex in vitro microbial community led to increased motility, as did extracts from B. vulgatus, a species present in this community. Accordingly, mucin penetration was also repressed by fecal and E. citroniae extracts, suggesting that the phenotypes observed may have implications for host colonization. Together with previous studies, this work shows that small molecules from the gut metabolome may have a widespread, significant impact on microbe-microbe interactions established in the gut environment.
Collapse
Affiliation(s)
- Heidi Pauer
- Instituto Nacional de Ciência e Tecnologia de Inovação Em Doenças De Populações Negligenciadas, Centro De Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Felipe Lopes Teixeira
- Departamento de Tecnologia Farmacêutica, Universidade Federal Fluminense, Niterói, Brazil
| | - Avery V. Robinson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Thiago E. Parente
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marília A. F. De Melo
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leandro A. Lobo
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio De Janeiro, Rio de Janeiro, Brazil
| | - Regina M. C. P. Domingues
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio De Janeiro, Rio de Janeiro, Brazil
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Rosana B. R. Ferreira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio De Janeiro, Rio de Janeiro, Brazil
| | - Luis Caetano M. Antunes
- Instituto Nacional de Ciência e Tecnologia de Inovação Em Doenças De Populações Negligenciadas, Centro De Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil,Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil,Laboratório de Pesquisa Em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil,CONTACT Luis Caetano Antunes Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900
| |
Collapse
|
10
|
Bile Salts Promote ToxR Regulon Activation during Growth under Virulence-Inducing Conditions. Infect Immun 2021; 89:e0044121. [PMID: 34543121 DOI: 10.1128/iai.00441-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cholera is an epidemic disease caused by the Gram-negative bacterium Vibrio cholerae. V. cholerae is found in aquatic ecosystems and infects people through the consumption of V. cholerae-contaminated food or water. Following ingestion, V. cholerae responds to host cues to activate the expression of critical virulence genes that are under the control of a hierarchical regulatory system called the ToxR regulon. The ToxR regulon is tightly regulated and is expressed in vitro only under special growth conditions referred to as AKI conditions. AKI conditions have been instrumental in elucidating V. cholerae virulence regulation, but the chemical cues within AKI medium that activate virulence gene expression are unknown. In this study, we fractionated AKI medium on a reverse-phase chromatography column (RPCC) and showed that the virulence-activating molecules were retained on the RPCC column and recovered in the eluate. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis of the eluate revealed the presence of a known ToxR regulon activator, taurocholate, and other bile salts. The RPCC eluate activated the ToxR regulon when added to noninducing medium and promoted TcpP dimerization in a two-hybrid system, consistent with taurocholate being responsible for the virulence-inducing activity of AKI medium. Additional experiments using purified bile salts showed that the ToxR regulon was preferentially activated in response to primary bile acids. The results of this study shed light on the chemical cues involved in V. cholerae virulence activation and suggested that V. cholerae virulence genes are modulated in response to regionally specific bile acid species in the intestine.
Collapse
|
11
|
Kim JA, Jang BR, Kim YR, Jung YC, Kim KS, Lee KH. Vibrio vulnificus induces the death of a major bacterial species in the mouse gut via cyclo-Phe-Pro. MICROBIOME 2021; 9:161. [PMID: 34284824 PMCID: PMC8293591 DOI: 10.1186/s40168-021-01095-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND A foodborne pathogen, Vibrio vulnificus, encounters normal microflora inhabiting the gut environments prior to causing fatal septicemia or gastroenteritis and should overcome the barriers derived from the gut commensals for successful infection. Its interactions with gut commensals during the infection process, however, have not yet been understood. In the present study, the effect of V. vulnificus on the community structures of gut microbiota in mice was examined. RESULTS Analyses of microbiota in the fecal samples of mice that died due to V. vulnificus infection revealed the decreased abundance of bacteria belonged to Bacteroidetes, notably, the species Bacteroides vulgatus. In vitro coculturing of the two bacterial species resulted in the decreased survival of B. vulgatus. The antagonistic effect of V. vulnificus against B. vulgatus was found to be mediated by cyclo-Phe-Pro (cFP), one of the major compounds secreted by V. vulnificus. cFP-treated B. vulgatus showed collapsed cellular morphology with an undulated cell surface, enlarged periplasmic space, and lysed membranes, suggesting the occurrence of membrane disruption. The degree of membrane disruption caused by cFP was dependent upon the cellular levels of ObgE in B. vulgatus. Recombinant ObgE exhibited a high affinity to cFP at a 1:1 ratio. When mice were orally injected with cFP, their feces contained significantly reduced B. vulgatus levels, and their susceptibility to V. vulnificus infection was considerably increased. CONCLUSIONS This study demonstrates that V. vulnificus-derived cFP modulates the abundance of the predominant species among gut commensals, which made V. vulnificus increase its pathogenicity in the hosts. Video abstract.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Bo-Ram Jang
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Yu-Ra Kim
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - You-Chul Jung
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Kun-Soo Kim
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea.
| |
Collapse
|
12
|
ToxR Mediates the Antivirulence Activity of Phenyl-Arginine-β-Naphthylamide To Attenuate Vibrio cholerae Virulence. Infect Immun 2021; 89:e0014721. [PMID: 33941578 DOI: 10.1128/iai.00147-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug efflux systems belonging to the resistance-nodulation-cell division (RND) family are ubiquitous in Gram-negative bacteria and are critical for antimicrobial resistance. This realization has led to efforts to develop efflux pump inhibitors (EPI) for use as adjuvants for antibiotic treatment of resistant organisms. However, the functions of RND transporters extend beyond antimicrobial resistance to include physiological functions that are critical for pathogenesis, suggesting that EPIs could also be used as antivirulence therapeutics. This was documented in the enteric pathogen Vibrio cholerae, in which EPIs were shown to attenuate the production of the critical virulence factors cholera toxin (CT) and the toxin-coregulated pilus (TCP). In this study, we investigated the antivirulence mechanism of action of the EPI phenyl-arginine-β-naphthylamide (PAβN) on V. cholerae. Using bioassays, we documented that PAβN inhibited virulence factor production in three epidemic V. cholerae isolates. Transcriptional reporter studies and mutant analysis indicated that PAβN initiated a ToxR-dependent regulatory circuit to activate leuO expression and that LeuO repressed the expression of the critical virulence activator aphA to attenuate CT and TCP production. The antivirulence activity of PAβN was found to be dependent on the ToxR periplasmic sensing domain (PPD), suggesting that a feedback mechanism was involved in its activity. Collectively, the data indicated that PAβN inhibited V. cholerae virulence factor production by activating a ToxR-dependent metabolic feedback mechanism to repress the expression of the ToxR virulence regulon. This suggests that efflux pump inhibitors could be used as antivirulence therapeutics for the treatment of cholera and perhaps that of other Gram-negative pathogens.
Collapse
|
13
|
Pennetzdorfer N, Höfler T, Wölflingseder M, Tutz S, Schild S, Reidl J. σ E controlled regulation of porin OmpU in Vibrio cholerae. Mol Microbiol 2021; 115:1244-1261. [PMID: 33330989 PMCID: PMC8359247 DOI: 10.1111/mmi.14669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/19/2023]
Abstract
Bile resistance is essential for enteric pathogens, as exemplified by Vibrio cholerae, the causative agent of cholera. The outer membrane porin OmpU confers bacterial survival and colonization advantages in the presence of host‐derived antimicrobial peptides as well as bile. Expression of ompU is controlled by the virulence regulator ToxR. rpoE knockouts are accompanied by suppressor mutations causing ompU downregulation. Therefore, OmpU constitutes an intersection of the ToxR regulon and the σE‐pathway in V. cholerae. To understand the mechanism by which the sigma factor σE regulates OmpU synthesis, we performed transcription studies using ompU reporter fusions and immunoblot analysis. Our data revealed an increase in ompU promoter activity in ΔrpoE strains, as well as in a ΔompU background, indicating a negative feedback regulation circuit of ompU expression. This regulation seems necessary, since elevated lethality rates of ΔrpoE strains occur upon ompU overexpression. Manipulation of OmpU’s C‐terminal portion revealed its relevance for protein stability and potency of σE release. Furthermore, ΔrpoE strains are still capable of elevating OmpU levels under membrane stress conditions triggered by the bile salt sodium deoxycholate. This study provides new details about the impact of σE on ompU regulation, which is critical to the pathogen’s intestinal survival.
Collapse
Affiliation(s)
| | - Thomas Höfler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Sarah Tutz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
14
|
Sofia MK, Dziejman M. DksA coordinates bile-mediated regulation of virulence-associated phenotypes in type three secretion system-positive Vibrio cholerae. MICROBIOLOGY-SGM 2020; 167. [PMID: 33332258 DOI: 10.1099/mic.0.001006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In order to cause disease, pathogenic strains of Vibrio cholerae rely on intricate regulatory networks to orchestrate the transition between their native aquatic environment and the human host. For example, bacteria in a nutrient-starved environment undergo a metabolic shift called the stringent response, which is mediated by the alarmone ppGpp and an RNA-polymerase binding transcriptional factor, DksA. In O1 serogroup strains of V. cholerae, which use the toxin co-regulated pilus (TCP) and cholera toxin (CT) as primary virulence factors, DksA was reported to have additional functions as a mediator of virulence gene expression. However, little is known about the regulatory networks coordinating virulence phenotypes in pathogenic strains that use TCP/CT-independent virulence mechanisms. We therefore investigated whether functions of DksA outside of the stringent response are conserved in type three secretion system (T3SS)-positive V. cholerae. In using the T3SS-positive clinically isolated O39 serogroup strain AM-19226, we observed an increase in dksA expression in the presence of bile at 37 °C. However, DksA was not required for wild-type levels of T3SS structural gene expression, or for colonization in vivo. Rather, data indicate that DksA positively regulates the expression of master regulators in the motility hierarchy. Interestingly, the ΔdksA strain forms a less robust biofilm than the WT parent strain at both 30 and 37 °C. We also found that DksA regulates the expression of hapR, encoding a major regulator of biofilm formation and protease expression. Athough DksA does not appear to modulate T3SS virulence factor expression, its activity is integrated into existing regulatory networks governing virulence-related phenotypes. Strain variations therefore may take advantage of conserved ancestral proteins to expand regulons responding to in vivo signals and thus coordinate multiple phenotypes important for infection.
Collapse
Affiliation(s)
- Madeline K Sofia
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
| |
Collapse
|
15
|
Vibrio cholerae Type VI Activity Alters Motility Behavior in Mucin. J Bacteriol 2020; 202:JB.00261-20. [PMID: 32868403 DOI: 10.1128/jb.00261-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023] Open
Abstract
Motility is required for many bacterial pathogens to reach and colonize target sites. Vibrio cholerae traverses a thick mucus barrier coating the small intestine to reach the underlying epithelium. We screened a transposon library in motility medium containing mucin to identify factors that influence mucus transit. Lesions in structural genes of the type VI secretion system (T6SS) were among those recovered. Two-dimensional (2D) and 3D single-cell tracking was used to compare the motility behaviors of wild-type cells and a mutant that collectively lacked three essential T6SS structural genes (T6SS-). In the absence of mucin, wild-type and T6SS- cells exhibited similar speeds and run-reverse-flick (RRF) swimming patterns, in which forward-moving cells briefly backtrack before stochastically reorienting (flicking) in a new direction upon resuming forward movement. We show that mucin induced T6SS expression and activity in wild-type bacteria but significantly decreased their swimming speed and flicking, yielding curvilinear or near-surface circular traces for many cells. Conversely, mucin slowed T6SS- cells to a lesser extent, and many continued to flick and produce RRF-like traces. ΔcheY3 cells, which exclusively swim in the forward direction and thus cannot flick, also produced curvilinear traces with or without mucin present and, on occasion, near-surface circular traces in the presence of mucin. The dependence of flicking on swimming speed suggested that mucin-induced T6SS activity further decreased V. cholerae motility and thereby reduced flicking probability during reverse-to-forward transitions. We propose that this encourages cells to continue on their current trajectory rather than reorienting, which may benefit those tracking toward the epithelial surface.IMPORTANCE V. cholerae deploys an arsenal of virulence factors as it attempts to traverse a protective mucus layer and reach the epithelial surface of the distal small intestine. The T6SS used to cull bacterial competition during infection is induced by mucus. We show that this activity may serve an additional purpose by further decreasing motility in the presence of mucin, thereby reducing the probability of speed-dependent, near-perpendicular directional changes. We posit that this encourages cells to maintain course rather than change direction, which may aid those attempting to reach and colonize the epithelial surface.
Collapse
|
16
|
Mancuso F, De Luca L, Angeli A, Berrino E, Del Prete S, Capasso C, Supuran CT, Gitto R. In Silico-Guided Identification of New Potent Inhibitors of Carbonic Anhydrases Expressed in Vibrio cholerae. ACS Med Chem Lett 2020; 11:2294-2299. [PMID: 33214843 DOI: 10.1021/acsmedchemlett.0c00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023] Open
Abstract
Carbonic anhydrases from Vibrio cholerae (VchCAs) play a significant role in bacterial pathophysiological processes. Therefore, their inhibition leads to a reduction of gene expression virulence and bacterial growth impairment. Herein, we report the first ligand-based pharmacophore model as a computational tool to study selective inhibitors of the β-class of VchCA. By a virtual screening on a collection of sulfonamides, we retrieved 9 compounds that were synthesized and evaluated for their inhibitory effects against VchCAβ as well as α- and γ-classes of VchCAs and selectivity over human ubiquitous isoforms hCA I and II. Notably, all tested compounds were active inhibitors of VchCAs. The N-(4-sulfamoylbenzyl)-[1,1'-biphenyl]-4-carboxamide (20e) stood out as the most exciting inhibitor toward the β-class (K i = 95.6 nM), also showing a low affinity against the tested human isoforms. By applying docking procedures, we described the binding mode of the inhibitor 20e within the catalytic cavity of the modeled open conformation of VchCAβ.
Collapse
Affiliation(s)
- Francesca Mancuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci 13, I-98168 Messina, Italy
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci 13, I-98168 Messina, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff, I-50019 Sesto Fiorentino, Italy
| | - Emanuela Berrino
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff, I-50019 Sesto Fiorentino, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse - CNR, Via Pietro Castellino 111 - I-80131 Napoli, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse - CNR, Via Pietro Castellino 111 - I-80131 Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff, I-50019 Sesto Fiorentino, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci 13, I-98168 Messina, Italy
| |
Collapse
|
17
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
18
|
Lembke M, Höfler T, Walter AN, Tutz S, Fengler V, Schild S, Reidl J. Host stimuli and operator binding sites controlling protein interactions between virulence master regulator ToxR and ToxS in Vibrio cholerae. Mol Microbiol 2020; 114:262-278. [PMID: 32251547 PMCID: PMC7496328 DOI: 10.1111/mmi.14510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/06/2023]
Abstract
Protein-protein interactions (PPIs) are key mechanisms in the maintenance of biological regulatory networks. Herein, we characterize PPIs within ToxR and its co-activator, ToxS, to understand the mechanisms of ToxR transcription factor activation. ToxR is a key transcription activator that is supported by ToxS for virulence gene regulation in Vibrio cholerae. ToxR comprises a cytoplasmic DNA-binding domain that is linked by a transmembrane domain to a periplasmic signal receiver domain containing two cysteine residues. ToxR-ToxR and ToxR-ToxS PPIs were detected using an adenylate-cyclase-based bacterial two-hybrid system approach in Escherichia coli. We found that the ToxR-ToxR PPIs are significantly increased in response to ToxR operators, the co-activator ToxS and bile salts. We suggest that ToxS and bile salts promote the interaction between ToxR molecules that ultimately results in dimerization. Upon binding of operators, ToxR-ToxR PPIs are found at the highest frequency. Moreover, disulfide-bond-dependent interaction in the periplasm results in homodimer formation that is promoted by DNA binding. The formation of these homodimers and the associated transcriptional activity of ToxR were strongly dependent on the oxidoreductases DsbA/DsbC. These findings show that protein and non-protein partners, that either transiently or stably interact with ToxR, fine-tune ToxR PPIs, and its associated transcriptional activity in changing environments.
Collapse
Affiliation(s)
- Mareike Lembke
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Höfler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Sarah Tutz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Vera Fengler
- Division of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,BioHealth, University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
19
|
Stringent response interacts with the ToxR regulon to regulate Vibrio cholerae virulence factor expression. Arch Microbiol 2020; 202:1359-1368. [DOI: 10.1007/s00203-020-01847-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
|
20
|
Vibrio cholerae OmpR Represses the ToxR Regulon in Response to Membrane Intercalating Agents That Are Prevalent in the Human Gastrointestinal Tract. Infect Immun 2020; 88:IAI.00912-19. [PMID: 31871096 DOI: 10.1128/iai.00912-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Multidrug efflux systems belonging to the resistance-nodulation-division (RND) superfamily are ubiquitous in Gram-negative bacteria. RND efflux systems are often associated with multiple antimicrobial resistance and also contribute to the expression of diverse bacterial phenotypes including virulence, as documented in the intestinal pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera. Transcriptomic studies with RND efflux-negative V. cholerae suggested that RND-mediated efflux was required for homeostasis, as loss of RND efflux resulted in the activation of transcriptional regulators, including multiple environmental sensing systems. In this report, we investigated six RND efflux-responsive regulatory genes for contributions to V. cholerae virulence factor production. Our data showed that the V. cholerae gene VC2714, encoding a homolog of Escherichia coli OmpR, was a virulence repressor. The expression of ompR was elevated in an RND-null mutant, and ompR deletion partially restored virulence factor production in the RND-negative background. Virulence inhibitory activity in the RND-negative background resulted from OmpR repression of the key ToxR regulon virulence activator aphB, and ompR overexpression in wild-type cells also repressed virulence through aphB We further show that ompR expression was not altered by changes in osmolarity but instead was induced by membrane-intercalating agents that are prevalent in the host gastrointestinal tract and which are substrates of the V. cholerae RND efflux systems. Our collective results indicate that V. cholerae ompR is an aphB repressor and regulates the expression of the ToxR virulence regulon in response to novel environmental cues.
Collapse
|
21
|
Xi D, Li Y, Yan J, Li Y, Wang X, Cao B. Small RNA coaR contributes to intestinal colonization in Vibrio cholerae via the two-component system EnvZ/OmpR. Environ Microbiol 2020; 22:4231-4243. [PMID: 31868254 DOI: 10.1111/1462-2920.14906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae is a waterborne bacterium responsible for worldwide outbreaks of acute and fatal cholera. Recently, small regulatory RNAs (sRNAs) have become increasingly recognized as important regulators of virulence gene expression in response to environmental signals. In this study, we determined that two-component system EnvZ/OmpR was required for intestinal colonization in V. cholerae O1 EI Tor strain E12382. Analysis of the characteristics of OmpR revealed a potential binding site in the intergenic region between vc1470 and vc1471, and qRT-PCR showed that expression of the intergenic region increased 5.3-fold in the small intestine compared to LB medium. Race and northern blot assays were performed and demonstrated a new sRNA, coaR (cholerae osmolarity and acidity related regulatory RNA). A ΔcoaR mutant showed a deficient colonization ability in small intestine with CI of 0.15. We identified a target of coaR, tcpI, a negative regulator of the major pilin subunit of TcpA. The ΔtcpI mutant has an increased colonization with CI of 3.16. The expression of coaR increased 2.8-fold and 3.3-fold under relative acidic and hypertonic condition. In summary, coaR was induced under the condition of high osmolarity and acid stress via EnvZ/OmpR and explained that tcpI relieves pH-mediated repression of toxin co-regulated pilus synthesis.
Collapse
Affiliation(s)
- Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| |
Collapse
|
22
|
Gitto R, De Luca L, Mancuso F, Del Prete S, Vullo D, Supuran CT, Capasso C. Seeking new approach for therapeutic treatment of cholera disease via inhibition of bacterial carbonic anhydrases: experimental and theoretical studies for sixteen benzenesulfonamide derivatives. J Enzyme Inhib Med Chem 2019; 34:1186-1192. [PMID: 31282228 PMCID: PMC6691843 DOI: 10.1080/14756366.2019.1618292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
A series of sixteen benzenesulfonamide derivatives has been synthesised and tested as inhibitors of Vibrio cholerae carbonic anhydrase (CA) enzymes, belonging to α-CA, β-CA, and γ-CA classes (VchCAα, VchCAβ, and VchCAγ). The determined Ki values were compared to those of selected human CA isoforms (hCA I and hCA II). Structure-affinity relationship analysis highlighted that all tested compounds proved to be active inhibitors of VchCAα at nanomolar concentration. The VchCAβ activity was lower to respect inhibitory efficacy toward VchCAα, whereas, these benzenesulfonamide derivatives failed to inhibit VchCAγ. Interestingly, compound 7e combined the best activity toward VchCAα and VchCAβ. In order to obtain a model for binding mode of our inhibitors toward bacterial CAs, we carried out docking simulations by using the available crystal structures of VchCAβ.
Collapse
Affiliation(s)
- Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Messina, Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Messina, Italy
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Messina, Italy
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources- CNR, Napoli, Italy
| | - Daniela Vullo
- NUROFARBA Department, University of Florence, Sesto Fiorentino, Italy
| | | | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources- CNR, Napoli, Italy
| |
Collapse
|
23
|
Abstract
Vibrio cholerae is a noninvasive pathogen that colonizes the small intestine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in long lasting immunity, and recent studies have improved our understanding of the antigenic repertoire of V. cholerae Interactions between the host, V. cholerae, and the intestinal microbiome are now recognized as factors which impact susceptibility to cholera and the ability to mount a successful immune response to vaccination. Here, we review recent data and corresponding models to describe immune responses to V. cholerae infection and explain how the host microbiome may impact the pathogenesis of V. cholerae In the ongoing battle against cholera, the intestinal microbiome represents a frontier for new approaches to intervention and prevention.
Collapse
|
24
|
Sublingual Adjuvant Delivery by a Live Attenuated Vibrio cholerae-Based Antigen Presentation Platform. mSphere 2018; 3:3/3/e00245-18. [PMID: 29875145 PMCID: PMC5990885 DOI: 10.1128/msphere.00245-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 01/06/2023] Open
Abstract
Diarrheal disease is the most common infectious disease of children in the developing world. Our goal is to develop a diarrheal antigen presentation platform based on whole Vibrio cholerae cells that does not depend on protein purification. We have previously shown the feasibility of genetically fusing antigens to the V. cholerae biofilm matrix protein RbmA for presentation on the cell surface. A mucosal adjuvant could improve immunogenicity of such a vaccine at the mucosal surface. Here we engineer a live attenuated V. cholerae vaccine to constitutively synthesize mmCT, a nontoxic form of cholera toxin. When this vaccine is delivered sublingually, in vivo-synthesized mmCT acts as both an adjuvant and antigen. This could greatly increase the magnitude and duration of the immune response elicited by codelivered heterologous antigens. A sublingually delivered heterologous antigen presentation platform that does not depend on antigen or adjuvant purification would be of great benefit in protection against diarrheal disease. In proof-of-concept studies, we previously showed that when a fusion protein comprised of the Vibrio cholerae biofilm matrix protein RbmA and the B subunit of cholera toxin (R-CTB) is expressed from a plasmid within V. cholerae, R-CTB is sequestered in the biofilm matrix, leading to decoration of the cell surface. Sublingual delivery of live attenuated R-CTB-decorated cells results in a mucosal immune response to CTB. To improve the immune response to diarrheal antigens presented by this platform, we have engineered our live attenuated vaccine to express the mucosal adjuvant mmCT (i.e., multiply mutated CT). Here we report that delivery of this adjuvant via sublingual administration of our vaccine enhances the mucosal immune response to V. cholerae LPS and elicits a systemic and mucosal immune response to CTB. However, provision of R-CTB with mmCT selectively blunts the mucosal immune response to CTB. We propose that mmCT delivered by this live attenuated Vibrio cholerae vaccine platform may serve as a mucosal adjuvant for heterologous antigens, provided they are not too similar to mmCT. IMPORTANCE Diarrheal disease is the most common infectious disease of children in the developing world. Our goal is to develop a diarrheal antigen presentation platform based on whole Vibrio cholerae cells that does not depend on protein purification. We have previously shown the feasibility of genetically fusing antigens to the V. cholerae biofilm matrix protein RbmA for presentation on the cell surface. A mucosal adjuvant could improve immunogenicity of such a vaccine at the mucosal surface. Here we engineer a live attenuated V. cholerae vaccine to constitutively synthesize mmCT, a nontoxic form of cholera toxin. When this vaccine is delivered sublingually, in vivo-synthesized mmCT acts as both an adjuvant and antigen. This could greatly increase the magnitude and duration of the immune response elicited by codelivered heterologous antigens.
Collapse
|