1
|
In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles. mBio 2014; 5:e01075-14. [PMID: 25096872 PMCID: PMC4128348 DOI: 10.1128/mbio.01075-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. Urinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenic Escherichia coli strains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenic E. coli gene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.
Collapse
|
2
|
Leimbach A, Hacker J, Dobrindt U. E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity. Curr Top Microbiol Immunol 2013; 358:3-32. [PMID: 23340801 DOI: 10.1007/82_2012_303] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Chaudhuri RR, Henderson IR. The evolution of the Escherichia coli phylogeny. INFECTION GENETICS AND EVOLUTION 2012; 12:214-26. [DOI: 10.1016/j.meegid.2012.01.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
|
4
|
Overexpression of cloned RhsA sequences perturbs the cellular translational machinery in Escherichia coli. J Bacteriol 2011; 193:4869-80. [PMID: 21764923 DOI: 10.1128/jb.05061-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RhsA is a member of the multigene Rhs family and consists of a complex genetic sequence. This sequence consists of several distinct components, including a GC-rich core (core open reading frame [ORF]), an AT-rich extension (ext-a1) of the core ORF and an AT-rich region following the core extension (dsORF-a1). The functions of RhsA and the different distinct components, which can include open reading frames, are not well understood. Here, we study the effect of overexpression of the ext-a1 sequence and the ext-a1 3' region, which includes a partial sequence of dsORF-a1, on Escherichia coli cells. Cells expressing these sequences show reduced cell growth and cell viability. The expression of these sequences dramatically affects different components of the transcription and translation machinery. Transcriptomic analysis reveals an increase in the expression of genes involved in transcription, RNA processing, and nucleotide biosynthesis and metabolism and a decrease in the expression of amino acid biosynthesis genes and transfer RNAs. Further, expression of the above-mentioned RhsA components increases ribosomal gene expression, as well as rRNA and ribosome abundance. Proteomic analysis reveals an overall reduction of protein expression at the genome-wide level in cells expressing the above-mentioned RhsA components. Based on these observations, we suspect a translation product of ext-a1 affects different regulatory mechanisms that control rRNA synthesis.
Collapse
|
5
|
Pugliese N, Circella E, Pazzani C, Pupillo A, Camarda A. Validation of a seminested PCR approach for rapid detection of Salmonella enterica subsp. enterica serovar Gallinarum. J Microbiol Methods 2011; 85:22-7. [PMID: 21256889 DOI: 10.1016/j.mimet.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 11/28/2022]
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (S. Gallinarum) is the causative agent of fowl typhoid, one of the major causes of mortality and morbidity on poultry farms. Even though it has been substantially eradicated in many developed countries, the disease still remains endemic in Central and South America, in Africa and in the Mediterranean countries of Europe. This leads to the routine screening of flocks, mainly by cultivation and serological techniques, which are expensive, as well as time and labour-consuming. Here we describe a simple and specific PCR-based method for detecting S. Gallinarum. It relies on two seminested PCRs which use four pairs of primers designed on the basis of two genomic regions which appear to be exclusive to the pathogen. Furthermore, an internal positive control was devised in order to avoid any false negative results. We performed sensitivity and specificity tests, and our findings showed the cogency of the system and its potential effectiveness even for routine uses.
Collapse
Affiliation(s)
- Nicola Pugliese
- Dipartimento di Sanità Pubblica e Zootecnia, Università degli Studi di Bari "Aldo Moro", S.P. per Casamassima km. 3, 70010 Valenzano (Ba), Italy
| | | | | | | | | |
Collapse
|
6
|
Roh E, Heu S, Moon E. Genus-specific distribution and pathovar-specific variation of the glycinecin R gene homologs in Xanthomonas genomes. J Microbiol 2008; 46:681-6. [PMID: 19107397 DOI: 10.1007/s12275-008-0209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 08/26/2008] [Indexed: 11/25/2022]
Abstract
Xanthomonas axonopodis pv. glycines produces bacteriocins called glycinecin, and two glycinecin genes, glyA and glyR, were reported previously. In this paper, we describe genomic distribution and variation of the glyR gene revealed by extensive Southern hybridization analysis. In contrast to the glyA gene present only in X. axonopodis pv. glycines, the glyR gene was found to be distributed widely in all the pathovars of Xanthomas genus. It was also found that the glyR gene is a multigene family while the glyA is a single copy gene. Moreover, the copy number and the variation of the glyR multigene are unique to each pathovar of Xanthomonas. The uniqueness can be easily detected by the patterns resulted from Southern hybridization using the genomic digests. Thus, we suggest the glyR gene can serve as a useful genus-specific and pathovar-specific DNA marker for Xanthomonas. One of the glyR homologs was further isolated from X. axonopodis pv. glycines, and analyzed to be functional with strong inhibitory activity against several members of Xanthomonas.
Collapse
Affiliation(s)
- Eunjung Roh
- Department of Biological Sciences, Ajou University, Suwon, 442-749, Republic of Korea
| | | | | |
Collapse
|
7
|
Petersen L, Bollback JP, Dimmic M, Hubisz M, Nielsen R. Genes under positive selection in Escherichia coli. Genome Res 2007; 17:1336-43. [PMID: 17675366 PMCID: PMC1950902 DOI: 10.1101/gr.6254707] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome, including cell surface proteins such as beta barrel porins, presumably because of the involvement of these genes in evolutionary arms races with other bacteria, phages, and/or the host immune system. Structural mapping of positively selected sites on trans-membrane beta barrel porins reveals that the residues under positive selection occur almost exclusively in the extracellular region of the proteins that are enriched with sites known to be targets of phages, colicins, or the host immune system. More surprisingly, we also find a number of other categories of genes that show very strong evidence for positive selection, such as the enigmatic rhs elements and transposases. Based on structural evidence, we hypothesize that the selection acting on transposases is related to the genomic conflict between transposable elements and the host genome.
Collapse
Affiliation(s)
- Lise Petersen
- Bioinformatics Centre, University of Copenhagen, Copenhagen DK-2200, Denmark.
| | | | | | | | | |
Collapse
|
8
|
McNulty C, Thompson J, Barrett B, Lord L, Andersen C, Roberts IS. The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD, RhsA and a multi-protein complex at the pole of the cell. Mol Microbiol 2006; 59:907-22. [PMID: 16420360 DOI: 10.1111/j.1365-2958.2005.05010.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The export of large negatively charged capsular polysaccharides across the outer membrane represents a significant challenge to Gram negative bacteria. In the case of Escherichia coli group 2 capsular polysaccharides, the mechanism of export across the outer membrane was unknown, with no identified candidate outer membrane proteins. In this paper we demonstrate that the KpsD protein, previously believed to be a periplasmic protein, is an outer membrane protein involved in the export of group 2 capsular polysaccharides across the outer membrane. We demonstrate that KpsD and KpsE are located at the poles of the cell and that polysaccharide biosynthesis and export occurs at these polar sites. By in vivo chemical cross-linking and MALDI-TOF-MS analysis we demonstrate the presence of a multi-protein biosynthetic/export complex in which cytoplasmic proteins involved in polysaccharide biosynthesis could be cross-linked to proteins involved in export across the inner and outer membranes. In addition, we show that the RhsA protein, of previously unknown function, could be cross-linked to the complex and that a rhsA mutation reduces K5 biosynthesis suggesting a role for RhsA in coupling biosynthesis and export.
Collapse
Affiliation(s)
- Clodagh McNulty
- Faculty of Life Sciences, 1.800 Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
9
|
Dai L, Zimmerly S. The dispersal of five group II introns among natural populations of Escherichia coli. RNA (NEW YORK, N.Y.) 2002; 8:1294-307. [PMID: 12403467 PMCID: PMC1370338 DOI: 10.1017/s1355838202023014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Group II introns are self-splicing RNAs that also act as retroelements in bacteria, mitochondria, and chloroplasts. Group II introns were identified in Escherichia coli in 1994, but have not been characterized since, and, instead, other bacterial group II introns have been studied for splicing and mobility properties. Despite their apparent intractability, at least five distinct group II introns exist naturally in E. coli strains. To illuminate their function and learn how the introns have dispersed in their natural host, we have investigated their distribution in the ECOR reference collection. Two introns were cloned and sequenced to complete their partial sequences. Unexpectedly, southern blots showed all ECOR strains to contain fragments and/or full-length copies of group II introns, with some strains containing up to 15 intron copies. One intron, E.c.14, has two natural homing sites in IS629 and IS911 elements, and the intron can be present in one, both, or neither homing site in a given strain. Nearly all strains that contain full-length introns also contain unfilled homing sites, suggesting either that mobility is highly inefficient or that most full-length copies are nonfunctional. The data indicate independent mobility of the introns, as well as mobility via the host DNA elements, and overall, the pattern of intron distribution resembles that of IS elements.
Collapse
Affiliation(s)
- Lixin Dai
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
10
|
Sandt CH, Hopper JE, Hill CW. Activation of prophage eib genes for immunoglobulin-binding proteins by genes from the IbrAB genetic island of Escherichia coli ECOR-9. J Bacteriol 2002; 184:3640-8. [PMID: 12057959 PMCID: PMC135156 DOI: 10.1128/jb.184.13.3640-3648.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four distinct Escherichia coli immunoglobulin-binding (eib) genes, each of which encodes a surface-exposed protein that binds immunoglobulins in a nonimmune manner, are carried by separate prophages in E. coli reference (ECOR) strain ECOR-9. Each eib gene was transferred to test E. coli strains, both in the form of multicopy recombinant plasmids and as lysogenized prophage. The derived lysogens express little or no Eib protein, in sharp contrast to the parental lysogen, suggesting that ECOR-9 has an expression-enhancing activity that the derived lysogens lack. Supporting this hypothesis, we cloned from ECOR-9 overlapping genes, ibrA and ibrB (designation is derived from "immunoglobulin-binding regulator"), which together activated eib expression in the derived lysogens. The proteins encoded by ibrA and ibrB are very similar to uncharacterized proteins encoded by genes of Salmonella enterica serovar Typhi and E. coli O157:H7 (in a prophage-like element of the Sakai strain and in two O islands of strain EDL933). The genomic segment containing ibrA and ibrB has been designated the IbrAB island. It contains regions of homology to the Shiga toxin-converting prophage, Stx2, as well as genes homologous to phage antirepressor genes. The left boundary between the IbrAB island and the chromosomal framework is located near min 35.8 of the E. coli K-12 genome. Homology to IbrAB was found in certain other ECOR strains, including the other five eib-positive strains and most strains of the phylogenetic group B2. Sequencing of a 1.1-kb portion of ibrAB revealed that the other eib-positive strains diverge by </=0.1% from ECOR-9, whereas eib-negative ECOR-47 diverges by 16%.
Collapse
Affiliation(s)
- Carol H Sandt
- Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
11
|
Sandt CH, Hill CW. Nonimmune binding of human immunoglobulin A (IgA) and IgG Fc by distinct sequence segments of the EibF cell surface protein of Escherichia coli. Infect Immun 2001; 69:7293-303. [PMID: 11705900 PMCID: PMC98814 DOI: 10.1128/iai.69.12.7293-7203.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eib genes of Escherichia coli encode surface-exposed proteins which bind immunoglobulins (Ig) such as the Fc fragment of human IgG (IgG Fc) in a nonimmune manner. The Eib proteins belong to a family which includes YadA of Yersinia, UspA2 of Moraxella, and DsrA of Haemophilus ducreyi. This family of surface-exposed proteins shares several features, such as the ability to impart resistance to human serum complement and a tendency to exist as stable multimers. Four genes, eibA, eibC, eibD and eibE, were previously identified and cloned from ECOR-9, a strain from the E. coli reference collection. EibC, -D, and -E bind human serum IgA in addition to IgG, but no IgA binding has been observed for EibA. Here, we report the cloning of a new eib gene, eibF, from a second strain of E. coli, ECOR-2. The product, EibF, has a relatively strong preference for IgA. Like the other eib genes, eibF attenuates serum sensitivity, occurs as a stable multimer, and is associated with a prophage. By subcloning portions of the eibA and eibF genes, we have identified distinct sequence segments sufficient to cause Ig binding, multimerization, and discrimination between IgA and IgG. The ability to multimerize is associated with a sequence close to the C terminus that is homologous to other family members such as YadA. Binding of IgG Fc is associated with a sequence that is highly conserved among all Eib proteins but otherwise unique. Binding of IgA is associated with a sequence of EibF that is not similar to any EibA sequence.
Collapse
Affiliation(s)
- C H Sandt
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
12
|
Wilderman PJ, Vasil AI, Johnson Z, Vasil ML. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol Microbiol 2001; 39:291-303. [PMID: 11136451 DOI: 10.1046/j.1365-2958.2001.02282.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipases D (PLDs) are virtually ubiquitous in eukaryotic organisms; however, they are relatively uncommon in prokaryotes. In this report, we demonstrate that the environmentally acquired, opportunistic pathogen Pseudomonas aeruginosa expresses PLD activity. A gene designated pldA was identified in the genomic database of P. aeruginosa PAO1 encoding a protein with significant homology to eukaryotic PLDs, but not to any prokaryotic PLDs. PldA is most homologous to PLDs from mammals and yeast. The pldA gene was cloned and shown to express an approximately 116 kDa protein with calcium-regulated PLD activity that is localized to the periplasm. Interestingly, not all strains of P. aeruginosa carry pldA. When present, pldA is always linked to an open reading frame (ORF), ORF4, and a gene (vgrA1) encoding a protein homologous to Vgr from Escherichia coli. Vgr proteins contain regularly repeated dipeptide motifs (valine-glycine repeats). In E. coli, genes encoding Vgr are associated with multicopy genetic elements designated Rhs (rearrangement hot-spots). P. aeruginosa PAO1 has 10 vgr homologues dispersed throughout its genome, but the copy number of these genetic elements varies considerably in different strains. Neither vgrA1 nor ORF4 is present in strains lacking pldA. Furthermore, sequences flanking vgrA1, pldA and ORF4 in the P. aeruginosa strains examined are highly conserved, suggesting a specific site of insertion. These and other data suggest that vgrA1, pldA and ORF4 constitute an approximately 7 kb mobile genetic element and that pldA was acquired horizontally, perhaps from a eukaryotic organism. Competition studies between a PldA knock-out mutant and the parental wild-type strain indicate that PldA contributes to the ability of P. aeruginosa PAO1 to persist in a chronic pulmonary infection model in rats.
Collapse
Affiliation(s)
- P J Wilderman
- Department of Microbiology, Campus Box B-175, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
13
|
Minet AD, Chiquet-Ehrismann R. Phylogenetic analysis of teneurin genes and comparison to the rearrangement hot spot elements of E. coli. Gene 2000; 257:87-97. [PMID: 11054571 DOI: 10.1016/s0378-1119(00)00388-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Teneurins are a novel family of transmembrane proteins conserved between invertebrates and vertebrates. There are two members in Drosophila, one in C. elegans and four members in mouse. Here, we describe the analysis of the genomic structure of the human teneurin-1 gene. The entire human teneurin-1 (TEN1) gene is contained in eight PAC clones representing part of the chromosomal locus Xq25. Interestingly, many X-linked mental retardation syndromes (XLMR) and non-specific mental retardation (MRX) are mapped to this region. The location of the human TEN1 together with the neuronal expression makes TEN1 a candidate gene for XLMR and MRX. We also identified large parts of the human teneurin-2 sequence on chromosome 5 and sections of human teneurin-4 at chromosomal position 11q14. Database searches resulted in the identification of ESTs encoding parts of all four human members of the teneurin family. Analysis of the genomic organization of the Drosophila ten-a gene revealed the presence of exons encoding a long form of ten-a, which can be aligned with all other teneurins known. Sequence comparison and phylogenetic trees of teneurins show that insects and vertebrates diverged before the teneurin ancestor was duplicated independently in the two phyla. This is supported by the presence of conserved intron positions between teneurin genes of man, Drosophila and C. elegans. It is therefore not possible to class any of the vertebrate teneurins with either Drosophila Ten-a or Ten-m. The C-terminal part of all teneurins harbours 26 repetitive sequence motifs termed YD-repeats. YD-repeats are most similar to the repeats encoded by the core of the rearrangement hot spot (rhs) elements of Escherichia coli. This makes the teneurin ancestor a candidate gene for the source of the rhs core acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- A D Minet
- Friedrich Miescher-Institute, PO Box 2543, CH-4002, Basel, Switzerland
| | | |
Collapse
|
14
|
Croft L, Beatson SA, Whitchurch CB, Huang B, Blakeley RL, Mattick JS. An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2351-2364. [PMID: 11021912 DOI: 10.1099/00221287-146-10-2351] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using the complete genome sequence of Pseudomonas: aeruginosa PAO1, sequenced by the Pseudomonas: Genome Project (ftp://ftp.pseudomonas. com/data/pacontigs.121599), a genome database (http://pseudomonas. bit.uq.edu.au/) has been developed containing information on more than 95% of all ORFs in Pseudomonas: aeruginosa. The database is searchable by a variety of means, including gene name, position, keyword, sequence similarity and Pfam domain. Automated and manual annotation, nucleotide and peptide sequences, Pfam and SMART domains (where available), Medline and GenBank links and a scrollable, graphical representation of the surrounding genomic landscape are available for each ORF. Using the database has revealed, among other things, that P. aeruginosa contains four chemotaxis systems, two novel general secretion pathways, at least three loci encoding F17-like thin fimbriae, six novel filamentous haemagglutinin-like genes, a number of unusual composite genetic loci related to vgr/RHS: elements in Escherichia coli, a number of fix-like genes encoding a micro-oxic respiration system, novel biosynthetic pathways and 38 genes containing domains of unknown function (DUF1/DUF2). It is anticipated that this database will be a useful bioinformatic tool for the Pseudomonas: community that will continue to evolve.
Collapse
Affiliation(s)
- Larry Croft
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - Scott A Beatson
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - Cynthia B Whitchurch
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bixing Huang
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert L Blakeley
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - John S Mattick
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Mazel D, Dychinco B, Webb VA, Davies J. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob Agents Chemother 2000; 44:1568-74. [PMID: 10817710 PMCID: PMC89914 DOI: 10.1128/aac.44.6.1568-1574.2000] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1999] [Accepted: 03/13/2000] [Indexed: 11/20/2022] Open
Abstract
The 72 Escherichia coli strains of the ECOR collection were examined for resistance to 10 different antimicrobial agents including ampicillin, tetracycline, mercury, trimethoprim, and sulfonamides. Eighteen strains were resistant to at least one of the antibiotics tested, and nearly 20% (14 of 72) were resistant to two or more. Several of the resistance determinants were shown to be carried on conjugative elements. The collection was screened for the presence of the three classes of integrons and for the sul1 gene, which is generally associated with class 1 integrons. The four strains found to carry a class 1 integron also had Tn21-encoded mercury resistance. One of the integrons encoded a novel streptomycin resistance gene, aadA7, with an attC site (or 59-base element) nearly identical to the attC site associated with the qacF gene cassette found in In40 (M.-C. Ploy, P. Courvalin, and T. Lambert, Antimicrob. Agents Chemother. 42:2557-2563, 1998). The conservation of associated attC sites among unrelated resistance cassettes is similar to arrangements found in the Vibrio cholerae superintegrons (D. Mazel, B. Dychinco, V. A. Webb, and J. Davies, Science 280:605-608, 1998) and supports the hypothesis that resistance cassettes are picked up from superintegron pools and independently assembled from unrelated genes and related attC sites.
Collapse
Affiliation(s)
- D Mazel
- Unité de Programmation Moléculaire et Toxicologie Génétique, Institut Pasteur, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
16
|
Wada A, Mikkola R, Kurland CG, Ishihama A. Growth phase-coupled changes of the ribosome profile in natural isolates and laboratory strains of Escherichia coli. J Bacteriol 2000; 182:2893-9. [PMID: 10781560 PMCID: PMC102000 DOI: 10.1128/jb.182.10.2893-2899.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth phase-dependent change in sucrose density gradient centrifugation patterns of ribosomes was analyzed for both laboratory strains of Escherichia coli and natural isolates from the ECOR collection. All of the natural isolates examined formed 100S ribosome dimers in the stationary phase, and ribosome modulation factor (RMF) was associated with the ribosome dimers in the ECOR strains as in the laboratory strain W3110. The ribosome profile (70S monomers versus 100S dimers) follows a defined pattern over time during lengthy culture in both the laboratory strains and natural isolates. There are four discrete stages: (i) formation of 100S dimers in the early stationary phase; (ii) transient decrease in the dimer level; (iii) return of dimers to the maximum level; and (iv) dissociation of 100S dimers into 70S ribosomes, which are quickly degraded into subassemblies. The total time for this cycle of ribosome profile change, however, varied from strain to strain, resulting in apparent differences in the ribosome profiles when observed at a fixed time point. A correlation was noted in all strains between the decay of 100S ribosomes and the subsequent loss of cell viability. Two types of E. coli mutants defective in ribosome dimerization were identified, both of which were unable to survive for a prolonged period in stationary phase. The W3110 mutant, with a disrupted rmf gene, has a defect in ribosome dimerization because of lack of RMF, while strain Q13 is unable to form ribosome dimers due to a ribosomal defect in binding RMF.
Collapse
Affiliation(s)
- A Wada
- Department of Physics, Osaka Medical College, Takatsuki, Osaka 569-0084, Japan
| | | | | | | |
Collapse
|
17
|
Sandt CH, Hill CW. Four different genes responsible for nonimmune immunoglobulin-binding activities within a single strain of Escherichia coli. Infect Immun 2000; 68:2205-14. [PMID: 10722621 PMCID: PMC97405 DOI: 10.1128/iai.68.4.2205-2214.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain Escherichia coli strains bind the Fc fragment of immunoglobulin G (IgG) at the bacterial cell surface. Previous work established that this nonimmune Ig binding depends on several large proteins with apparent molecular masses that can exceed 200 kDa. For E. coli strain ECOR-9, four distinct genes (designated eibA, eibC, eibD, and eibE) are responsible for Ig binding. Two eib genes are linked to eaa genes, which are homologous to genes for the autotransporter family of secreted proteins. With reference to the E. coli K-12 chromosome, the eibA-eaaA cluster is adjacent to trpA (min 28.3) while the eibC-eaaC cluster is adjacent to aspS (min 42. 0). Sequence adjacent to the eibA-eaaA cluster converges with that of strain K-12 precisely as observed for the Atlas family of prophages, suggesting that eibA is part of one of these. All four eib genes, when cloned into plasmid vectors, impart IgG binding to E. coli K-12 strains, and three impart IgA binding also. The IgG binding occurs at the bacterial cell surface, and its expression increases survival in serum by up to 3 orders of magnitude. The eib sequences predict a C-terminal peptide motif that is characteristic of outer membrane proteins, and the protein sequences show significant similarity near the C terminus to both the YadA virulence factor of Yersinia species and the universal surface protein A II of Moraxella catarrhalis. The sizes predicted for Eib proteins from DNA sequence are much smaller than their apparent sizes on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, possibly reflecting stable oligomerization.
Collapse
Affiliation(s)
- C H Sandt
- Department of Biochemistry, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
18
|
Abstract
The rrn operons and Rhs elements provide starkly contrasting examples of the evolution and interaction of large sequence repetitions in bacteria. Genomic sequencing of different species as well as comparative sequencing of independent isolates is providing provocative insights into previously obscure issues.
Collapse
Affiliation(s)
- C W Hill
- Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey 17033-0850, USA.
| |
Collapse
|
19
|
Hurtado A, Rodríguez-Valera F. Accessory DNA in the genomes of representatives of the Escherichia coli reference collection. J Bacteriol 1999; 181:2548-54. [PMID: 10198021 PMCID: PMC93683 DOI: 10.1128/jb.181.8.2548-2554.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different strains of the Escherichia coli reference collection (ECOR) differ widely in chromosomal size. To analyze the nature of the differential gene pool carried by different strains, we have followed an approach in which random amplified polymorphic DNA (RAPD) was used to generate several PCR fragments. Those present in some but not all the strains were screened by hybridization to assess their distribution throughout the ECOR collection. Thirteen fragments with various degrees of occurrence were sequenced. Three of them corresponded to RAPD markers of widespread distribution. Of these, two were housekeeping genes shown by hybridization to be present in all the E. coli strains and in Salmonella enterica LT2; the third fragment contained a paralogous copy of dnaK with widespread, but not global, distribution. The other 10 RAPD markers were found in only a few strains. However, hybridization results demonstrated that four of them were actually present in a large selection of the ECOR collection (between 42 and 97% of the strains); three of these fragments contained open reading frames associated with phages or plasmids known in E. coli K-12. The remaining six fragments were present in only between one and four strains; of these, four fragments showed no similarity to any sequence in the databases, and the other two had low but significant similarity to a protein involved in the Klebsiella capsule synthesis and to RNA helicases of archaeal genomes, respectively. Their percent GC, dinucleotide content, and codon adaptation index suggested an exogenous origin by horizontal transfer. These results can be interpreted as reflecting the presence of a large pool of strain-specific genes, whose origin could be outside the species boundaries.
Collapse
Affiliation(s)
- A Hurtado
- División de Microbiología, Centro de Biología Molecular y Celular, Campus de San Juan, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | | |
Collapse
|
20
|
Wang YD, Zhao S, Hill CW. Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. J Bacteriol 1998; 180:4102-10. [PMID: 9696756 PMCID: PMC107404 DOI: 10.1128/jb.180.16.4102-4110.1998] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rhs elements are complex genetic composites widely spread among Escherichia coli isolates. One of their components, a 3.7-kb, GC-rich core, maintains a single open reading frame that extends the full length of the core and then 400 to 600 bp beyond into an AT-rich region. Whereas Rhs cores are homologous, core extensions from different elements are dissimilar. Two new Rhs elements from strains of the ECOR reference collection have been characterized. RhsG (from strain ECOR-11) maps to min 5.3, and RhsH (from strain ECOR-45) maps to min 32.8, where it lies in tandem with RhsE. Comparison of strain K-12 to ECOR-11 indicates that RhsG was once present in but has been largely deleted from an ancestor of K-12. Phylogenetic analysis shows that the cores from eight known elements fall into three subfamilies, RhsA-B-C-F, RhsD-E, and RhsG-H. Cores from different subfamilies diverge 22 to 29%. Analysis of substitutions that distinguish between subfamilies shows that the origin of the ancestral core as well as the process of subfamily separation occurred in a GC-rich background. Furthermore, each subfamily independently passed from the GC-rich background to a less GC-rich background such as E. coli. A new example of core-extension shuffling provides the first example of exchange between cores of different subfamilies. A novel component of RhsE and RhsG, vgr, encodes a large protein distinguished by 18 to 19 repetitions of a Val-Gly dipeptide occurring with a eight-residue periodicity.
Collapse
Affiliation(s)
- Y D Wang
- Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
21
|
Gary TP, Colowick NE, Mosig G. A species barrier between bacteriophages T2 and T4: exclusion, join-copy and join-cut-copy recombination and mutagenesis in the dCTPase genes. Genetics 1998; 148:1461-73. [PMID: 9560366 PMCID: PMC1460086 DOI: 10.1093/genetics/148.4.1461] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteriophage T2 alleles are excluded in crosses between T2 and T4 because of genetic isolation between these two virus species. The severity of exclusion varies in different genes, with gene 56, encoding an essential dCT(D)Pase/dUT(D)Pase of these phages, being most strongly affected. To investigate reasons for such strong exclusion, we have (1) sequenced the T2 gene 56 and an adjacent region, (2) compared the sequence with the corresponding T4 DNA, (3) constructed chimeric phages in which T2 and T4 sequences of this region are recombined, and (4) tested complementation, recombination, and exclusion with gene 56 cloned in a plasmid and in the chimeric phages in Escherichia coli CR63, in which growth of wild-type T2 is not restricted by T4. Our results argue against a role of the dCTPase protein in this exclusion and implicate instead DNA sequence differences as major contributors to the apparent species barrier. This sequence divergence exhibits a remarkable pattern: a major heterologous sequence counter-clockwise from gene 56 (and downstream of the gene 56 transcripts) replaces in T2 DNA the T4 gene 69. Gene 56 base sequences bordering this substituted region are significantly different, whereas sequences of the dam genes, adjacent in the clockwise direction, are similar in T2 and in T4. The gene 56 sequence differences can best be explained by multiple compensating frameshifts and base substitutions, which result in T2 and T4 dCTPases whose amino acid sequences and functions remain similar. Based on these findings we propose a model for the evolution of multiple sequence differences concomitant with the substitution of an adjacent gene by foreign DNA: invasion by the single-stranded segments of foreign DNA, nucleated from a short DNA sequence that was complementary by chance, has triggered recombination-dependent replication by "join-copy" and "join-cut-copy" pathways that are known to operate in the T-even phages and are implicated in other organisms as well. This invasion, accompanied by heteroduplex formation between partially similar sequences, and perhaps subsequent partial heteroduplex repair, simultaneously substituted T4 gene 69 for foreign sequences and scrambled the sequence of the dCTPase gene 56. We suggest that similar mechanisms can mobilize DNA segments for horizontal transfer without necessarily requiring transposase or site-specific recombination functions.
Collapse
Affiliation(s)
- T P Gary
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
22
|
Bachellier S, Clément JM, Hofnung M, Gilson E. Bacterial interspersed mosaic elements (BIMEs) are a major source of sequence polymorphism in Escherichia coli intergenic regions including specific associations with a new insertion sequence. Genetics 1997; 145:551-62. [PMID: 9055066 PMCID: PMC1207841 DOI: 10.1093/genetics/145.3.551] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A significant fraction of Escherichia coli intergenic DNA sequences is composed of two families of repeated bacterial interspersed mosaic elements (BIME-1 and BIME-2). In this study, we determined the sequence organization of six intergenic regions in 51 E. coli and Shigella natural isolates. Each region contains a BIME in E. coli K-12. We found that multiple sequence variations are located within or near these BIMEs in the different bacteria. Events included excisions of a whole BIME-1, expansion/deletion within a BIME-2 and insertions of non-BIME sequences like the boxC repeat or a new IS element, named IS 1397. Remarkably, 14 out of IS 1397 integration sites correspond to a BIME sequence, strongly suggesting that this IS element is specifically associated with BIMEs, and thus inserts only in extragenic regions. Unlike BIMEs, IS 1397 is not detected in all E. coli isolates. Possible relationships between the presence of this IS element and the evolution of BIMEs are discussed.
Collapse
Affiliation(s)
- S Bachellier
- Unité de Programmation Moléculaire et Toxicologie Génétique, CNRS URA 1444, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
23
|
Boyd EF, Hill CW, Rich SM, Hartl DL. Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics 1996; 143:1091-100. [PMID: 8807284 PMCID: PMC1207381 DOI: 10.1093/genetics/143.3.1091] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The distribution of plasmids related to the fertility factor F was examined in the ECOR reference collection of Escherichia coli. Probes specific for four F-related genes were isolated and used to survey the collection by DNA hybridization. To estimate the genetic diversity of genes in F-like plasmids, DNA sequences were obtained for four plasmid genes. The phylogenetic relationships among the plasmids in the ECOR strains is very different from that of the strains themselves. This finding supports the view that plasmid transfer has been frequent within and between the major groups of ECOR. Furthermore, the sequences indicate that recombination between genes in plasmids takes place at a considerably higher frequency than that observed for chromosomal genes. The plasmid genes, and by inference the plasmids themselves, are mosaic in structure with different regions acquired from different sources. Comparison of gene sequences from a variety of naturally occurring plasmids suggested a plausible donor of some of the recombinant regions as well as implicating a chi site in the mechanism of genetic exchange. The relatively high rate of recombination in F-plasmid genes suggests that conjugational gene transfer may play a greater role in bacterial population structure than previously appreciated.
Collapse
Affiliation(s)
- E F Boyd
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|