1
|
Wang G, Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T. Increased accumulation of fatty acids in engineered Saccharomyces cerevisiae by co-overexpression of interorganelle tethering protein and lipases. N Biotechnol 2024; 85:S1871-6784(24)00558-2. [PMID: 39613152 DOI: 10.1016/j.nbt.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Fatty acids (FAs) and their derivatives are versatile chemicals widely used in various industries. Synthetic biology, using microbial cell factories, emerges as a promising alternative technology for FA production. To enhance the production capacity of these microbial chassis, additional engineering strategies are imperative. Based on the comparison of the morphological changes of lipid droplets (LDs) between oleaginous and non-oleaginous yeasts, we developed a new engineering strategy to increase the accumulation of FAs in Saccharomyces cerevisiae through manipulation of regulation factor and lipases related to LD. The increased biogenesis of LDs, achieved by overexpressing the interorganelle tethering protein Mdm1, coupled with the accelerated degradation of LDs through upregulated lipases, resulted in a 10.70-fold increase in total FAs production. Co-overexpression of Mdm1 and selected lipases significantly improved the biosynthesis of FAs and linoleic acid in the engineered S. cerevisiae. The efficient LD-based metabolic engineering strategy presented in this study holds the potential to advance the high-level production of FAs and their derivatives in microbial cell factories.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
2
|
Bennis NX, Bieseman J, Daran JMG. Unlocking lager's flavour palette by metabolic engineering of Saccharomyces pastorianus for enhanced ethyl ester production. Metab Eng 2024; 85:180-193. [PMID: 39134117 DOI: 10.1016/j.ymben.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Despite being present in trace amounts, ethyl esters play a crucial role as flavour compounds in lager beer. In yeast, ethyl hexanoate, ethyl octanoate and ethyl decanoate, responsible for fruity and floral taste tones, are synthesized from the toxic medium chain acyl-CoA intermediates released by the fatty acid synthase complex during the fatty acid biosynthesis, as a protective mechanism. The aim of this study was to enhance the production of ethyl esters in the hybrid lager brewing yeast Saccharomyces pastorianus by improving the medium chain acyl-CoA precursor supply. Through CRISPR-Cas9-based genetic engineering, specific FAS1 and FAS2 genes harbouring mutations in domains of the fatty acid synthesis complex were overexpressed in a single and combinatorial approach. These mutations in the ScFAS genes led to specific overproduction of the respective ethyl esters: overexpression of ScFAS1I306A and ScFAS2G1250S significantly improved ethyl hexanoate production and ScFAS1R1834K boosted the ethyl octanoate production. Combinations of ScFAS1 mutant genes with ScFAS2G1250S greatly enhanced predictably the final ethyl ester concentrations in cultures grown on full malt wort, but also resulted in increased levels of free medium chain fatty acids causing alterations in flavour profiles. Finally, the elevated medium chain fatty acid pool was directed towards the ethyl esters by overexpressing the esterase ScEEB1. The genetically modified S. pastorianus strains were utilized in lager beer production, and the resulting beverage exhibited significantly altered flavour profiles, thereby greatly expanding the possibilities of the flavour palette of lager beers.
Collapse
Affiliation(s)
- Nicole X Bennis
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - Jimme Bieseman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
3
|
Rainha J, Rodrigues JL, Rodrigues LR. De Novo Biosynthesis of Curcumin in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1727-1736. [PMID: 38787640 PMCID: PMC11197086 DOI: 10.1021/acssynbio.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Curcumin, a natural polyphenol derived from turmeric, has attracted immense interest due to its diverse pharmacological properties. Traditional extraction methods from Curcuma longa plants present limitations in meeting the growing demand for this bioactive compound, giving significance to its production by genetically modified microorganisms. Herein, we have developed an engineered Saccharomyces cerevisiae to produce curcumin from glucose. A pathway composed of the 4-hydroxyphenylacetate 3-monooxygenase oxygenase complex from Pseudomonas aeruginosa and Salmonella enterica, caffeic acid O-methyltransferase from Arabidopsis thaliana, feruloyl-CoA synthetase from Pseudomonas paucimobilis, and diketide-CoA synthase and curcumin synthase from C. longa was introduced in a p-coumaric acid overproducing S. cerevisiae strain. This strain produced 240.1 ± 15.1 μg/L of curcumin. Following optimization of phenylpropanoids conversion, a strain capable of producing 4.2 ± 0.6 mg/L was obtained. This study reports for the first time the successful de novo production of curcumin in S. cerevisiae.
Collapse
Affiliation(s)
- João Rainha
- Centre
of Biological Engineering, University of
Minho, Braga 4710-057, Portugal
| | - Joana L. Rodrigues
- Centre
of Biological Engineering, University of
Minho, Braga 4710-057, Portugal
- LABBELS—Associate
Laboratory, Braga 4710-057, Portugal
| | - Lígia R. Rodrigues
- Centre
of Biological Engineering, University of
Minho, Braga 4710-057, Portugal
- LABBELS—Associate
Laboratory, Braga 4710-057, Portugal
| |
Collapse
|
4
|
Gasiński A, Kawa-Rygielska J. Assessment of green lentil malt as a substrate for gluten-free beer brewing. Sci Rep 2024; 14:504. [PMID: 38177258 PMCID: PMC10767091 DOI: 10.1038/s41598-023-50724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024] Open
Abstract
The aim of this study was to analyze whether it is possible to brew beer without using cereals so that the produced beverage could be easily accessible for the population suffering from celiac disease and other gluten-related disorders. Green lentil seeds were malted and then mashed using a congress mashing procedure to assess their advantages and disadvantages in the brewing process. Based on the congress mashing procedure, the mashing process needed to produce beer was developed, and beers were produced from the lentil malts germinated during malting for 96 h, 120 h and 144 h. It was possible to produce beers from the lentil malts; however, they were characterized by a lower alcohol content, lower degree of attenuation and some discrepancies between the concentrations of various volatiles (such as acetaldehyde, ethyl acetate, and 1-propanol) compared to the control beer produced from barley malt.
Collapse
Affiliation(s)
- Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Street, 51-630, Wrocław, Poland.
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Street, 51-630, Wrocław, Poland
| |
Collapse
|
5
|
Dierickx S, Souvereyns M, Roelants SLKW, De Graeve M, Van Meulebroek L, De Maeseneire SL, Soetaert WKG, Vanhaecke L. Comprehensive metabolomics reveals correlation between sophorolipid biosynthesis and autophagy. N Biotechnol 2023; 75:1-12. [PMID: 36805132 DOI: 10.1016/j.nbt.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Sophorolipids are biobased and biodegradable glycolipid surface-active agents contributing to the shift from petroleum to biobased surfactants, associated with clear environmental benefits. However, their production cost is currently too high to allow commercialisation. Therefore, a continuous sophorolipid production process was evaluated, i.e., a retentostat with an external filtration unit. Despite an initial increase in volumetric productivity, productivity eventually declined to almost 0 g L-1 h-1. Following comprehensive metabolomics on supernatant obtained from a standardised retentostat, we hypothesised exhaustion of the N-starvation-induced autophagy as the main mechanism responsible for the decline in bolaform sophorolipid productivity. Thirty-six metabolites that correlate with RNA/protein autophagy and high sophorolipid productivity were putatively identified. In conclusion, our results unveil a plausible cause of this bola sophorolipid productivity decline in an industrially relevant bioreactor set-up, which may thus impact majorly on future yeast biosurfactant regulation studies and the finetuning of bola sophorolipid production processes.
Collapse
Affiliation(s)
- Sven Dierickx
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Maximilien Souvereyns
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent, Belgium
| | - Marilyn De Graeve
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim K G Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast BT7 1NN, United Kingdom.
| |
Collapse
|
6
|
Wang X, Luo X. Precursor Quantitation Methods for Next Generation Food Production. Front Bioeng Biotechnol 2022; 10:849177. [PMID: 35360389 PMCID: PMC8960114 DOI: 10.3389/fbioe.2022.849177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Food is essential for human survival. Nowadays, traditional agriculture faces challenges in balancing the need of sustainable environmental development and the rising food demand caused by an increasing population. In addition, in the emerging of consumers' awareness of health related issues bring a growing trend towards novel nature-based food additives. Synthetic biology, using engineered microbial cell factories for production of various molecules, shows great advantages for generating food alternatives and additives, which not only relieve the pressure laid on tradition agriculture, but also create a new stage in healthy and sustainable food supplement. The biosynthesis of food components (protein, fats, carbohydrates or vitamins) in engineered microbial cells often involves cellular central metabolic pathways, where common precursors are processed into different proteins and products. Quantitation of the precursors provides information of the metabolic flux and intracellular metabolic state, giving guidance for precise pathway engineering. In this review, we summarized the quantitation methods for most cellular biosynthetic precursors, including energy molecules and co-factors involved in redox-reactions. It will also be useful for studies worked on pathway engineering of other microbial-derived metabolites. Finally, advantages and limitations of each method are discussed.
Collapse
Affiliation(s)
- Xinran Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
7
|
Comparison of the Homology Between Muskrat Scented Gland and Mouse Preputial Gland. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Pereira R, Ishchuk OP, Li X, Liu Q, Liu Y, Otto M, Chen Y, Siewers V, Nielsen J. Metabolic Engineering of Yeast. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Lv X, Wu Y, Gong M, Deng J, Gu Y, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L, Chen J. Synthetic biology for future food: Research progress and future directions. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
10
|
Baumann L, Bruder S, Kabisch J, Boles E, Oreb M. High-Throughput Screening of an Octanoic Acid Producer Strain Library Enables Detection of New Targets for Increasing Titers in Saccharomyces cerevisiae. ACS Synth Biol 2021; 10:1077-1086. [PMID: 33979526 DOI: 10.1021/acssynbio.0c00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Octanoic acid is an industrially relevant compound with applications in antimicrobials or as a precursor for biofuels. Microbial biosynthesis through yeast is a promising alternative to current unsustainable production methods. To increase octanoic acid titers in Saccharomyces cerevisiae, we use a previously developed biosensor that is based on the octanoic acid responsive pPDR12 promotor coupled to GFP. We establish a biosensor strain amenable for high-throughput screening of an octanoic acid producer strain library. Through development, optimization, and execution of a high-throughput screening approach, we were able to detect two new genetic targets, KCS1 and FSH2, which increased octanoic acid titers through combined overexpression by about 55% compared to the parental strain. Neither target has yet been reported to be involved in fatty acid biosynthesis. The presented methodology can be employed to screen any genetic library and thereby more genes involved in improving octanoic acid production can be detected in the future.
Collapse
Affiliation(s)
- Leonie Baumann
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Stefan Bruder
- Department of Biology, Computer-aided Synthetic Biology, Technical University Darmstadt, Schnittspahnstr. 1, 64287 Darmstadt, Germany
| | - Johannes Kabisch
- Department of Biology, Computer-aided Synthetic Biology, Technical University Darmstadt, Schnittspahnstr. 1, 64287 Darmstadt, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Mislav Oreb
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Hitschler J, Boles E. Improving 3-methylphenol (m-cresol) production in yeast via in vivo glycosylation or methylation. FEMS Yeast Res 2020; 20:6021368. [PMID: 33330906 DOI: 10.1093/femsyr/foaa063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022] Open
Abstract
Heterologous expression of 6-methylsalicylic acid synthase (MSAS) together with 6-MSA decarboxylase enables de novo production of the platform chemical and antiseptic additive 3-methylphenol (3-MP) in the yeast Saccharomyces cerevisiae. However, toxicity of 3-MP prevents higher production levels. In this study, we evaluated in vivo detoxification strategies to overcome limitations of 3-MP production. An orcinol-O-methyltransferase from Chinese rose hybrids (OOMT2) was expressed in the 3-MP producing yeast strain to convert 3-MP to 3-methylanisole (3-MA). Together with in situ extraction by dodecane of the highly volatile 3-MA this resulted in up to 211 mg/L 3-MA (1.7 mM) accumulation. Expression of a UDP-glycosyltransferase (UGT72B27) from Vitis vinifera led to the synthesis of up to 533 mg/L 3-MP as glucoside (4.9 mM). Conversion of 3-MP to 3-MA and 3-MP glucoside was not complete. Finally, deletion of phosphoglucose isomerase PGI1 together with methylation or glycosylation and feeding a fructose/glucose mixture to redirect carbon fluxes resulted in strongly increased product titers, with up to 897 mg/L 3-MA/3-MP (9 mM) and 873 mg/L 3-MP/3-MP as glucoside (8.1 mM) compared to less than 313 mg/L (2.9 mM) product titers in the wild type controls. The results show that methylation or glycosylation are promising tools to overcome limitations in further enhancing the biotechnological production of 3-MP.
Collapse
Affiliation(s)
- Julia Hitschler
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Eckhard Boles
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Zhang Y, Su M, Qin N, Nielsen J, Liu Z. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:226. [PMID: 33302960 PMCID: PMC7730738 DOI: 10.1186/s12934-020-01493-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. RESULTS Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake flask, which was 83.2% higher than the control strain YJZ08. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). CONCLUSIONS We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Mo Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
13
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Cyanobacterial aldehyde deformylating oxygenase: Structure, function, and potential in biofuels production. Int J Biol Macromol 2020; 164:3155-3162. [PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022]
Abstract
The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Discovering Low Toxicity Ionic Liquids for Saccharomyces cerevisiae by Using the Agar Well Diffusion Test. Processes (Basel) 2020. [DOI: 10.3390/pr8091163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ionic liquids (ILs) are new solvents widely used in many technologies due to their unique and advantageous physicochemical properties. In biotechnological applications, ILs can be used along with microorganisms such as Saccharomyces cerevisiae. Due to the enormous number of ILs that can be synthesized through the combination of different anions and cations, it is necessary to have an easy and quick tool for the preliminary screening of their biocompatibility for being used in biotechnological applications. In this work, the agar well diffusion test was successfully applied as a rapid method to identify toxic/nontoxic ILs toward S. cerevisiae. Sixty-three ILs containing a diverse set of cations and anions were used. Through this methodology, nine fully biocompatible ILs toward S. cerevisiae were identified, including: [Bmim+] [NO3−], [HOPmim+] [NO3−], [Bmim+] [NTf2−], [N8,8,8,1+] [NTf2−], [S2,2,2+] [NTf2−], [EMPyr+] [NTf2−], [BMPi+] [NTf2−], [Moxa+] [MeSO4−] and [Chol+] [H2PO4−]. The analysis of the results also provides preliminary rules to enable the design of biocompatible ILs with S. cerevisiae. In this context, the toxicity was mainly determined by the cation nature although some anions can also display a strong influence on the IL biocompatibility as the bistriflimide anion. Besides, it was observed that an increase in the alkyl chain length of cations, such as imidazolium or pyridinium, involves an increase in the IL toxicity.
Collapse
|
15
|
Nissim Y, Shlosberg M, Biton I, Many Y, Doron-Faigenboim A, Hovav R, Kerem Z, Avidan B, Ben-Ari G. A High Temperature Environment Regulates the Olive Oil Biosynthesis Network. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091135. [PMID: 32882997 PMCID: PMC7569966 DOI: 10.3390/plants9091135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Climate change has been shown to have a substantial impact on agriculture and high temperatures and heat stress are known to have many negative effects on the vegetative and reproductive phases of plants. In a previous study, we addressed the effects of high temperature environments on olive oil yield and quality, by comparing the fruit development and oil accumulation and quality of five olive cultivars placed in high temperature and moderate temperature environments. The aim of the current study was to explore the molecular mechanism resulting in the negative effect of a high temperature environment on oil quantity and quality. We analyzed the transcriptome of two extreme cultivars, 'Barnea', which is tolerant to high temperatures in regard to quantity of oil production, but sensitive regarding its quality, and 'Souri', which is heat sensitive regarding quantity of oil produced, but relatively tolerant regarding its quality. Transcriptome analyses have been carried out at three different time points during fruit development, focusing on the genes involved in the oil biosynthesis pathway. We found that heat-shock protein expression was induced by the high temperature environment, but the degree of induction was cultivar dependent. The 'Barnea' cultivar, whose oil production showed greater tolerance to high temperatures, exhibited a larger degree of induction than the heat sensitive 'Souri'. On the other hand, many genes involved in olive oil biosynthesis were found to be repressed as a response to high temperatures. OePDCT as well as OeFAD2 genes showed cultivar dependent expression patterns according to their heat tolerance characteristics. The transcription factors OeDof4.3, OeWRI1.1, OeDof4.4 and OeWRI1.2 were identified as key factors in regulating the oil biosynthesis pathway in response to heat stress, based on their co-expression characteristics with other genes involved in this pathway. Our results may contribute to identifying or developing a more heat tolerant cultivar, which will be able to produce high yield and quality oil in a future characterized by global warming.
Collapse
Affiliation(s)
- Yael Nissim
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Maya Shlosberg
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Iris Biton
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Yair Many
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Ran Hovav
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Zohar Kerem
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Benjamin Avidan
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Giora Ben-Ari
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| |
Collapse
|
16
|
Fusing α and β subunits of the fungal fatty acid synthase leads to improved production of fatty acids. Sci Rep 2020; 10:9780. [PMID: 32555375 PMCID: PMC7300031 DOI: 10.1038/s41598-020-66629-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/25/2020] [Indexed: 01/18/2023] Open
Abstract
Most fungal fatty acid synthases assemble from two multidomain subunits, α and β, into a heterododecameric FAS complex. It has been recently shown that the complex assembly occurs in a cotranslational manner and is initiated by an interaction between the termini of α and β subunits. This initial engagement of subunits may be the rate-limiting phase of the assembly and subject to cellular regulation. Therefore, we hypothesized that bypassing this step by genetically fusing the subunits could be beneficial for biotechnological production of fatty acids. To test the concept, we expressed fused FAS subunits engineered for production of octanoic acid in Saccharomyces cerevisiae. Collectively, our data indicate that FAS activity is a limiting factor of fatty acid production and that FAS fusion proteins show a superior performance compared to their split counterparts. This strategy is likely a generalizable approach to optimize the production of fatty acids and derived compounds in microbial chassis organisms.
Collapse
|
17
|
Jezierska S, Claus S, Ledesma-Amaro R, Van Bogaert I. Redirecting the lipid metabolism of the yeast Starmerella bombicola from glycolipid to fatty acid production. ACTA ACUST UNITED AC 2019; 46:1697-1706. [DOI: 10.1007/s10295-019-02234-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 01/06/2023]
Abstract
Abstract
Free fatty acids are basic oleochemicals implemented in a range of applications including surfactants, lubricants, paints, plastics, and cosmetics. Microbial fatty acid biosynthesis has gained much attention as it provides a sustainable alternative for petrol- and plant oil-derived chemicals. The yeast Starmerella bombicola is a microbial cell factory that naturally employs its powerful lipid metabolism for the production of the biodetergents sophorolipids (> 300 g/L). However, in this study we exploit the lipidic potential of S. bombicola and convert it from the glycolipid production platform into a free fatty acid cell factory. We used several metabolic engineering strategies to promote extracellular fatty acid accumulation which include blocking competing pathways (sophorolipid biosynthesis and β-oxidation) and preventing free fatty acid activation. The best producing mutant (Δcyp52m1Δfaa1Δmfe2) secreted 0.933 g/L (± 0.04) free fatty acids with a majority of C18:1 (43.8%) followed by C18:0 and C16:0 (40.0 and 13.2%, respectively). Interestingly, deletion of SbFaa1 in a strain still producing sophorolipids also resulted in 25% increased de novo sophorolipid synthesis (P = 0.0089) and when oil was supplemented to the same strain, a 50% increase in sophorolipid production was observed compared to the wild type (P = 0.03). We believe that our work is pivotal for the further development and exploration of S. bombicola as a platform for synthesis of environmentally friendly oleochemicals.
Collapse
Affiliation(s)
- Sylwia Jezierska
- grid.5342.0 0000 0001 2069 7798 Centre for Synthetic Biology, Department of Biotechnology Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Silke Claus
- grid.5342.0 0000 0001 2069 7798 Centre for Synthetic Biology, Department of Biotechnology Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Rodrigo Ledesma-Amaro
- grid.7445.2 0000 0001 2113 8111 Imperial College Centre for Synthetic Biology and Department of Bioengineering Imperial College London South Kensington Campus SW7 2AZ London UK
| | - Inge Van Bogaert
- grid.5342.0 0000 0001 2069 7798 Centre for Synthetic Biology, Department of Biotechnology Ghent University Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
18
|
Claus S, Jezierska S, Van Bogaert INA. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Lett 2019; 593:1508-1527. [DOI: 10.1002/1873-3468.13469] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Silke Claus
- Biochemical and Microbial Technology Universiteit Gent Belgium
| | | | - Inge N. A. Van Bogaert
- Lab. of Industrial Microbiology and Biocatalysis Faculty of Bioscience Engineering Ghent University Belgium
| |
Collapse
|
19
|
Baumann L, Rajkumar AS, Morrissey JP, Boles E, Oreb M. A Yeast-Based Biosensor for Screening of Short- and Medium-Chain Fatty Acid Production. ACS Synth Biol 2018; 7:2640-2646. [PMID: 30338986 DOI: 10.1021/acssynbio.8b00309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Short- and medium-chain fatty acids (SMCFA) are important platform chemicals currently produced from nonsustainable resources. The engineering of microbial cells to produce SMCFA, however, lacks high-throughput methods to screen for best performing cells. Here, we present the development of a whole-cell biosensor for easy and rapid detection of SMCFA. The biosensor is based on a multicopy yeast plasmid containing the SMCFA-responsive PDR12 promoter coupled to GFP as the reporter gene. The sensor detected hexanoic, heptanoic and octanoic acid over a linear range up to 2, 1.5, and 0.75 mM, respectively, but did not show a linear response to decanoic and dodecanoic acid. We validated the functionality of the biosensor with culture supernatants of a previously engineered Saccharomyces cerevisiae octanoic acid producer strain and derivatives thereof. The biosensor signal correlated strongly with the octanoic acid concentrations as determined by gas chromatography. Thus, this biosensor enables the high-throughput screening of SMCFA producers and has the potential to drastically speed up the engineering of diverse SMCFA producing cell factories.
Collapse
Affiliation(s)
- Leonie Baumann
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Arun S. Rajkumar
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - John P. Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Mislav Oreb
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 2018; 50:85-108. [DOI: 10.1016/j.ymben.2018.04.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
21
|
Henritzi S, Fischer M, Grininger M, Oreb M, Boles E. An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:150. [PMID: 29881455 PMCID: PMC5984327 DOI: 10.1186/s13068-018-1149-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/23/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND The ideal biofuel should not only be a regenerative fuel from renewable feedstocks, but should also be compatible with the existing fuel distribution infrastructure and with normal car engines. As the so-called drop-in biofuel, the fatty alcohol 1-octanol has been described as a valuable substitute for diesel and jet fuels and has already been produced fermentatively from sugars in small amounts with engineered bacteria via reduction of thioesterase-mediated premature release of octanoic acid from fatty acid synthase or via a reversal of the β-oxidation pathway. RESULTS The previously engineered short-chain acyl-CoA producing yeast Fas1R1834K/Fas2 fatty acid synthase variant was expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae Δfas1 Δfas2 Δfaa2 mutant strain. With the involvement of endogenous thioesterases, alcohol dehydrogenases, and aldehyde reductases, the synthesized octanoyl-CoA was converted to 1-octanol up to a titer of 26.0 mg L-1 in a 72-h fermentation. The additional accumulation of 90 mg L-1 octanoic acid in the medium indicated a bottleneck in 1-octanol production. When octanoic acid was supplied externally to the yeast cells, it could be efficiently converted to 1-octanol indicating that re-uptake of octanoic acid across the plasma membrane is not limiting. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevented accumulation of octanoic acid and increased 1-octanol titers up to 49.5 mg L-1. However, in growth tests concentrations even lower than 50.0 mg L-1 turned out to be inhibitory to yeast growth. In situ extraction in a two-phase fermentation with dodecane as second phase did not improve growth, indicating that 1-octanol acts inhibitive before secretion. Furthermore, 1-octanol production was even reduced, which results from extraction of the intermediate octanoic acid to the organic phase, preventing its re-uptake. CONCLUSIONS By providing chain length control via an engineered octanoyl-CoA producing fatty acid synthase, we were able to specifically produce 1-octanol with S. cerevisiae. Before metabolic engineering can be used to further increase product titers and yields, strategies must be developed that cope with the toxic effects of 1-octanol on the yeast cells.
Collapse
Affiliation(s)
- Sandra Henritzi
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence “Macromolecular Complexes”, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence “Macromolecular Complexes”, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Mislav Oreb
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Eckhard Boles
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
22
|
Ferreira R, Teixeira PG, Siewers V, Nielsen J. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion. Proc Natl Acad Sci U S A 2018; 115:1262-1267. [PMID: 29358378 PMCID: PMC5819412 DOI: 10.1073/pnas.1715282115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bio-based production of fatty acids and fatty acid-derived products can enable sustainable substitution of petroleum-derived fuels and chemicals. However, developing new microbial cell factories for producing high levels of fatty acids requires extensive engineering of lipid metabolism, a complex and tightly regulated metabolic network. Here we generated a Saccharomyces cerevisiae platform strain with a simplified lipid metabolism network with high-level production of free fatty acids (FFAs) due to redirected fatty acid metabolism and reduced feedback regulation. Deletion of the main fatty acid activation genes (the first step in β-oxidation), main storage lipid formation genes, and phosphatidate phosphatase genes resulted in a constrained lipid metabolic network in which fatty acid flux was directed to a large extent toward phospholipids. This resulted in simultaneous increases of phospholipids by up to 2.8-fold and of FFAs by up to 40-fold compared with wild-type levels. Further deletion of phospholipase genes PLB1 and PLB2 resulted in a 46% decrease in FFA levels and 105% increase in phospholipid levels, suggesting that phospholipid hydrolysis plays an important role in FFA production when phospholipid levels are increased. The multiple deletion mutant generated allowed for a study of fatty acid dynamics in lipid metabolism and represents a platform strain with interesting properties that provide insight into the future development of lipid-related cell factories.
Collapse
Affiliation(s)
- Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Paulo Gonçalves Teixeira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden;
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark
| |
Collapse
|