1
|
Gu S, Tang L, Guo L, Zhong C, Fu X, Ye G, Zhong S, Li X, Wen C, Zhou Y, Wei J, Chen H, Novikov N, Fletcher SP, Moody MA, Hou J, Li Y. Circulating HBsAg-specific B cells are partially rescued in chronically HBV-infected patients with functional cure. Emerg Microbes Infect 2024; 13:2409350. [PMID: 39470771 PMCID: PMC11523254 DOI: 10.1080/22221751.2024.2409350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024]
Abstract
It is well established that humoral immunity targeting hepatitis B virus surface antigen (HBsAg) plays a critical role in viral clearance and clinical cure. However, the functional changes in HBsAg-specific B cells before and after achieving functional cure remain poorly understood. In this study, we characterized circulating HBsAg-specific B cells and identified functional shifts and B-cell epitopes directly associated with HBsAg loss. The phenotypes and functions of HBV-specific B cells in patients with chronic HBV infection were investigated using a dual staining method and the ELISpot assay. Epitope mapping was performed to identify B cell epitopes associated with functional cure. Hyperactivated HBsAg-specific B cells in patients who achieved HBsAg loss were composed of enriched resting memory and contracted atypical memory fractions, accompanied by sustained co-expression of multiple inhibitory receptors and increased IL-6 secretion. The frequency of HBsAb-secreting B cells was significantly increased after achieving a functional cure. The rHBsAg displayed a weaker immunomodulatory effect on B cells than rHBeAg and rHBcAg in vitro. Notably, sera from patients with HBsAg loss reacted mainly with peptides S60, S61, and S76, suggesting that these are dominant linear B-cell epitopes relevant for functional cure. Intriguingly, patients reactive with S76 showed a higher frequency of the HLA class II DQB1*05:01 allele. Taken together, HBsAg-specific B cells were partially restored in patients after achieving a functional cure. Functional cure-related epitopes may be promising targets for developing therapeutic vaccines to treat HBV infection and promote functional cure.
Collapse
Affiliation(s)
- Shuqin Gu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Libo Tang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Ling Guo
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chunxiu Zhong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Xin Fu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Guofu Ye
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Shihong Zhong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Xiaoyi Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunhua Wen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Department of Hematology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yang Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jinling Wei
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Haitao Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Nikolai Novikov
- Department of Biology, Gilead Sciences, Foster City, CA, USA
| | | | - M. Anthony Moody
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Jinlin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| |
Collapse
|
2
|
Zhang Y, Wang W, Liu Q, Jiang J, Zhao P, Huang C, Li Y, Fu Y. CD19 +CD73 + B cells infiltration indicates poor prognosis and unfavorable responses to immunotherapy in gastric cancer. Int Immunopharmacol 2024; 141:113002. [PMID: 39213870 DOI: 10.1016/j.intimp.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Cluster of Differentiation 73 (CD73) is expressed on immune cells and plays a significant role in tumor inhibition by suppressing antitumor immunity. The objectives of this study were to explore the expression and functional mechanisms of CD73 on B cells in patients with gastric cancer (GC). METHODS The prognostic significance of CD19+CD73+ B cells was evaluated in 390 GC patients through dual immunohistochemistry staining. Flow cytometry was employed to analyze the phenotype of the CD19 subpopulation using fresh tumor and non-tumor tissue samples from 8 GC patients. A bioinformatics analysis of CD19+CD73+ B cells was also performed within the scRNA-seq cohort, and the CD19+ B cell subtype was assessed using multiple immunofluorescence staining. RESULTS The infiltration of CD19+CD73+ B cells was observed to be elevated in gastric cancer (GC) tissue compared to normal tissues. A strong correlation was observed between high CD19+CD73+ B cell infiltration, poor overall survival, and diminished responsiveness to neoadjuvant immunotherapy in GC. These cells emerged as a novel subset of regulatory B cells (Bregs) linked to adenosine metabolism and the exhaustion of CD8+ T cells. The CD19+CD73+ B cells also correlated with the production of immunosuppressive cytokines IL-10 and TGFB1. Further analysis indicated an association between CD19+CD73+ B cells and advanced-stage GC. CONCLUSIONS The presence of CD19+CD73+ B cells in GC may serve as a prognostic indicator for clinical outcomes and a predictive marker for poor responsiveness to neoadjuvant immunotherapy. The correlation between the presence of CD19+CD73+ B cells and CD8+ T cell exhaustion, along with immunosuppression, highlights the tumor-promoting function of these cells.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wendong Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianwu Jiang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Zhao
- Department of Surgery, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Changjun Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Li
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Fu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Dong K, Wang Y, Yao Y, Yu W, Xu Z, Chen Y, Geng L, Wang S. The reduced frequency of CD39 +CD73 + B cell subsets in SLE patients is correlated with disease activity. Int Immunopharmacol 2024; 140:112743. [PMID: 39094356 DOI: 10.1016/j.intimp.2024.112743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by immune mechanisms dysregulation, leading to the production of diverse autoantibodies. However, the immune pathways underlying B-cell function and phenotypic abnormalities related to SLE pathogenesis remain incompletely understood. OBJECTIVE To explore new markers of SLE activity and potential targets for SLE immunotherapy. METHODS Collect peripheral blood mononuclear cells (PBMCs) from SLE patients and healthy controls (HC). Use flow cytometry to detect CD39 and CD73 expression on B cell subsets and enzyme-linked immunosorbent assay (ELISA) to measure adenosine (ADO) concentrations in SLE patients' serum. Compare CD39+CD73+ B cell subsets frequency and ADO concentrations in SLE patients and HC group. Additionally, analyze the correlation between CD39+CD73+ B cell subsets frequency and clinical laboratory parameters. RESULTS CD39 and CD73 are simultaneously highly expressed on CD19+ B cell subsets, with significantly lower frequency of CD39+CD73+ B cell subsets in SLE patients compared to HC group. This frequency negatively correlates with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), C-reactive protein (CRP), and anti-double-stranded DNA (anti-dsDNA) antibodies, while positively correlating with IgM and prothrombin time (PT). Additionally, the frequency of CD39+CD73+ B cell subsets is significantly negatively correlated with IL-6 and IFN-α. In vitro cell experiments demonstrate that adenosine significantly inhibits R848-induced inflammatory cytokine production in a dose-dependent manner. CONCLUSION The frequency of CD39+CD73+ B cell subsets of SLE patients is decreased, correlating with clinical laboratory parameters and disease activity. Simultaneously, ADO concentration in the patients' serum is reduced. The CD39+CD73+ B cell/ADO pathway may represent a novel immunotherapy strategy for SLE.
Collapse
Affiliation(s)
- Kunzhan Dong
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College, Jiangsu University, Nanjing, Jiangsu 210008, China
| | - Ying Wang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Yao Yao
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenhui Yu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yan Chen
- Department of Nursing, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China.
| | - Linyu Geng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Sen Wang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College, Jiangsu University, Nanjing, Jiangsu 210008, China; Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
4
|
Elsaghir A, El-Sabaa EMW, Zahran AM, Mandour SA, Salama EH, Aboulfotuh S, El-Morshedy RM, Tocci S, Mandour AM, Ali WE, Abdel-Wahid L, Sayed IM, El-Mokhtar MA. Elevated CD39+T-Regulatory Cells and Reduced Levels of Adenosine Indicate a Role for Tolerogenic Signals in the Progression from Moderate to Severe COVID-19. Int J Mol Sci 2023; 24:17614. [PMID: 38139439 PMCID: PMC10744088 DOI: 10.3390/ijms242417614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Viral infections trigger inflammation by controlling ATP release. CD39 ectoenzymes hydrolyze ATP/ADP to AMP, which is converted by CD73 into anti-inflammatory adenosine (ADO). ADO is an anti-inflammatory and immunosuppressant molecule which can enhance viral persistence and severity. The CD39-CD73-adenosine axis contributes to the immunosuppressive T-reg microenvironment and may affect COVID-19 disease progression. Here, we investigated the link between CD39 expression, mostly on T-regs, and levels of CD73, adenosine, and adenosine receptors with COVID-19 severity and progression. Our study included 73 hospitalized COVID-19 patients, of which 33 were moderately affected and 40 suffered from severe infection. A flow cytometric analysis was used to analyze the frequency of T-regulatory cells (T-regs), CD39+ T-regs, and CD39+CD4+ T-cells. Plasma concentrations of adenosine, IL-10, and TGF-β were quantified via an ELISA. An RT-qPCR was used to analyze the gene expression of CD73 and adenosine receptors (A1, A2A, A2B, and A3). T-reg cells were higher in COVID-19 patients compared to healthy controls (7.4 ± 0.79 vs. 2.4 ± 0.28; p < 0.0001). Patients also had a higher frequency of the CD39+ T-reg subset. In addition, patients who suffered from a severe form of the disease had higher CD39+ T-regs compared with moderately infected patients. CD39+CD4+ T cells were increased in patients compared to the control group. An analysis of serum adenosine levels showed a marked decrease in their levels in patients, particularly those suffering from severe illness. However, this was paralleled with a marked decline in the expression levels of CD73. IL-10 and TGF-β levels were higher in COVID-19; in addition, their values were also higher in the severe group. In conclusion, there are distinct immunological alterations in CD39+ lymphocyte subsets and a dysregulation in the adenosine signaling pathway in COVID-19 patients which may contribute to immune dysfunction and disease progression. Understanding these immunological alterations in the different immune cell subsets and adenosine signaling provides valuable insights into the pathogenesis of the disease and may contribute to the development of novel therapeutic approaches targeting specific immune mechanisms.
Collapse
Affiliation(s)
- Alaa Elsaghir
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan M. W. El-Sabaa
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt
| | - Sahar A. Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Eman H. Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Sahar Aboulfotuh
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Reham M. El-Morshedy
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Stefania Tocci
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ahmed Mohamed Mandour
- Department of Anesthesia and ICU, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Wael Esmat Ali
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Lobna Abdel-Wahid
- Gastroenterology and Hepatology Unit, Internal Medicine Department, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M. Sayed
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Mohamed A. El-Mokhtar
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
5
|
Ye H, Zhao J, Xu X, Zhang D, Shen H, Wang S. Role of adenosine A2a receptor in cancers and autoimmune diseases. Immun Inflamm Dis 2023; 11:e826. [PMID: 37102661 PMCID: PMC10091380 DOI: 10.1002/iid3.826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/28/2023] Open
Abstract
Adenosine receptors are P1 class of purinergic receptors that belong to G protein-coupled receptors. There are 4 subtypes of adenosine receptors, namely A1, A2A, A2B, and A3. A2AR has a high affinity for the ligand adenosine. Under pathological conditions or external stimuli, ATP is sequentially hydrolyzed to adenosine by CD39 and CD73. The combination of adenosine and A2AR can increase the concentration of cAMP and activate a series of downstream signaling pathways, and further playing the role of immunosuppression and promotion of tumor invasion. A2AR is expressed to some extent on various immune cells, where it is abnormally expressed on immune cells in cancers and autoimmune diseases. A2AR expression also correlates with disease progression. Inhibitors and agonists of A2AR may be potential new strategies for treatment of cancers and autoimmune diseases. We herein briefly reviewed the expression and distribution of A2AR, adenosine/A2AR signaling pathway, expression, and potential as a therapeutic target.
Collapse
Affiliation(s)
- Hongling Ye
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Junqi Zhao
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Xuejing Xu
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Dagan Zhang
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Han Shen
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Sen Wang
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| |
Collapse
|
6
|
Elsaghir A, El-Sabaa EMW, Ahmed AK, Abdelwahab SF, Sayed IM, El-Mokhtar MA. The Role of Cluster of Differentiation 39 (CD39) and Purinergic Signaling Pathway in Viral Infections. Pathogens 2023; 12:279. [PMID: 36839551 PMCID: PMC9967413 DOI: 10.3390/pathogens12020279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
CD39 is a marker of immune cells such as lymphocytes and monocytes. The CD39/CD73 pathway hydrolyzes ATP into adenosine, which has a potent immunosuppressive effect. CD39 regulates the function of a variety of immunologic cells through the purinergic signaling pathways. CD39+ T cells have been implicated in viral infections, including Human Immunodeficiency Virus (HIV), Cytomegalovirus (CMV), viral hepatitis, and Corona Virus Disease 2019 (COVID-19) infections. The expression of CD39 is an indicator of lymphocyte exhaustion, which develops during chronicity. During RNA viral infections, the CD39 marker can profile the populations of CD4+ T lymphocytes into two populations, T-effector lymphocytes, and T-regulatory lymphocytes, where CD39 is predominantly expressed on the T-regulatory cells. The level of CD39 in T lymphocytes can predict the disease progression, antiviral immune responses, and the response to antiviral drugs. Besides, the percentage of CD39 and CD73 in B lymphocytes and monocytes can affect the status of viral infections. In this review, we investigate the impact of CD39 and CD39-expressing cells on viral infections and how the frequency and percentage of CD39+ immunologic cells determine disease prognosis.
Collapse
Affiliation(s)
- Alaa Elsaghir
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan M. W. El-Sabaa
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | | | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim M. Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
7
|
Shi H, Dai H, Sun Q, Wang S, Chen Y. CD73, a significant protein in liver diseases. Front Med (Lausanne) 2023; 10:1147782. [PMID: 37122331 PMCID: PMC10130655 DOI: 10.3389/fmed.2023.1147782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Purine adenosine pathway exists widely in the body metabolism, and is involved in regulating various physiological processes. It is one of the important pathways of environmental regulation in human body. CD73 is essentially a protease that catalyzes further dephosphorylation of extracellular adenine nucleotides, hydrolyzing extracellular AMP to adenosine and phosphate. CD73 is an important part of the adenosine signaling pathway. Studies have shown that CD73-mediated adenosine pathway can convert the inflammatory ATP into the immunosuppressant adenosine. This paper aims to summarize the relevant effects of CD73 in the occurrence, development and prognosis of liver diseases such as viral hepatitis, highlight the important role of CD73 in liver diseases, especially in viral hepatitis such as HBV and HCV, and explore new clinical ideas for future treatment targets of liver diseases.
Collapse
Affiliation(s)
- Huilian Shi
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Huilian Shi,
| | - Heng Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qianqian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Yuanyuan Chen,
| |
Collapse
|
8
|
Doyon-Laliberté K, Aranguren M, Byrns M, Chagnon-Choquet J, Paniconi M, Routy JP, Tremblay C, Quintal MC, Brassard N, Kaufmann DE, Poudrier J, Roger M. Excess BAFF Alters NR4As Expression Levels and Breg Function of Human Precursor-like Marginal Zone B-Cells in the Context of HIV-1 Infection. Int J Mol Sci 2022; 23:15142. [PMID: 36499469 PMCID: PMC9741410 DOI: 10.3390/ijms232315142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
We have reported excess B-cell activating factor (BAFF) in the blood of HIV-infected progressors, which was concomitant with increased frequencies of precursor-like marginal zone (MZp) B-cells, early on and despite antiretroviral therapy (ART). In controls, MZp possess a strong B-cell regulatory (Breg) potential. They highly express IL-10, the orphan nuclear receptors (NR)4A1, NR4A2 and NR4A3, as well as the ectonucleotidases CD39 and CD73, all of which are associated with the regulation of inflammation. Furthermore, we have shown MZp regulatory function to involve CD83 signaling. To address the impact of HIV infection and excessive BAFF on MZp Breg capacities, we have performed transcriptomic analyses by RNA-seq of sorted MZp B-cells from the blood of HIV-infected progressors. The Breg profile and function of blood MZp B-cells from HIV-infected progressors were assessed by flow-cytometry and light microscopy high-content screening (HCS) analyses, respectively. We report significant downregulation of NR4A1, NR4A2, NR4A3 and CD83 gene transcripts in blood MZp B-cells from HIV-infected progressors when compared to controls. NR4A1, NR4A3 and CD83 protein expression levels and Breg function were also downregulated in blood MZp B-cells from HIV-infected progressors and not restored by ART. Moreover, we observe decreased expression levels of NR4A1, NR4A3, CD83 and IL-10 by blood and tonsillar MZp B-cells from controls following culture with excess BAFF, which significantly diminished their regulatory function. These findings, made on a limited number of individuals, suggest that excess BAFF contributes to the alteration of the Breg potential of MZp B-cells during HIV infection and possibly in other situations where BAFF is found in excess.
Collapse
Affiliation(s)
- Kim Doyon-Laliberté
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Matheus Aranguren
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Michelle Byrns
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Josiane Chagnon-Choquet
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Matteo Paniconi
- Service d’Aide à la Formation Interdisciplinaire et à la Réussite Étudiante (SAFIRE), Faculté des Arts et Sciences de l’Université de Montréal, Montréal, QC H3T 1N8, Canada
| | - Jean-Pierre Routy
- Department of Medicine, McGill University Health Centre, McGill University, Montréal, QC H4A 3J1, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Marie-Claude Quintal
- Centre Hospitalier Ste-Justine de l’Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Nathalie Brassard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Médecine de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Johanne Poudrier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Michel Roger
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
9
|
Zheng JR, Wang ZL, Feng B. Hepatitis B functional cure and immune response. Front Immunol 2022; 13:1075916. [PMID: 36466821 PMCID: PMC9714500 DOI: 10.3389/fimmu.2022.1075916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus, which damage to hepatocytes is not direct, but through the immune system. HBV specific CD4+ T cells can induce HBV specific B cells and CD8+ T cells. HBV specific B cells produce antibodies to control HBV infection, while HBV specific CD8+ T cells destroy infected hepatocytes. One of the reasons for the chronicity of HBV infection is that it cannot effectively activate adoptive immunity and the function of virus specific immune cells is exhausted. Among them, virus antigens (including HBV surface antigen, e antigen, core antigen, etc.) can inhibit the function of immune cells and induce immune tolerance. Long term nucleos(t)ide analogues (NAs) treatment and inactive HBsAg carriers with low HBsAg level may "wake up" immune cells with abnormal function due to the decrease of viral antigen level in blood and liver, and the specific immune function of HBV will recover to a certain extent, thus becoming the "dominant population" for functional cure. In turn, the functional cure will further promote the recovery of HBV specific immune function, which is also the theoretical basis for complete cure of hepatitis B. In the future, the complete cure of chronic HBV infection must be the combination of three drugs: inhibiting virus replication, reducing surface antigen levels and specific immune regulation, among which specific immunotherapy is indispensable. Here we review the relationship, mechanism and clinical significance between the cure of hepatitis B and immune system.
Collapse
Affiliation(s)
| | | | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Peking University Hepatology Institute, Beijing, China
| |
Collapse
|
10
|
Ma C, Liu H, Yang S, Li H, Liao X, Kang Y. The emerging roles and therapeutic potential of B cells in sepsis. Front Pharmacol 2022; 13:1034667. [PMID: 36425582 PMCID: PMC9679374 DOI: 10.3389/fphar.2022.1034667] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/26/2022] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a life-threatening syndrome caused by anomalous host response to infection. The pathogenesis of sepsis is complex, and immune dysfunction is the central link in its occurrence and development. The sepsis immune response is not a local and transient process but a complex and continuous process involving all major cell types of innate and adaptive immunity. B cells are traditionally studied for their ability to produce antibodies in the context of mediating humoral immunity. However, over the past few years, B cells have been increasingly recognized as key modulators of adaptive and innate immunity, and they can participate in immune responses by presenting antigens, producing cytokines, and modulating other immune cells. Recently, increasing evidence links B-cell dysfunction to mechanisms of immune derangement in sepsis, which has drawn attention to the powerful properties of this unique immune cell type in sepsis. Here, we reviewed the dynamic alterations of B cells and their novel roles in animal models and patients with sepsis, and provided new perspectives for therapeutic strategies targeting B cells in sepsis.
Collapse
Affiliation(s)
- Chengyong Ma
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuo Yang
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Zhang W, Li YY, Shang QH, Qi L, Sun MM, Chen G, An Y, Li JX, Jia WP, Sun ZA, Xu HB, Gao QM, Tang L, Wang XW, Zhang JY, Mu YM, Wang FS. Randomised controlled trial: effect of metformin add-on therapy on functional cure in entecavir-treated patients with chronic hepatitis B. Ann Hepatol 2022; 27:100745. [PMID: 35964909 DOI: 10.1016/j.aohep.2022.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatitis B surface antigen (HBsAg) clearance, indicating functional cure or resolved chronic hepatitis B (CHB), remains difficult to achieve via nucleos(t)ide analogue monotherapy. We investigated whether metformin add-on therapy could help achieve this goal in entecavir-treated patients with hepatitis B e antigen (HBeAg)-negative CHB. PATIENTS AND METHODS Patients with HBeAg-negative CHB who met eligibility criteria (entecavir treatment for > 12 months, HBsAg < 1000 IU/mL) were randomly assigned (1:1) to receive 24 weeks of either metformin (1000 mg, oral, once a day) or placebo (oral, once a day) add-on therapy. The group allocation was blinded for both patients and investigators. Efficacy and safety analyses were based on the intention-to-treat set. The primary outcome, serum HBsAg level (IU/mL) at weeks 24 and 36, was analysed using mixed models. RESULTS Sixty eligible patients were randomly assigned to the metformin (n = 29) and placebo (n = 31) groups. There was no substantial between-group difference in the HBsAg level at week 24 (adjusted mean difference 0.05, 95% confidence interval -0.04 to 0.13, p = 0.278) or week 36 (0.06, -0.03 to 0.15, p = 0.187), and no significant effect of group-by-time interaction on the HBsAg level throughout the trial (p = 0.814). The occurrence of total adverse events between the two groups was comparable (9 [31.0%] of 29 vs. 5 [16.1%] of 31, p = 0.227) and no patient experienced serious adverse events during the study. CONCLUSION Although it was safe, metformin add-on therapy did not accelerate HBsAg clearance in entecavir-treated patients with HBeAg-negative CHB.
Collapse
Affiliation(s)
- Wei Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Yuan-Yuan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qing-Hua Shang
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Lin Qi
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Mi-Mi Sun
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Gang Chen
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Yong An
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Wang-Ping Jia
- Department of Wound Infection and Drug, Daping Hospital of Army Medical University, Chongqing 400042, China
| | - Zhong-An Sun
- Department of Endocrinology, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Hui-Bin Xu
- Medical Laboratory Center, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Qing-Mei Gao
- Department of Ultrasonography, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Xiao-Wen Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yi-Ming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Fu-Sheng Wang
- Medical School of Chinese PLA, Beijing 100853, China; Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
12
|
Pietrobon AJ, Andrejew R, Custódio RWA, Oliveira LDM, Scholl JN, Teixeira FME, de Brito CA, Glaser T, Kazmierski J, Goffinet C, Turdo AC, Yendo T, Aoki V, Figueiró F, Battastini AM, Ulrich H, Benard G, Duarte AJDS, Sato MN. Dysfunctional purinergic signaling correlates with disease severity in COVID-19 patients. Front Immunol 2022; 13:1012027. [PMID: 36248842 PMCID: PMC9562777 DOI: 10.3389/fimmu.2022.1012027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients’ cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease.
Collapse
Affiliation(s)
- Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Wesley Alberca Custódio
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliete Nathali Scholl
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cyro Alves de Brito
- Technical Division of Medical Biology, Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department and Division of Infectious and Parasitic Diseases, Berlin Institute of Health, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department and Division of Infectious and Parasitic Diseases, Berlin Institute of Health, Berlin, Germany
| | - Anna Claudia Turdo
- Department and Division of Infectious and Parasitic Diseases, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Tatiana Yendo
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Valeria Aoki
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Fabricio Figueiró
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Maria Battastini
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gill Benard
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Alberto Jose da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- *Correspondence: Maria Notomi Sato,
| |
Collapse
|
13
|
Wang J, Du L, Chen X. Adenosine signaling: Optimal target for gastric cancer immunotherapy. Front Immunol 2022; 13:1027838. [PMID: 36189223 PMCID: PMC9523428 DOI: 10.3389/fimmu.2022.1027838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancy and leading cause of cancer-related deaths worldwide. Due to asymptomatic or only nonspecific early symptoms, GC patients are usually in the advanced stage at first diagnosis and miss the best opportunity of treatment. Immunotherapies, especially immune checkpoint inhibitors (ICIs), have dramatically changed the landscape of available treatment options for advanced-stage cancer patients. However, with regards to existing ICIs, the clinical benefit of monotherapy for advanced gastric cancer (AGC) is quite limited. Therefore, it is urgent to explore an optimal target for the treatment of GC. In this review, we summarize the expression profiles and prognostic value of 20 common immune checkpoint-related genes in GC from Gene Expression Profiling Interactive Analysis (GEPIA) database, and then find that the adenosinergic pathway plays an indispensable role in the occurrence and development of GC. Moreover, we discuss the pathophysiological function of adenosinergic pathway in cancers. The accumulation of extracellular adenosine inhibits the normal function of immune effector cells and facilitate the effect of immunosuppressive cells to foster GC cells proliferation and migration. Finally, we provide insights into potential clinical application of adenosinergic-targeting therapies for GC patients.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
14
|
McGrath JJC, Li L, Wilson PC. Memory B cell diversity: insights for optimized vaccine design. Trends Immunol 2022; 43:343-354. [PMID: 35393268 PMCID: PMC8977948 DOI: 10.1016/j.it.2022.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
Abstract
The overarching logos of mammalian memory B cells (MBCs) is to cache the potential for enhanced antibody production upon secondary exposure to cognate antigenic determinants. However, substantial phenotypic diversity has been identified across MBCs, hinting at the existence of unique origins or subfunctions within this compartment. Herein, we discuss recent advancements in human circulatory MBC subphenotyping as driven by high-throughput cell surface marker analysis and other approaches, as well as speculated and substantiated subfunctions. With this in mind, we hypothesize that the relative induction of specific circulatory MBC subsets might be used as a biomarker for optimally durable vaccines and inform vaccination strategies to subvert antigenic imprinting in the context of highly mutable pathogens such as influenza virus or SARS-CoV-2.
Collapse
Affiliation(s)
- Joshua J C McGrath
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lei Li
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Li Y, Yin S, Issa R, Tong X, Wang G, Xia J, Huang R, Chen G, Weng D, Chen C, Wu C, Chen Y. B Cell-mediated Humoral Immunity in Chronic Hepatitis B Infection. J Clin Transl Hepatol 2021; 9:592-597. [PMID: 34447690 PMCID: PMC8369012 DOI: 10.14218/jcth.2021.00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
B cell-mediated humoral immunity plays a vital role in viral infections, including chronic hepatitis B virus (HBV) infection, which remains a critical global public health issue. Despite hepatitis B surface antigen-specific antibodies are essential to eliminate viral infections, the reduced immune functional capacity of B cells was identified, which was also correlated with chronic hepatitis B (CHB) progression. In addition to B cells, T follicular helper (Tfh) cells, which assist B cells to produce antibodies, might also be involved in the process of anti-HBV-specific antibody production. Here, we provide a comprehensive review of the role of various subsets of B cells and Tfh cells during CHB progression and discuss current novel treatment strategies aimed at restoring humoral immunity. Understanding the mechanism of dysregulated B cells and Tfh cells will facilitate the ultimate functional cure of CHB patients.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rahma Issa
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guiyang Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Juan Xia
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guangmei Chen
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, China
| | - Chen Chen
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Correspondence to: Yuxin Chen, Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China. ORCID: https://orcid.org/0000-0001-5955-687X. Tel: +86-25-8968-3827, Fax: +86-25-8330-7115, E-mail: ; Wu Chao, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China. ORCID: https://orcid.org/0000-0002-1657-010X. Tel: +86-25-8310-5890, Fax: +86-25-8330-7115, E-mail:
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Correspondence to: Yuxin Chen, Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China. ORCID: https://orcid.org/0000-0001-5955-687X. Tel: +86-25-8968-3827, Fax: +86-25-8330-7115, E-mail: ; Wu Chao, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China. ORCID: https://orcid.org/0000-0002-1657-010X. Tel: +86-25-8310-5890, Fax: +86-25-8330-7115, E-mail:
| |
Collapse
|
16
|
Immunopathology of Chronic Hepatitis B Infection: Role of Innate and Adaptive Immune Response in Disease Progression. Int J Mol Sci 2021; 22:ijms22115497. [PMID: 34071064 PMCID: PMC8197097 DOI: 10.3390/ijms22115497] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
More than 250 million people are living with chronic hepatitis B despite the availability of highly effective vaccines and oral antivirals. Although innate and adaptive immune cells play crucial roles in controlling hepatitis B virus (HBV) infection, they are also accountable for inflammation and subsequently cause liver pathologies. During the initial phase of HBV infection, innate immunity is triggered leading to antiviral cytokines production, followed by activation and intrahepatic recruitment of the adaptive immune system resulting in successful virus elimination. In chronic HBV infection, significant alterations in both innate and adaptive immunity including expansion of regulatory cells, overexpression of co-inhibitory receptors, presence of abundant inflammatory mediators, and modifications in immune cell derived exosome release and function occurs, which overpower antiviral response leading to persistent viral infection and subsequent immune pathologies associated with disease progression towards fibrosis, cirrhosis, and hepatocellular carcinoma. In this review, we discuss the current knowledge of innate and adaptive immune cells transformations that are associated with immunopathogenesis and disease outcome in CHB patients.
Collapse
|