1
|
Matteau D, Duval A, Baby V, Rodrigue S. Mesoplasma florum: a near-minimal model organism for systems and synthetic biology. Front Genet 2024; 15:1346707. [PMID: 38404664 PMCID: PMC10884336 DOI: 10.3389/fgene.2024.1346707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Mesoplasma florum is an emerging model organism for systems and synthetic biology due to its small genome (∼800 kb) and fast growth rate. While M. florum was isolated and first described almost 40 years ago, many important aspects of its biology have long remained uncharacterized due to technological limitations, the absence of dedicated molecular tools, and since this bacterial species has not been associated with any disease. However, the publication of the first M. florum genome in 2004 paved the way for a new era of research fueled by the rise of systems and synthetic biology. Some of the most important studies included the characterization and heterologous use of M. florum regulatory elements, the development of the first replicable plasmids, comparative genomics and transposon mutagenesis, whole-genome cloning in yeast, genome transplantation, in-depth characterization of the M. florum cell, as well as the development of a high-quality genome-scale metabolic model. The acquired data, knowledge, and tools will greatly facilitate future genome engineering efforts in M. florum, which could next be exploited to rationally design and create synthetic cells to advance fundamental knowledge or for specific applications.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Baby
- Centre de diagnostic vétérinaire de l'Université de Montréal, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Baby V, Ambroset C, Gaurivaud P, Falquet L, Boury C, Guichoux E, Jores J, Lartigue C, Tardy F, Sirand-Pugnet P. Comparative genomics of Mycoplasma feriruminatoris, a fast-growing pathogen of wild Caprinae. Microb Genom 2023; 9:001112. [PMID: 37823548 PMCID: PMC10634449 DOI: 10.1099/mgen.0.001112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Mycoplasma feriruminatoris is a fast-growing Mycoplasma species isolated from wild Caprinae and first described in 2013. M. feriruminatoris isolates have been associated with arthritis, kerato conjunctivitis, pneumonia and septicemia, but were also recovered from apparently healthy animals. To better understand what defines this species, we performed a genomic survey on 14 strains collected from free-ranging or zoo-housed animals between 1987 and 2017, mostly in Europe. The average chromosome size of the M. feriruminatoris strains was 1,040±0,024 kbp, with 24 % G+C and 852±31 CDS. The core genome and pan-genome of the M. feriruminatoris species contained 628 and 1312 protein families, respectively. The M. feriruminatoris strains displayed a relatively closed pan-genome, with many features and putative virulence factors shared with species from the M. mycoides cluster, including the MIB-MIP Ig cleavage system, a repertoire of DUF285 surface proteins and a complete biosynthetic pathway for galactan. M. feriruminatoris genomes were found to be mostly syntenic, although repertoires of mobile genetic elements, including Mycoplasma Integrative and Conjugative Elements, insertion sequences, and a single plasmid varied. Phylogenetic- and gene content analyses confirmed that M. feriruminatoris was closer to the M. mycoides cluster than to the ruminant species M. yeatsii and M. putrefaciens. Ancestral genome reconstruction showed that the emergence of the M. feriruminatoris species was associated with the gain of 17 gene families, some of which encode defence enzymes and surface proteins, and the loss of 25 others, some of which are involved in sugar transport and metabolism. This comparative study suggests that the M. mycoides cluster could be extended to include M. feriruminatoris. We also find evidence that the specific organization and structure of the DnaA boxes around the oriC of M. feriruminatoris may contribute to drive the remarkable fast growth of this minimal bacterium.
Collapse
Affiliation(s)
- Vincent Baby
- Université de Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
- Present address: CDVUM, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Chloé Ambroset
- Université de Lyon, Anses–Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses animales, 69007 Lyon, France
| | - Patrice Gaurivaud
- Université de Lyon, Anses–Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses animales, 69007 Lyon, France
| | - Laurent Falquet
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, CH-1700 Fribourg, Switzerland
| | | | - Erwan Guichoux
- Université de Bordeaux, INRAE, BIOGECO, 33610 Cestas, France
| | - Joerg Jores
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Carole Lartigue
- Université de Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
| | - Florence Tardy
- Université de Lyon, Anses–Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses animales, 69007 Lyon, France
- Present address: Mycoplasmology, Bacteriology and Antibioresistance Unit, Laboratoire Anses Ploufragan Plouzané Niort, BP 53, 31 rue des fusillés, F-22440 Ploufragan, France
| | | |
Collapse
|
3
|
Huang CT, Cho ST, Lin YC, Tan CM, Chiu YC, Yang JY, Kuo CH. Comparative Genome Analysis of ‘Candidatus Phytoplasma luffae’ Reveals the Influential Roles of Potential Mobile Units in Phytoplasma Evolution. Front Microbiol 2022; 13:773608. [PMID: 35300489 PMCID: PMC8923039 DOI: 10.3389/fmicb.2022.773608] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Phytoplasmas are insect-transmitted plant pathogens that cause substantial losses in agriculture. In addition to economic impact, phytoplasmas induce distinct disease symptoms in infected plants, thus attracting attention for research on molecular plant-microbe interactions and plant developmental processes. Due to the difficulty of establishing an axenic culture of these bacteria, culture-independent genome characterization is a crucial tool for phytoplasma research. However, phytoplasma genomes have strong nucleotide composition biases and are repetitive, which make it challenging to produce complete assemblies. In this study, we utilized Illumina and Oxford Nanopore sequencing technologies to obtain the complete genome sequence of ‘Candidatus Phytoplasma luffae’ strain NCHU2019 that is associated with witches’ broom disease of loofah (Luffa aegyptiaca) in Taiwan. The fully assembled circular chromosome is 769 kb in size and is the first representative genome sequence of group 16SrVIII phytoplasmas. Comparative analysis with other phytoplasmas revealed that NCHU2019 has a remarkably repetitive genome, possessing a pair of 75 kb repeats and at least 13 potential mobile units (PMUs) that account for ∼25% of its chromosome. This level of genome repetitiveness is exceptional for bacteria, particularly among obligate pathogens with reduced genomes. Our genus-level analysis of PMUs demonstrated that these phytoplasma-specific mobile genetic elements can be classified into three major types that differ in gene organization and phylogenetic distribution. Notably, PMU abundance explains nearly 80% of the variance in phytoplasma genome sizes, a finding that provides a quantitative estimate for the importance of PMUs in phytoplasma genome variability. Finally, our investigation found that in addition to horizontal gene transfer, PMUs also contribute to intra-genomic duplications of effector genes, which may provide redundancy for subfunctionalization or neofunctionalization. Taken together, this work improves the taxon sampling for phytoplasma genome research and provides novel information regarding the roles of mobile genetic elements in phytoplasma evolution.
Collapse
Affiliation(s)
- Ching-Ting Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Choon-Meng Tan
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ching Chiu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Jun-Yi Yang,
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Chih-Horng Kuo,
| |
Collapse
|
4
|
Nicholson D, Salamina M, Panek J, Helena-Bueno K, Brown CR, Hirt RP, Ranson NA, Melnikov SV. Adaptation to genome decay in the structure of the smallest eukaryotic ribosome. Nat Commun 2022; 13:591. [PMID: 35105900 PMCID: PMC8807834 DOI: 10.1038/s41467-022-28281-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
The evolution of microbial parasites involves the counterplay between natural selection forcing parasites to improve and genetic drifts forcing parasites to lose genes and accumulate deleterious mutations. Here, to understand how this counterplay occurs at the scale of individual macromolecules, we describe cryo-EM structure of ribosomes from Encephalitozoon cuniculi, a eukaryote with one of the smallest genomes in nature. The extreme rRNA reduction in E. cuniculi ribosomes is accompanied with unparalleled structural changes, such as the evolution of previously unknown molten rRNA linkers and bulgeless rRNA. Furthermore, E. cuniculi ribosomes withstand the loss of rRNA and protein segments by evolving an ability to use small molecules as structural mimics of degenerated rRNA and protein segments. Overall, we show that the molecular structures long viewed as reduced, degenerated, and suffering from debilitating mutations possess an array of compensatory mechanisms that allow them to remain active despite the extreme molecular reduction. Many parasitic organisms contain molecular structures that are drastically smaller than analogous structures in non-parasitic organisms. Here the authors describe a cryo-EM structure of the ribosome from E. cuniculi that reveals that it compensated rRNA truncations by evolving the ability to use small molecules as ribosomal building blocks.
Collapse
Affiliation(s)
- David Nicholson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marco Salamina
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Johan Panek
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert P Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
5
|
Chou L, Lin YC, Haryono M, Santos MNM, Cho ST, Weisberg AJ, Wu CF, Chang JH, Lai EM, Kuo CH. Modular evolution of secretion systems and virulence plasmids in a bacterial species complex. BMC Biol 2022; 20:16. [PMID: 35022048 PMCID: PMC8756689 DOI: 10.1186/s12915-021-01221-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. RESULTS We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. CONCLUSIONS We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.
Collapse
Affiliation(s)
- Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mary Nia M Santos
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Chih-Feng Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan. .,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
6
|
Weng LW, Lin YC, Su CC, Huang CT, Cho ST, Chen AP, Chou SJ, Tsai CW, Kuo CH. Complete Genome Sequence of Xylella taiwanensis and Comparative Analysis of Virulence Gene Content With Xylella fastidiosa. Front Microbiol 2021; 12:684092. [PMID: 34093511 PMCID: PMC8176220 DOI: 10.3389/fmicb.2021.684092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial genus Xylella contains plant pathogens that are major threats to agriculture in America and Europe. Although extensive research was conducted to characterize different subspecies of Xylella fastidiosa (Xf), comparative analysis at above-species levels was lacking due to the unavailability of appropriate data sets. Recently, a bacterium that causes pear leaf scorch (PLS) in Taiwan was described as the second Xylella species (i.e., Xylella taiwanensis; Xt). In this work, we report the complete genome sequence of Xt type strain PLS229T. The genome-scale phylogeny provided strong support that Xf subspecies pauca (Xfp) is the basal lineage of this species and Xylella was derived from the paraphyletic genus Xanthomonas. Quantification of genomic divergence indicated that different Xf subspecies share ∼87–95% of their chromosomal segments, while the two Xylella species share only ∼66–70%. Analysis of overall gene content suggested that Xt is most similar to Xf subspecies sandyi (Xfs). Based on the existing knowledge of Xf virulence genes, the homolog distribution among 28 Xylella representatives was examined. Among the 11 functional categories, those involved in secretion and metabolism are the most conserved ones with no copy number variation. In contrast, several genes related to adhesins, hydrolytic enzymes, and toxin-antitoxin systems are highly variable in their copy numbers. Those virulence genes with high levels of conservation or variation may be promising candidates for future studies. In summary, the new genome sequence and analysis reported in this work contributed to the study of several important pathogens in the family Xanthomonadaceae.
Collapse
Affiliation(s)
- Ling-Wei Weng
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chiou-Chu Su
- Division of Pesticide Application, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung, Taiwan
| | - Ching-Ting Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ai-Ping Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Vera-Ponce León A, Dominguez-Mirazo M, Bustamante-Brito R, Higareda-Alvear V, Rosenblueth M, Martínez-Romero E. Functional genomics of a Spiroplasma associated with the carmine cochineals Dactylopius coccus and Dactylopius opuntiae. BMC Genomics 2021; 22:240. [PMID: 33823812 PMCID: PMC8025503 DOI: 10.1186/s12864-021-07540-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Spiroplasma is a widely distributed endosymbiont of insects, arthropods, and plants. In insects, Spiroplasma colonizes the gut, hemolymph, and reproductive organs of the host. Previous metagenomic surveys of the domesticated carmine cochineal Dactylopius coccus and the wild cochineal D. opuntiae reported sequences of Spiroplasma associated with these insects. However, there is no analysis of the genomic capabilities and the interaction of this Spiroplasma with Dactylopius. RESULTS Here we present three Spiroplasma genomes independently recovered from metagenomes of adult males and females of D. coccus, from two different populations, as well as from adult females of D. opuntiae. Single-copy gene analysis showed that these genomes were > 92% complete. Phylogenomic analyses classified these genomes as new members of Spiroplasma ixodetis. Comparative genome analysis indicated that they exhibit fewer genes involved in amino acid and carbon catabolism compared to other spiroplasmas. Moreover, virulence factor-encoding genes (i.e., glpO, spaid and rip2) were found incomplete in these S. ixodetis genomes. We also detected an enrichment of genes encoding the type IV secretion system (T4SS) in S. ixodetis genomes of Dactylopius. A metratranscriptomic analysis of D. coccus showed that some of these T4SS genes (i.e., traG, virB4 and virD4) in addition to the superoxide dismutase sodA of S. ixodetis were overexpressed in the ovaries. CONCLUSION The symbiont S. ixodetis is a new member of the bacterial community of D. coccus and D. opuntiae. The recovery of incomplete virulence factor-encoding genes in S. ixodetis of Dactylopius suggests that this bacterium is a non-pathogenic symbiont. A high number of genes encoding the T4SS, in the S. ixodetis genomes and the overexpression of these genes in the ovary and hemolymph of the host suggest that S. ixodetis use the T4SS to interact with the Dactylopius cells. Moreover, the transcriptional differences of S. ixodetis among the gut, hemolymph and ovary tissues of D. coccus indicate that this bacterium can respond and adapt to the different conditions (e.g., oxidative stress) present within the host. All this evidence proposes that there is a strong interaction and molecular signaling in the symbiosis between S. ixodetis and the carmine cochineal Dactylopius.
Collapse
Affiliation(s)
- Arturo Vera-Ponce León
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico. .,Present Address: Faculty of Biotechnology, Chemistry and Food Science, Norwegian University of Life Sciences, 1433, Ås, Norway.
| | - Marian Dominguez-Mirazo
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Present Address: School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rafael Bustamante-Brito
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Víctor Higareda-Alvear
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int J Antimicrob Agents 2020; 57:106253. [PMID: 33264670 DOI: 10.1016/j.ijantimicag.2020.106253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.
Collapse
Affiliation(s)
- Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Natalya B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Inna A Edelstein
- Smolensk State Medical University, Ministry of Health of Russian Federation, Smolensk, Russian Federation
| | - Rustam I Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
9
|
Collingro A, Köstlbacher S, Horn M. Chlamydiae in the Environment. Trends Microbiol 2020; 28:877-888. [PMID: 32591108 DOI: 10.1016/j.tim.2020.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Chlamydiae have been known for more than a century as major pathogens of humans. Yet they are also found ubiquitously in the environment where they thrive within protists and in an unmatched wide range of animals. This review summarizes recent advances in understanding chlamydial diversity and distribution in nature. Studying these environmental chlamydiae provides a novel perspective on basic chlamydial biology and evolution. A picture is beginning to emerge with chlamydiae representing one of the evolutionarily most ancient and successful groups of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
11
|
Unraveling the Global Phylodynamic and Phylogeographic Expansion of Mycoplasma gallisepticum: Understanding the Origin and Expansion of This Pathogen in Ecuador. Pathogens 2020; 9:pathogens9090674. [PMID: 32825097 PMCID: PMC7557814 DOI: 10.3390/pathogens9090674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is among the most significant problems in the poultry industry worldwide, representing a serious threat to international trade. Despite the fact that the mgc2 gene has been widely used for diagnostic and molecular characterization purposes, there is a lack of evidence supporting the reliability of this gene as a marker for molecular epidemiology approaches. Therefore, the current study aimed to assess the accuracy of the mgc2 gene for phylogenetic, phylodynamic, and phylogeographic evaluations. Furthermore, the global phylodynamic expansion of MG is described, and the origin and extension of the outbreak caused by MG in Ecuador were tracked and characterized. The results obtained strongly supported the use of the mgc2 gene as a reliable phylogenetic marker and accurate estimator for the temporal and phylogeographic structure reconstruction of MG. The phylodynamic analysis denoted the failures in the current policies to control MG and highlighted the imperative need to implement more sensitive methodologies of diagnosis and more efficient vaccines. Framed in Ecuador, the present study provides the first piece of evidence of the circulation of virulent field MG strains in Ecuadorian commercial poultry. The findings derived from the current study provide novel and significant insights into the origin, diversification, and evolutionary process of MG globally.
Collapse
|
12
|
Genomic Islands in Mycoplasmas. Genes (Basel) 2020; 11:genes11080836. [PMID: 32707922 PMCID: PMC7466169 DOI: 10.3390/genes11080836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
Bacteria of the Mycoplasma genus are characterized by the lack of a cell-wall, the use of UGA as tryptophan codon instead of a universal stop, and their simplified metabolic pathways. Most of these features are due to the small-size and limited-content of their genomes (580–1840 Kbp; 482–2050 CDS). Yet, the Mycoplasma genus encompasses over 200 species living in close contact with a wide range of animal hosts and man. These include pathogens, pathobionts, or commensals that have retained the full capacity to synthesize DNA, RNA, and all proteins required to sustain a parasitic life-style, with most being able to grow under laboratory conditions without host cells. Over the last 10 years, comparative genome analyses of multiple species and strains unveiled some of the dynamics of mycoplasma genomes. This review summarizes our current knowledge of genomic islands (GIs) found in mycoplasmas, with a focus on pathogenicity islands, integrative and conjugative elements (ICEs), and prophages. Here, we discuss how GIs contribute to the dynamics of mycoplasma genomes and how they participate in the evolution of these minimal organisms.
Collapse
|
13
|
Cho ST, Kung HJ, Huang W, Hogenhout SA, Kuo CH. Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis. Front Microbiol 2020; 11:1531. [PMID: 32754131 PMCID: PMC7366425 DOI: 10.3389/fmicb.2020.01531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
Phytoplasmas are plant-pathogenic bacteria that impact agriculture worldwide. The commonly adopted classification system for phytoplasmas is based on the restriction fragment length polymorphism (RFLP) analysis of their 16S rRNA genes. With the increased availability of phytoplasma genome sequences, the classification system can now be refined. This work examined 11 strains in the 16SrI group within the genus ‘Candidatus Phytoplasma’ and investigated the possible species boundaries. We confirmed that the RFLP classification method is problematic due to intragenomic variation of the 16S rRNA genes and uneven weighing of different nucleotide positions. Importantly, our results based on the molecular phylogeny, differentiations in chromosomal segments and gene content, and divergence in homologous sequences, all supported that these strains may be classified into multiple operational taxonomic units (OTUs) equivalent to species. Strains assigned to the same OTU share >97% genome-wide average nucleotide identity (ANI) and >78% of their protein-coding genes. In comparison, strains assigned to different OTUs share < 94% ANI and < 75% of their genes. Reduction in homologous recombination between OTUs is one possible explanation for the discontinuity in genome similarities, and these findings supported the proposal that 95% ANI could serve as a cutoff for distinguishing species in bacteria. Additionally, critical examination of these results and the raw sequencing reads led to the identification of one genome that was presumably mis-assembled by combining two sequencing libraries built from phytoplasmas belonging to different OTUs. This finding provided a cautionary tale for working on uncultivated bacteria. Based on the new understanding of phytoplasma divergence and the current genome availability, we developed five molecular markers that could be used for multilocus sequence analysis (MLSA). By selecting markers that are short yet highly informative, and are distributed evenly across the chromosome, these markers provided a cost-effective system that is robust against recombination. Finally, examination of the effector gene distribution further confirmed the rapid gains and losses of these genes, as well as the involvement of potential mobile units (PMUs) in their molecular evolution. Future improvements on the taxon sampling of phytoplasma genomes will allow further expansions of similar analysis, and thus contribute to phytoplasma taxonomy and diagnostics.
Collapse
Affiliation(s)
- Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Jui Kung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Wang Y, Huang JM, Zhou YL, Almeida A, Finn RD, Danchin A, He LS. Phylogenomics of expanding uncultured environmental Tenericutes provides insights into their pathogenicity and evolutionary relationship with Bacilli. BMC Genomics 2020; 21:408. [PMID: 32552739 PMCID: PMC7301438 DOI: 10.1186/s12864-020-06807-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022] Open
Abstract
Background The metabolic capacity, stress response and evolution of uncultured environmental Tenericutes have remained elusive, since previous studies have been largely focused on pathogenic species. In this study, we expanded analyses on Tenericutes lineages that inhabit various environments using a collection of 840 genomes. Results Several environmental lineages were discovered inhabiting the human gut, ground water, bioreactors and hypersaline lake and spanning the Haloplasmatales and Mycoplasmatales orders. A phylogenomics analysis of Bacilli and Tenericutes genomes revealed that some uncultured Tenericutes are affiliated with novel clades in Bacilli, such as RF39, RFN20 and ML615. Erysipelotrichales and two major gut lineages, RF39 and RFN20, were found to be neighboring clades of Mycoplasmatales. We detected habitat-specific functional patterns between the pathogenic, gut and the environmental Tenericutes, where genes involved in carbohydrate storage, carbon fixation, mutation repair, environmental response and amino acid cleavage are overrepresented in the genomes of environmental lineages, perhaps as a result of environmental adaptation. We hypothesize that the two major gut lineages, namely RF39 and RFN20, are probably acetate and hydrogen producers. Furthermore, deteriorating capacity of bactoprenol synthesis for cell wall peptidoglycan precursors secretion is a potential adaptive strategy employed by these lineages in response to the gut environment. Conclusions This study uncovers the characteristic functions of environmental Tenericutes and their relationships with Bacilli, which sheds new light onto the pathogenicity and evolutionary processes of Mycoplasmatales.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, No. 28, Luhuitou Road, Sanya, Hai Nan, P.R. China.
| | - Jiao-Mei Huang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, No. 28, Luhuitou Road, Sanya, Hai Nan, P.R. China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Li Zhou
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, No. 28, Luhuitou Road, Sanya, Hai Nan, P.R. China.,University of Chinese Academy of Sciences, Beijing, China
| | - Alexandre Almeida
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Antoine Danchin
- Kodikos, Department of Infection, Immunity and Inflammation, Institut Cochin INSERM U1016 - CNRS UMR8104 - Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France.,Li Kashing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Hong Kong, SAR, China
| | - Li-Sheng He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, No. 28, Luhuitou Road, Sanya, Hai Nan, P.R. China
| |
Collapse
|
15
|
Sirand-Pugnet P, Brégeon D, Béven L, Goyenvalle C, Blanchard A, Rose S, Grosjean H, Douthwaite S, Hamdane D, de Crécy-Lagard V. Reductive Evolution and Diversification of C5-Uracil Methylation in the Nucleic Acids of Mollicutes. Biomolecules 2020; 10:E587. [PMID: 32290235 PMCID: PMC7226160 DOI: 10.3390/biom10040587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
The C5-methylation of uracil to form 5-methyluracil (m5U) is a ubiquitous base modification of nucleic acids. Four enzyme families have converged to catalyze this methylation using different chemical solutions. Here, we investigate the evolution of 5-methyluracil synthase families in Mollicutes, a class of bacteria that has undergone extensive genome erosion. Many mollicutes have lost some of the m5U methyltransferases present in their common ancestor. Cases of duplication and subsequent shift of function are also described. For example, most members of the Spiroplasma subgroup use the ancestral tetrahydrofolate-dependent TrmFO enzyme to catalyze the formation of m5U54 in tRNA, while a TrmFO paralog (termed RlmFO) is responsible for m5U1939 formation in 23S rRNA. RlmFO has replaced the S-adenosyl-L-methionine (SAM)-enzyme RlmD that adds the same modification in the ancestor and which is still present in mollicutes from the Hominis subgroup. Another paralog of this family, the TrmFO-like protein, has a yet unidentified function that differs from the TrmFO and RlmFO homologs. Despite having evolved towards minimal genomes, the mollicutes possess a repertoire of m5U-modifying enzymes that is highly dynamic and has undergone horizontal transfer.
Collapse
Affiliation(s)
- Pascal Sirand-Pugnet
- INRAE, UMR BFP, University Bordeaux, 33882 Bordeaux Villenave D’Ornon, France; (L.B.); (A.B.)
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 quai Saint Bernard, CEDEX 05, F-75252 Paris, France; (D.B.); (C.G.)
| | - Laure Béven
- INRAE, UMR BFP, University Bordeaux, 33882 Bordeaux Villenave D’Ornon, France; (L.B.); (A.B.)
| | - Catherine Goyenvalle
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 quai Saint Bernard, CEDEX 05, F-75252 Paris, France; (D.B.); (C.G.)
| | - Alain Blanchard
- INRAE, UMR BFP, University Bordeaux, 33882 Bordeaux Villenave D’Ornon, France; (L.B.); (A.B.)
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; (S.R.); (S.D.)
| | - Henri Grosjean
- Institute for Integrative Biology of the Cell (I2BC), French Atomic Energy and Energy Commission Alternatives, CNRS, Paris-Sud University, Paris-Saclay University, Gif-sur-Yvette CEDEX, 91198 Paris, France;
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; (S.R.); (S.D.)
| | - Djemel Hamdane
- Laboratory of Biological Process Chemistry, CNRS-UMR 8229, College De France, Sorbonne University, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
16
|
Jaÿ M, Tardy F. Contagious Agalactia In Sheep And Goats: Current Perspectives. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:229-247. [PMID: 31921613 PMCID: PMC6938181 DOI: 10.2147/vmrr.s201847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022]
Abstract
Contagious agalactia (CA) is a disease caused equally by four Mycoplasma species, in single or mixed infections. Clinical signs are multiple, including mastitis, arthritis, keratoconjunctivitis, pneumonia, and septicemia, non-specific, and expressed differently depending whether sheep or goats are affected, on causative mycoplasmas as well as type of husbandry. CA has been reported worldwide and its geographic distribution maps to that of small ruminant breeding areas. However, as current diagnostic tests are expensive and difficult to implement, it is certainly underdiagnosed and prevalence data are only available for a few countries. CA control relies on vaccines, chemotherapy and good herd management practices. It requires long-term commitment but is often unsuccessful, with frequent clinical relapses. The persistence of the etiological agents, despite their overall susceptibility to antimicrobials, comes from their genetic plasticity and capacity to escape the host immune response. The existence of asymptomatic carriers and the numerous sources of infections contribute to rapid spread of the disease and complicate the control and prevention efforts. Here we review all these aspects in order to highlight recent progress made and identify gaps in knowledge or tools needed for better disease management. Discussion also underlines the detrimental effect of contagious agalactia on small ruminant welfare.
Collapse
Affiliation(s)
- Maryne Jaÿ
- Université de Lyon, ANSES, Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Lyon69364, France
| | - Florence Tardy
- Université de Lyon, ANSES, Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Lyon69364, France
| |
Collapse
|
17
|
Proteases as Secreted Exoproteins in Mycoplasmas from Ruminant Lungs and Their Impact on Surface-Exposed Proteins. Appl Environ Microbiol 2019; 85:AEM.01439-19. [PMID: 31540994 DOI: 10.1128/aem.01439-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Many mycoplasma species are isolated from the ruminant lungs as either saprophytes or true pathogens. These wall-less bacteria possess a minimal genome and reduced metabolic capabilities. Accordingly, they rely heavily on their hosts for the supply of essential metabolites and, notably, peptides. Seven of 13 ruminant lung-associated Mycoplasma (sub)species were shown to possess caseinolytic activity when grown in rich media and assessed with a quantitative fluorescence test. For some species, this activity was detected in spent medium, an indication that proteases were secreted outside the mycoplasma cells. To identify these proteases, we incubated concentrated washed cell pellets in a defined medium and analyzed the supernatants by tandem mass spectrometry. Secreted-protease activity was detected mostly in the species belonging to the Mycoplasma mycoides cluster (MMC) and, to a lesser extent, in Mycoplasma bovirhinis Analyzing a Mycoplasma mycoides subsp. capri strain, chosen as a model, we identified 35 expressed proteases among 55 predicted coding genes, of which 5 were preferentially found in the supernatant. Serine protease S41, acquired by horizontal gene transfer, was responsible for the caseinolytic activity, as demonstrated by zymography and mutant analysis. In an M. capricolum mutant, inactivation of the S41 protease resulted in marked modification of the expression or secretion of 17 predicted surface-exposed proteins. This is an indication that the S41 protease could have a role in posttranslational cleavage of surface-exposed proteins and ectodomain shedding, whose physiological impacts still need to be explored.IMPORTANCE Few studies pertaining to proteases in ruminant mycoplasmas have been reported. Here, we focus on proteases that are secreted outside the mycoplasma cell using a mass spectrometry approach. The most striking result is the identification, within the Mycoplasma mycoides cluster, of a serine protease that is exclusively detected outside the mycoplasma cells and is responsible for casein digestion. This protease may also be involved in the posttranslational processing of surface proteins, as suggested by analysis of mutants showing a marked reduction in the secretion of extracellular proteins. By analogy, this finding may help increase understanding of the mechanisms underlying this ectodomain shedding in other mycoplasma species. The gene encoding this protease is likely to have been acquired via horizontal gene transfer from Gram-positive bacteria and sortase-associated surface proteases. Whether this protease and the associated ectodomain shedding are related to virulence has yet to be ascertained.
Collapse
|
18
|
Dordet-Frisoni E, Faucher M, Sagné E, Baranowski E, Tardy F, Nouvel LX, Citti C. Mycoplasma Chromosomal Transfer: A Distributive, Conjugative Process Creating an Infinite Variety of Mosaic Genomes. Front Microbiol 2019; 10:2441. [PMID: 31708906 PMCID: PMC6819513 DOI: 10.3389/fmicb.2019.02441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The capacity of Mycoplasmas to engage in horizontal gene transfers has recently been highlighted. Despite their small genome, some of these wall-less bacteria are able to exchange multiple, large portions of their chromosome via a conjugative mechanism that does not conform to canonical Hfr/oriT models. To understand the exact features underlying mycoplasma chromosomal transfer (MCT), extensive genomic analyses were performed at the nucleotide level, using individual mating progenies derived from our model organism, Mycoplasma agalactiae. Genome reconstruction showed that MCT resulted in the distributive transfer of multiple chromosomal DNA fragments and generated progenies composed of a variety of mosaic genomes, each being unique. Analyses of macro- and micro-events resulting from MCT revealed that the vast majority of the acquired fragments were unrelated and co-transferred independently from the selection marker, these resulted in up to 17% of the genome being exchanged. Housekeeping and accessory genes were equally affected by MCT, with up to 35 CDSs being gained or lost. This efficient HGT process also created a number of chimeric genes and genetic micro-variations that may impact gene regulation and/or expression. Our study unraveled the tremendous plasticity of M. agalactiae genome and point toward MCT as a major player in diversification and adaptation to changing environments, offering a significant advantage to this minimal pathogen.
Collapse
Affiliation(s)
| | - Marion Faucher
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Eveline Sagné
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | | | - Florence Tardy
- UMR Mycoplasmoses des Ruminants, VetAgro Sup, Laboratoire de Lyon, ANSES, Université de Lyon, Marcy-l'Étoile, France
| | | | | |
Collapse
|
19
|
Gasparich GE, Kuo CH. Genome analysis-based union of the genus Mesoplasma with the genus Entomoplasma. Int J Syst Evol Microbiol 2019; 69:2735-2738. [PMID: 31483242 DOI: 10.1099/ijsem.0.003548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Early characterization of strains designated into the genera Entomoplasma and Mesoplasma was based upon biological and chemical characteristics. With the advent of 16S rRNA gene sequence analysis as an added taxonomic character, it became clear that the two genera did not form distinct and separate monophyletic clusters. A genome-level analysis of all 17 validly published species within the family Entomoplasmataceae has recently been performed. Phylogenetic analyses, comparisons of gene content, and the lack of genus-specific genes supported that species from the two genera are intermixed and should not be taxonomically separated. This level of analysis clearly reveals the necessity to revise the taxonomy of this family by merging the two genera into one, Entomoplasma. Additionally, it was definitively determined that the strain originally designated as Acholeplasma multilocale resides in this cluster and should be formally renamed as Entomoplasma multilocale. Merging Mesoplasma and Entomoplasma yields a paraphyletic genus, but is supported by cell morphology and ecology to be distinguished from the genera Spiroplasma and Mycoplasma.
Collapse
Affiliation(s)
- Gail E Gasparich
- Department of Biology, Salem State University, Salem, MA 01970, USA
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
20
|
Schumacher M, Nicholson P, Stoffel MH, Chandran S, D’Mello A, Ma L, Vashee S, Jores J, Labroussaa F. Evidence for the Cytoplasmic Localization of the L-α-Glycerophosphate Oxidase in Members of the " Mycoplasma mycoides Cluster". Front Microbiol 2019; 10:1344. [PMID: 31275271 PMCID: PMC6593217 DOI: 10.3389/fmicb.2019.01344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Members of the "Mycoplasma mycoides cluster" are important animal pathogens causing diseases including contagious bovine pleuropneumonia and contagious caprine pleuropneumonia, which are of utmost importance in Africa or Asia. Even if all existing vaccines have shortcomings, vaccination of herds is still considered the best way to fight mycoplasma diseases, especially with the recent and dramatic increase of antimicrobial resistance observed in many mycoplasma species. A new generation of vaccines will benefit from a better understanding of the pathogenesis of mycoplasmas, which is very patchy up to now. In particular, surface-exposed virulence traits are likely to induce a protective immune response when formulated in a vaccine. The candidate virulence factor L-α-glycerophosphate oxidase (GlpO), shared by many mycoplasmas including Mycoplasma pneumoniae, was suggested to be a surface-exposed enzyme in Mycoplasma mycoides subsp. mycoides responsible for the production of hydrogen peroxide directly into the host cells. We produced a glpO isogenic mutant GM12::YCpMmyc1.1-ΔglpO using in-yeast synthetic genomics tools including the tandem-repeat endonuclease cleavage (TREC) technique followed by the back-transplantation of the engineered genome into a mycoplasma recipient cell. GlpO localization in the mutant and its parental strain was assessed using scanning electron microscopy (SEM). We obtained conflicting results and this led us to re-evaluate the localization of GlpO using a combination of in silico and in vitro techniques, such as Triton X-114 fractionation or tryptic shaving followed by immunoblotting. Our in vitro results unambiguously support the finding that GlpO is a cytoplasmic protein throughout the "Mycoplasma mycoides cluster." Thus, the use of GlpO as a candidate vaccine antigen is unlikely to induce a protective immune response.
Collapse
Affiliation(s)
- Melanie Schumacher
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Pamela Nicholson
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | | | - Adonis D’Mello
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Li Ma
- J. Craig Venter Institute, Rockville, MD, United States
| | - Sanjay Vashee
- J. Craig Venter Institute, Rockville, MD, United States
| | - Joerg Jores
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Ramírez AS, Vega-Orellana OM, Viver T, Poveda JB, Rosales RS, Poveda CG, Spergser J, Szostak MP, Caballero MJ, Ressel L, Bradbury JM, Mar Tavío M, Karthikeyan S, Amann R, Konstantinidis KT, Rossello-Mora R. First description of two moderately halophilic and psychrotolerant Mycoplasma species isolated from cephalopods and proposal of Mycoplasma marinum sp. nov. and Mycoplasma todarodis sp. nov. Syst Appl Microbiol 2019; 42:457-467. [PMID: 31072660 DOI: 10.1016/j.syapm.2019.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 11/29/2022]
Abstract
Two moderately halophilic and psychrotolerant new Mycoplasma species were isolated from common cephalopods. Three strains were isolated in pure culture from two individual European flying squid (Todarodes sagittatus), and two individual octopuses (Octopus vulgaris). The strains showed optimal growth at 25 °C and a salinity of 3% (w/v) NaCl. Molecular analyses revealed that the isolates belonged to two new, but phylogenetically related species, divergent from all previously described Mollicutes, representing the first marine isolates of the class, and also the first Mycoplasma strains for which NaCl requirement has been demonstrated. A genome search against all available marine metagenomes and 16S rRNA gene databases indicated that these two species represent a novel non-free-living marine lineage of Mollicutes, specifically associated with marine animals. Morphology and physiology were compatible with other members of this group, and genomic and phenotypic analyses demonstrated that these organisms represent two novel species of the genus Mycoplasma, for which the names Mycoplasma marinum sp. nov. and Mycoplasma todarodis sp. nov. are proposed; the type strains are PET (DSM 105487T, CIP 111404T) and 5HT (DSM 105,488T, CIP 111405T), respectively.
Collapse
Affiliation(s)
- Ana S Ramírez
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Orestes M Vega-Orellana
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), 07190, Esporles, Spain
| | - José B Poveda
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain.
| | - Rubén S Rosales
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Carlos G Poveda
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Michael P Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Mª José Caballero
- Unidad de Histología y Patología Animal, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Lorenzo Ressel
- University of Liverpool, Institute of Veterinary Science, Leahurst Campus, Neston CH64 7TE, UK
| | - Janet M Bradbury
- University of Liverpool, Institute of Veterinary Science, Leahurst Campus, Neston CH64 7TE, UK
| | - Mª Mar Tavío
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Smruthi Karthikeyan
- School of Civil & Environmental Engineering, and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rudolf Amann
- Department of Molecular Ecology, Max-Planck-Institut für Marine Mikrobiologie, Bremen D-28359, Germany
| | - Konstantinos T Konstantinidis
- School of Civil & Environmental Engineering, and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), 07190, Esporles, Spain
| |
Collapse
|