1
|
Saunders PA, Muyle A. Sex Chromosome Evolution: Hallmarks and Question Marks. Mol Biol Evol 2024; 41:msae218. [PMID: 39417444 PMCID: PMC11542634 DOI: 10.1093/molbev/msae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Sex chromosomes are widespread in species with separate sexes. They have evolved many times independently and display a truly remarkable diversity. New sequencing technologies and methodological developments have allowed the field of molecular evolution to explore this diversity in a large number of model and nonmodel organisms, broadening our vision on the mechanisms involved in their evolution. Diverse studies have allowed us to better capture the common evolutionary routes that shape sex chromosomes; however, we still mostly fail to explain why sex chromosomes are so diverse. We review over half a century of theoretical and empirical work on sex chromosome evolution and highlight pending questions on their origins, turnovers, rearrangements, degeneration, dosage compensation, gene content, and rates of evolution. We also report recent theoretical progress on our understanding of the ultimate reasons for sex chromosomes' existence.
Collapse
Affiliation(s)
- Paul A Saunders
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Zeng Z, Wang R, Wang J, Chen Y, Wang Y, Song Z, Zhang W, Qiong L. Development and validation of sex-linked molecular markers for rapid and accurate identification of male and female Hippophae tibetana plants. Sci Rep 2024; 14:19243. [PMID: 39164317 PMCID: PMC11336215 DOI: 10.1038/s41598-024-69918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Hippophae tibetana, one of the highest-altitude woody plants endemic to the Qinghai-Tibet Plateau, primarily thrives on riverbanks formed by glacial meltwater. As a dioecious species, it demonstrates significant ecological and economic value in extreme alpine environments. However, the lack of sex identification techniques outside of the flowering period severely limits research on sex ratio, differentiation, and breeding. There is an urgent need to develop effective sex-linked molecular markers that are independent of developmental stages, but current research in this area remains limited. This study developed a set of accurate sex-linked molecular markers for the rapid identification of male and female individuals of H. tibetana. Through whole-genome resequencing of 32 sexually differentiated H. tibetana samples, this study offers strong evidence supporting chromosome 2 as the sex chromosome and successfully identified key loci related to sex determination on this chromosome. Utilizing these loci, we, for the first time, developed three reliable pairs of sex-specific molecular markers, which exhibited high accuracy during validation across various geographic populations, offering an effective tool for the sex identification of H. tibetana. Additionally, this study lays the groundwork for further research into the mechanisms of sex determination and the evolution of sex chromosomes in H. tibetana.
Collapse
Affiliation(s)
- Zhefei Zeng
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, 850000, China
| | - Ruoqiu Wang
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Junwei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, 850000, China
| | - Yonghao Chen
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, 850000, China
| | - Yuguo Wang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhiping Song
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wenju Zhang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - La Qiong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
3
|
Dornela AF, Soares FAF, Silva JC, Sattler MC, Clarindo WR. Carica papaya L. sex chromosome review and physical mapping of the serk 2, svp-like and mdar 4 sequences. Sci Rep 2024; 14:14830. [PMID: 38937542 PMCID: PMC11211501 DOI: 10.1038/s41598-024-65880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Physical mapping evidences the chromosome organization and structure. Despite the data about plant cytogenomics, physical mapping has been conducted from single-copy and/or low-copy genes for few species. Carica papaya cytogenomics has been accomplished from BAC-FISH and repeatome sequences. We aimed to map the serk 2, svp-like and mdar 4 sequences in C. papaya. The sequences were amplified and the amplicons sequenced, showing similarity in relation to serk 2, svp-like and mdar 4 genes. Carica papaya diploidy was confirmed and the mitotic chromosomes characterized. The chromosome 1 exhibited the secondary constriction pericentromeric to the centromere of the long arm. So, we concluded that it is the sex chromosomes. serk 2 was mapped in the long arm interstitial portion of the sex chromosomes, and the interphase nuclei showed two fluorescence signals. Considering these results and the sequencing data from the C. papaya sex chromosomes, svp-like and mdar 4 genes were mapped in the interstitial region of the sex chromosome long arm. Both sequences showed only one fluorescence signal in the interphase nuclei. The procedure adopted here can be reproduced for other single-copy and/or low-copy genes, allowing the construction of cytogenetic maps. In addition, we revisited the cytogenomics data about C. papaya sex chromosomes, presenting a revised point of view about the structure and evolution to these chromosomes.
Collapse
Affiliation(s)
- Adeilson Frias Dornela
- Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, ES, 29.500-000, Brazil
| | - Fernanda Aparecida Ferrari Soares
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil
| | - Jéssica Coutinho Silva
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil
| | - Mariana Cansian Sattler
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil.
| |
Collapse
|
4
|
Razumova OV, Divashuk MG, Alexandrov OS, Karlov GI. GISH painting of the Y chromosomes suggests advanced phases of sex chromosome evolution in three dioecious Cannabaceae species (Humulus lupulus, H. japonicus, and Cannabis sativa). PROTOPLASMA 2023; 260:249-256. [PMID: 35595927 DOI: 10.1007/s00709-022-01774-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
In plants, dioecy is relatively rare, and it involves sex chromosome systems that often developed independently over time. These characteristics make dioecious plants an attractive model to study sex chromosome evolution. To clarify the patterns of plant sex chromosome evolution, studies should be performed on a wide range of dioecious species. It is interesting to study the sex chromosomes in related species that evolved during a long period of independent sex chromosome evolution. The Cannabaceae family includes three dioecious species with heteromorphic sex chromosomes. Cannabis sativa and Humulus lupulus use the XX/XY chromosome system, whereas Humulus japonicus contains multiple sex chromosomes (XX/XY1Y2). To better understand sex chromosome evolution and the level of genomic divergence of these three related species, we undertook self-GISH and comparative GISH analyses. The self-GISH allowed visualization of the Y chromosomes of C. sativa, H. lupulus, and H. japonicus. The self-GISH signal was distributed along the entire Y chromosome, excluding the pseudo-autosomal region (PAR). Our results indicate that the male-specific region of the Y chromosome (MSY) spans the overwhelming majority of the Y chromosomes of all three species studied. The self-GISH results reveal the accumulation of repetitive DNA sequences in the Y chromosomes of all three species studied. This sequences presented in autosomes and/or chromosome X at a lower copy number than in Y. In comparative GISH experiments where the probe DNA of one species was applied to another species, a weak signal was exclusively detected on 45S rDNA sites, indicating a high level of genomic differentiation of the species used in this study. We demonstrate small PAR size and opposing large MSY and its positions on Y chromosomes. We also found that these genomes are highly differentiated. Furthermore, the data obtained in this study indicate a long period of independent and advanced sex chromosome evolution. Our study provides a valuable basis for future genomic studies of sex and suggests that the Cannabaceae family offers a promising model to study sex chromosome evolution.
Collapse
Affiliation(s)
- Olga V Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Oleg S Alexandrov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia.
| |
Collapse
|
5
|
Divashuk MG, Nikitina EA, Sokolova VM, Yurkina AI, Kocheshkova AA, Razumova OV, Karlov GI, Kroupin PY. qPCR as a Selective Tool for Cytogenetics. PLANTS (BASEL, SWITZERLAND) 2022; 12:80. [PMID: 36616209 PMCID: PMC9824742 DOI: 10.3390/plants12010080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
qPCR is widely used in quantitative studies of plant genomes and transcriptomes. In this article, this method is considered as an auxiliary step in the preparation and selection of markers for FISH analysis. Several cases from the authors' research on populations of the same species were reviewed, and a comparison of the closely related species, as well as the adaptation of the markers, based on satellite tandem repeats (TRs) using quantitative qPCR data was conducted. In the selected cases, TRs with contrast abundance were identified in the cases of the Dasypyrum, Thinopyrum and Aegilops species, and the transfer of TRs between the wheat and related species was demonstrated. TRs with intraspecific copy number variation were revealed in Thinopyrum ponticum and wheat-wheatgrass partial amphidiploids, and the TR showing predominant hybridization to the sea buckthorn Y chromosome was identified. Additionally, problems such as the absence of a reference gene for qPCR, and low-efficiency and self-complementary primers, were illustrated. In the cases considered here, the qPCR results clearly show high correlation with the subsequent results of the FISH analysis, which confirms the value of this method for cytogenetic studies.
Collapse
|
6
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
7
|
Alexandrov OS, Romanov DV, Divashuk MG, Razumova OV, Ulyanov DS, Karlov GI. Study and Physical Mapping of the Species-Specific Tandem Repeat CS-237 Linked with 45S Ribosomal DNA Intergenic Spacer in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2022; 11:1396. [PMID: 35684169 PMCID: PMC9183113 DOI: 10.3390/plants11111396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Hemp (Cannabis sativa L.) is a valuable crop and model plant for studying sex chromosomes. The scientific interest in the plant has led to its whole genome sequencing and the determination of its cytogenetic characteristics. A range of cytogenetic markers (subtelomeric repeat CS-1, 5S rDNA, and 45S rDNA) has been mapped onto hemp's chromosomes by fluorescent in situ hybridization (FISH). In this study, another cytogenetic marker (the tandem repeat CS-237, with a 237 bp monomer) was found, studied, and localized on chromosomes by FISH. The signal distribution and karyotyping revealed that the CS-237 probe was localized in chromosome 6 with one hybridization site and in chromosome 8 with two hybridization sites, one of which colocalizes with the 45S rDNA probe (with which a nucleolus organizer region, NOR, was detected). A BLAST analysis of the genomic data and PCR experiments showed that the modified CS-237 monomers (delCS-237, 208 bp in size) were present in the intergenic spacers (IGSs) of hemp 45S rDNA monomers. Such a feature was firstly observed in Cannabaceae species. However, IGS-linked DNA repeats were found in several plant species of other families (Fabaceae, Solanaceae, and Asteraceae). This phenomenon is discussed in this article. The example of CS-237 may be useful for further studying the phenomenon as well as for the physical mapping of hemp chromosomes.
Collapse
Affiliation(s)
| | - Dmitry V. Romanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (O.S.A.); (M.G.D.); (O.V.R.); (D.S.U.); (G.I.K.)
| | | | | | | | | |
Collapse
|
8
|
Luo X, Liu J, He Z. Oligo-FISH Can Identify Chromosomes and Distinguish Hippophaë rhamnoides L. Taxa. Genes (Basel) 2022; 13:genes13020195. [PMID: 35205242 PMCID: PMC8872433 DOI: 10.3390/genes13020195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Oligo-fluorescence in situ hybridization (FISH) facilitates precise chromosome identification and comparative cytogenetic analysis. Detection of autosomal chromosomes of Hippophaë rhamnoides has not been achieved using oligonucleotide sequences. Here, the chromosomes of five H. rhamnoides taxa in the mitotic metaphase and mitotic metaphase to anaphase were detected using the oligo-FISH probes (AG3T3)3, 5S rDNA, and (TTG)6. In total, 24 small chromosomes were clearly observed in the mitotic metaphase (0.89–3.03 μm), whereas 24–48 small chromosomes were observed in the mitotic metaphase to anaphase (0.94–3.10 μm). The signal number and intensity of (AG3T3)3, 5S rDNA, and (TTG)6 in the mitotic metaphase to anaphase chromosomes were nearly consistent with those in the mitotic metaphase chromosomes when the two split chromosomes were integrated as one unit. Of note, 14 chromosomes (there is a high chance that sex chromosomes are included) were exclusively identified by (AG3T3)3, 5S rDNA, and (TTG)6. The other 10 also showed a terminal signal with (AG3T3)3. Moreover, these oligo-probes were able to distinguish one wild H. rhamnoides taxon from four H. rhamnoides taxa. These chromosome identification and taxa differentiation data will help in elucidating visual and elaborate physical mapping and guide breeders’ utilization of wild resources of H. rhamnoides.
Collapse
|
9
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
10
|
Li N, Li X, Zhou J, Yu L, Li S, Zhang Y, Qin R, Gao W, Deng C. Genome-Wide Analysis of Transposable Elements and Satellite DNAs in Spinacia Species to Shed Light on Their Roles in Sex Chromosome Evolution. FRONTIERS IN PLANT SCIENCE 2021; 11:575462. [PMID: 33519837 PMCID: PMC7840529 DOI: 10.3389/fpls.2020.575462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/17/2020] [Indexed: 05/02/2023]
Abstract
Sex chromosome evolution has mostly been studied in species with heteromorphic sex chromosomes. The Spinacia genus serves as an ideal model for investigating evolutionary mechanisms underlying the transition from homomorphic to heteromorphic sex chromosomes. Among evolutionary factors, repetitive sequences play multiple roles in sex chromosome evolution while their forces have not been fully explored in Spinacia species. Here, we identified major repetitive sequence classes in male and female genomes of Spinacia species and their ancestral relative sugar beet to elucidate the evolutionary processes of sex chromosome evolution using next-generation sequencing (NGS) data. Comparative analysis revealed that the repeat elements of Spinacia species are considerably higher than of sugar beet, especially the Ty3/Gypsy and Ty1/Copia retrotransposons. The long terminal repeat retroelements (LTR) Angela, Athila, and Ogre may be accounted for the higher proportion of repeats in the spinach genome. Comparison of the repeats proportion between female and male genomes of three Spinacia species indicated the different representation in Spinacia tetrandra samples but not in the S. oleracea or S. turkestanica samples. From these results, we speculated that emergence of repetitive DNA sequences may correlate the formation of sex chromosome and the transition from homomorphic sex chromosomes to heteromorphic sex chromosomes as heteromorphic sex chromosomes exclusively existed in Spinacia tetrandra. Three novel sugar beet-specific satellites were identified and confirmed by fluorescence in situ hybridization (FISH); six out of eight new spinach-specific satellites were mapped to the short arm of sex chromosomes. A total of 141 copies of SolSat01-171-s were found in the sex determination region (SDR). Thus, the accumulation of satellite DNA on the short arm of chromosome 1 may be involved in the sex chromosome evolution in Spinacia species. Our study provides a fundamental resource for understanding repeat sequences in Spinacia species and their roles in sex chromosome evolution.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaoyue Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jian Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li’ang Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ruiyun Qin
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
11
|
Jesionek W, Bodláková M, Kubát Z, Čegan R, Vyskot B, Vrána J, Šafář J, Puterova J, Hobza R. Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa. ANNALS OF BOTANY 2021; 127:33-47. [PMID: 32902599 PMCID: PMC7750719 DOI: 10.1093/aob/mcaa160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Dioecious species with well-established sex chromosomes are rare in the plant kingdom. Most sex chromosomes increase in size but no comprehensive analysis of the kind of sequences that drive this expansion has been presented. Here we analyse sex chromosome structure in common sorrel (Rumex acetosa), a dioecious plant with XY1Y2 sex determination, and we provide the first chromosome-specific repeatome analysis for a plant species possessing sex chromosomes. METHODS We flow-sorted and separately sequenced sex chromosomes and autosomes in R. acetosa using the two-dimensional fluorescence in situ hybridization in suspension (FISHIS) method and Illumina sequencing. We identified and quantified individual repeats using RepeatExplorer, Tandem Repeat Finder and the Tandem Repeats Analysis Program. We employed fluorescence in situ hybridization (FISH) to analyse the chromosomal localization of satellites and transposons. KEY RESULTS We identified a number of novel satellites, which have, in a fashion similar to previously known satellites, significantly expanded on the Y chromosome but not as much on the X or on autosomes. Additionally, the size increase of Y chromosomes is caused by non-long terminal repeat (LTR) and LTR retrotransposons, while only the latter contribute to the enlargement of the X chromosome. However, the X chromosome is populated by different LTR retrotransposon lineages than those on Y chromosomes. CONCLUSIONS The X and Y chromosomes have significantly diverged in terms of repeat composition. The lack of recombination probably contributed to the expansion of diverse satellites and microsatellites and faster fixation of newly inserted transposable elements (TEs) on the Y chromosomes. In addition, the X and Y chromosomes, despite similar total counts of TEs, differ significantly in the representation of individual TE lineages, which indicates that transposons proliferate preferentially in either the paternal or the maternal lineage.
Collapse
Affiliation(s)
- Wojciech Jesionek
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice, Brno, Czech Republic
- For correspondence. E-mail: or
| | - Markéta Bodláková
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc-Holice, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc-Holice, Czech Republic
| | - Janka Puterova
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations, Bozetechova, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- For correspondence. E-mail: or
| |
Collapse
|
12
|
Alexandrov OS, Razumova OV, Karlov GI. A Comparative Study of 5S rDNA Non-Transcribed Spacers in Elaeagnaceae Species. PLANTS 2020; 10:plants10010004. [PMID: 33374528 PMCID: PMC7822202 DOI: 10.3390/plants10010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
5S rDNA is organized as a cluster of tandemly repeated monomers that consist of the conservative 120 bp coding part and non-transcribed spacers (NTSs) with different lengths and sequences among different species. The polymorphism in the 5S rDNA NTSs of closely related species is interesting for phylogenetic and evolutional investigations, as well as for the development of molecular markers. In this study, the 5S rDNA NTSs were amplified with universal 5S1/5S2 primers in some species of the Elaeagnaceae Adans. family. The polymerase chain reaction (PCR) products of five Elaeagnus species had similar lengths near 310 bp and were different from Shepherdia canadensis (L.) Nutt. and Sh. argentea (Pusch.) Nutt. samples (260 bp and 215 bp, respectively). The PCR products were cloned and sequenced. An analysis of the sequences revealed that intraspecific levels of NTS identity are high (approximately 95–96%) and similar in the Elaeagnus L. species. In Sh. argentea, this level was slightly lower due to the differences in the poly-T region. Moreover, the intergeneric and intervarietal NTS identity levels were studied and compared. Significant differences between species (except E. multiflora Thunb. and E. umbellata Thunb.) and genera were found. Herein, a range of the NTS features is discussed. This study is another step in the investigation of the molecular evolution of Elaeagnaceae and may be useful for the development of species-specific DNA markers in this family.
Collapse
|
13
|
Sultana N, Menzel G, Heitkam T, Kojima KK, Bao W, Serçe S. Bioinformatic and Molecular Analysis of Satellite Repeat Diversity in Vaccinium Genomes. Genes (Basel) 2020; 11:E527. [PMID: 32397417 PMCID: PMC7290377 DOI: 10.3390/genes11050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Bioinformatic and molecular characterization of satellite repeats was performed to understand the impact of their diversification on Vaccinium genome evolution. Satellite repeat diversity was evaluated in four cultivated and wild species, including the diploid species Vaccinium myrtillus and Vaccinium uliginosum, as well as the tetraploid species Vaccinium corymbosum and Vaccinium arctostaphylos. We comparatively characterized six satellite repeat families using in total 76 clones with 180 monomers. We observed that the monomer units of VaccSat1, VaccSat2, VaccSat5, and VaccSat6 showed a higher order repeat (HOR) structure, likely originating from the organization of two adjacent subunits with differing similarity, length and size. Moreover, VaccSat1, VaccSat3, VaccSat6, and VaccSat7 were found to have sequence similarity to parts of transposable elements. We detected satellite-typical tandem organization for VaccSat1 and VaccSat2 in long arrays, while VaccSat5 and VaccSat6 distributed in multiple sites over all chromosomes of tetraploid V. corymbosum, presumably in long arrays. In contrast, very short arrays of VaccSat3 and VaccSat7 are dispersedly distributed over all chromosomes in the same species, likely as internal parts of transposable elements. We provide a comprehensive overview on satellite species specificity in Vaccinium, which are potentially useful as molecular markers to address the taxonomic complexity of the genus, and provide information for genome studies of this genus.
Collapse
Affiliation(s)
- Nusrat Sultana
- Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Gerhard Menzel
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Kenji K. Kojima
- Genetic Information Research Institute, Cupertino, CA 95014, USA; (K.K.K.); (W.B.)
| | - Weidong Bao
- Genetic Information Research Institute, Cupertino, CA 95014, USA; (K.K.K.); (W.B.)
| | - Sedat Serçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey;
| |
Collapse
|
14
|
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 2019; 27:153-165. [PMID: 30852707 DOI: 10.1007/s00425-00018-03033-00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 05/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) was developed more than 30 years ago and has been the most paradigm-changing technique in cytogenetic research. FISH has been used to answer questions related to structure, mutation, and evolution of not only individual chromosomes but also entire genomes. FISH has served as an important tool for chromosome identification in many plant species. This review intends to summarize and discuss key technical development and applications of FISH in plants since 2006. The most significant recent advance of FISH is the development and application of probes based on synthetic oligonucleotides (oligos). Oligos specific to a repetitive DNA sequence, to a specific chromosomal region, or to an entire chromosome can be computationally identified, synthesized in parallel, and fluorescently labeled. Oligo probes designed from conserved DNA sequences from one species can be used among genetically related species, allowing comparative cytogenetic mapping of these species. The advances with synthetic oligo probes will significantly expand the applications of FISH especially in non-model plant species. Recent achievements and future applications of FISH and oligo-FISH are discussed.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Pamponét VCC, Souza MM, Silva GS, Micheli F, de Melo CAF, de Oliveira SG, Costa EA, Corrêa RX. Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: citogenomic characterization of transposable elements and satellite DNA. BMC Genomics 2019; 20:262. [PMID: 30940088 PMCID: PMC6444444 DOI: 10.1186/s12864-019-5576-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 02/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The cytogenomic study of repetitive regions is fundamental for the understanding of morphofunctional mechanisms and genome evolution. Passiflora edulis a species of relevant agronomic value, this work had its genome sequenced by next generation sequencing and bioinformatics analysis performed by RepeatExplorer pipeline. The clusters allowed the identification and characterization of repetitive elements (predominant contributors to most plant genomes). The aim of this study was to identify, characterize and map the repetitive DNA of P. edulis, providing important cytogenomic markers, especially sequences associated with the centromere. RESULTS Three clusters of satellite DNAs (69, 118 and 207) and seven clusters of Long Terminal Repeat (LTR) retrotransposons of the superfamilies Ty1/Copy and Ty3/Gypsy and families Angela, Athila, Chromovirus and Maximus-Sire (6, 11, 36, 43, 86, 94 and 135) were characterized and analyzed. The chromosome mapping of satellite DNAs showed two hybridization sites co-located in the 5S rDNA region (PeSat_1), subterminal hybridizations (PeSat_3) and hybridization in four sites, co-located in the 45S rDNA region (PeSat_2). Most of the retroelements hybridizations showed signals scattered in the chromosomes, diverging in abundance, and only the cluster 6 presented pericentromeric regions marking. No satellite DNAs and retroelement associated with centromere was observed. CONCLUSION P. edulis has a highly repetitive genome, with the predominance of Ty3/Gypsy LTR retrotransposon. The satellite DNAs and LTR retrotransposon characterized are promising markers for investigation of the evolutionary patterns and genetic distinction of species and hybrids of Passiflora.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Plant
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Satellite/classification
- DNA, Satellite/genetics
- High-Throughput Nucleotide Sequencing
- In Situ Hybridization, Fluorescence
- Passiflora/genetics
- Phylogeny
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5S/genetics
- Retroelements/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Vanessa Carvalho Cayres Pamponét
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Margarete Magalhães Souza
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Gonçalo Santos Silva
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Cláusio Antônio Ferreira de Melo
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Sarah Gomes de Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Rua do Matão, 14 – Butantã, São Paulo, SP CEP 05508-090 Brazil
| | - Eduardo Almeida Costa
- Núcleo de Biologia Computacional e Gestão de Informações Biotecnológicas (NBCGIB), Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Ronan Xavier Corrêa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| |
Collapse
|
16
|
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 2019; 27:153-165. [PMID: 30852707 DOI: 10.1007/s10577-019-09607-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) was developed more than 30 years ago and has been the most paradigm-changing technique in cytogenetic research. FISH has been used to answer questions related to structure, mutation, and evolution of not only individual chromosomes but also entire genomes. FISH has served as an important tool for chromosome identification in many plant species. This review intends to summarize and discuss key technical development and applications of FISH in plants since 2006. The most significant recent advance of FISH is the development and application of probes based on synthetic oligonucleotides (oligos). Oligos specific to a repetitive DNA sequence, to a specific chromosomal region, or to an entire chromosome can be computationally identified, synthesized in parallel, and fluorescently labeled. Oligo probes designed from conserved DNA sequences from one species can be used among genetically related species, allowing comparative cytogenetic mapping of these species. The advances with synthetic oligo probes will significantly expand the applications of FISH especially in non-model plant species. Recent achievements and future applications of FISH and oligo-FISH are discussed.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
17
|
Mangla Y, Das K, Bali S, Ambreen H, Raina SN, Tandon R, Goel S. Occurrence of subdioecy and scarcity of gender-specific markers reveal an ongoing transition to dioecy in Himalayan seabuckthorn (Hippophae rhamnoides ssp. turkestanica). Heredity (Edinb) 2019; 122:120-132. [PMID: 29725078 PMCID: PMC6288282 DOI: 10.1038/s41437-018-0084-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 01/08/2023] Open
Abstract
Dioecy and the dynamics of its evolution are intensely investigated aspects of plant reproduction. Seabuckthorn (Hippophae rhamnoides ssp. turkestanica) is an alpine shrub growing wild in certain parts of western Himalaya. The previous studies have reported heteromorphic sex chromosomes in the species and yet marker-based studies indicate high similarity between the male and female genomes. Lack of information on sexual system in the species has further complicated the situation. A systematic study was thus undertaken to understand the sexual system in seabuckthorn and to discern the extent of similarity/dissimilarity between the male and female genomes by generating a large number of markers using amplified fragment length polymorphism and representational difference analysis. Floral biology and regular monitoring of species revealed the presence of polygamomonoecious (PGM) plants in most populations at a low percentage (~2-4%). PGM plants showed low pollen production and overall low fertility, suggesting a monoecy-paradioecy pathway at function. The results of the marker study demonstrated that there are limited differences between male and female genomes and these differences were not uniform across the populations in the Leh-Ladakh region, especially when the geographical distance increases. Results also suggest that a dynamic partitioning of genomes is operational between the two genders of seabuckthorn and differences are not homogenized across the populations. Both reproductive biology-based and DNA marker-based studies indicate that genders have separated recently. The present study proposes seabuckthorn as a promising model system to study evolution of dioecy and sex determination.
Collapse
Affiliation(s)
- Yash Mangla
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Kamal Das
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sapinder Bali
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, USA
| | - Heena Ambreen
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Soom Nath Raina
- Department of Biotechnology, Amity University, Noida, 210303, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
18
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
19
|
Luo X, Liu J, Wang J, Gong W, Chen L, Wan W. FISH analysis of Zanthoxylum armatum based on oligonucleotides for 5S rDNA and (GAA) 6. Genome 2018; 61:699-702. [PMID: 30067086 DOI: 10.1139/gen-2018-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence in situ hybridization (FISH) using oligonucleotide probes for (GAA)6 (18 bp) and ribosomal DNA (rDNA) (5S rDNA, 41 bp) was applied to analyse Zanthoxylum armatum. (GAA)6 loci were detected on the pericentromeric regions of five chromosome pairs, and 5S rDNA loci were also detected on the pericentromeric regions of another two chromosome pairs. The densities and locations of (GAA)6 and 5S rDNA signals varied between individual chromosomes. High-intensity (GAA)6 signals were detected at the centromeres of two large and two smaller metacentric chromosomes. Relatively strong (GAA)6 signals were detected at the centromeres of two relatively small metacentric chromosomes, although strong 5S rDNA signals were detected at the centromeres of two additional smaller metacentric chromosomes. Weak (GAA)6 signals were detected at the centromeres of four large metacentric chromosomes, whereas weak 5S rDNA signals were detected at the centromeres of two smaller metacentric chromosomes. The remaining chromosomes exhibited no signals. Zanthoxylum armatum had 2n = ∼128. The lengths of the mitotic metaphase chromosomes ranged from 1.22 to 2.34 μm. Our results provide information that may be beneficial for future cytogenetic studies and could contribute to the physical assembly of the Zanthoxylum genome.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Juncheng Liu
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Jingyan Wang
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Wei Gong
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Liang Chen
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Wenlin Wan
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| |
Collapse
|
20
|
Ávila Robledillo L, Koblížková A, Novák P, Böttinger K, Vrbová I, Neumann P, Schubert I, Macas J. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep 2018; 8:5838. [PMID: 29643436 PMCID: PMC5895790 DOI: 10.1038/s41598-018-24196-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
Satellite DNA, a class of repetitive sequences forming long arrays of tandemly repeated units, represents substantial portions of many plant genomes yet remains poorly characterized due to various methodological obstacles. Here we show that the genome of the field bean (Vicia faba, 2n = 12), a long-established model for cytogenetic studies in plants, contains a diverse set of satellite repeats, most of which remained concealed until their present investigation. Using next-generation sequencing combined with novel bioinformatics tools, we reconstructed consensus sequences of 23 novel satellite repeats representing 0.008–2.700% of the genome and mapped their distribution on chromosomes. We found that in addition to typical satellites with monomers hundreds of nucleotides long, V. faba contains a large number of satellite repeats with unusually long monomers (687–2033 bp), which are predominantly localized in pericentromeric regions. Using chromatin immunoprecipitation with CenH3 antibody, we revealed an extraordinary diversity of centromeric satellites, consisting of seven repeats with chromosome-specific distribution. We also found that in spite of their different nucleotide sequences, all centromeric repeats are replicated during mid-S phase, while most other satellites are replicated in the first part of late S phase, followed by a single family of FokI repeats representing the latest replicating chromatin.
Collapse
Affiliation(s)
- Laura Ávila Robledillo
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic.,University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
| | - Andrea Koblížková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Katharina Böttinger
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic.,University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
| | - Iva Vrbová
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic.
| |
Collapse
|
21
|
Lower SS, McGurk MP, Clark AG, Barbash DA. Satellite DNA evolution: old ideas, new approaches. Curr Opin Genet Dev 2018; 49:70-78. [PMID: 29579574 PMCID: PMC5975084 DOI: 10.1016/j.gde.2018.03.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 12/22/2022]
Abstract
A substantial portion of the genomes of most multicellular eukaryotes consists of large arrays of tandemly repeated sequence, collectively called satellite DNA. The processes generating and maintaining different satellite DNA abundances across lineages are important to understand as satellites have been linked to chromosome mis-segregation, disease phenotypes, and reproductive isolation between species. While much theory has been developed to describe satellite evolution, empirical tests of these models have fallen short because of the challenges in assessing satellite repeat regions of the genome. Advances in computational tools and sequencing technologies now enable identification and quantification of satellite sequences genome-wide. Here, we describe some of these tools and how their applications are furthering our knowledge of satellite evolution and function.
Collapse
Affiliation(s)
- Sarah Sander Lower
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14853, United States
| | - Michael P McGurk
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14853, United States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14853, United States
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14853, United States.
| |
Collapse
|
22
|
Wang W, Chen S, Zhang X. Whole-Genome Comparison Reveals Heterogeneous Divergence and Mutation Hotspots in Chloroplast Genome of Eucommia ulmoides Oliver. Int J Mol Sci 2018; 19:E1037. [PMID: 29601491 PMCID: PMC5979487 DOI: 10.3390/ijms19041037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022] Open
Abstract
Eucommia ulmoides (E. ulmoides), the sole species of Eucommiaceae with high importance of medicinal and industrial values, is a Tertiary relic plant that is endemic to China. However, the population genetics study of E. ulmoides lags far behind largely due to the scarcity of genomic data. In this study, one complete chloroplast (cp) genome of E. ulmoides was generated via the genome skimming approach and compared to another available E. ulmoides cp genome comprehensively at the genome scale. We found that the structure of the cp genome in E. ulmoides was highly consistent with genome size variation which might result from DNA repeat variations in the two E. ulmoides cp genomes. Heterogeneous sequence divergence patterns were revealed in different regions of the E. ulmoides cp genomes, with most (59 out of 75) of the detected SNPs (single nucleotide polymorphisms) located in the gene regions, whereas most (50 out of 80) of the indels (insertions/deletions) were distributed in the intergenic spacers. In addition, we also found that all the 40 putative coding-region-located SNPs were synonymous mutations. A total of 71 polymorphic cpDNA fragments were further identified, among which 20 loci were selected as potential molecular markers for subsequent population genetics studies of E. ulmoides. Moreover, eight polymorphic cpSSR loci were also developed. The sister relationship between E. ulmoides and Aucuba japonica in Garryales was also confirmed based on the cp phylogenomic analyses. Overall, this study will shed new light on the conservation genomics of this endangered plant in the future.
Collapse
Affiliation(s)
- Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xianzhi Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
23
|
Impact of Repetitive Elements on the Y Chromosome Formation in Plants. Genes (Basel) 2017; 8:genes8110302. [PMID: 29104214 PMCID: PMC5704215 DOI: 10.3390/genes8110302] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
In contrast to animals, separate sexes and sex chromosomes in plants are very rare. Although the evolution of sex chromosomes has been the subject of numerous studies, the impact of repetitive sequences on sex chromosome architecture is not fully understood. New genomic approaches shed light on the role of satellites and transposable elements in the process of Y chromosome evolution. We discuss the impact of repetitive sequences on the structure and dynamics of sex chromosomes with specific focus on Rumex acetosa and Silene latifolia. Recent papers showed that both the expansion and shrinkage of the Y chromosome is influenced by sex-specific regulation of repetitive DNA spread. We present a view that the dynamics of Y chromosome formation is an interplay of genetic and epigenetic processes.
Collapse
|