1
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
López Ruiz LM, Johnson D, Gittens WH, Brown GGB, Allison RM, Neale MJ. Meiotic prophase length modulates Tel1-dependent DNA double-strand break interference. PLoS Genet 2024; 20:e1011140. [PMID: 38427688 PMCID: PMC10936813 DOI: 10.1371/journal.pgen.1011140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/13/2024] [Accepted: 01/17/2024] [Indexed: 03/03/2024] Open
Abstract
During meiosis, genetic recombination is initiated by the formation of many DNA double-strand breaks (DSBs) catalysed by the evolutionarily conserved topoisomerase-like enzyme, Spo11, in preferred genomic sites known as hotspots. DSB formation activates the Tel1/ATM DNA damage responsive (DDR) kinase, locally inhibiting Spo11 activity in adjacent hotspots via a process known as DSB interference. Intriguingly, in S. cerevisiae, over short genomic distances (<15 kb), Spo11 activity displays characteristics of concerted activity or clustering, wherein the frequency of DSB formation in adjacent hotspots is greater than expected by chance. We have proposed that clustering is caused by a limited number of sub-chromosomal domains becoming primed for DSB formation. Here, we provide evidence that DSB clustering is abolished when meiotic prophase timing is extended via deletion of the NDT80 transcription factor. We propose that extension of meiotic prophase enables most cells, and therefore most chromosomal domains within them, to reach an equilibrium state of similar Spo11-DSB potential, reducing the impact that priming has on estimates of coincident DSB formation. Consistent with this view, when Tel1 is absent but Ndt80 is present and thus cells are able to rapidly exit meiotic prophase, genome-wide maps of Spo11-DSB formation are skewed towards pericentromeric regions and regions that load pro-DSB factors early-revealing regions of preferential priming-but this effect is abolished when NDT80 is deleted. Our work highlights how the stochastic nature of Spo11-DSB formation in individual cells within the limited temporal window of meiotic prophase can cause localised DSB clustering-a phenomenon that is exacerbated in tel1Δ cells due to the dual roles that Tel1 has in DSB interference and meiotic prophase checkpoint control.
Collapse
Affiliation(s)
- Luz María López Ruiz
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Dominic Johnson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - William H. Gittens
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - George G. B. Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rachal M. Allison
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
3
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
4
|
Kawashima Y, Oda AH, Hikida Y, Ohta K. Chromosome-dependent aneuploid formation in Spo11-less meiosis. Genes Cells 2023; 28:129-148. [PMID: 36530025 PMCID: PMC10107155 DOI: 10.1111/gtc.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Deficiency in meiotic recombination leads to aberrant chromosome disjunction during meiosis, often resulting in the lethality of gametes or genetic disorders due to aneuploidy formation. Budding yeasts lacking Spo11, which is essential for initiation of meiotic recombination, produce many inviable spores in meiosis, while very rarely all sets of 16 chromosomes are coincidentally assorted into gametes to form viable spores. We induced meiosis in a spo11∆ diploid, in which homolog pairs can be distinguished by single nucleotide polymorphisms and determined whole-genome sequences of their exceptionally viable spores. We detected no homologous recombination in the viable spores of spo11∆ diploid. Point mutations were fewer in spo11∆ than in wild-type. We observed spo11∆ viable spores carrying a complete diploid set of homolog pairs or haploid spores with a complete haploid set of homologs but with aneuploidy in some chromosomes. In the latter, we found the chromosome-dependence in the aneuploid incidence, which was positively and negatively influenced by the chromosome length and the impact of dosage-sensitive genes, respectively. Selection of aneuploidy during meiosis II or mitosis after spore germination was also chromosome dependent. These results suggest a pathway by which specific chromosomes are more prone to cause aneuploidy, as observed in Down syndrome.
Collapse
Affiliation(s)
- Yuri Kawashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa H Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hikida
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Shodhan A, Xaver M, Wheeler D, Lichten M. Turning coldspots into hotspots: targeted recruitment of axis protein Hop1 stimulates meiotic recombination in Saccharomyces cerevisiae. Genetics 2022; 222:iyac106. [PMID: 35876814 PMCID: PMC9434160 DOI: 10.1093/genetics/iyac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in Saccharomyces cerevisiae contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red1 are important for double-strand break formation; double-strand break levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with double-strand break levels. How axis protein levels influence double-strand break formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased double-strand breaks and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in double-strand breaks did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote double-strand break formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, crossovers that formed at an insert locus were only modestly reduced in the absence of MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local double-strand break levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Collapse
Affiliation(s)
- Anura Shodhan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Martin Xaver
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Guo H, Stamper EL, Sato-Carlton A, Shimazoe MA, Li X, Zhang L, Stevens L, Tam KCJ, Dernburg AF, Carlton PM. Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. eLife 2022; 11:77956. [PMID: 35758641 PMCID: PMC9278955 DOI: 10.7554/elife.77956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants and in the wild-type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.
Collapse
Affiliation(s)
- Heyun Guo
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Ericca L Stamper
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Aya Sato-Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Masa A Shimazoe
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Department of Science, Kyoto University, Kyoto, Japan
| | - Xuan Li
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - K C Jacky Tam
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Radiation Biology Center, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Vrielynck N, Schneider K, Rodriguez M, Sims J, Chambon A, Hurel A, De Muyt A, Ronceret A, Krsicka O, Mézard C, Schlögelhofer P, Grelon M. Conservation and divergence of meiotic DNA double strand break forming mechanisms in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:9821-9835. [PMID: 34458909 PMCID: PMC8464057 DOI: 10.1093/nar/gkab715] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
In the current meiotic recombination initiation model, the SPO11 catalytic subunits associate with MTOPVIB to form a Topoisomerase VI-like complex that generates DNA double strand breaks (DSBs). Four additional proteins, PRD1/AtMEI1, PRD2/AtMEI4, PRD3/AtMER2 and the plant specific DFO are required for meiotic DSB formation. Here we show that (i) MTOPVIB and PRD1 provide the link between the catalytic sub-complex and the other DSB proteins, (ii) PRD3/AtMER2, while localized to the axis, does not assemble a canonical pre-DSB complex but establishes a direct link between the DSB-forming and resection machineries, (iii) DFO controls MTOPVIB foci formation and is part of a divergent RMM-like complex including PHS1/AtREC114 and PRD2/AtMEI4 but not PRD3/AtMER2, (iv) PHS1/AtREC114 is absolutely unnecessary for DSB formation despite having a conserved position within the DSB protein network and (v) MTOPVIB and PRD2/AtMEI4 interact directly with chromosome axis proteins to anchor the meiotic DSB machinery to the axis.
Collapse
Affiliation(s)
- Nathalie Vrielynck
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Katja Schneider
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marion Rodriguez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Jason Sims
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Arnaud De Muyt
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Arnaud Ronceret
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Ondrej Krsicka
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
8
|
Hinman AW, Yeh HY, Roelens B, Yamaya K, Woglar A, Bourbon HMG, Chi P, Villeneuve AM. Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proc Natl Acad Sci U S A 2021; 118:e2109306118. [PMID: 34389685 PMCID: PMC8379965 DOI: 10.1073/pnas.2109306118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays dual roles in the evolution and stable inheritance of genomes: Recombination promotes genetic diversity by reassorting variants, and it establishes temporary connections between pairs of homologous chromosomes that ensure their future segregation. Meiotic recombination is initiated by generation of double-strand DNA breaks (DSBs) by the conserved topoisomerase-like protein Spo11. Despite strong conservation of Spo11 across eukaryotic kingdoms, auxiliary complexes that interact with Spo11 complexes to promote DSB formation are poorly conserved. Here, we identify DSB-3 as a DSB-promoting protein in the nematode Caenorhabditis elegans Mutants lacking DSB-3 are proficient for homolog pairing and synapsis but fail to form crossovers. Lack of crossovers in dsb-3 mutants reflects a requirement for DSB-3 in meiotic DSB formation. DSB-3 concentrates in meiotic nuclei with timing similar to DSB-1 and DSB-2 (predicted homologs of yeast/mammalian Rec114/REC114), and DSB-1, DSB-2, and DSB-3 are interdependent for this localization. Bioinformatics analysis and interactions among the DSB proteins support the identity of DSB-3 as a homolog of MEI4 in conserved DSB-promoting complexes. This identification is reinforced by colocalization of pairwise combinations of DSB-1, DSB-2, and DSB-3 foci in structured illumination microscopy images of spread nuclei. However, unlike yeast Rec114, DSB-1 can interact directly with SPO-11, and in contrast to mouse REC114 and MEI4, DSB-1, DSB-2, and DSB-3 are not concentrated predominantly at meiotic chromosome axes. We speculate that variations in the meiotic program that have coevolved with distinct reproductive strategies in diverse organisms may contribute to and/or enable diversification of essential components of the meiotic machinery.
Collapse
Affiliation(s)
- Albert W Hinman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Baptiste Roelens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Henri-Marc G Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, 31000 Toulouse, France
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
9
|
Yadav VK, Claeys Bouuaert C. Mechanism and Control of Meiotic DNA Double-Strand Break Formation in S. cerevisiae. Front Cell Dev Biol 2021; 9:642737. [PMID: 33748134 PMCID: PMC7968521 DOI: 10.3389/fcell.2021.642737] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Developmentally programmed formation of DNA double-strand breaks (DSBs) by Spo11 initiates a recombination mechanism that promotes synapsis and the subsequent segregation of homologous chromosomes during meiosis. Although DSBs are induced to high levels in meiosis, their formation and repair are tightly regulated to minimize potentially dangerous consequences for genomic integrity. In S. cerevisiae, nine proteins participate with Spo11 in DSB formation, but their molecular functions have been challenging to define. Here, we describe our current view of the mechanism of meiotic DSB formation based on recent advances in the characterization of the structure and function of DSB proteins and discuss regulatory pathways in the light of recent models.
Collapse
Affiliation(s)
| | - Corentin Claeys Bouuaert
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
10
|
Structural and functional characterization of the Spo11 core complex. Nat Struct Mol Biol 2021; 28:92-102. [PMID: 33398171 PMCID: PMC7855791 DOI: 10.1038/s41594-020-00534-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022]
Abstract
Spo11, which makes DNA double-strand breaks (DSBs) essential for meiotic recombination, has long been recalcitrant to biochemical study. We provide molecular analysis of S. cerevisiae Spo11 purified with partners Rec102, Rec104 and Ski8. Rec102 and Rec104 jointly resemble the B subunit of archaeal Topoisomerase VI, with Rec104 occupying a position similar to the Top6B GHKL-type ATPase domain. Unexpectedly, the Spo11 complex is monomeric (1:1:1:1 stoichiometry), consistent with dimerization controlling DSB formation. Reconstitution of DNA binding reveals topoisomerase-like preferences for duplex-duplex junctions and bent DNA. Spo11 also binds noncovalently but with high affinity to DNA ends mimicking cleavage products, suggesting a mechanism to cap DSB ends. Mutations that reduce DNA binding in vitro attenuate DSB formation, alter DSB processing, and reshape the DSB landscape in vivo. Our data reveal structural and functional similarities between the Spo11 core complex and Topo VI, but also highlight differences reflecting their distinct biological roles.
Collapse
|
11
|
West AMV, Komives EA, Corbett KD. Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2. Nucleic Acids Res 2019; 46:279-292. [PMID: 29186573 PMCID: PMC5758881 DOI: 10.1093/nar/gkx1196] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short ‘closure motifs’ in partner proteins by wrapping their C-terminal ‘safety belt’ region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain–closure motif interactions underlie both Hop1’s initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed ‘closed’ conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
Collapse
Affiliation(s)
- Alan M V West
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Reichman R, Shi Z, Malone R, Smolikove S. Mitotic and Meiotic Functions for the SUMOylation Pathway in the Caenorhabditis elegans Germline. Genetics 2018; 208:1421-1441. [PMID: 29472245 PMCID: PMC5887140 DOI: 10.1534/genetics.118.300787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Meiosis is a highly regulated process, partly due to the need to break and then repair DNA as part of the meiotic program. Post-translational modifications are widely used during meiotic events to regulate steps such as protein complex formation, checkpoint activation, and protein attenuation. In this paper, we investigate how proteins that are obligatory components of the SUMO (small ubiquitin-like modifier) pathway, one such post-translational modification, affect the Caenorhabditis elegans germline. We show that UBC-9, the E2 conjugation enzyme, and the C. elegans homolog of SUMO, SMO-1, localize to germline nuclei throughout prophase I. Mutant analysis of smo-1 and ubc-9 revealed increased recombination intermediates throughout the germline, originating during the mitotic divisions. SUMOylation mutants also showed late meiotic defects including defects in the restructuring of oocyte bivalents and endomitotic oocytes. Increased rates of noninterfering crossovers were observed in ubc-9 heterozygotes, even though interfering crossovers were unaffected. We have also identified a physical interaction between UBC-9 and DNA repair protein MRE-11 ubc-9 and mre-11 null mutants exhibited similar phenotypes at germline mitotic nuclei and were synthetically sick. These phenotypes and genetic interactions were specific to MRE-11 null mutants as opposed to RAD-50 or resection-defective MRE-11 We propose that the SUMOylation pathway acts redundantly with MRE-11, and in this process MRE-11 likely plays a structural role.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Zhuoyue Shi
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Robert Malone
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
13
|
Gould GM, Paggi JM, Guo Y, Phizicky DV, Zinshteyn B, Wang ET, Gilbert WV, Gifford DK, Burge CB. Identification of new branch points and unconventional introns in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2016; 22:1522-34. [PMID: 27473169 PMCID: PMC5029451 DOI: 10.1261/rna.057216.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/02/2016] [Indexed: 05/18/2023]
Abstract
Spliced messages constitute one-fourth of expressed mRNAs in the yeast Saccharomyces cerevisiae, and most mRNAs in metazoans. Splicing requires 5' splice site (5'SS), branch point (BP), and 3' splice site (3'SS) elements, but the role of the BP in splicing control is poorly understood because BP identification remains difficult. We developed a high-throughput method, Branch-seq, to map BPs and 5'SSs of isolated RNA lariats. Applied to S. cerevisiae, Branch-seq detected 76% of expressed, annotated BPs and identified a comparable number of novel BPs. We performed RNA-seq to confirm associated 3'SS locations, identifying some 200 novel splice junctions, including an AT-AC intron. We show that several yeast introns use two or even three different BPs, with effects on 3'SS choice, protein coding potential, or RNA stability, and identify novel introns whose splicing changes during meiosis or in response to stress. Together, these findings show unanticipated complexity of splicing in yeast.
Collapse
Affiliation(s)
- Genevieve M Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Joseph M Paggi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David V Phizicky
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Eric T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
Börner GV, Cha RS. Analysis of Recombination and Chromosome Structure during Yeast Meiosis. Cold Spring Harb Protoc 2015; 2015:970-4. [PMID: 26527771 DOI: 10.1101/pdb.top077636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Meiosis is a diploid-specific differentiation program that consists of a single round of genome duplication followed by two rounds of chromosome segregation. These events result in halving of the genetic complement, which is a requirement for formation of haploid reproductive cells (i.e., spores in yeast and gametes in animals and plants). During meiosis I, homologous maternal and paternal chromosomes (homologs) pair and separate, whereas sister chromatids remain connected at the centromeres and separate during the second meiotic division. In most organisms, accurate homolog disjunction requires crossovers, which are formed as products of meiotic recombination. For the past two decades, studies of yeast meiosis have provided invaluable insights into evolutionarily conserved mechanisms of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115-2214
| | - Rita S Cha
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| |
Collapse
|
15
|
Carballo JA, Panizza S, Serrentino ME, Johnson AL, Geymonat M, Borde V, Klein F, Cha RS. Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery. PLoS Genet 2013; 9:e1003545. [PMID: 23825959 PMCID: PMC3694840 DOI: 10.1371/journal.pgen.1003545] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 04/22/2013] [Indexed: 12/25/2022] Open
Abstract
An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or “DSB homeostasis”, might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks. Meiosis is a specialized cell division that underpins sexual reproduction. It begins with a diploid cell carrying both parental copies of each chromosome, and ends with four haploid cells, each containing only one copy. An essential feature of meiosis is meiotic recombination, during which the programmed generation of DNA double-strand-breaks (DSBs) is followed by the production of crossover(s) between two parental homologs, which facilitates their correct distribution to daughter nuclei. Failure to generate DSBs leads to errors in homolog disjunction, which produces inviable gametes. Although DSBs are essential for meiosis, each break represents a potentially lethal damage; as such, its formation must be tightly regulated. The evolutionarily conserved ATM/ATR family proteins were implicated in this control; nevertheless, the mechanism by which such control could be implemented remains elusive. Here we demonstrate that Tel1/Mec1 down-regulate meiotic DSB formation by phosphorylating Rec114, an essential component of the Spo11 complex. We also observed that Rec114 activity can be further down-regulated by its removal from chromosomes and subsequent degradation during later stages in meiosis. Evidence presented here provides an insight into the ways in which the number of meiotic DSBs might be maintained at developmentally programmed level.
Collapse
Affiliation(s)
- Jesús A. Carballo
- Department of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Falmer, United Kingdom
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail: (JAC); (RSC)
| | - Silvia Panizza
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 1, Vienna, Austria
- (IMBA) Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse, Vienna, Austria
| | | | - Anthony L. Johnson
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
| | - Marco Geymonat
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Valérie Borde
- CNRS UMR218, Institut Curie/Centre de Recherche, UMR218, Pavillon Pasteur, Paris, France
| | - Franz Klein
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 1, Vienna, Austria
| | - Rita S. Cha
- Department of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Falmer, United Kingdom
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail: (JAC); (RSC)
| |
Collapse
|
16
|
Factors affecting splicing strength of yeast genes. Comp Funct Genomics 2011; 2011:212146. [PMID: 22162666 PMCID: PMC3226532 DOI: 10.1155/2011/212146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/06/2011] [Indexed: 01/30/2023] Open
Abstract
Accurate and efficient splicing is of crucial importance for highly-transcribed intron-containing genes (ICGs) in rapidly replicating unicellular eukaryotes such as the budding yeast Saccharomyces cerevisiae. We characterize the 5' and 3' splice sites (ss) by position weight matrix scores (PWMSs), which is the highest for the consensus sequence and the lowest for splice sites differing most from the consensus sequence and used PWMS as a proxy for splicing strength. HAC1, which is known to be spliced by a nonspliceosomal mechanism, has the most negative PWMS for both its 5' ss and 3' ss. Several genes under strong splicing regulation and requiring additional splicing factors for their splicing also have small or negative PWMS values. Splicing strength is higher for highly transcribed ICGs than for lowly transcribed ICGs and higher for transcripts that bind strongly to spliceosomes than those that bind weakly. The 3' splice site features a prominent poly-U tract before the 3'AG. Our results suggest the potential of using PWMS as a screening tool for ICGs that are either spliced by a nonspliceosome mechanism or under strong splicing regulation in yeast and other fungal species.
Collapse
|
17
|
Edlinger B, Schlögelhofer P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1545-63. [PMID: 21220780 DOI: 10.1093/jxb/erq421] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.
Collapse
Affiliation(s)
- Bernd Edlinger
- University of Vienna, Max F. Perutz Laboratories, Department of Chromosome Biology, Dr. Bohr-Gasse 1, Vienna, Austria
| | | |
Collapse
|
18
|
Kumar R, De Massy B. Initiation of meiotic recombination in mammals. Genes (Basel) 2010; 1:521-49. [PMID: 24710101 PMCID: PMC3966222 DOI: 10.3390/genes1030521] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/22/2010] [Accepted: 12/03/2010] [Indexed: 12/18/2022] Open
Abstract
Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs). DSB repair promotes homologous interactions and pairing and leads to the formation of crossovers (COs), which are required for the proper reductional segregation at the first meiotic division. In mammals, several hundred DSBs are generated at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not well understood how the frequency and timing of DSB formation and their localization are regulated. Several approaches in humans and mice have provided an extensive description of the localization of initiation events based on CO mapping, leading to the identification and characterization of preferred sites (hotspots) of initiation. This review presents the current knowledge about the proteins known to be involved in this process, the sites where initiation takes place, and the factors that control hotspot localization.
Collapse
Affiliation(s)
- Rajeev Kumar
- Institute of Human Genetics, UPR1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.
| | - Bernard De Massy
- Institute of Human Genetics, UPR1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.
| |
Collapse
|
19
|
Tethering recombination initiation proteins in Saccharomyces cerevisiae promotes double strand break formation. Genetics 2009; 182:447-58. [PMID: 19332879 DOI: 10.1534/genetics.109.102640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Meiotic recombination in Saccharomyces cerevisiae is initiated by the creation of DNA double strand breaks (DSBs), an event requiring 10 recombination initiation proteins. Published data indicate that these 10 proteins form three main interaction subgroups [(Spo11-Rec102-Rec104-Ski8), (Rec114-Rec107-Mei4), and (Mre11-Rad50-Xrs2)], but certain components from each subgroup may also interact. Although several of the protein-protein interactions have been defined, the mechanism for DSB formation has been challenging to define. Using a variation of the approach pioneered by others, we have tethered 8 of the 10 initiation proteins to a recombination coldspot and discovered that in addition to Spo11, 6 others (Rec102, Rec104, Ski8, Rec114, Rec107, and Mei4) promote DSB formation at the coldspot, albeit with different frequencies. Of the 8 proteins tested, only Mre11 was unable to cause DSBs even though it binds to UAS(GAL) at GAL2. Our results suggest there may be several ways that the recombination initiation proteins can associate to form a functional initiation complex that can create DSBs.
Collapse
|
20
|
Sanderson ML, Hassold TJ, Carrell DT. Proteins involved in meiotic recombination: a role in male infertility? Syst Biol Reprod Med 2008; 54:57-74. [PMID: 18446647 DOI: 10.1080/19396360701881922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Meiotic recombination results in the formation of crossovers, by which genetic information is exchanged between homologous chromosomes during prophase I of meiosis. Recombination is a complex process involving many proteins. Alterations in the genes involved in recombination may result in infertility. Molecular studies have improved our understanding of the roles and mechanisms of the proteins and protein complexes involved in recombination, some of which have function in mitotic cells as well as meiotic cells. Human gene sequencing studies have been performed for some of these genes and have provided further information on the phenotypes observed in some infertile individuals. However, further studies are needed to help elucidate the particular role(s) of a given protein and to increase our understanding of these protein systems. This review will focus on our current understanding of proteins involved in meiotic recombination from a genomic perspective, summarizing our current understanding of known mutations and single nucleotide polymorphisms that may affect male fertility by altering meiotic recombination.
Collapse
Affiliation(s)
- Matthew L Sanderson
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
21
|
Abstract
The study of reproductive genetics in mammals has lagged behind that of simpler and more tractable model organisms, such as D. melanogaster, C. elegans and various yeast models. Although much valuable information has been generated using these organisms, they do not model the genetic and biological complexity of mammalian reproduction. Thus, the majority of genes required for gametogenesis in mammals remain unidentified. To expand on the existing knowledge of mammalian reproductive genetics, we have carried out forward genetic screens in mice to identify infertility mutants and the underlying mutant genes. Two different approaches were used: mutagenesis of the germline in whole mice, and mutagenesis of embryonic stem cells. This was followed by two- or three-generation breeding schemes to identify pedigrees segregating infertility mutations, which were then phenotypically characterized, genetically mapped, and in some cases, positionally cloned. This whole-genome approach has generated a wide collection of mutants with defects ranging from problems with germ cell development to abnormal sperm morphology. These models have allowed us to study the genetics, as well as the physiology, of reproduction in mammals. This review focuses on describing some of the genes identified in these screens and the ongoing effort to characterize additional mutants.
Collapse
Affiliation(s)
- Bjarte Furnes
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T9014A, Ithaca, NY 14853, USA
| | | |
Collapse
|
22
|
Henderson KA, Kee K, Maleki S, Santini P, Keeney S. Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Cell 2006; 125:1321-32. [PMID: 16814718 PMCID: PMC1950680 DOI: 10.1016/j.cell.2006.04.039] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 04/07/2006] [Accepted: 04/19/2006] [Indexed: 12/11/2022]
Abstract
Meiosis is a specialized cell division that halves the genome complement, producing haploid gametes/spores from diploid cells. Proper separation of homologous chromosomes at the first meiotic division requires the production of physical connections (chiasmata) between homologs through recombinational exchange of chromosome arms after sister-chromatid cohesion is established but before chromosome segregation takes place. The events of meiotic prophase must thus occur in a strictly temporal order, but the molecular controls coordinating these events have not been well elucidated. Here, we demonstrate that the budding yeast cyclin-dependent kinase Cdc28 directly regulates the formation of the DNA double-strand breaks that initiate recombination by phosphorylating the Mer2/Rec107 protein and thereby modulating interactions of Mer2 with other proteins required for break formation. We propose that this function of Cdc28 helps to coordinate the events of meiotic prophase with each other and with progression through prophase.
Collapse
Affiliation(s)
- Kiersten A. Henderson
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY USA
| | - Kehkooi Kee
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY USA
| | - Shohreh Maleki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
| | - Paul Santini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY USA
- * Corresponding author: Phone (212) 639-5182; FAX: (212) 717-3627; e-mail:
| |
Collapse
|
23
|
Keeney S, Neale MJ. Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 2006; 34:523-5. [PMID: 16856850 DOI: 10.1042/bst0340523] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Homologous recombination is essential for accurate chromosome segregation during meiosis in most sexual organisms. Meiotic recombination is initiated by the formation of DSBs (DNA double-strand breaks) made by the Spo11 protein. We review here recent findings pertaining to protein–protein interactions important for DSB formation, the mechanism of an early step in the processing of Spo11-generated DSBs, and regulation of DSB formation by protein kinases.
Collapse
Affiliation(s)
- S Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., Box 97, New York, NY 10021, USA.
| | | |
Collapse
|
24
|
Malone RE, Haring SJ, Foreman KE, Pansegrau ML, Smith SM, Houdek DR, Carpp L, Shah B, Lee KE. The signal from the initiation of meiotic recombination to the first division of meiosis. EUKARYOTIC CELL 2005; 3:598-609. [PMID: 15189982 PMCID: PMC420144 DOI: 10.1128/ec.3.3.598-609.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two of the unique events that occur in meiosis are high levels of genetic recombination and the reductional division. Our previous work demonstrated that the REC102, REC104, REC114, and RAD50 genes, required to initiate meiotic recombination in Saccharomyces cerevisiae, are needed for the proper timing of the first meiotic (MI) division. If these genes are absent, the MI division actually begins at an earlier time. This paper demonstrates that the meiotic recombination genes MER2/REC107, SPO11, and MRE2 and the synaptonemal complex genes HOP1 and RED1 are also required for the normal delay of the MI division. A rec103/ski8 mutant starts the MI division at the same time as in wild-type cells. Our data indicate no obvious correlation between the timing of premeiotic S phase and the timing of the first division in Rec- mutants. Cells with rec102 or rec104 mutations form MI spindles before wild-type cells, suggesting that the initiation signal acts prior to spindle formation. Neither RAD9 nor RAD24 is needed to transduce the signal, which delays the first division. The timing of the MI division in RAD24 mutants indicates that the pachytene checkpoint is not active in Rec+ cells and suggests that the coordination between recombination and the MI division in wild-type cells may occur primarily due to the initiation signal. Finally, at least one of the targets of the recombination initiation signal is the NDT80 gene, a transcriptional regulator of middle meiotic gene expression required for the first division.
Collapse
Affiliation(s)
- Robert E Malone
- Department of Biological Sciences and Program in Genetics, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Prieler S, Penkner A, Borde V, Klein F. The control of Spo11's interaction with meiotic recombination hotspots. Genes Dev 2005; 19:255-69. [PMID: 15655113 PMCID: PMC545890 DOI: 10.1101/gad.321105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Programmed double-strand breaks (DSBs), which initiate meiotic recombination, arise through the activity of the evolutionary conserved topoisomerase homolog Spo11. Spo11 is believed to catalyze the DNA cleavage reaction in the initial step of DSB formation, while at least a further 11 factors assist in Saccharomyces cerevisiae. Using chromatin-immunoprecipitation (ChIP), we detected the transient, noncovalent association of Spo11 with meiotic hotspots in wild-type cells. The establishment of this association requires Rec102, Rec104, and Rec114, while the timely removal of Spo11 from chromatin depends on several factors, including Mei4 and Ndt80. In addition, at least one further component, namely, Red1, is responsible for locally restricting Spo11's interaction to the core region of the hotspot. In chromosome spreads, we observed meiosis-specific Spo11-Myc foci, independent of DSB formation, from leptotene until pachytene. In both rad50S and com1Delta/sae2Delta mutants, we observed a novel reaction intermediate between Spo11 and hotspots, which leads to the detection of full-length hotspot DNA by ChIP in the absence of artificial cross-linking. Although this DNA does not contain a break, its recovery requires Spo11's catalytic residue Y135. We propose that detection of uncross-linked full-length hotspot DNA is only possible during the reversible stage of the Spo11 cleavage reaction, in which rad50S and com1Delta/sae2Delta mutants transiently arrest.
Collapse
Affiliation(s)
- Silvia Prieler
- Institute of Botany, Max F. Perutz Laboratories, Department of Chromosome Biology, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
26
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
27
|
Cheng Z, Liu Y, Wang C, Parker R, Song H. Crystal structure of Ski8p, a WD-repeat protein with dual roles in mRNA metabolism and meiotic recombination. Protein Sci 2004; 13:2673-84. [PMID: 15340168 PMCID: PMC2001155 DOI: 10.1110/ps.04856504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ski8p is a WD-repeat protein with an essential role for the Ski complex assembly in an exosome-dependent 3'-to-5' mRNA decay. In addition, Ski8p is involved in meiotic recombination by interacting with Spo11p protein. We have determined the crystal structure of Ski8p from Saccharomyces cerevisiae at 2.2 A resolution. The structure reveals that Ski8p folds into a seven-bladed beta propeller. Mapping sequence conservation and hydrophobicities of amino acids on the molecular surface of Ski8p reveals a prominent site on the top surface of the beta propeller, which is most likely involved in mediating interactions of Ski8p with Ski3p and Spo11p. Mutagenesis combined with yeast two-hybrid and GST pull-down assays identified the top surface of the beta propeller as being required for Ski8p binding to Ski3p and Spo11p. The functional implications for Ski8p function in both mRNA decay and meiotic recombination are discussed.
Collapse
Affiliation(s)
- Zhihong Cheng
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | | | | | |
Collapse
|
28
|
Zierhut C, Berlinger M, Rupp C, Shinohara A, Klein F. Mnd1 is required for meiotic interhomolog repair. Curr Biol 2004; 14:752-62. [PMID: 15120066 DOI: 10.1016/j.cub.2004.04.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 02/18/2004] [Accepted: 03/17/2004] [Indexed: 11/17/2022]
Abstract
BACKGROUND While double-strand break (DSB) repair is vital to the survival of cells during both meiosis and mitosis, the preferred mechanism of repair differs drastically between the two types of cell cycle. Thus, during meiosis, it is the homologous chromosome rather than the sister chromatid that is used as a repair template. RESULTS Cells attempting to undergo meiosis in the absence of Mnd1 arrest in prophase I due to the activation of the Mec1 DNA-damage checkpoint accumulating hyperresected DSBs and aberrant synapsis. Sporulation of mnd1Delta strains can be restored by deleting RED1 or HOP1, which permits repair of DSBs by using the sister chromatid as a repair template. Mnd1 localizes to chromatin as foci independently of DSB formation, axial element (AE) formation, and synaptonemal complex (SC) formation and does not colocalize with Rad51. Mnd1 does not preferentially associate with hotspots of recombination. CONCLUSIONS Our results suggest that Mnd1 acts specifically to promote DSB repair by using the homologous chromosome as a repair template. The presence of Rec8, Red1, or Hop1 renders Mnd1 indispensable for DNA repair, presumably through the establishment of interhomolog (IH) bias. Localization studies suggest that Mnd1 carries out this function without being specifically recruited to the sites of DNA repair. We propose a model in which Mnd1 facilitates chromatin accessibility, which is required to allow strand invasion in meiotic chromatin.
Collapse
Affiliation(s)
- Christian Zierhut
- Max F. Perutz Laboratories, Cell Biology and Genetics, Institute of Botany, University of Vienna, Rennweg 14, A-1030, Vienna, Austria
| | | | | | | | | |
Collapse
|
29
|
Arora C, Kee K, Maleki S, Keeney S. Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol Cell 2004; 13:549-59. [PMID: 14992724 DOI: 10.1016/s1097-2765(04)00063-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/21/2004] [Accepted: 01/28/2004] [Indexed: 11/30/2022]
Abstract
Meiotic recombination initiates with double-strand breaks (DSBs) catalyzed by Spo11 in conjunction with accessory proteins whose roles are not understood. Two-hybrid analysis reveals a network of interactions connecting the yeast DSB proteins to one another. Of these proteins, Ski8 was known to function in cytoplasmic RNA metabolism, suggesting that its role in recombination might be indirect. However, obligate partners of Ski8 in RNA metabolism are dispensable for recombination and Ski8 relocalizes to the nucleus and associates with chromosomes specifically during meiosis. Interaction of Ski8 with Spo11 is essential for DSB formation and Ski8 relocalization. Thus, Ski8 plays distinct roles in RNA metabolism and, as a direct partner of Spo11, in DSB formation. Ski8 works with Spo11 to recruit other DSB proteins to meiotic chromosomes, implicating Ski8 as a scaffold protein mediating assembly of a multiprotein complex essential for DSB formation.
Collapse
Affiliation(s)
- Charanjit Arora
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center and Weill Graduate School of Medical Sciences of Cornell University, 1275 York Avenue, Box 97, New York, NY 10021, USA
| | | | | | | |
Collapse
|
30
|
Ward JO, Reinholdt LG, Hartford SA, Wilson LA, Munroe RJ, Schimenti KJ, Libby BJ, O'Brien M, Pendola JK, Eppig J, Schimenti JC. Toward the genetics of mammalian reproduction: induction and mapping of gametogenesis mutants in mice. Biol Reprod 2003; 69:1615-25. [PMID: 12855593 DOI: 10.1095/biolreprod.103.019877] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The genetic control of mammalian gametogenesis is inadequately characterized because of a lack of mutations causing infertility. To further the discovery of genes required for mammalian gametogenesis, phenotype-driven screens were performed in mice using random chemical mutagenesis of whole animals and embryonic stem cells. Eleven initial mutations are reported here that affect proliferation of germ cells, meiosis, spermiogenesis, and spermiation. Nine of the mutations have been mapped genetically. These preliminary studies provide baselines for estimating the number of genes required for gametogenesis and offer guidance in conducting new genetic screens that will accelerate and optimize mutant discovery. This report demonstrates the efficacy and expediency of mutagenesis to identify new genes required for mammalian gamete development.
Collapse
Affiliation(s)
- Jeremy O Ward
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tessé S, Storlazzi A, Kleckner N, Gargano S, Zickler D. Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc Natl Acad Sci U S A 2003; 100:12865-70. [PMID: 14563920 PMCID: PMC240710 DOI: 10.1073/pnas.2034282100] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ski8p is implicated in degradation of non-poly(A) and double-stranded RNA, and in meiotic DNA recombination. We have identified the Sordaria macrospora SKI8 gene. Ski8p is cytoplasmically localized in all vegetative and sexual cycle cells, and is nuclear localized, specifically in early-mid-meiotic prophase, in temporal correlation with Spo11p, the meiotic double-strand break (DSB) transesterase. Localizations of Ski8p and Spo11p are mutually interdependent. ski8 mutants exhibit defects in vegetative growth, entry into the sexual program, and sporulation. Diverse meiotic defects, also seen in spo11 mutants, are diagnostic of DSB absence, and they are restored by exogenous DSBs. These results suggest that Ski8p promotes meiotic DSB formation by acting directly within meiotic prophase chromosomes. Mutant phenotypes also divide meiotic homolog juxtaposition into three successive, mechanistically distinct steps; recognition, presynaptic alignment, and synapsis, which are distinguished by their differential dependence on DSBs.
Collapse
Affiliation(s)
- Sophie Tessé
- Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France; Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138; and Istituto di Genetica e Biofisica, A. Buzzati Traverso, Consiglio Nazionale delle Ricerche, Via Marconi 10, 80125 Naples, Italy
| | - Aurora Storlazzi
- Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France; Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138; and Istituto di Genetica e Biofisica, A. Buzzati Traverso, Consiglio Nazionale delle Ricerche, Via Marconi 10, 80125 Naples, Italy
| | - Nancy Kleckner
- Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France; Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138; and Istituto di Genetica e Biofisica, A. Buzzati Traverso, Consiglio Nazionale delle Ricerche, Via Marconi 10, 80125 Naples, Italy
- To whom correspondence should be addressed. E-mail:
| | - Silvana Gargano
- Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France; Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138; and Istituto di Genetica e Biofisica, A. Buzzati Traverso, Consiglio Nazionale delle Ricerche, Via Marconi 10, 80125 Naples, Italy
| | - Denise Zickler
- Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France; Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138; and Istituto di Genetica e Biofisica, A. Buzzati Traverso, Consiglio Nazionale delle Ricerche, Via Marconi 10, 80125 Naples, Italy
| |
Collapse
|
32
|
Jiao K, Salem L, Malone R. Support for a meiotic recombination initiation complex: interactions among Rec102p, Rec104p, and Spo11p. Mol Cell Biol 2003; 23:5928-38. [PMID: 12897161 PMCID: PMC166337 DOI: 10.1128/mcb.23.16.5928-5938.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of meiotic recombination in the yeast Saccharomyces cerevisiae requires at least 10 gene products. The initiation event creates double-strand breaks, which are then processed by other recombination enzymes. A variety of classical observations, such as the existence of recombination nodules, have suggested that the proteins catalyzing recombination form a complex. A variety of lines of evidence indicate that Rad50p, Mre11p, and Xrs2p interact, and genetic data suggesting interactions between Rec102p and Rec104p have been reported. It has recently been shown that Spo11p coimmunoprecipitates with Rec102p in meiosis as well. In this paper, we provide genetic and biochemical evidence that the meiosis-specific proteins Rec102p, Rec104p, and Spo11p all interact with each other in meiosis. Furthermore, we demonstrate that the interaction between Rec102p and Spo11p does not require Rec104p. Likewise, the interaction between Rec104p and Rec102p does not require Spo11p, although Spo11p may stabilize that association. The interactions suggest that Spo11p, Rec102p, and Rec104p may form a trimeric complex during the initiation of recombination.
Collapse
Affiliation(s)
- Kai Jiao
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
33
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 790] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
34
|
Revers LF, Cardone JM, Bonatto D, Saffi J, Grey M, Feldmann H, Brendel M, Henriques JAP. Thermoconditional modulation of the pleiotropic sensitivity phenotype by the Saccharomyces cerevisiae PRP19 mutant allele pso4-1. Nucleic Acids Res 2002; 30:4993-5003. [PMID: 12434004 PMCID: PMC137178 DOI: 10.1093/nar/gkf632] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Revised: 09/30/2002] [Accepted: 09/30/2002] [Indexed: 11/13/2022] Open
Abstract
The conditionally-lethal pso4-1 mutant allele of the spliceosomal-associated PRP19 gene allowed us to study this gene's influence on pre-mRNA processing, DNA repair and sporulation. Phenotypes related to intron-containing genes were correlated to temperature. Splicing reporter systems and RT-PCR showed splicing efficiency in pso4-1 to be inversely correlated to growth temperature. A single amino acid substitution, replacing leucine with serine, was identified within the N-terminal region of the pso4-1 allele and was shown to affect the interacting properties of Pso4-1p. Amongst 24 interacting clones isolated in a two-hybrid screening, seven could be identified as parts of the RAD2, RLF2 and DBR1 genes. RAD2 encodes an endonuclease indispensable for nucleotide excision repair (NER), RLF2 encodes the major subunit of the chromatin assembly factor I, whose deletion results in sensitivity to UVC radiation, while DBR1 encodes the lariat RNA splicing debranching enzyme, which degrades intron lariat structures during splicing. Characterization of mutagen-sensitive phenotypes of rad2Delta, rlf2Delta and pso4-1 single and double mutant strains showed enhanced sensitivity for the rad2Delta pso4-1 and rlf2Delta pso4-1 double mutants, suggesting a functional interference of these proteins in DNA repair processes in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- L F Revers
- Depto. de Biofísica/Centro de Biotecnologia-IB-UFRGS, Avenida Bento Gonçalves, 9500, Prédio 43421, Campus do Vale, 91501-907 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Homologous recombination is essential during meiosis in most sexually reproducing organisms. In budding yeast, and most likely in other organisms as well, meiotic recombination proceeds via the formation and repair of DNA double-strand breaks (DSBs). These breaks appear to be formed by the Spo11 protein, with assistance from a large number of other gene products, by a topoisomerase-like transesterase mechanism. Recent studies in fission yeast, multicellular fungi, flies, worms, plants, and mammals indicate that the role of Spo11 in meiotic recombination initiation is highly conserved. This chapter reviews the properties of Spo11 and the other gene products required for meiotic DSB formation in a number of organisms and discusses ways in which recombination initiation is coordinated with other events occurring in the meiotic cell.
Collapse
Affiliation(s)
- S Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, and Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| |
Collapse
|
36
|
Jiao K, Nau JJ, Cool M, Gray WM, Fassler JS, Malone RE. Phylogenetic footprinting reveals multiple regulatory elements involved in control of the meiotic recombination gene, REC102. Yeast 2002; 19:99-114. [PMID: 11788965 DOI: 10.1002/yea.800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
REC102 is a meiosis-specific early exchange gene absolutely required for meiotic recombination in Saccharomyces cerevisiae. Sequence analysis of REC102 indicates that there are multiple potential regulatory elements in its promoter region, and a possible regulatory element in the coding region. This suggests that the regulation of REC102 may be complex and may include elements not yet reported in other meiotic genes. To identify potential cis-regulatory elements, phylogenetic footprinting analysis was used. REC102 homologues were cloned from other two Saccharomyces spp. and sequence comparison among the three species defined evolutionarily conserved elements. Deletion analysis demonstrated that the early meiotic gene regulatory element URS1 was necessary but not sufficient for proper regulation of REC102. Upstream elements, including the binding sites for Gcr1p, Yap1p, Rap1p and several novel conserved sequences, are also required for the normal regulation of REC102 as well as a Rap1p binding site located in the coding region. The data in this paper support the use of phylogenetic comparisions as a method for determining important sequences in complex promoters.
Collapse
Affiliation(s)
- Kai Jiao
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52246, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kee K, Keeney S. Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae. Genetics 2002; 160:111-22. [PMID: 11805049 PMCID: PMC1461935 DOI: 10.1093/genetics/160.1.111] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Saccharomyces cerevisiae, formation of the DNA double-strand breaks (DSBs) that initiate meiotic recombination requires the products of at least 10 genes. Spo11p is thought to be the catalytic subunit of the DNA cleaving activity, but the roles of the other proteins, and the interactions among them, are not well understood. This study demonstrates genetic and physical interactions between the products of SPO11 and another early meiotic gene required for DSB formation, REC102. We found that epitope-tagged versions of SPO11 and REC102 that by themselves were capable of supporting normal or nearly normal levels of meiotic recombination conferred a severe synthetic cold-sensitive phenotype when combined in the same cells. DSB formation, meiotic gene conversion, and spore viability were drastically reduced in the doubly tagged strain at a nonpermissive temperature. This conditional defect could be partially rescued by expression of untagged SPO11, but not by expression of untagged REC102, indicating that tagged REC102 is fully dominant for this synthetic phenotype. Both tagged and wild-type Spo11p co-immunoprecipitated with tagged Rec102p from meiotic cell extracts, indicating that these proteins are present in a common complex in vivo. Tagged Rec102p localized to the nucleus in whole cells and to chromatin on spread meiotic chromosomes. Our results are consistent with the idea that a multiprotein complex that includes Spo11p and Rec102p promotes meiotic DSB formation.
Collapse
Affiliation(s)
- Kehkooi Kee
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center and Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
38
|
Affiliation(s)
- J C Game
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Thompson DA, Stahl FW. Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 1999; 153:621-41. [PMID: 10511544 PMCID: PMC1460802 DOI: 10.1093/genetics/153.2.621] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Meiotic exchange occurs preferentially between homologous chromatids, in contrast to mitotic recombination, which occurs primarily between sister chromatids. To identify functions that direct meiotic recombination events to homologues, we screened for mutants exhibiting an increase in meiotic unequal sister-chromatid recombination (SCR). The msc (meiotic sister-chromatid recombination) mutants were quantified in spo13 meiosis with respect to meiotic unequal SCR frequency, disome segregation pattern, sporulation frequency, and spore viability. Analysis of the msc mutants according to these criteria defines three classes. Mutants with a class I phenotype identified new alleles of the meiosis-specific genes RED1 and MEK1, the DNA damage checkpoint genes RAD24 and MEC3, and a previously unknown gene, MSC6. The genes RED1, MEK1, RAD24, RAD17, and MEC1 are required for meiotic prophase arrest induced by a dmc1 mutation, which defines a meiotic recombination checkpoint. Meiotic unequal SCR was also elevated in a rad17 mutant. Our observation that meiotic unequal SCR is elevated in meiotic recombination checkpoint mutants suggests that, in addition to their proposed monitoring function, these checkpoint genes function to direct meiotic recombination events to homologues. The mutants in class II, including a dmc1 mutant, confer a dominant meiotic lethal phenotype in diploid SPO13 meiosis in our strain background, and they identify alleles of UBR1, INP52, BUD3, PET122, ELA1, and MSC1-MSC3. These results suggest that DMC1 functions to bias the repair of meiosis-specific double-strand breaks to homologues. We hypothesize that the genes identified by the class II mutants function in or are regulators of the DMC1-promoted interhomologue recombination pathway. Class III mutants may be elevated for rates of both SCR and homologue exchange.
Collapse
Affiliation(s)
- D A Thompson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.
| | | |
Collapse
|
40
|
Bishop DK, Nikolski Y, Oshiro J, Chon J, Shinohara M, Chen X. High copy number suppression of the meiotic arrest caused by a dmc1 mutation: REC114 imposes an early recombination block and RAD54 promotes a DMC1-independent DSB repair pathway. Genes Cells 1999; 4:425-44. [PMID: 10526232 DOI: 10.1046/j.1365-2443.1999.00273.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND DMC1, the meiosis-specific eukaryotic homologue of bacterial recA, is required for completion of meiotic recombination and cell cycle progression past prophase. In a dmc1 mutant, double strand break recombination intermediates accumulate and cells arrest in prophase. We isolated genes which, when present at high copy numbers, suppress the meiotic arrest phenotype conferred by dmc1 mutations. RESULTS Among the genes isolated were two which suppress arrest by altering the recombination process. REC114 suppresses formation of double strand break (DSB) recombination intermediates. The low viability of spores produced by dmc1 mutants carrying high copy numbers of REC114 is rescued when reductional segregation is bypassed by mutation of spo13. High copy numbers of RAD54 suppress dmc1 arrest, promote DSB repair, and allow formation of viable spores following reductional segregation. Analysis of the combined effects of a null mutation in RED1, a gene required for meiotic chromosome structure, with null mutations in RAD54 and DMC1 shows that RAD54, while not normally important for repair of DSBs during meiosis, is required for efficient repair of breaks by the intersister recombination pathway that operates in red1 dmc1 double mutants. CONCLUSIONS Over-expression of REC114 suppresses meiotic arrest by preventing formation of DSBs. High copy numbers of RAD54 activate a DMC1-independent mechanism that promotes repair of DSBs by homology-mediated recombination. The ability of RAD54 to promote DMC1-independent recombination is proposed to involve suppression of a constraint that normally promotes recombination between homologous chromatids rather than sisters.
Collapse
Affiliation(s)
- D K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Salem L, Walter N, Malone R. Suppressor analysis of the Saccharomyces cerevisiae gene REC104 reveals a genetic interaction with REC102. Genetics 1999; 151:1261-72. [PMID: 10101155 PMCID: PMC1460571 DOI: 10.1093/genetics/151.4.1261] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
REC104 is a gene required for the initiation of meiotic recombination in Saccharomyces cerevisiae. To better understand the role of REC104 in meiosis, we used an in vitro mutagenesis technique to create a set of temperature-conditional mutations in REC104 and used one ts allele (rec104-8) in a screen for high-copy suppressors. An increased dosage of the early exchange gene REC102 was found to suppress the conditional recombinational reduction in rec104-8 as well as in several other conditional rec104 alleles. However, no suppression was observed for a null allele of REC104, indicating that the suppression by REC102 is not "bypass" suppression. Overexpression of the early meiotic genes REC114, RAD50, HOP1, and RED1 fails to suppress any of the rec104 conditional alleles, indicating that the suppression might be specific to REC102.
Collapse
Affiliation(s)
- L Salem
- Program in Genetics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
42
|
Abstract
Meiosis, a specialized cell division process, occurs in all sexually reproducing organisms. During this process a diploid cell undergoes a single round of DNA replication followed by two rounds of nuclear division to produce four haploid gametes. In yeast, the meiotic products are packaged into four spores that are enclosed in a sac known as an ascus. To enhance our understanding of the meiotic developmental pathway and spore formation, we followed differential expression of genes in meiotic versus vegetatively growing cells in the yeast Saccharomyces cerevisiae. Such comparative analyses have identified five different classes of genes that are expressed at different stages of the sporulation program. We identified several meiosis-specific genes including some already known to be induced during meiosis. Here we describe one of these previously uncharacterized genes, SSP1, which plays an essential role in meiosis and spore formation. SSP1 is induced midway through meiosis, and the homozygous mutant-diploid cells fail to sporulate. In ssp1 cells, meiosis is delayed, nuclei fragment after meiosis II, and viability declines rapidly. The ssp1 defect is not related to a microtubule-cytoskeletal-dependent event and is independent of two rounds of meiotic divisions. Our results suggest that Ssp1 is likely to function in a pathway that controls meiotic nuclear divisions and coordinates meiosis and spore formation. Functional analysis of other uncharacterized genes is underway.
Collapse
Affiliation(s)
- D K Nag
- Wadsworth Center, Department of Biomedical Sciences, School of Public Health, State University of New York, Albany 12201, USA
| | | |
Collapse
|
43
|
Wilson S, Tavassoli M, Watts FZ. Schizosaccharomyces pombe rad32 protein: a phosphoprotein with an essential phosphoesterase motif required for repair of DNA double strand breaks. Nucleic Acids Res 1998; 26:5261-9. [PMID: 9826747 PMCID: PMC147988 DOI: 10.1093/nar/26.23.5261] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Schizosaccharomyces pombe Rad32 protein is required for repair of DNA double strand breaks, minichromosome stability and meiotic recombination. We show here that the Rad32 protein is phosphorylated in a cell cycle-dependent manner and during meiosis. The phosphorylation is not dependent on the checkpoint protein Rad3. Analysis of a partially purified protein preparation indicates that Rad32 is likely to act in a complex. Characterisation of the rad32-1 mutation and site-directed mutagenesis indicate that three aspartate residues in the conserved phosphoesterase motifs are important for both mitotic and meiotic functions, namely response to UV and ionising radiation and spore viability.
Collapse
Affiliation(s)
- S Wilson
- Department of Biochemistry, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | |
Collapse
|
44
|
Furuse M, Nagase Y, Tsubouchi H, Murakami-Murofushi K, Shibata T, Ohta K. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J 1998; 17:6412-25. [PMID: 9799249 PMCID: PMC1170966 DOI: 10.1093/emboj/17.21.6412] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED In Saccharomyces cerevisiae, Mre11 protein is involved in both double-strand DNA break (DSB) repair and meiotic DSB formation. Here, we report the correlation of nuclease and DNA-binding activities of Mre11 with its functions in DNA repair and meiotic DSB formation. Purified Mre11 bound to DNA efficiently and was shown to have Mn2+-dependent nuclease activities. A point mutation in the N-terminal phosphoesterase motif (Mre11D16A) resulted in the abolition of nuclease activities but had no significant effect on DNA binding. The wild-type level of nuclease activity was detected in a C-terminal truncated protein (Mre11DeltaC49), although it had reduced DNA-binding activity. Phenotypes of the corresponding mutations were also analyzed. The mre11D16A mutation conferred methyl methanesulfonate-sensitivity to mitotic cells and caused the accumulation of unprocessed meiotic DSBs. The mre11DeltaC49 mutant exhibited almost wild-type phenotypes in mitosis. However, in meiosis, no DSB formation could be detected and an aberrant chromatin configuration was observed at DSB sites in the mre11DeltaC49 mutant. These results indicate that Mre11 has two separable functional domains: the N-terminal nuclease domain required for DSB repair, and the C-terminal dsDNA-binding domain essential to its meiotic functions such as chromatin modification and DSB formation. KEYWORDS DNA binding/double-strand break repair/DSB formation/Mre11/nuclease
Collapse
Affiliation(s)
- M Furuse
- Cellular and Molecular Biology Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Nitiss JL. Investigating the biological functions of DNA topoisomerases in eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:63-81. [PMID: 9748506 DOI: 10.1016/s0167-4781(98)00128-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA topoisomerases participate in nearly all events relating to DNA metabolism including replication, transcription, and chromosome segregation. Recent studies in eukaryotic cells have led to the discovery of several novel topoisomerases, and to new questions concerning the roles of these enzymes in cellular processes. Gene knockout studies are helping to delineate the roles of topoisomerases in mammalian cells, just as similar studies in yeast established paradigms concerning the functions of topoisomerases in lower eukaryotes. The application of new technologies for identifying interacting proteins has connected the studies on topoisomerases to other areas of human biology including genome stability and aging. These studies highlight the importance of understanding how topoisomerases participate in the normal processes of transcription, DNA replication, and genome stability.
Collapse
Affiliation(s)
- J L Nitiss
- St. Jude Children's Research Hospital, Molecular Pharmacology Department, 332 N. Lauderdale, Memphis, TN 38105, USA.
| |
Collapse
|
46
|
Bressan DA, Olivares HA, Nelms BE, Petrini JH. Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 1998; 150:591-600. [PMID: 9755192 PMCID: PMC1460356 DOI: 10.1093/genetics/150.2.591] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae Mre11, Rad50, and Xrs2 function in a protein complex that is important for nonhomologous recombination. Null mutants of MRE11, RAD50, and XRS2 are characterized by ionizing radiation sensitivity and mitotic interhomologue hyperrecombination. We mutagenized the four highly conserved phosphoesterase signature motifs of Mre11 to create mre11-11, mre11-2, mre11-3, and mre11-4 and assessed the functional consequences of these mutant alleles with respect to mitotic interhomologue recombination, chromosome loss, ionizing radiation sensitivity, double-strand break repair, and protein interaction. We found that mre11 mutants that behaved as the null were sensitive to ionizing radiation and deficient in double-strand break repair. We also observed that these null mutants exhibited a hyperrecombination phenotype in mitotic cells, consistent with previous reports, but did not exhibit an increased frequency of chromosome loss. Differential ionizing radiation sensitivities among the hypomorphic mre11 alleles correlated with the trends observed in the other phenotypes examined. Two-hybrid interaction testing showed that all but one of the mre11 mutations disrupted the Mre11-Rad50 interaction. Mutagenesis of the phosphoesterase signatures in Mre11 thus demonstrated the importance of these conserved motifs for recombinational DNA repair.
Collapse
Affiliation(s)
- D A Bressan
- Laboratory of Genetics, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
47
|
Fox ME, Smith GR. Control of meiotic recombination in Schizosaccharomyces pombe. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:345-78. [PMID: 9752725 DOI: 10.1016/s0079-6603(08)60831-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Homologous recombination occurs at high frequency during meiosis and is essential for the proper segregation of chromosomes and the generation of genetic diversity. Meiotic recombination is controlled in numerous ways. In the fission yeast Schizosaccharomyces pombe nutritional starvation induces meiosis and high-level expression of many genes, including numerous recombination (rec) genes, whose products are required for recombination. Accompanying the two meiotic divisions are profound changes in nuclear and chromosomal structure and movement, which may play an important role in meiotic recombination. Although recombination occurs throughout the genome, it occurs at high frequency in some intervals (hotspots) and at low frequency in others (coldspots). The well-characterized hotspot M26 is activated by the Mts1/Mts2 protein; this site and its binding proteins interact with the local chromosomal structure to enhance recombination. A coldspot between the silent mating-type loci is repressed by identified proteins, which may also alter local chromatin. We discuss in detail the rec genes and the possible functions of their products, some but not all of which share homology with other identified proteins. Although some of the rec gene products are required for recombination throughout the genome, others demonstrate regional specificity and are required in certain genomic regions but not in others. Throughout the review contrasts are made with meiotic recombination in the more thoroughly studied budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M E Fox
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
48
|
Hayashi A, Ogawa H, Kohno K, Gasser SM, Hiraoka Y. Meiotic behaviours of chromosomes and microtubules in budding yeast: relocalization of centromeres and telomeres during meiotic prophase. Genes Cells 1998; 3:587-601. [PMID: 9813109 DOI: 10.1046/j.1365-2443.1998.00215.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Meiosis is a process of universal importance in eukaryotic organisms, generating variation in the heritable haploid genome by recombination and re-assortment of chromosomes. The intranuclear movement of chromosomes is expected to achieve pairing and recombination of homologous chromosomes during meiosis. Meiosis in the budding yeast Saccharomyces cerevisiae has been extensively studied, both genetically and by molecular biology; here we report cytological observations of meiotic chromosomal events in this organism. RESULTS Using fluorescence microscopy, we have examined the behaviour of chromosomes and microtubules during meiosis in S. cerevisiae. We first observed the dynamic behaviour of nuclei in living cells using jellyfish green fluorescent protein (GFP) fused with nucleoplasmin, a Xenopus oocyte nuclear protein. The characterization of nuclear movement in living cells was extended by an analysis of chromosomes and microtubules in fixed specimens. In addition, the nuclear localization of centromeres and telomeres was determined by indirect immunofluorescence microscopy in synchronous populations of meiotic cells. While telomeres remain in clusters of 5-8 throughout meiosis, centromeres change their nuclear localization dramatically during the progression of meiosis: centromeres are first clustered at a single site near the spindle-pole body before the induction of meiosis, and become scattered during the meiotic prophase. CONCLUSIONS Our observations have demonstrated that nuclear and cytoskeletal reorganization take place with meiosis in S. cerevisiae. In particular, the distinct relocalization of centromeres during meiosis indicates a considerable movement of chromosomes within the meiotic prophase nucleus.
Collapse
Affiliation(s)
- A Hayashi
- Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | | | | | | | | |
Collapse
|
49
|
Paulovich AG, Armour CD, Hartwell LH. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics 1998; 150:75-93. [PMID: 9725831 PMCID: PMC1460327 DOI: 10.1093/genetics/150.1.75] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication.
Collapse
Affiliation(s)
- A G Paulovich
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
50
|
Engebrecht J, Masse S, Davis L, Rose K, Kessel T. Yeast meiotic mutants proficient for the induction of ectopic recombination. Genetics 1998; 148:581-98. [PMID: 9504908 PMCID: PMC1459833 DOI: 10.1093/genetics/148.2.581] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A screen was designed to identify Saccharomyces cerevisiae mutants that were defective in meiosis yet proficient for meiotic ectopic recombination in the return-to-growth protocol. Seven mutants alleles were isolated; two are important for chromosome synapsis (RED1, MEK1) and five function independently of recombination (SPO14, GSG1, SPOT8/MUM2, 3, 4). Similar to the spoT8-1 mutant, mum2 deletion strains do not undergo premeiotic DNA synthesis, arrest prior to the first meiotic division and fail to sporulate. Surprisingly, although DNA replication does not occur, mum2 mutants are induced for high levels of ectopic recombination. gsg1 diploids are reduced in their ability to complete premeiotic DNA synthesis and the meiotic divisions, and a small percentage of cells produce spores. mum3 mutants sporulate poorly and the spores produced are inviable. Finally, mum4-1 mutants produce inviable spores. The meiotic/sporulation defects of gsg1, mum2, and mum3 are not relieved by spo11 or spo13 mutations, indicating that the mutant defects are not dependent on the initiation of recombination or completion of both meiotic divisions. In contrast, the spore inviability of the mum4-1 mutant is rescued by the spo13 mutation. The mum4-1 spo13 mutant undergoes a single, predominantly equational division, suggesting that MUM4 functions at or prior to the first meiotic division. Although recombination is variably affected in the gsg1 and mum mutants, we hypothesize that these mutants define genes important for aspects of meiosis not directly related to recombination.
Collapse
Affiliation(s)
- J Engebrecht
- Department of Pharmacological Sciences, State University of New York, Stony Brook 11794-8651, USA.
| | | | | | | | | |
Collapse
|