1
|
Zhao Y, Wang J, Xiao Q, Liu G, Li Y, Zha X, He Z, Kang J. New insights into decoding the lifestyle of endophytic Fusarium lateritium Fl617 via comparing genomes. Genomics 2024; 116:110925. [PMID: 39178998 DOI: 10.1016/j.ygeno.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Fungal-plant interactions have persisted for 460 million years, and almost all terrestrial plants on Earth have endophytic fungi. However, the mechanism of symbiosis between endophytic fungi and host plants has been inconclusive. In this dissertation, we used a strain of endophytic Fusarium lateritium (Fl617), which was found in the previous stage to promote disease resistance in tomato, and selected the pathogenic Fusarium oxysporum Fo4287 and endophytic Fusarium oxysporum Fo47, which are in the same host and the closest relatives of Fl617, to carry out a comparative genomics analysis of the three systems and to provide a new perspective for the elucidation of the special lifestyle of the fungal endophytes. We found that endophytic F. lateritium has a smaller genome, fewer clusters and genes associated with pathogenicity, and fewer plant cell wall degrading enzymes (PCWDEs). There were also relatively fewer secondary metabolisms and typical Fusarium spp. toxins, and a lack of the key Fusarium spp. pathogenicity factor, secreted in xylem (SIX), but the endophytic fungi may be more sophisticated in their regulation of the colonization process. It is hypothesized that the endophytic fungi may have maintained their symbiosis with plants due to the relatively homogeneous microenvironment in plants for a long period of time, considering only plant interactions and discarding the relevant pathogenicity factors, and that their endophytic evolutionary tendency may tend to be genome streamlining and to enhance the fineness of the regulation of plant interactions, thus maintaining their symbiotic status with plants.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China; Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Jiankang Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China; Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Qing Xiao
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
| | - Guihua Liu
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yongjie Li
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
| | - Xingping Zha
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China; Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Zhangjiang He
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China; Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China.
| | - Jichuan Kang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Peng TL, Syazwan SA, Hamdan RH, Najwa NS, Ramli MF, Harshiny N, Ishak IH. Virulence and proteomic responses of Metarhizium anisopliae against Aedes albopictus larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105982. [PMID: 39084787 DOI: 10.1016/j.pestbp.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024]
Abstract
The tropical climate in Malaysia provides an ideal environment for the rapid proliferation of Aedes mosquitoes, notably Aedes aegypti and Aedes albopictus, prominent vectors of dengue fever. Alarmingly, these species are increasingly developing resistance to conventional pesticides. This study aimed to evaluate the efficacy of Metarhizium anisopliae isolate HSAH5 spores, specifically on conidia (CO) and blastospores (BL), against Ae. albopictus larvae. The study centered on evaluating their pathogenic effects and the resultant changes in protein expression. Spore suspensions with varying concentrations were prepared for larvicidal bioassays, and protein expressions were analysed using liquid chromatography-mass spectrometry. Subsequently, protein annotation and network analysis were conducted to elucidate infection mechanisms and the proteomic response. Based on the lethal concentrations and time frames, CO exhibited faster larval mortality than BL at lower concentrations. Despite this, both spore types demonstrated comparable overall pathogenic effects. Results from the proteomic profiling revealed 150 proteins with varied expressions following exposure to Ae. albopictus extract, shedding light on distinct infection strategies between the spores. Gene Ontology enrichment and network analysis illustrated the diverse metabolic adaptations of M. anisopliae and interactions with mosquito larvae. This highlighted the complexity of host-pathogen dynamics and the significance of biosynthetic processes, energy storage, and cellular interaction pathways in disease progression. The BL network, consisting 80 proteins and 74 connections, demonstrates the intricate fungal mechanisms triggered by host stimuli. Conversely, the CO network, though smaller, displayed notable interconnectivity and concentrated involvement at the cell periphery, suggesting a deliberate strategy for initial host contact. This study offers valuable insights into proteome dynamics of M. anisopliae's BL and CO for managing mosquito populations and combating disease transmission, thereby significantly advancing public health and environmental conservation efforts.
Collapse
Affiliation(s)
- Tan Li Peng
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia.
| | - Samsuddin Ahmad Syazwan
- Mycology and Pathology Branch, Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia; Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, 43400 Serdang, Selangor, Malaysia
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Nurainun Sofea Najwa
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Muhammad Fahmi Ramli
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Nalliah Harshiny
- Mycology and Pathology Branch, Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia; Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, 43400 Serdang, Selangor, Malaysia
| | - Intan Haslina Ishak
- School of Biological Science, Universiti Sains Malaysia, Persiaran Sains, 11800 Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
de Souza TD, de Godoy SM, Feliciano DC, Binneck E, Rangel DEN, Sosa-Gómez DR. Genetic diversity of the entomopathogenic fungus Metarhizium rileyi based on de novo microsatellite markers. J Invertebr Pathol 2024; 204:108081. [PMID: 38458349 DOI: 10.1016/j.jip.2024.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Epizootics of the entomopathogenic fungus Metarhizium rileyi regulate lepidopteran populations in soybean, cotton, and peanut agroecosystems to the point that insecticide applications could be unnecessary. However, the contribution and how different strains operate during the epizootic are unknown. Several unanswered questions remain: 1. How many genotypes of M. rileyi are present during an epizootic? 2. Which genotype is the most common among them? 3. Are the genotypes involved in annual epizootics at the same location the same? Therefore, the development of molecular markers to accurately identify these genotypes is very important to answer these questions. SSR primers were designed by prospecting in silico to discriminate genotypes and infer the genetic diversity of M. rileyi isolates from the collection kept at Embrapa Soybean. We tested 13 SSR markers on 136 isolates to identify 43 clones and 12 different genetic clusters, with genetic diversity ranging from Hs = 0.15 (cluster I) to Hs = 0.41 (cluster IV) and an average diversity of 0.24. No clusters were categorically distinguished based on hosts or geographical origin using Bayesian clustering analysis. Nonetheless, some clusters comprised most of the isolates with a common geographic origin; for example, cluster VIII was mainly composed of isolates from Central-western Brazil, cluster II from Southern Brazil, and cluster XII from Quincy, Northern Florida, in the United States. Underrepresented regions (few isolates) from Pacific Island nations of Japan, the Philippines, and Indonesia (specifically from Java) were placed into clusters IX and X. Although the analyzed isolates displayed evidence of clonal structure, the genetic diversity indices suggest a potential for the species to adapt to different environmental conditions.
Collapse
Affiliation(s)
- Tamires Doroteo de Souza
- Department of Zoology, Biological Science Sector, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Daniele C Feliciano
- Department of General Biology, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, 85660-000, Dois Vizinhos, PR, Brazil
| | | |
Collapse
|
4
|
Li X, Guo Z, Zhou Y, Zhang B, Ruan H, Chen W. Three new discovery effector proteins from Candidatus Liberibacter asiaticus psy62 inhibit plant defense through interaction with AtCAT3 and AtGAPA. PLANT CELL REPORTS 2024; 43:130. [PMID: 38652336 DOI: 10.1007/s00299-024-03220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
KEY MESSAGE We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.
Collapse
Affiliation(s)
- Xue Li
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zetian Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yue Zhou
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Baihong Zhang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Huaqin Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
5
|
Pedrazzini C, Rehner SA, Strasser H, Zemp N, Holderegger R, Widmer F, Enkerli J. Clonal genomic population structure of Beauveria brongniartii and Beauveria pseudobassiana: Pathogens of the common European cockchafer (Melolontha melolontha L.). Environ Microbiol 2024; 26:e16612. [PMID: 38622804 DOI: 10.1111/1462-2920.16612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
Beauveria brongniartii is a fungal pathogen that infects the beetle Melolontha melolontha, a significant agricultural pest in Europe. While research has primarily focused on the use of B. brongniartii for controlling M. melolontha, the genomic structure of the B. brongniartii population remains unknown. This includes whether its structure is influenced by its interaction with M. melolontha, the timing of beetle-swarming flights, geographical factors, or reproductive mode. To address this, we analysed genome-wide SNPs to infer the population genomics of Beauveria spp., which were isolated from infected M. melolontha adults in an Alpine region. Surprisingly, only one-third of the isolates were identified as B. brongniartii, while two-thirds were distributed among cryptic taxa within B. pseudobassiana, a fungal species not previously recognized as a pathogen of M. melolontha. Given the prevalence of B. pseudobassiana, we conducted analyses on both species. We found no spatial or temporal genomic patterns within either species and no correlation with the population structure of M. melolontha, suggesting that the dispersal of the fungi is independent of the beetle. Both species exhibited clonal population structures, with B. brongniartii fixed for one mating type and B. pseudobassiana displaying both mating types. This implies that factors other than mating compatibility limit sexual reproduction. We conclude that the population genomic structure of Beauveria spp. is primarily influenced by predominant asexual reproduction and dispersal.
Collapse
Affiliation(s)
- Chiara Pedrazzini
- Molecular Ecology, Agroscope, Zürich, Switzerland
- Institute of Environmental Systems Science, ETH, Zürich, Switzerland
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture USDA, Beltsville, Maryland, USA
| | - Hermann Strasser
- Institute of Microbiology, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH, Zürich, Switzerland
| | - Rolf Holderegger
- Institute of Environmental Systems Science, ETH, Zürich, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Jürg Enkerli
- Molecular Ecology, Agroscope, Zürich, Switzerland
| |
Collapse
|
6
|
Hong S, Shang J, Sun Y, Tang G, Wang C. Fungal infection of insects: molecular insights and prospects. Trends Microbiol 2024; 32:302-316. [PMID: 37778923 DOI: 10.1016/j.tim.2023.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Entomopathogenic fungi (EPF) distribute in different fungal phyla with variable host ranges and play essential role in regulating insect populations by infecting hosts via cuticle penetration. The representative ascomycete EPF of Metarhizium and Beauveria species have been widely used in mechanistic investigations of fungus-insect interactions and as ecofriendly mycoinsecticides. Here, we review the function of diverse genes, pathways, and secondary metabolites associated with EPF stepwise infections. In particular, emerging evidence has shown that EPF have to outcompete insect ectomicrobiotas prior to penetrating cuticles, and subvert or evade host antifungal immunity by using effector-like proteins and chemicals like plant pathogens. Future prospects are discussed for a better understanding of fungal pathobiology, which will provide novel insights into microbe-animal interactions.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaneli Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
7
|
Shang J, Hong S, Wang C. Fights on the surface prior to fungal invasion of insects. PLoS Pathog 2024; 20:e1011994. [PMID: 38386619 PMCID: PMC10883574 DOI: 10.1371/journal.ppat.1011994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Entomopathogenic fungi (EPF) infect insects by landing on and penetrating cuticles. Emerging evidence has shown that, prior to the invasion of insects, fungal cells have to battle and overcome diverse challenges, including the host behavioral defenses, colonization resistance mediated by ectomicrobiotas, host recognition, and generation of enough penetration pressure. The ascomycete EPF such as Metarhizium and Beauveria can thus produce adhesive proteins and/or the exopolysaccharide mucilage to tightly glue fungal cells on cuticles. Producing antimicrobial peptides and chemical compounds can enable EPF to outcompete cuticular defensive microbes. The use of divergent membrane receptors, accumulation, and quick degradation of lipid droplets in conidial cells can help EPF recognize proper hosts and build up cellular turgor to breach cuticles for systematic invasion. Further investigations are still required to unveil the multifaceted and intricate relationships between EPF and insect hosts.
Collapse
Affiliation(s)
- Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
8
|
Li Y, Yang T, Qiao J, Liang J, Li Z, Sa W, Shang Q. Whole-genome sequencing and evolutionary analysis of the wild edible mushroom, Morchella eohespera. Front Microbiol 2024; 14:1309703. [PMID: 38361578 PMCID: PMC10868677 DOI: 10.3389/fmicb.2023.1309703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024] Open
Abstract
Morels (Morchella, Ascomycota) are an extremely desired group of edible mushrooms with worldwide distribution. Morchella eohespera is a typical black morel species, belonging to the Elata clade of Morchella species. The biological and genetic studies of this mushroom are rare, largely hindering the studies of molecular breeding and evolutionary aspects. In this study, we performed de novo sequencing and assembly of the M. eohespera strain m200 genome using the third-generation nanopore sequencing platform. The whole-genome size of M. eohespera was 53.81 Mb with a contig N50 of 1.93 Mb, and the GC content was 47.70%. A total of 9,189 protein-coding genes were annotated. Molecular dating showed that M. eohespera differentiated from its relative M. conica at ~19.03 Mya (million years ago) in Burdigalian. Evolutionary analysis showed that 657 gene families were contracted and 244 gene families expanded in M. eohespera versus the related morel species. The non-coding RNA prediction results showed that there were 336 tRNAs, 76 rRNAs, and 45 snRNAs in the M. eohespera genome. Interestingly, there was a high degree of repetition (20.93%) in the M. eohespera genome, and the sizes of long interspersed nuclear elements, short interspersed nuclear elements, and long terminal repeats were 0.83 Mb, 0.009 Mb, and 4.56 Mb, respectively. Additionally, selection pressure analysis identified that a total of 492 genes in the M. eohespera genome have undergone signatures of positive selection. The results of this study provide new insights into the genome evolution of M. eohespera and lay the foundation for in-depth research into the molecular biology of the genus Morchella in the future.
Collapse
Affiliation(s)
- Yixin Li
- State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Ting Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Jinxia Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Zhonghu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| |
Collapse
|
9
|
Lu M, Wei D, Shang J, Li S, Song S, Luo Y, Tang G, Wang C. Suppression of Drosophila antifungal immunity by a parasite effector via blocking GNBP3 and GNBP-like 3, the dual receptors for β-glucans. Cell Rep 2024; 43:113642. [PMID: 38175756 DOI: 10.1016/j.celrep.2023.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
The tactics used by animal pathogens to combat host immunity are largely unclear. Here, we report the depiction of the virulence-required effector Tge1 deployed by the entomopathogen Metarhizium robertsii to suppress Drosophila antifungal immunity. Tge1 can target both GNBP3 and GNBP-like 3 (GL3), and the latter can bind to β-glucans like GNBP3, whereas the glucan binding by both receptors can be attenuated by Tge1. As opposed to the surveillance GNBP3, GL3 is inducible in Drosophila depending on the Toll pathway via a positive feedback loop mechanism. Losses of GNBP3 and GL3 genes result in the deregulations of protease cascade, Spätzle maturation, and antimicrobial gene expressions in Drosophila upon fungal challenges. Fly survival assays confirm that GL3 plays a more essential role than GNBP3 in combating fungal infections. In addition to evidencing the gene-for-gene interactions between fungi and insects, our data advance insights into Drosophila antifungal immunity.
Collapse
Affiliation(s)
- Mengting Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongxiang Wei
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shiqin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuangxiu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yujuan Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
10
|
Cruz A, Sánchez-Hernández E, Teixeira A, Oliveira R, Cunha A, Martín-Ramos P. Phytoconstituents and Ergosterol Biosynthesis-Targeting Antimicrobial Activity of Nutmeg ( Myristica fragans Houtt.) against Phytopathogens. Molecules 2024; 29:471. [PMID: 38257384 PMCID: PMC10819938 DOI: 10.3390/molecules29020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, nutmeg (Myristica fragans Houtt.) has attracted considerable attention in the field of phytochemistry due to its diverse array of bioactive compounds. However, the potential application of nutmeg as a biorational for crop protection has been insufficiently explored. This study investigated the constituents of a nutmeg hydroethanolic extract via gas chromatography-mass spectrometry and vibrational spectroscopy. The research explored the extract's activity against phytopathogenic fungi and oomycetes, elucidating its mechanism of action. The phytochemical profile revealed fatty acids (including tetradecanoic acid, 9-octadecenoic acid, n-hexadecanoic acid, dodecanoic acid, and octadecanoic acid), methoxyeugenol, and elemicin as the main constituents. Previously unreported phytochemicals included veratone, gelsevirine, and montanine. Significant radial growth inhibition of mycelia was observed against Botrytis cinerea, Colletotrichum acutatum, Diplodia corticola, Phytophthora cinnamomi, and especially against Fusarium culmorum. Mode of action investigation, involving Saccharomyces cerevisiae labeled positively with propidium iodide, and a mutant strain affected in ERG6, encoding sterol C-24 methyltransferase, suggested that the extract induces a necrotic type of death and targets ergosterol biosynthesis. The evidence presented underscores the potential of nutmeg as a source of new antimicrobial agents, showing particular promise against F. culmorum.
Collapse
Affiliation(s)
- Adriana Cruz
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (A.T.); (R.O.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain;
| | - Ana Teixeira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (A.T.); (R.O.); (A.C.)
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Rui Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (A.T.); (R.O.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cunha
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (A.T.); (R.O.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain;
| |
Collapse
|
11
|
Ma M, Luo J, Li C, Eleftherianos I, Zhang W, Xu L. A life-and-death struggle: interaction of insects with entomopathogenic fungi across various infection stages. Front Immunol 2024; 14:1329843. [PMID: 38259477 PMCID: PMC10800808 DOI: 10.3389/fimmu.2023.1329843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Insects constitute approximately 75% of the world's recognized fauna, with the majority of species considered as pests. Entomopathogenic fungi (EPF) are parasitic microorganisms capable of efficiently infecting insects, rendering them potent biopesticides. In response to infections, insects have evolved diverse defense mechanisms, prompting EPF to develop a variety of strategies to overcome or circumvent host defenses. While the interaction mechanisms between EPF and insects is well established, recent findings underscore that their interplay is more intricate than previously thought, especially evident across different stages of EPF infection. This review primarily focuses on the interplay between EPF and the insect defense strategies, centered around three infection stages: (1) Early infection stage: involving the pre-contact detection and avoidance behavior of EPF in insects, along with the induction of behavioral responses upon contact with the host cuticle; (2) Penetration and intra-hemolymph growth stage: involving the initiation of intricate cellular and humoral immune functions in insects, while symbiotic microbes can further contribute to host resistance; (3) Host insect's death stage: involving the ultimate confrontation between pathogens and insects. Infected insects strive to separate themselves from the healthy population, while pathogens rely on the infected insects to spread to new hosts. Also, we discuss a novel pest management strategy underlying the cooperation between EPF infection and disturbing the insect immune system. By enhancing our understanding of the intricate interplay between EPF and the insect, this review provides novel perspectives for EPF-mediated pest management and developing effective fungal insecticides.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
12
|
Venice F, Spina F, Davolos D, Ghignone S, Varese GC. The genomes of Scedosporium between environmental challenges and opportunism. IMA Fungus 2023; 14:25. [PMID: 38049914 PMCID: PMC10694956 DOI: 10.1186/s43008-023-00128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Emerging fungal pathogens are a global challenge for humankind. Many efforts have been made to understand the mechanisms underlying pathogenicity in bacteria, and OMICs techniques are largely responsible for those advancements. By contrast, our limited understanding of opportunism and antifungal resistance is preventing us from identifying, limiting and interpreting the emergence of fungal pathogens. The genus Scedosporium (Microascaceae) includes fungi with high tolerance to environmental pollution, whilst some species can be considered major human pathogens, such as Scedosporium apiospermum and Scedosporium boydii. However, unlike other fungal pathogens, little is known about the genome evolution of these organisms. We sequenced two novel genomes of Scedosporium aurantiacum and Scedosporium minutisporum isolated from extreme, strongly anthropized environments. We compared all the available Scedosporium and Microascaceae genomes, that we systematically annotated and characterized ex novo in most cases. The genomes in this family were integrated in a Phylum-level comparison to infer the presence of putative, shared genomic traits in filamentous ascomycetes with pathogenic potential. The analysis included the genomes of 100 environmental and clinical fungi, revealing poor evolutionary convergence of putative pathogenicity traits. By contrast, several features in Microascaceae and Scedosporium were detected that might have a dual role in responding to environmental challenges and allowing colonization of the human body, including chitin, melanin and other cell wall related genes, proteases, glutaredoxins and magnesium transporters. We found these gene families to be impacted by expansions, orthologous transposon insertions, and point mutations. With RNA-seq, we demonstrated that most of these anciently impacted genomic features responded to the stress imposed by an antifungal compound (voriconazole) in the two environmental strains S. aurantiacum MUT6114 and S. minutisporum MUT6113. Therefore, the present genomics and transcriptomics investigation stands on the edge between stress resistance and pathogenic potential, to elucidate whether fungi were pre-adapted to infect humans. We highlight the strengths and limitations of genomics applied to opportunistic human pathogens, the multifactoriality of pathogenicity and resistance to drugs, and suggest a scenario where pressures other than anthropic contributed to forge filamentous human pathogens.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Federica Spina
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143, Rome, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP), SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125, Turin, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
| |
Collapse
|
13
|
Li XL, Sun Y, Yin Y, Zhan S, Wang C. A bacterial-like Pictet-Spenglerase drives the evolution of fungi to produce β-carboline glycosides together with separate genes. Proc Natl Acad Sci U S A 2023; 120:e2303327120. [PMID: 37467272 PMCID: PMC10372676 DOI: 10.1073/pnas.2303327120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Diverse β-carboline (βC) alkaloids are produced by microbes, plants, and animals with myriad bioactivities and drug potentials. However, the biosynthetic mechanism of βCs remains largely elusive, especially regarding the hydroxyl and glucosyl modifications of βCs. Here, we report the presence of the bacterial-like Pictet-Spenglerase gene Fcs1 in the entomopathogenic Beauveria fungi that can catalyze the biosynthesis of the βC skeleton. The overexpression of Fcs1 in Beauveria bassiana led to the identification of six βC methyl glycosides, termed bassicarbosides (BCSs) A-F. We verified that the cytochrome P450 (CYP) genes adjacent to Fcs1 cannot oxidize βCs. Alternatively, the separated CYP684B2 family gene Fcs2 was identified to catalyze βC hydroxylation together with its cofactor gene Fcs3. The functional homologue of Fcs2 is only present in the Fcs1-containing fungi and highly similar to the Fcs1-connected yet nonfunctional CYP. Both evolved quicker than those from fungi without Fcs1 homologues. Finally, the paired methyl/glucosyl transferase genes were verified to mediate the production of BCSs from hydroxy-βCs. All these functionally verified genes are located on different chromosomes of Beauveria, which is in contrast to the typical content-clustered feature of fungal biosynthetic gene clusters (BGCs). We also found that the production of BCSs selectively contributed to fungal infection of different insect species. Our findings shed light on the biosynthetic mechanism of βC glycosides, including the identification of a βC hydroxylase. The results of this study also propose an evolving process of fungal BGC formation following the horizontal transfer of a bacterial gene to fungi.
Collapse
Affiliation(s)
- Xin-Lin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Yin
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
- School of Life Science and Technology,Shanghai Tech University, Shanghai201210, China
| |
Collapse
|
14
|
Erdos Z, Studholme DJ, Raymond B, Sharma MD. De novo genome assembly of Akanthomyces muscarius, a biocontrol agent of insect agricultural pests. Access Microbiol 2023; 5:acmi000568.v3. [PMID: 37424543 PMCID: PMC10323777 DOI: 10.1099/acmi.0.000568.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/29/2023] [Indexed: 07/11/2023] Open
Abstract
The entomopathogenic fungus Akanthomyces muscarius is commonly used in agriculture to manage insect pests. Besides its use as a commercially important biological control agent, it also presents a potential model for studying host-pathogen interactions and the evolution of virulence in a laboratory setting. Here, we describe the first high-quality genome sequence for A. muscarius. We used long- and short-read sequencing to assemble a sequence of 36.1 Mb with an N50 of 4.9 Mb. Genome annotation predicted 12347 genes, with 96.6 % completeness based on the core Hypocrealen gene set. The high-quality assembly and annotation of A. muscarius presented in this study provides an essential tool for future research on this commercially important species.
Collapse
Affiliation(s)
- Zoltan Erdos
- Ecology and Conservation, University of Exeter, Penryn, TR9 10FE, UK
| | | | - Ben Raymond
- Ecology and Conservation, University of Exeter, Penryn, TR9 10FE, UK
| | | |
Collapse
|
15
|
Hong S, Sun Y, Chen H, Zhao P, Wang C. Fungus-insect interactions beyond bilateral regimes: the importance and strategy to outcompete host ectomicrobiomes by fungal parasites. Curr Opin Microbiol 2023; 74:102336. [PMID: 37320866 DOI: 10.1016/j.mib.2023.102336] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Fungus-insect interactions have long been investigated at the bilateral level to unveil the factors involved in mediating fungal entomopathogenicity and insect antifungal immunity. Emerging evidence has shown that insect cuticles are inhabited by different bacteria that can delay and deter fungal parasite infections. Entomopathogenic fungi (EPF), however, have evolved strategies to combat the colonization resistance mediated by insect ectomicrobiomes by producing antimicrobial peptides or antibiotic compounds. Deprivation of micronutrients may also be employed by EPF to counteract the ectomicrobiome antagonism. Further investigations of insect ectomicrobiome assemblage and fungal factors involved in outcompeting cuticular microbiomes may benefit the development of cost-effective mycoinsecticides while protecting ecologically and economically important insect species.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haimin Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengfei Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
16
|
Bulasag AS, Camagna M, Kuroyanagi T, Ashida A, Ito K, Tanaka A, Sato I, Chiba S, Ojika M, Takemoto D. Botrytis cinerea tolerates phytoalexins produced by Solanaceae and Fabaceae plants through an efflux transporter BcatrB and metabolizing enzymes. FRONTIERS IN PLANT SCIENCE 2023; 14:1177060. [PMID: 37332725 PMCID: PMC10273015 DOI: 10.3389/fpls.2023.1177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Botrytis cinerea, a plant pathogenic fungus with a wide host range, has reduced sensitivity to fungicides as well as phytoalexins, threatening cultivation of economically important fruits and vegetable crops worldwide. B. cinerea tolerates a wide array of phytoalexins, through efflux and/or enzymatic detoxification. Previously, we provided evidence that a distinctive set of genes were induced in B. cinerea when treated with different phytoalexins such as rishitin (produced by tomato and potato), capsidiol (tobacco and bell pepper) and resveratrol (grape and blueberry). In this study, we focused on the functional analyses of B. cinerea genes implicated in rishitin tolerance. LC/MS profiling revealed that B. cinerea can metabolize/detoxify rishitin into at least 4 oxidized forms. Heterologous expression of Bcin08g04910 and Bcin16g01490, two B. cinerea oxidoreductases upregulated by rishitin, in a plant symbiotic fungus Epichloë festucae revealed that these rishitin-induced enzymes are involved in the oxidation of rishitin. Expression of BcatrB, encoding an exporter of structurally unrelated phytoalexins and fungicides, was significantly upregulated by rishitin but not by capsidiol and was thus expected to be involved in the rishitin tolerance. Conidia of BcatrB KO (ΔbcatrB) showed enhanced sensitivity to rishitin, but not to capsidiol, despite their structural similarity. ΔbcatrB showed reduced virulence on tomato, but maintained full virulence on bell pepper, indicating that B. cinerea activates BcatrB by recognizing appropriate phytoalexins to utilize it in tolerance. Surveying 26 plant species across 13 families revealed that the BcatrB promoter is mainly activated during the infection of B. cinerea in plants belonging to the Solanaceae, Fabaceae and Brassicaceae. The BcatrB promoter was also activated by in vitro treatments of phytoalexins produced by members of these plant families, namely rishitin (Solanaceae), medicarpin and glyceollin (Fabaceae), as well as camalexin and brassinin (Brassicaceae). Consistently, ΔbcatrB showed reduced virulence on red clover, which produces medicarpin. These results suggest that B. cinerea distinguishes phytoalexins and induces differential expression of appropriate genes during the infection. Likewise, BcatrB plays a critical role in the strategy employed by B. cinerea to bypass the plant innate immune responses in a wide variety of important crops belonging to the Solanaceae, Brassicaceae and Fabaceae.
Collapse
Affiliation(s)
- Abriel Salaria Bulasag
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Teruhiko Kuroyanagi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Akira Ashida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kento Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Convergent evolution unites the population genetics of Protea-associated ophiostomatoid fungi. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
18
|
Zhou D, Liu Q, Su X, Zhou X. Transcriptomic analysis of the fungus Graphilbum sp. in response to the pine wood nematode. J Basic Microbiol 2023. [PMID: 36808634 DOI: 10.1002/jobm.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023]
Abstract
Graphilbum species are important blue stain fungi associated with pine trees and are widely distributed throughout Asia, Australia, and North Africa. Pine wood nematode (PWN) primarily feed on ophiostomatoid fungi such as Graphilbum sp. in wood, the population of PWNs was increased, and incomplete organelle structures were observed in Graphilbum sp. hyphal cells following exposure to PWNs. In this study, we showed that Rho and Ras were involved in the MAPK pathway, SNARE binding and small GTPase-mediated signal transduction, and their expression was upregulated in the treatment group. However, the expression of the Rab7 involved in MAPK and small GTPase-mediated signal pathway was downregulated in the treatment group. Thus, further research is needed to study the MAPK pathway and related Ras and Rho genes in Graphilbum sp. associated with the PWN population. Overall, transcriptomic analysis clarified the basic mechanisms of mycelial growth in Graphilbum sp. fungus used as a food source by PWNs.
Collapse
Affiliation(s)
- Duanxu Zhou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qinge Liu
- College of Ecology, Lishui University, Lishui, China
| | - Xiu Su
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xudong Zhou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
19
|
Shang J, Tang G, Yang J, Lu M, Wang CZ, Wang C. Sensing of a spore surface protein by a Drosophila chemosensory protein induces behavioral defense against fungal parasitic infections. Curr Biol 2023; 33:276-286.e5. [PMID: 36423638 DOI: 10.1016/j.cub.2022.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
In addition to innate immunity in a physiological context, insects have evolved behavioral defenses against parasite attacks. Here, we report that Drosophila can sense the CFEM (common in fungal extracellular membrane) protein Mcdc9, which acts as a negative virulence factor of the entomopathogenic fungus Metarhizium robertsii. The individual deletions of 18 CFEM genes in Metarhizium followed by fly infection identified three null mutants that could kill the flies more quickly than the wild-type strain, among which Mcdc9 can coat fungal spores and interact with the fly chemosensory protein CheA75a. The deletion of Mcdc9 in the fungus or the knockdown of CheA75a in flies had a similar effect, in which a greater number of fungal spores were left on flies than on the respective controls after topical infection. Thus, similar to the accelerated death of the wild-type flies treated with ΔMcdc9, the CheA75aRNAi flies succumbed more quickly than the control insects topically challenged with the wild-type strain. The CheA75a gene is highly transcribed in fly legs and wings, and positive electrophysiological responses were evidenced in tarsal sensilla after stimulation with the Mcdc9 protein. The results imply that this CFEM protein could be sensed as a contact elicitor inducing the hygienic behavior of flies against fungal parasitic infection, which reveals a previously unsuspected mechanism of fungus-insect interactions.
Collapse
Affiliation(s)
- Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengting Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen-Zhu Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
20
|
Hong S, Sun Y, Chen H, Wang C. Suppression of the insect cuticular microbiomes by a fungal defensin to facilitate parasite infection. THE ISME JOURNAL 2023; 17:1-11. [PMID: 36127432 PMCID: PMC9751272 DOI: 10.1038/s41396-022-01323-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Insects can assemble defensive microbiomes on their body surfaces to defend against fungal parasitic infections. The strategies employed by fungal pathogens to combat host cuticular microbiotas remains unclear. Here, we report the identification and functional characterization of the defensin-like antimicrobial gene BbAMP1 encoded by the entomopathogenic fungus Beauveria bassiana. The mature peptide of BbAMP1 can coat fungal spores and can be secreted by the fungus to target and damage Gram-positive bacterial cells. Significant differences in insect survival were observed between the wild-type and BbAMP1 mutant strains during topical infection but not during injection assays that bypassed insect cuticles. Thus, BbAMP1 deletion considerably reduced fungal virulence while gene overexpression accelerated the fungal colonization of insects compared with the wild-type strain in natural infections. Topical infection of axenic Drosophila adults evidenced no difference in fly survivals between strains. However, the gnotobiotic infections with the addition of Gram-positive but not Gram-negative bacterial cells in fungal spore suspensions substantially increased the survival of the flies treated with ∆BbAMP1 compared to those infected by the wild-type and gene-overexpression strains. Bacterial colony counts and microbiome analysis confirmed that BbAMP1 could assist the fungus to manipulate insect surface bacterial loads. This study reveals that fungal defensin can suppress the host surface defensive microbiomes, which underscores the importance to extend the research scope of fungus-host interactions.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haimin Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
21
|
Guo W, Wang W, Tang J, Li T, Li X. Genome analysis and genomic comparison of a fungal cultivar of the nonsocial weevil Euops chinensis reveals its plant decomposition and protective roles in fungus-farming mutualism. Front Microbiol 2023; 14:1048910. [PMID: 36876094 PMCID: PMC9978505 DOI: 10.3389/fmicb.2023.1048910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Fungus-farming mutualisms are models for studying co-evolutionary among species. Compared to well-documented fungus-farming in social insects, the molecular aspects of fungus-farming mutualisms in nonsocial insects have been poorly explored. Euops chinensis is a solitary leaf-rolling weevil feeding on Japanese knotweed (Fallopia japonica). This pest has evolved a special proto-farming bipartite mutualism with the fungus Penicillium herquei, which provide nutrition and defensive protection for the E. chinensis larvae. Here, the genome of P. herquei was sequenced, and the structure and specific gene categories in the P. herquei genome were then comprehensively compared with the other two well-studied Penicillium species (P. decumbens and P. chrysogenum). The assembled P. herquei genome had a 40.25 Mb genome size with 46.7% GC content. A diverse set of genes associating with carbohydrate-active enzymes, cellulose and hemicellulose degradation, transporter, and terpenoid biosynthesis were detected in the P. herquei genome. Comparative genomics demonstrate that the three Penicillium species show similar metabolic and enzymatic potential, however, P. herquei has more genes associated with plant biomass degradation and defense but less genes associating with virulence pathogenicity. Our results provide molecular evidence for plant substrate breakdown and protective roles of P. herquei in E. chinensis mutualistic system. Large metabolic potential shared by Penicillium species at the genus level may explain why some Penicillium species are recruited by the Euops weevils as crop fungi.
Collapse
Affiliation(s)
- Wenfeng Guo
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China.,Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Wei Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Jun Tang
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Tianyu Li
- Wuhan Benagen Technology Company Limited, Wuhan, Hubei, China
| | - Xiaoqiong Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
22
|
Vidhate RP, Dawkar VV, Punekar SA, Giri AP. Genomic Determinants of Entomopathogenic Fungi and Their Involvement in Pathogenesis. MICROBIAL ECOLOGY 2023; 85:49-60. [PMID: 34977966 DOI: 10.1007/s00248-021-01936-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Entomopathogenic fungi offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. The evolutionary history of selected entomopathogenic fungi indicates their ancestral relationship with plant endophytes. During this host shifting, entomopathogenic fungi must have acquired multiple mechanisms, including a combination of various biomolecules that make them distinguishable from other fungi. In this review, we focus on understanding various biochemical and molecular mechanisms involved in entomopathogenesis. In particular, we attempt to explain the indispensable role of enlarged gene families of various virulent factors, viz. chitinases, proteases, lipases, specialized metabolites, and cytochrome P450, in entomopathogenesis. Our analysis suggests that entomopathogenic fungi recruit a different set of gene products during the progression of pathogenesis. Knowledge of these bio-molecular interactions between fungi and insect hosts will allow researchers to execute pointed efforts towards the development of improved entomopathogenic fungal strains.
Collapse
Affiliation(s)
- Ravindra P Vidhate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Sachin A Punekar
- Biospheres, Eshwari, 52/403, Lakshminagar, Parvati, Pune, 411009, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
23
|
Luo F, Tang G, Hong S, Gong T, Xin XF, Wang C. Promotion of Arabidopsis immune responses by a rhizosphere fungus via supply of pipecolic acid to plants and selective augment of phytoalexins. SCIENCE CHINA LIFE SCIENCES 2022; 66:1119-1133. [PMID: 36449213 DOI: 10.1007/s11427-022-2238-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022]
Abstract
The ascomycete insect pathogenic fungi such as Metarhizium species have been demonstrated with the abilities to form the rhizosphere or endophytic relationships with different plants for nutrient exchanges. In this study, after the evident infeasibility of bacterial disease development in the boxed sterile soils, we established a hydroponic system for the gnotobiotic growth of Arabidopsis thaliana with the wild-type and transgenic strain of Metarhizium robertsii. The transgenic fungus could produce a high amount of pipecolic acid (PIP), a pivotal plant-immune-stimulating metabolite. Fungal inoculation experiments showed that M. robertsii could form a non-selective rhizosphere relationship with Arabidopsis. Similar to the PIP uptake by plants after exogenous application, PIP level increased in Col-0 and could be detected in the PIP-non-producing Arabidopsis mutant (ald1) after fungal inoculations, indicating that plants can absorb the PIP produced by fungi. The transgenic fungal strain had a better efficacy than the wild type to defend plants against the bacterial pathogen and aphid attacks. Contrary to ald1, fmo1 plants could not be boosted to resist bacterial infection after treatments. After fungal inoculations, the phytoalexins camalexin and aliphatic glucosinolate were selectively increased in Arabidopsis via both PIP-dependent and -independent ways. This study unveils the potential mechanism of the fungus-mediated beneficial promotion of plant immunity against biological stresses. The data also highlight the added values of M. robertsii to plants beyond the direct suppression of insect pest populations.
Collapse
Affiliation(s)
- Feifei Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Gong
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiu-Fang Xin
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
24
|
Zhu Q, Lin Y, Lyu X, Qu Z, Lu Z, Fu Y, Cheng J, Xie J, Chen T, Li B, Cheng H, Chen W, Jiang D. Fungal Strains with Identical Genomes Were Found at a Distance of 2000 Kilometers after 40 Years. J Fungi (Basel) 2022; 8:1212. [PMID: 36422033 PMCID: PMC9697809 DOI: 10.3390/jof8111212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2023] Open
Abstract
Heredity and variation are inherent characteristics of species and are mainly reflected in the stability and variation of the genome; the former is relative, while the latter is continuous. However, whether life has both stable genomes and extremely diverse genomes at the same time is unknown. In this study, we isolated Sclerotinia sclerotiorum strains from sclerotium samples in Quincy, Washington State, USA, and found that four single-sclerotium-isolation strains (PB4, PB273, PB615, and PB623) had almost identical genomes to the reference strain 1980 isolated in the west of Nebraska 40 years ago. The genome of strain PB4 sequenced by the next-generation sequencing (NGS) and Pacific Biosciences (PacBio) sequencing carried only 135 single nucleotide polymorphisms (SNPs) and 18 structural variations (SVs) compared with the genome of strain 1980 and 48 SNPs were distributed on Contig_20. Based on data generated by NGS, three other strains, PB273, PB615, and PB623, had 256, 275, and 262 SNPs, respectively, against strain 1980, which were much less than in strain PB4 (532 SNPs) and none of them occurred on Contig_20, suggesting much closer genomes to strain 1980 than to strain PB4. All other strains from America and China are rich in SNPs with a range of 34,391-77,618 when compared with strain 1980. We also found that there were 39-79 SNPs between strain PB4 and its sexual offspring, 53.1% of which also occurred on Contig_20. Our discoveries show that there are two types of genomes in S. sclerotiorum, one is very stable and the other tends to change constantly. Investigating the mechanism of such genome stability will enhance our understanding of heredity and variation.
Collapse
Affiliation(s)
- Qili Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyang Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Cheng
- Xinyang Academy of Agricultural Sciences, Xinyang 464000, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
25
|
Host and Environmental Sensing by Entomopathogenic Fungi to Infect Hosts. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022. [DOI: 10.1007/s40588-022-00185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Sun Y, Hong S, Chen H, Yin Y, Wang C. Production of Helvolic Acid in Metarhizium Contributes to Fungal Infection of Insects by Bacteriostatic Inhibition of the Host Cuticular Microbiomes. Microbiol Spectr 2022; 10:e0262022. [PMID: 36047778 PMCID: PMC9602595 DOI: 10.1128/spectrum.02620-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
The nortriterpenoid helvolic acid (HA) has potent antibiotic activities and can be produced by different fungi, yet HA function remains elusive. Here, we report the chemical biology of HA production in the insect pathogen Metarhizium robertsii. After deletion of the core oxidosqualene cyclase gene in Metarhizium, insect survival rates were significantly increased compared to those of insects treated with the wild type and the gene-rescued strain during topical infections but not during injection assays to bypass insect cuticles. Further gnotobiotic infection of axenic Drosophila adults confirmed the HA contribution to fungal infection by inhibiting bacterial competitors in an inoculum-dependent manner. Loss of HA production substantially impaired fungal spore germination and membrane penetration abilities relative to the WT and gene-complemented strains during challenge with different Gram-positive bacteria. Quantitative microbiome analysis revealed that HA production could assist the fungus to suppress the Drosophila cuticular microbiomes by exerting a bacteriostatic rather than bactericidal effect. Our data unveil the chemical ecology of HA and highlight the fact that fungal pathogens have to cope with the host cuticular microbiomes prior to successful infection of hosts. IMPORTANCE Emerging evidence has shown that the plant and animal surface microbiomes can defend hosts against fungal parasite infections. The strategies employed by fungal pathogens to combat the antagonistic inhibition of insect surface bacteria are still elusive. In this study, we found that the potent antibiotic helvolic acid (HA) produced by the insect pathogen Metarhizium robertsii contributes to natural fungal infection of insect hosts. Antibiotic and gnotobiotic infection assays confirmed that HA could facilitate fungal infection of insects by suppression of the host cuticular microbiomes through its bacteriostatic instead of bactericidal activities. The data from this study provide insights into the novel chemical biology of fungal secondary metabolisms.
Collapse
Affiliation(s)
- Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haimin Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Yin
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
27
|
Turk A, Abdelhamid MAA, Yeon SW, Ryu SH, Lee S, Ko SM, Kim BS, Pack SP, Hwang BY, Lee MK. Cordyceps mushroom with increased cordycepin content by the cultivation on edible insects. Front Microbiol 2022; 13:1017576. [DOI: 10.3389/fmicb.2022.1017576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cordycepin is the major constituent of Cordyceps mushroom (or Cordyceps militaris) with therapeutic potential. Insects are the direct sources of nutrients for Cordyceps in nature. Therefore, optimized condition of Cordyceps cultivation for efficient cordycepin production was explored using six edible insects as substrates. The highest yield of cordycepin was produced by the cultivation on Allomyrina dichotoma and was 34 times that on Bombyx mori pupae. Among insect components, fat content was found to be important for cordycepin production. Especially, a positive correlation was deduced between oleic acid content and cordycepin production. The transcriptional levels of cns1 and cns2, genes involved in cordycepin biosynthesis, were higher in Cordyceps grown on A. dichotoma than on other insects tested. The addition of oleic acid to the substrates increased cordycepin production together with the transcriptional levels of cns1 and cns2. Therefore, Cordyceps with high content of cordycepin can be secured by the cultivation on insects.
Collapse
|
28
|
Maccaro JJ, Moreira Salgado JF, Klinger E, Argueta Guzmán MP, Ngor L, Stajich JE, McFrederick QS. Comparative genomics reveals that metabolism underlies evolution of entomopathogenicity in bee-loving Ascosphaera spp. fungi. J Invertebr Pathol 2022; 194:107804. [PMID: 35933037 PMCID: PMC10793876 DOI: 10.1016/j.jip.2022.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Ascosphaera (Eurotiomycetes: Onygenales) is a diverse genus of fungi that is exclusively found in association with bee nests and comprises both saprophytic and entomopathogenic species. To date, most genomic analyses have been focused on the honeybee pathogen A. apis, and we lack a genomic understanding of how pathogenesis evolved more broadly in the genus. To address this gap we sequenced the genomes of the leaf-cutting bee pathogen A. aggregata as well as three commensal species: A. pollenicola, A. atra and A. acerosa. De novo annotation and comparison of the assembled genomes was carried out, including the previously published genome of A. apis. To identify candidate virulence genes in the pathogenic species, we performed secondary metabolite-oriented analyses and clustering of biosynthetic gene clusters (BGCs). Additionally, we captured single copy orthologs to infer their phylogeny and created codon-aware alignments to determine orthologs under selective pressure in our pathogenic species. Our results show several shared BGCs between A. apis, A. aggregata and A. pollenicola, with antifungal resistance related genes present in the bee pathogens and commensals. Genes involved in metabolism and protein processing exhibit signatures of enrichment and positive selection under a fitted branch-site model. Additional known virulence genes in A. pollenicola, A. acerosa and A. atra are identified, supporting previous hypotheses that these commensals may be opportunistic pathogens. Finally, we discuss the importance of such genes in other fungal pathogens, suggesting a common route to evolution of pathogenicity in Ascosphaera.
Collapse
Affiliation(s)
- J J Maccaro
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - J F Moreira Salgado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brazil; Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - E Klinger
- Department of Entomology, The Ohio State University, Columbus, OH, USA; USDA-ARS Pollinating Insect Biology Management Systematics Research Unit, Logan, UT, USA
| | - M P Argueta Guzmán
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - L Ngor
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - J E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA.
| | - Q S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
29
|
Snelders NC, Rovenich H, Thomma BPHJ. Microbiota manipulation through the secretion of effector proteins is fundamental to the wealth of lifestyles in the fungal kingdom. FEMS Microbiol Rev 2022; 46:fuac022. [PMID: 35604874 PMCID: PMC9438471 DOI: 10.1093/femsre/fuac022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Fungi are well-known decomposers of organic matter that thrive in virtually any environment on Earth where they encounter wealths of other microbes. Some fungi evolved symbiotic lifestyles, including pathogens and mutualists, that have mostly been studied in binary interactions with their hosts. However, we now appreciate that such interactions are greatly influenced by the ecological context in which they take place. While establishing their symbioses, fungi not only interact with their hosts but also with the host-associated microbiota. Thus, they target the host and its associated microbiota as a single holobiont. Recent studies have shown that fungal pathogens manipulate the host microbiota by means of secreted effector proteins with selective antimicrobial activity to stimulate disease development. In this review, we discuss the ecological contexts in which such effector-mediated microbiota manipulation is relevant for the fungal lifestyle and argue that this is not only relevant for pathogens of plants and animals but also beneficial in virtually any niche where fungi occur. Moreover, we reason that effector-mediated microbiota manipulation likely evolved already in fungal ancestors that encountered microbial competition long before symbiosis with land plants and mammalian animals evolved. Thus, we claim that effector-mediated microbiota manipulation is fundamental to fungal biology.
Collapse
Affiliation(s)
- Nick C Snelders
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hanna Rovenich
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
30
|
Rodrigues ASB, Silva DN, Várzea V, Paulo OS, Batista D. Worldwide Population Structure of the Coffee Rust Fungus Hemileia vastatrix Is Strongly Shaped by Local Adaptation and Breeding History. PHYTOPATHOLOGY 2022; 112:1998-2011. [PMID: 35322716 DOI: 10.1094/phyto-09-21-0376-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The devastating disease coffee leaf rust, caused by Hemileia vastatrix, has been a major constraint to worldwide coffee production. Recently, H. vastatrix populations were shown to be structured into three divergent genetic lineages with marked host specialization (C1, C2, and C3). However, there is yet no overall understanding of the population dynamics and adaptation of the most widespread and epidemiological relevant H. vastatrix group (C3). We used restriction site-associated DNA sequencing to generate 13,804 single nucleotide polymorphisms (SNPs) across a worldwide collection of 99 H. vastatrix isolates. Phylogenetic analyses uncovered a well-supported structuring within C3, with three main subgroups (SGs; SGI, SGII, and SGIII), which seem to reflect the historical distribution, breeding, and exchange of coffee cultivars. SGI shows a ladder-like diversification pattern and occurs across all four continents sampled, SGII is mainly restricted to Africa, and SGIII is observed only in Timor, revealing a higher genetic differentiation. Outlier and association tests globally identified 112 SNPs under putative positive selection, which impacted population structure. In particular, 29 overlapping SNPs per se seemed to have an extremely strong effect on H. vastatrix population divergence. We also found exclusive and fixed alleles associated with the SGs supporting local adaptation. Functional annotation revealed that transposable elements may play a role in host adaptation. Our study provides a higher-resolution perspective on the evolutionary history of H. vastatrix on cultivated coffee, showing its strong ability to adapt and the strength of the selective force imposed by coffee hosts, which should be taken into account when designing strategies for pathogen dissemination control and selective breeding.
Collapse
Affiliation(s)
- Ana Sofia B Rodrigues
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Computational Biology and Population Genomics Group (CoBiG2), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Diogo Nuno Silva
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Computational Biology and Population Genomics Group (CoBiG2), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC)/Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Vitor Várzea
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC)/Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Octávio S Paulo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Computational Biology and Population Genomics Group (CoBiG2), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Dora Batista
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Computational Biology and Population Genomics Group (CoBiG2), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC)/Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| |
Collapse
|
31
|
Orchestrated Biosynthesis of the Secondary Metabolite Cocktails Enables the Producing Fungus to Combat Diverse Bacteria. mBio 2022; 13:e0180022. [PMID: 36000736 PMCID: PMC9600275 DOI: 10.1128/mbio.01800-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fungal secondary metabolites with antibiotic activities can promote fungal adaptation to diverse environments. Besides the global regulator, individual biosynthetic gene clusters (BGCs) usually contain a pathway-specific transcription factor for the tight regulation of fungal secondary metabolism. Here, we report the chemical biology mediated by a supercluster containing three BGCs in the entomopathogenic fungus Metarhiziumrobertsii. These clusters are jointly controlled by an embedded transcription factor that orchestrates the collective production of four classes of chemicals: ustilaginoidin, indigotide, pseurotin, and hydroxyl-ovalicin. The ustilaginoidin BGC is implicated as a late-acquired cluster in Metarhizium to produce both the bis-naphtho-γ-pyrones and the monomeric naphtho-γ-pyrone glycosides (i.e., indigotides). We found that the biosynthesis of indigotides additionally requires the functions of paired methylglucosylation genes located outside the supercluster. The pseurotin/ovalicin BGCs are blended and mesosyntenically conserved to the intertwined pseurotin/fumagillin BGCs of Aspergillus fumigatus. However, the former have lost a few genes, including a polyketide synthase gene responsible for the production of a pentaene chain used for assembly with ovalicin to form fumagillin, as observed in A. fumigatus. The collective production of chemical cocktails by this supercluster was dispensable for fungal virulence against insects and could enable the fungus to combat different bacteria better than the metabolite(s) produced by an individual BGC could. Thus, our results unveil a novel strategy employed by fungi to manage chemical ecology against diverse bacteria.
Collapse
|
32
|
Chen X, Luo M, Wu W, Dong Z, Zou H. Virulence-Associated Genes of Calonectria ilicola, Responsible for Cylindrocladium Black Rot. J Fungi (Basel) 2022; 8:jof8080869. [PMID: 36012857 PMCID: PMC9410443 DOI: 10.3390/jof8080869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Cylindrocladium black rot caused by Calonectria ilicicola is a destructive disease affecting a broad range of crops. Herein, we study virulence-associated genes of C. ilicicolaCi14017 isolated from diseased peanut roots (Arachis hypogaea L.). Ci14017 was identified via phylogenetic analysis of the internal transcribed spacer region and standard Koch’s postulate testing. Virulence-associated genes were based on genome analyses and comparative analysis of transcriptome and proteome profiles of sensitive and resistant peanut cultivars. Ci14017 identified as C. ilicicola has a 66 Mb chromosome with 18,366 predicted protein-coding genes. Overall, 46 virulence-associated genes with enhanced expression levels in the sensitive cultivars were identified. Sequence analysis indicated that the 46 gene products included two merops proteins, eight carbohydrate-active enzymes, seven cytochrome P450 enzymes, eight lipases, and 20 proteins with multi-conserved enzyme domains. The results indicate a complex infection mechanism employed by Ci14017 for causing Cylindrocladium black rot in peanuts.
Collapse
Affiliation(s)
- Xinyu Chen
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei Luo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wei Wu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (Z.D.); (H.Z.); Tel.: +86-020-89-0031-92 (Z.D.); Tel.: +86-591-837-8469 (H.Z.)
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.D.); (H.Z.); Tel.: +86-020-89-0031-92 (Z.D.); Tel.: +86-591-837-8469 (H.Z.)
| |
Collapse
|
33
|
Coccidioides Species: A Review of Basic Research: 2022. J Fungi (Basel) 2022; 8:jof8080859. [PMID: 36012847 PMCID: PMC9409882 DOI: 10.3390/jof8080859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Coccidioides immitis and posadasii are closely related fungal species that cause coccidioidomycosis. These dimorphic organisms cause disease in immunocompetent as well as immunocompromised individuals and as much as 40% of the population is infected in the endemic area. Although most infections resolve spontaneously, the infection can be prolonged and, in some instances, fatal. Coccidioides has been studied for more than 100 years and many aspects of the organism and the disease it causes have been investigated. There are over 500 manuscripts concerning Coccidioides (excluding clinical articles) referenced in PubMed over the past 50 years, so there is a large body of evidence to review. We reviewed the most accurate and informative basic research studies of these fungi including some seminal older studies as well as an extensive review of current research. This is an attempt to gather the most important basic research studies about this fungus into one publication. To focus this review, we will discuss the mycology of the organism exclusively rather than the studies of the host response or clinical studies. We hope that this review will be a useful resource to those interested in Coccidioides and coccidioidomycosis.
Collapse
|
34
|
de Carvalho JA, Monteiro RC, Hagen F, de Camargo ZP, Rodrigues AM. Trends in Molecular Diagnostics and Genotyping Tools Applied for Emerging Sporothrix Species. J Fungi (Basel) 2022; 8:jof8080809. [PMID: 36012797 PMCID: PMC9409836 DOI: 10.3390/jof8080809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Sporotrichosis is the most important subcutaneous mycosis that affects humans and animals worldwide. The mycosis is caused after a traumatic inoculation of fungal propagules into the host and may follow an animal or environmental transmission route. The main culprits of sporotrichosis are thermodimorphic Sporothrix species embedded in a clinical clade, including S. brasiliensis, S. schenckii, S. globosa, and S. luriei. Although sporotrichosis occurs worldwide, the etiological agents are not evenly distributed, as exemplified by ongoing outbreaks in Brazil and China, caused by S. brasiliensis and S. globosa, respectively. The gold standard for diagnosing sporotrichosis has been the isolation of the fungus in vitro. However, with the advance in molecular techniques, molecular assays have complemented and gradually replaced the classical mycological tests to quickly and accurately detect and/or differentiate molecular siblings in Sporothrix. Nearly all techniques available for molecular diagnosis of sporotrichosis involve PCR amplification, which is currently moving towards detecting Sporothrix DNA directly from clinical samples in multiplex qPCR assays. From an epidemiological perspective, genotyping is key to tracing back sources of Sporothrix infections, detecting diversity in outbreak areas, and thus uncovering finer-scale epidemiological patterns. Over the past decades, molecular epidemiological studies have provided essential information to policymakers regarding outbreak management. From high-to-low throughput genotyping methods, MLSA, AFLP, SSR, RAPD, PCR-RFLP, and WGS are available to assess the transmission dynamics and sporotrichosis expansion. This review discusses the trends in the molecular diagnosis of sporotrichosis, genotyping techniques applied in molecular epidemiological studies, and perspectives for the near future.
Collapse
Affiliation(s)
- Jamile Ambrósio de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
| | - Ruan Campos Monteiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: ; Tel.: +55-1155764551 (ext. 1540)
| |
Collapse
|
35
|
Blumenstein K, Bußkamp J, Langer GJ, Terhonen E. Diplodia tip blight pathogen's virulence empowered through host switch. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:939007. [PMID: 37746207 PMCID: PMC10512300 DOI: 10.3389/ffunb.2022.939007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/04/2022] [Indexed: 09/26/2023]
Abstract
Increased drought combined with emerging pathogens poses an increased threat to forest health. This is attributable to the unpredictable behaviour of forest pathosystems, which can favour fungal pathogens over the host under persistent drought stress conditions. Diplodia sapinea (≡ Sphaeropsis sapinea) is one of the most severe pathogens in Scots pine (Pinus sylvestris) causing Diplodia tip blight (conifer blight) under certain environmental conditions. Recently, the fungus has also been isolated from non-conifer hosts, indicating that it has a broader host range than previously known. In this study we compared the impact of different levels of water availability on necrosis length caused by D. sapinea strains isolated as endophytes (eight strains isolated from asymptomatic Scots pine) and pathogens (five strains isolated from symptomatic Scots pine) and five strains isolated from symptomatic non-pine hosts. For all strains the decreased water availability increased the necrosis length in Scots pine shoots. The isolates from non-pine hosts caused the most severe reactions under all water availabilities. The results of the study indicate the likelihood that effects of climatic changes such as drought will drive D. sapinea damage in Scots pine-dominated forests and increase mortality rates in affected trees. Further, the higher necrosis in the Scots pines caused by strains that had performed a host switch are concerning with regard to future scenarios thus increasing infection pressure on Scots pine from unknown sources.
Collapse
Affiliation(s)
- Kathrin Blumenstein
- Forest Pathology Research Group, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, Georg-August-University Göttingen, Göttingen, Germany
- Chair of Pathology of Trees, Institute of Forestry, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Johanna Bußkamp
- Section Mycology and Complex Diseases, Department of Forest Protection, Northwest German Forest Research Institute, Göttingen, Germany
| | - Gitta Jutta Langer
- Section Mycology and Complex Diseases, Department of Forest Protection, Northwest German Forest Research Institute, Göttingen, Germany
| | - Eeva Terhonen
- Forest Pathology Research Group, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, Georg-August-University Göttingen, Göttingen, Germany
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity, Helsinki, Finland
| |
Collapse
|
36
|
Du W, Giosa D, Wei J, Giuffrè L, Shi G, El Aamri L, D'Alessandro E, Hafidi M, de Hoog S, Romeo O, Huang H. Long-read PacBio genome sequencing of four environmental saprophytic Sporothrix species spanning the pathogenic clade. BMC Genomics 2022; 23:506. [PMID: 35831806 PMCID: PMC9281073 DOI: 10.1186/s12864-022-08736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Sporothrix belongs to the order Ophiostomatales and contains mainly saprobic soil and plant fungi, although pathogenic species capable of causing human infections are also present. The whole-genomes of disease-causing species have already been sequenced and annotated but no comprehensive genomic resources for environmental Sporothrix species are available, thus limiting our understanding of the evolutionary origin of virulence-related genes and pathogenicity. RESULT The genome assembly of four environmental Sporothrix species resulted in genome size of ~ 30.9 Mbp in Sporothrix phasma, ~ 35 Mbp in S. curviconia, ~ 38.7 Mbp in S. protearum, and ~ 39 Mbp in S. variecibatus, with a variable gene content, ranging from 8142 (S. phasma) to 9502 (S. variecibatus). The analysis of mobile genetic elements showed significant differences in the content of transposable elements within the sequenced genomes, with the genome of S. phasma lacking several class I and class II transposons, compared to the other Sporothrix genomes investigated. Moreover, the comparative analysis of orthologous genes shared by clinical and environmental Sporothrix genomes revealed the presence of 3622 orthogroups shared by all species, whereas over 4200 genes were species-specific single-copy gene products. Carbohydrate-active enzyme analysis revealed a total of 2608 protein-coding genes containing single and/or multiple CAZy domains, resulting in no statistically significant differences among pathogenic and environmental species. Nevertheless, some families were not found in clinical species. Furthermore, for each sequenced Sporothrix species, the mitochondrial genomes was assembled in a single circular DNA molecule, ranging from 25,765 bp (S. variecibatus) to 58,395 bp (S. phasma). CONCLUSION In this study, we present four annotated genome assemblies generated using PacBio SMRT sequencing data from four environmental species: S. curviconia, S. phasma, S. protearum and S. variecibatus with the aim to provide a starting point for future comparative genome evolution studies addressing species diversification, ecological/host adaptation and origin of pathogenic lineages within the genus Sporothrix.
Collapse
Affiliation(s)
- Weian Du
- Department of Dermatology and Venereology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Domenico Giosa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Junkang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ge Shi
- Medical Cosmetic and Plastic Surgery Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lamya El Aamri
- Department of Biology, Moulay Ismail University, Zitoune, Meknes, Morocco
| | | | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Zitoune, Meknes, Morocco
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Huaiqiu Huang
- Department of Dermatology and Venereology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Mou YN, Ren K, Tong SM, Ying SH, Feng MG. Fungal insecticidal activity elevated by non-risky markerless overexpression of an endogenous cysteine-free protein gene in Beauveria bassiana. PEST MANAGEMENT SCIENCE 2022; 78:3164-3172. [PMID: 35470955 DOI: 10.1002/ps.6946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fungal insecticides are notorious for slow kill action, an intrinsic trait that can be improved by the genetic engineering of an exogenous or endogenous virulence factor. However, transgenic insecticides expressing exogenous toxin and herbicide-resistant marker genes may cause unexpected ecological risks and are hardly permitted for field release due to strict regulatory hurdles. It is necessary to improve biotechnology that can speed up fungal insect-killing action and exclude ecological risk source. RESULTS A markerless transformation system of Beauveria bassiana, a main source of wide-spectrum fungal insecticides, was reconstructed based on the fungal uridine auxotrophy (Δura3). The system was applied for overexpression of the small cysteine-free protein (120 amino acids) gene cfp previously characterized as a regulator of the fungal virulence and gene expression. Three cfp-overexpressed strains showed much faster kill action to Galleria mellonella larvae than the parental wild-type via normal cuticle infection but no change in vegetative growth and aerial condition. The faster kill action was achieved due to not only significant increases in conidial adherence to insect cuticle and total activity of secreted cuticle-degrading Pr1 proteases and of antioxidant enzymes crucial for collapse of insect immune defense but acceleration of hemocoel localization, proliferation in vivo and host death from mummification. CONCLUSION The markerless system is free of any foreign DNA fragment as a source of ecologic risk and provides a novel biotechnological approach to enhancing fungal insecticidal activity with non-risky endogenous genes and striding over the regulatory hurdles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya-Ni Mou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kang Ren
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Three Small Cysteine-Free Proteins (CFP1–3) Are Required for Insect-Pathogenic Lifestyle of Metarhizium robertsii. J Fungi (Basel) 2022; 8:jof8060606. [PMID: 35736089 PMCID: PMC9224661 DOI: 10.3390/jof8060606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Unique CFP (cysteine-free protein; 120 aa) has been identified as an extraordinary virulence factor in Beauveria bassiana (Cordycipitaceae), a main source of wide-spectrum fungal insecticides. Its homologs exclusively exist in wide-spectrum insect pathogens of Hypocreales, suggesting their importance for a fungal insect-pathogenic lifestyle. In this study, all three CFP homologs (CFP1–3, 128–145 aa) were proven essential virulence factors in Metarhizium robertsii (Clavicipitaceae). Despite limited effects on asexual cycles in vitro, knockout mutants of cfp1,cfp2 and cfp3 were severely compromised in their capability for normal cuticle infection, in which most tested Galleria mellonella larvae survived. The blocked cuticle infection concurred with reduced secretion of extracellular enzymes, including Pr1 proteases required cuticle penetration. Cuticle-bypassing infection by intrahemocoel injection of ~250 conidia per larva resulted in a greater reduction in virulence in the mutant of cfp1 (82%) than of cfp2 (21%) or cfp3 (25%) versus the parental wild-type. Transcriptomic analysis revealed dysregulation of 604 genes (up/down ratio: 251:353) in the Δcfp1 mutant. Many of them were involved in virulence-related cellular processes and events aside from 154 functionally unknown genes (up/down ratio: 56:98). These results reinforce the essential roles of small CFP homologs in hypocrealean fungal adaptation to insect-pathogenic lifestyle and their exploitability for the genetic improvement of fungal insecticidal activity.
Collapse
|
39
|
Peng H, Zhang YL, Ying SH, Feng MG. The Essential and the Nonessential Roles of Four Clock Elements in the Circadian Rhythm of Metarhizium robertsii. J Fungi (Basel) 2022; 8:jof8060558. [PMID: 35736041 PMCID: PMC9224670 DOI: 10.3390/jof8060558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
FRQ (frequency protein), FRH (FRQ-interacting RNA helicase), and WC1 and WC2 (white collar proteins) are major clock elements that govern the circadian rhythm in Neurospora crassa. However, deletion of frh is lethal for the viability of N. crassa, making it elusive whether FRH is essential or nonessential for the circadian rhythm. This needs clarification in a fungus where frh deletion is not lethal. Here, the nuclear FRH ortholog proved nonessential for the circadian rhythm of Metarhizium robertsii. The nucleocytoplasmic shuttling of M. robertsii FRQ, WC1, and WC2 orthologs was light-dependent. Yeast two-hybrid assay validated interactions of FRQ with FRH and WC1 instead of FRH with WC1 and WC2 or FRQ with WC2. The circadian rhythm well, shown as conidiation rings of tint and dark in 15 d-old plate cultures grown at 25 °C in a light/dark cycle of 12:12, was abolished in the absence of frq or wc1, partially disturbed in the absence of wc2, but unaffected in the absence of frh. These results indicate a requirement of either FRQ or WC1 instead of FRH for the fungal circadian rhythm. Further analyses of frq and frh mutants revealed the dispensable and the limited roles of FRQ and FRH in the insect-pathogenic lifecycle of M. robertsii, respectively.
Collapse
|
40
|
Abstract
AbstractThe order Onygenales is classified in the class Eurotiomycetes of the subphylum Pezizomycotina. Families in this order have classically been isolated from soil and dung, and two lineages contain causative agents of superficial, cutaneous and systemic infections in mammals. The ecology and habitat choices of the species are driven mainly by the keratin and cellulose degradation abilities. The present study aimed to investigate whether the ecological trends of the members of Onygenales can be interpreted in an evolutionary sense, linking phylogenetic parameters with habitat preferences, to achieve polyphasic definitions of the main taxonomic groups. Evolutionary processes were estimated by multiple gene genealogies and divergence time analysis. Previously described families, namely, Arthrodermataceae, Ajellomycetaceae, Ascosphaeraceae, Eremascaceae, Gymnoascaceae, Onygenaceae and Spiromastigoidaceae, were accepted in Onygenales, and two new families, Malbrancheaceae and Neogymnomycetaceae, were introduced. A number of species could not be assigned to any of the defined families. Our study provides a revised overview of the main lines of taxonomy of Onygenales, supported by multilocus analyses of ITS, LSU, TUB, TEF1, TEF3, RPB1, RPB2, and ribosomal protein 60S L10 (L1) (RP60S) sequences, combined with available data on ecology, physiology, morphology, and genomics.
Collapse
|
41
|
Batista E, Lopes A, Alves A. How good are we at describing a new fungal species? A case study based on the family Botryosphaeriaceae (Dothideomycetes). Mycol Prog 2022. [DOI: 10.1007/s11557-022-01796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
de Melo Teixeira M, Stajich JE, Sahl JW, Thompson GR, Brem RB, Dubin CA, Blackmon AV, Mead HL, Keim P, Barker BM. A chromosomal-level reference genome of the widely utilized Coccidioides posadasii laboratory strain "Silveira". G3 (BETHESDA, MD.) 2022; 12:jkac031. [PMID: 35137016 PMCID: PMC8982387 DOI: 10.1093/g3journal/jkac031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022]
Abstract
Coccidioidomycosis is a common fungal disease that is endemic to arid and semi-arid regions of both American continents. Coccidioides immitis and Coccidioides posadasii are the etiological agents of the disease, also known as Valley Fever. For several decades, the C. posadasii strain Silveira has been used widely in vaccine studies, is the source strain for production of diagnostic antigens, and is a widely used experimental strain for functional studies. In 2009, the genome was sequenced using Sanger sequencing technology, and a draft assembly and annotation were made available. In this study, the genome of the Silveira strain was sequenced using single molecule real-time sequencing PacBio technology, assembled into chromosomal-level contigs, genotyped, and the genome was reannotated using sophisticated and curated in silico tools. This high-quality genome sequencing effort has improved our understanding of chromosomal structure, gene set annotation, and lays the groundwork for identification of structural variants (e.g. transversions, translocations, and copy number variants), assessment of gene gain and loss, and comparison of transposable elements in future phylogenetic and population genomics studies.
Collapse
Affiliation(s)
- Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jason E Stajich
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, USA
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA 95616, USA
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Claire A Dubin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Austin V Blackmon
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Heather L Mead
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Bridget M Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
43
|
Wei J, Zhou X, Dong M, Yang L, Zhao C, Lu R, Bao G, Hu F. Metabolites and novel compounds with anti-microbial or antiaging activities from Cordyceps fumosorosea. AMB Express 2022; 12:40. [PMID: 35366116 PMCID: PMC8976864 DOI: 10.1186/s13568-022-01379-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
High-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) analysis revealed that there are 20 main components in spores and mycelia extract of Cordyceps fumosorosea strain RCEF 6672 including mannitol (1), uridine (2), adenine (3). N6-(2-hydroxyethyl)-adenosine (4). N6-(2-hydroxyethylacetate)-adenosine (5), fumosoroseanoside A (6) and B (7), ovalicin-4α-alcohol (8), 1-linoleoyl-sn-glycero-3-phosphocholine (9) and its isomer (10), fumosoroseain A (11) and its isomer (12), 5 non-ribosomal peptides (13 to 17) and 3 fatty acids (18 to 20). The compounds 5, 6, 7, 9 and 11 were prepared with preparative and semi-preparative HPLC and identified with 1D and 2D NMR. Compounds 4 and 5 were the first time identified from C. fumosorosea. Compounds 6, 7 and 11 are novel compounds. Compounds 6 and 7 showed antibacterial and antifungal activities, and 11 showed antiaging activity. All the secondary metabolites (4 to 8 and 11 to 17) have strong bioactivities indicating that the metabolites have pharmaceutical development potentiality.
Clarified small molecular metabolites of C. fumosorosea for the first time.
Identified three novel compounds with antimicrobial or antiaging activities. The fungus has development potentiality for rich in bioactive metabolites.
Collapse
|
44
|
Altimira F, Arias-Aravena M, Jian L, Real N, Correa P, González C, Godoy S, Castro JF, Zamora O, Vergara C, Vitta N, Tapia E. Genomic and Experimental Analysis of the Insecticidal Factors Secreted by the Entomopathogenic Fungus Beauveria pseudobassiana RGM 2184. J Fungi (Basel) 2022; 8:253. [PMID: 35330256 PMCID: PMC8952764 DOI: 10.3390/jof8030253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
The entomopathogenic fungus Beauveria pseudobassiana strain RGM 2184 can reach a maximum efficacy of 80% against the quarantine pest Lobesia botrana in field assays. In this study, the RGM 2184 genome was sequenced, and genome mining analyses were performed to predict the factors involved in its insecticidal activity. Additionally, the metabolic profiling of the RMG 2184 culture's supernatants was analyzed by mass spectrometry, and the insecticidal activity from one of these extracts was evaluated in Galleria mellonella larvae. The genome analysis resulted in 114 genes encoding for extracellular enzymes, four biosynthetic gene clusters reported as producers of insecticidal and bactericidal factors (oosporein, beauvericin, desmethylbassianin, and beauveriolide), 20 toxins, and at least 40 undescribed potential biocontrol factors (polyketides and nonribosomal peptides). Comparative genomic analysis revealed that 65-95% of these genes are Beauveria genus-specific. Metabolic profiling of supernatant extracts from RGM 2184 cultures exhibited secondary metabolites such as beauveriolide, oosporein, inflatin C, and bassiatin. However, a number of detected metabolites still remain undescribed. The metabolite extract caused 79% mortality of Galleria mellonella larvae at 28 days. The results of this research lay the groundwork for the study of new insecticidal molecules.
Collapse
Affiliation(s)
- Fabiola Altimira
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Matias Arias-Aravena
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Ling Jian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Nicolas Real
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Pablo Correa
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile;
| | - Sebastián Godoy
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Jean Franco Castro
- Banco de Recursos Genéticos Microbianos, Instituto de Investigaciones Agropecuarias, INIA, Chillán 3800062, Chile;
| | - Olga Zamora
- Laboratorio de Materias Primas y Alimentos, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (O.Z.); (C.V.)
| | - Cristina Vergara
- Laboratorio de Materias Primas y Alimentos, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (O.Z.); (C.V.)
| | - Nancy Vitta
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Eduardo Tapia
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| |
Collapse
|
45
|
Proteomic and Phosphoryproteomic Investigations Reveal that Autophagy-Related Protein 1, a Protein Kinase for Autophagy Initiation, Synchronously Deploys Phosphoregulation on the Ubiquitin-Like Conjugation System in the Mycopathogen Beauveria bassiana. mSystems 2022; 7:e0146321. [PMID: 35133188 PMCID: PMC8823290 DOI: 10.1128/msystems.01463-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a conserved intracellular degradation mechanism in eukaryotes and is initiated by the protein kinase autophagy-related protein 1 (Atg1). However, except for the autophosphorylation activity of Atg1, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In Beauveria bassiana (a filamentous insect-pathogenic fungus), Atg1 is indispensable for autophagy and is associated with fungal development. Comparative omics-based analyses revealed that B. bassiana Atg1 (BbAtg1) has key influence on the proteome and phosphoproteome during conidiogenesis. In terms of its physiological functions, the BbAtg1-mediated phosphoproteome is primarily associated with metabolism, signal transduction, cell cycle, and autophagy. At the proteomic level, BbAtg1 mainly regulates genes involved in protein synthesis, protein fate, and protein with binding function. Furthermore, integrative analyses of phosphoproteomic and proteomic data led to the identification of several potential targets regulated by BbAtg1 phosphorylation activity. Notably, we demonstrated that BbAtg1 phosphorylated BbAtg3, an essential component of the ubiquitin-like conjugation system in autophagic progress. Our findings indicate that in addition to being a critical component of the autophagy initiation, Atg1 orchestrates autophagosome elongation via its phosphorylation activity. The data from our study will facilitate future studies on the noncanonical targets of Atg1 and help decipher the Atg1-mediated phosphorylation networks. IMPORTANCE Autophagy-related protein 1 (Atg1) is a serine/threonine protein kinase for autophagy initiation. In contrast to the unicellular yeast, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In this study, the entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi due to its importance in the applied and fundamental research. We revealed that Atg1 mediates the comprehensive proteome and phosphoproteome, which differ from those revealed in yeast. Further investigation revealed that Atg1 directly phosphorylates the E2-like enzyme Atg3 of the ubiquitin-like conjugation system (ULCS), and the phosphorylation of Atg3 is indispensable for ULCS functionality. Interestingly, the phosphorylation site of Atg3 is conserved among a set of insect- and plant-pathogenic fungi but not in human-pathogenic fungi. This study reveals new regulatory mechanisms of autophagy and provides new insights into the evolutionary diversity of the Atg1 kinase signaling pathways among different pathogenic fungi.
Collapse
|
46
|
Tong SM, Feng MG. Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation. PEST MANAGEMENT SCIENCE 2022; 78:30-42. [PMID: 34397162 DOI: 10.1002/ps.6600] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Inductive Production of the Iron-Chelating 2-Pyridones Benefits the Producing Fungus To Compete for Diverse Niches. mBio 2021; 12:e0327921. [PMID: 34903054 PMCID: PMC8669486 DOI: 10.1128/mbio.03279-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diverse 2-pyridone alkaloids have been identified with an array of biological and pharmaceutical activities, including the development of drugs. However, the biosynthetic regulation and chemical ecology of 2-pyridones remain largely elusive. Here, we report the inductive activation of the silent polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) (tenS) gene cluster for the biosynthesis of the tenellin-type 2-pyridones in the insect-pathogenic fungus Beauveria bassiana when cocultured with its natural competitor fungus Metarhizium robertsii. A pathway-specific transcription factor, tenR, was identified, and the overexpression of tenR well expanded the biosynthetic mechanism of 15-hydroxytenellin (15-HT) and its derivatives. In particular, a tandemly linked glycosyltransferase-methyltransferase gene pair located outside the tenS gene cluster was verified to mediate the rare and site-specific methylglucosylation of 15-HT at its N-OH residue. It was evident that both tenellin and 15-HT can chelate iron, which could benefit B. bassiana to outcompete M. robertsii in cocultures and to adapt to iron-replete and -depleted conditions. Relative to the wild-type strain, the deletion of tenS had no obvious negative effect on fungal virulence, but the overexpression of tenR could substantially increase fungal pathogenicity toward insect hosts. The results of this study well advance the understanding of the biosynthetic machinery and chemical ecology of 2-pyridones.
Collapse
|
48
|
Green Synthesis of Silver Nanoparticles Using a Biosurfactant from Bacillus cereus UCP 1615 as Stabilizing Agent and Its Application as an Antifungal Agent. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles have great potential in a wide range of applications. Therefore, the purpose of this work was to synthesize, in a simple and green way, via the Tollens method, silver nanoparticles (AgNPs), using as a stabilizer the biosurfactant produced by Bacillus cereus UCP 1615 cultivated in a low-cost medium, with waste frying oil as a substrate. The obtained nanoparticles were identified and morphologically characterized using ultraviolet/visible (UV/vis) spectroscopy, scanning electron microscopy (SEM), and zeta potential. The maximum UV/vis absorption was observed at 400 nm for newly formed silver nanoparticles, while, for silver nanoparticles stored for 120 days, the peak was observed at 430 nm. SEM micrographs confirmed the formation of nanoparticles, with predominantly spherical structures. The average size of the formed nanoparticles was estimated to be 20 nm. The presence of the biosurfactant promoted stability, as a zeta potential of −23.4 mV was observed. The antimicrobial potential of AgNPs was evaluated at different concentrations against three pathogenic fungi (Aspergillus niger, Penicillium fellutanum, and Cladosporium cladosporioides). No less than 100% and 85% inhibitions of P. fellutanum and A. niger growth were observed, respectively, at the AgNP concentration of 16.50 µg/mL in potato dextrose agar medium. These results suggest the potential use of the biosurfactant as a stabilizer for silver nanoparticles and its application as an antimicrobial agent.
Collapse
|
49
|
Zhang L, Yue Q, Wang C, Xu Y, Molnár I. Secondary metabolites from hypocrealean entomopathogenic fungi: genomics as a tool to elucidate the encoded parvome. Nat Prod Rep 2021; 37:1164-1180. [PMID: 32211677 DOI: 10.1039/d0np00007h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 2014 up to the third quarter of 2019 Hypocrealean entomopathogenic fungi (HEF) produce a large variety of secondary metabolites (SMs) that are prominent virulence factors or mediate various interactions in the native niches of these organisms. Many of these SMs show insecticidal, immune system modulatory, antimicrobial, cytotoxic and other bioactivities of clinical or agricultural significance. Recent advances in whole genome sequencing technologies and bioinformatics have revealed many biosynthetic gene clusters (BGCs) potentially involved in SM production in HEF. Some of these BGCs are now well characterized, with the structures of the cognate product congeners elucidated, and the proposed biosynthetic functions of key enzymes validated. However, the vast majority of HEF BGCs are still not linked to SM products ("orphan" BGCs), including many clusters that are not expressed (silent) under routine laboratory conditions. Thus, investigations into the encoded parvome (the secondary metabolome predicted from the genome) of HEF allows the discovery of BGCs for known SMs; uncovers novel metabolites based on the BGCs; and catalogues the predicted SM biosynthetic potential of these fungi. Herein, we summarize new developments of the field, and survey the polyketide, nonribosomal peptide, terpenoid and hybrid SM BGCs encoded in the currently available 40 HEF genome sequences. Studying the encoded parvome of HEF will increase our understanding of the multifaceted roles that SMs play in biotic and abiotic interactions and will also reveal biologically active SMs that can be exploited for the discovery of human and veterinary drugs or crop protection agents.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| |
Collapse
|
50
|
Gene Mining for Conserved, Non-Annotated Proteins of Podosphaera xanthii Identifies Novel Target Candidates for Controlling Powdery Mildews by Spray-Induced Gene Silencing. J Fungi (Basel) 2021; 7:jof7090735. [PMID: 34575773 PMCID: PMC8465782 DOI: 10.3390/jof7090735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
The powdery mildew fungus Podosphaera xanthii is one of the most important limiting factors for cucurbit production worldwide. Despite the significant efforts made by breeding and chemical companies, effective control of this pathogen remains elusive to growers. In this work, we examined the suitability of RNAi technology called spray-induced gene silencing (SIGS) for controlling cucurbit powdery mildew. Using leaf disc and cotyledon infiltration assays, we tested the efficacy of dsRNA applications to induce gene silencing in P. xanthii. Furthermore, to identify new target candidate genes, we analyzed sixty conserved and non-annotated proteins (CNAPs) deduced from the P. xanthii transcriptome in silico. Six proteins presumably involved in essential functions, specifically respiration (CNAP8878, CNAP9066, CNAP10905 and CNAP30520), glycosylation (CNAP1048) and efflux transport (CNAP948), were identified. Functional analysis of these CNAP coding genes by dsRNA-induced gene silencing resulted in strong silencing phenotypes with large reductions in fungal growth and disease symptoms. Due to their important contributions to fungal development, the CNAP1048, CNAP10905 and CNAP30520 genes were selected as targets to conduct SIGS assays under plant growth chamber conditions. The spray application of these dsRNAs induced high levels of disease control, supporting that SIGS could be a sustainable approach to combat powdery mildew diseases.
Collapse
|