1
|
Reutemann AV, Honfi AI, Karunarathne P, Eckers F, Hojsgaard DH, Martínez EJ. Comparative analysis of molecular and morphological diversity in two diploid Paspalum species (Poaceae) with contrasting mating systems. PLANT REPRODUCTION 2024; 37:15-32. [PMID: 37566236 DOI: 10.1007/s00497-023-00478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
KEY MESSAGE Interspecific comparison of two Paspalum species has demonstrated that mating systems (selfing and outcrossing) contribute to variation (genetically and morphologically) within species through similar but mutually exclusive processes. Mating systems play a key role in the genetic dynamics of populations. Studies show that populations of selfing plants have less genetic diversity than outcrossing plants. Yet, many such studies have ignored morphological diversity. Here, we compared the morphological and molecular diversity patterns in populations of two phylogenetically-related sexual diploids that differ in their mating system: self-sterile Paspalum indecorum and self-fertile P. pumilum. We assessed the morphological variation using 16 morpho-phenological characters and the molecular diversity using three combinations of AFLPs. We compared the morphological and molecular diversity within and among populations in each mating system. Contrary to expectations, selfers showed higher morphological variation within populations, mainly in vegetative and phenological traits, compared to outcrossers. The high morphological variation within populations of selfers led to a low differentiation among populations. At molecular level, selfing populations showed lower levels of genotypic and genetic diversity than outcrossing populations. As expected, selfers showed higher population structure than outcrossers (PhiST = 0.301 and PhiST = 0.108, respectively). Increased homozygous combinations for the same trait/locus enhance morphological variation and reduce molecular variation within populations in selfing P. pumilum. Thus, selfing outcomes are opposite when comparing morphological and molecular variation in P. pumilum. Meanwhile, pollen flow in obligate outcrossing populations of P. indecorum increases within-population molecular variation, but tends to homogenize phenotypes within-population. Pollen flow in obligate outcrossers tends to merge geographically closer populations; but isolation by distance can lead to a weak differentiation among distant populations of P. indecorum.
Collapse
Affiliation(s)
- A Verena Reutemann
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina
| | - Ana I Honfi
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina
| | - Piyal Karunarathne
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-Von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Goettingen, Germany
- Institute for Population Genetics, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Fabiana Eckers
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina
| | - Diego H Hojsgaard
- Taxonomy and Evolutionary Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Eric J Martínez
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina.
| |
Collapse
|
2
|
Wang J, Shi J, Liu S, Sun X, Huang J, Qiao W, Cheng Y, Zhang L, Zheng X, Yang Q. Conservation recommendations for Oryza rufipogon Griff. in China based on genetic diversity analysis. Sci Rep 2020; 10:14375. [PMID: 32873826 PMCID: PMC7462988 DOI: 10.1038/s41598-020-70989-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022] Open
Abstract
Over the past 30 years, human disturbance and habitat fragmentation have severely endangered the survival of common wild rice (Oryza rufipogon Griff.) in China. A better understanding of the genetic structure of O. rufipogon populations will therefore be useful for the development of conservation strategies. We examined the diversity and genetic structure of natural O. rufipogon populations at the national, provincial, and local levels using simple sequence repeat (SSR) markers. Twenty representative populations from sites across China showed high levels of genetic variability, and approximately 44% of the total genetic variation was among populations. At the local level, we studied fourteen populations in Guangxi Province and four populations in Jiangxi Province. Populations from similar ecosystems showed less genetic differentiation, and local environmental conditions rather than geographic distance appeared to have influenced gene flow during population genetic evolution. We identified a triangular area, including northern Hainan, southern Guangdong, and southwestern Guangxi, as the genetic diversity center of O. rufipogon in China, and we proposed that this area should be given priority during the development of ex situ and in situ conservation strategies. Populations from less common ecosystem types should also be given priority for in situ conservation.
Collapse
Affiliation(s)
- Junrui Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinxia Shi
- Shanghai Normal University, Shanghai, China
| | - Sha Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiping Sun
- Shanxi Agricultural University, Jinzhong, China
| | - Juan Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Rice Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Weihua Qiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Science and Technology Innovation Program/Crop Germplasm Resources Preservation and Sharing Innovation Team, Beijing, China
| | - Yunlian Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- Agricultural Science and Technology Innovation Program/Crop Germplasm Resources Preservation and Sharing Innovation Team, Beijing, China.
| | - Qingwen Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- Agricultural Science and Technology Innovation Program/Crop Germplasm Resources Preservation and Sharing Innovation Team, Beijing, China.
| |
Collapse
|
3
|
Maximising recombination across macadamia populations to generate linkage maps for genome anchoring. Sci Rep 2020; 10:5048. [PMID: 32193408 PMCID: PMC7081209 DOI: 10.1038/s41598-020-61708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 01/02/2023] Open
Abstract
The Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of >4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the Macadamia haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.
Collapse
|
4
|
Comparative studies on population genetic structure of two closely related selfing and outcrossing Zingiber species in Hainan Island. Sci Rep 2019; 9:17997. [PMID: 31784623 PMCID: PMC6884562 DOI: 10.1038/s41598-019-54526-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/15/2019] [Indexed: 02/04/2023] Open
Abstract
How mating system impacts the genetic diversity of plants has long fascinated and puzzled evolutionary biologists. Numerous studies have shown that self-fertilising plants have less genetic diversity at both the population and species levels than outcrossers. However, the phylogenetic relationships between species and correlated ecological traits have not been accounted for in these previous studies. Here, we conduct a comparative population genetic study of two closely related selfing and outcrossing Zingiber species, with sympatric distribution in Hainan Island, and obtain a result contrary to previous studies. The results indicate that selfing Z. corallinum can maintain high genetic diversity through differentiation intensified by local adaptation in populations across the species’ range. In contrast, outcrossing Z. nudicarpum preserves high genetic diversity through gene exchange by frequent export of pollen within or among populations. Contrary to expectations, the major portion of genetic variation of outcrossing Z. nudicarpum may exist among populations, depending on the dispersal ability of pollen and seed. Our results also reveal that the main factor affecting population structure of selfing Z. corallinum is mountain ranges, followed by a moist climate, while that of outcrossing Z. nudicarpum is likely moisture, but not mountain ranges, due to gene flow via pollen.
Collapse
|
5
|
Abstract
Meiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
6
|
Kreiner JM, Stinchcombe JR, Wright SI. Population Genomics of Herbicide Resistance: Adaptation via Evolutionary Rescue. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:611-635. [PMID: 29140727 DOI: 10.1146/annurev-arplant-042817-040038] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The evolution of herbicide resistance in weed populations is a highly replicated example of adaptation surmounting the race against extinction, but the factors determining its rate and nature remain poorly understood. Here, we explore theory and empirical evidence for the importance of population genetic parameters-including effective population size, dominance, mutational target size, and gene flow-in influencing the probability and mode of herbicide resistance adaptation and its variation across species. We compiled data on the number of resistance mutations across populations for 79 herbicide-resistant species. Our findings are consistent with theoretical predictions that self-fertilization reduces resistance adaptation from standing variation within populations, but increases independent adaptation across populations. Furthermore, we provide evidence for a ploidy-mating system interaction that may reflect trade-offs in polyploids between increased effective population size and greater masking of beneficial mutations. We highlight the power of population genomic approaches to provide insights into the evolutionary dynamics of herbicide resistance with important implications for understanding the limits of adaptation.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada; , ,
| | | | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada; , ,
| |
Collapse
|
7
|
Böndel KB, Nosenko T, Stephan W. Signatures of natural selection in abiotic stress-responsive genes of Solanum chilense. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171198. [PMID: 29410831 PMCID: PMC5792908 DOI: 10.1098/rsos.171198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/04/2017] [Indexed: 06/01/2023]
Abstract
Environmental conditions are strong selective forces, which may influence adaptation and speciation. The wild tomato species Solanum chilense, native to South America, is exposed to a range of abiotic stress factors. To identify signatures of natural selection and local adaptation, we analysed 16 genes involved in the abiotic stress response and compared the results to a set of reference genes in 23 populations across the entire species range. The abiotic stress-responsive genes are characterized by elevated nonsynonymous nucleotide diversity and divergence. We detected signatures of positive selection in several abiotic stress-responsive genes on both the population and species levels. Local adaptation to abiotic stresses is particularly apparent at the boundary of the species distribution in populations from coastal low-altitude and mountainous high-altitude regions.
Collapse
|
8
|
The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol Biol 2015; 15:194. [PMID: 26377000 PMCID: PMC4574184 DOI: 10.1186/s12862-015-0473-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background Although homologous recombination affects the efficacy of selection in populations, the pattern of recombination rate evolution and its effects on genome evolution across plants are largely unknown. Recombination can reduce genome size by enabling the removal of LTR retrotransposons, alter codon usage by GC biased gene conversion, contribute to complex histories of gene duplication and loss through tandem duplication, and enhance purifying selection on genes. Therefore, variation in recombination rate across species may explain some of the variation in genomic architecture as well as rates of molecular evolution. We used phylogenetic comparative methods to investigate the evolution of global meiotic recombination rate in angiosperms and its effects on genome architecture and selection at the molecular level using genetic maps and genome sequences from thirty angiosperm species. Results Recombination rate is negatively correlated with genome size, which is likely caused by the removal of LTR retrotransposons. After correcting recombination rates for euchromatin content, we also found an association between global recombination rate and average gene family size. This suggests a role for recombination in the preservation of duplicate genes or expansion of gene families. An analysis of the correlation between the ratio of nonsynonymous to synonymous substitution rates (dN/dS) and recombination rate in 3748 genes indicates that higher recombination rates are associated with an increased efficacy of purifying selection, suggesting that global recombination rates affect variation in rates of molecular evolution across distantly related angiosperm species, not just between populations. We also identified shifts in dN/dS for recombination proteins that are associated with shifts in global recombination rate across our sample of angiosperms. Conclusions Although our analyses only reveal correlations, not mechanisms, and do not include potential covariates of recombination rate, like effective population size, they suggest that global recombination rates may play an important role in shaping the macroevolutionary patterns of gene and genome evolution in plants. Interspecific recombination rate variation is tightly correlated with genome size as well as variation in overall LTR retrotransposon abundances. Recombination may shape gene-to-gene variation in dN/dS between species, which might impact the overall gene duplication and loss rates. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0473-3) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Renzette N, Kowalik TF, Jensen JD. On the relative roles of background selection and genetic hitchhiking in shaping human cytomegalovirus genetic diversity. Mol Ecol 2015. [PMID: 26211679 DOI: 10.1111/mec.13331] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms.
Collapse
Affiliation(s)
- Nicholas Renzette
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01655, USA
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01655, USA.,Immunology and Microbiology Program, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01655, USA
| | - Jeffrey D Jensen
- Swiss Institute of Bioinformatics (SIB), Lausanne, CH-1015, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
10
|
Böndel KB, Lainer H, Nosenko T, Mboup M, Tellier A, Stephan W. North–South Colonization Associated with Local Adaptation of the Wild Tomato SpeciesSolanum chilense. Mol Biol Evol 2015; 32:2932-43. [DOI: 10.1093/molbev/msv166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Dardelle F, Le Mauff F, Lehner A, Loutelier-Bourhis C, Bardor M, Rihouey C, Causse M, Lerouge P, Driouich A, Mollet JC. Pollen tube cell walls of wild and domesticated tomatoes contain arabinosylated and fucosylated xyloglucan. ANNALS OF BOTANY 2015; 115:55-66. [PMID: 25434027 PMCID: PMC4284112 DOI: 10.1093/aob/mcu218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS In flowering plants, fertilization relies on the delivery of the sperm cells carried by the pollen tube to the ovule. During the tip growth of the pollen tube, proper assembly of the cell wall polymers is required to maintain the mechanical properties of the cell wall. Xyloglucan (XyG) is a cell wall polymer known for maintaining the wall integrity and thus allowing cell expansion. In most angiosperms, the XyG of somatic cells is fucosylated, except in the Asterid clade (including the Solanaceae), where the fucosyl residues are replaced by arabinose, presumably due to an adaptive and/or selective diversification. However, it has been shown recently that XyG of Nicotiana alata pollen tubes is mostly fucosylated. The objective of the present work was to determine whether such structural differences between somatic and gametophytic cells are a common feature of Nicotiana and Solanum (more precisely tomato) genera. METHODS XyGs of pollen tubes of domesticated (Solanum lycopersicum var. cerasiforme and var. Saint-Pierre) and wild (S. pimpinellifolium and S. peruvianum) tomatoes and tobacco (Nicotiana tabacum) were analysed by immunolabelling, oligosaccharide mass profiling and GC-MS analyses. KEY RESULTS Pollen tubes from all the species were labelled with the mAb CCRC-M1, a monoclonal antibody that recognizes epitopes associated with fucosylated XyG motifs. Analyses of the cell wall did not highlight major structural differences between previously studied N. alata and N. tabacum XyG. In contrast, XyG of tomato pollen tubes contained fucosylated and arabinosylated motifs. The highest levels of fucosylated XyG were found in pollen tubes from the wild species. CONCLUSIONS The results clearly indicate that the male gametophyte (pollen tube) and the sporophyte have structurally different XyG. This suggests that fucosylated XyG may have an important role in the tip growth of pollen tubes, and that they must have a specific set of functional XyG fucosyltransferases, which are yet to be characterized.
Collapse
Affiliation(s)
- Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - François Le Mauff
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Corinne Loutelier-Bourhis
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Muriel Bardor
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Christophe Rihouey
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Mathilde Causse
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| |
Collapse
|
12
|
Hough J, Williamson RJ, Wright SI. Patterns of Selection in Plant Genomes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135851] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants show a wide range of variation in mating system, ploidy level, and demographic history, allowing for unique opportunities to investigate the evolutionary and genetic factors affecting genome-wide patterns of positive and negative selection. In this review, we highlight recent progress in our understanding of the extent and nature of selection on plant genomes. We discuss differences in selection as they relate to variation in demography, recombination, mating system, and ploidy. We focus on the population genetic consequences of these factors and argue that, although variation in the magnitude of purifying selection is well documented, quantifying rates of positive selection and disentangling the relative importance of recombination, demography, and ploidy are ongoing challenges. Large-scale comparative studies that examine the relative and joint importance of these processes, combined with explicit models of population history and selection, are key and feasible goals for future work.
Collapse
Affiliation(s)
- Josh Hough
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| | - Robert J. Williamson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| |
Collapse
|
13
|
Fischer I, Steige KA, Stephan W, Mboup M. Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato. PLoS One 2013; 8:e78182. [PMID: 24205149 PMCID: PMC3799731 DOI: 10.1371/journal.pone.0078182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives.
Collapse
Affiliation(s)
- Iris Fischer
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
- * E-mail:
| | - Kim A. Steige
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Mamadou Mboup
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
14
|
Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella. PLoS Genet 2013; 9:e1003754. [PMID: 24068948 PMCID: PMC3772084 DOI: 10.1371/journal.pgen.1003754] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 07/11/2013] [Indexed: 12/12/2022] Open
Abstract
The shift from outcrossing to self-fertilization is among the most common evolutionary transitions in flowering plants. Until recently, however, a genome-wide view of this transition has been obscured by both a dearth of appropriate data and the lack of appropriate population genomic methods to interpret such data. Here, we present a novel population genomic analysis detailing the origin of the selfing species, Capsella rubella, which recently split from its outcrossing sister, Capsella grandiflora. Due to the recency of the split, much of the variation within C. rubella is also found within C. grandiflora. We can therefore identify genomic regions where two C. rubella individuals have inherited the same or different segments of ancestral diversity (i.e. founding haplotypes) present in C. rubella's founder(s). Based on this analysis, we show that C. rubella was founded by multiple individuals drawn from a diverse ancestral population closely related to extant C. grandiflora, that drift and selection have rapidly homogenized most of this ancestral variation since C. rubella's founding, and that little novel variation has accumulated within this time. Despite the extensive loss of ancestral variation, the approximately 25% of the genome for which two C. rubella individuals have inherited different founding haplotypes makes up roughly 90% of the genetic variation between them. To extend these findings, we develop a coalescent model that utilizes the inferred frequency of founding haplotypes and variation within founding haplotypes to estimate that C. rubella was founded by a potentially large number of individuals between 50 and 100 kya, and has subsequently experienced a twenty-fold reduction in its effective population size. As population genomic data from an increasing number of outcrossing/selfing pairs are generated, analyses like the one developed here will facilitate a fine-scaled view of the evolutionary and demographic impact of the transition to self-fertilization. While many plants require pollen from another individual to set seed, in some species self-pollination is the norm. This evolutionary shift from outcrossing to self-fertilization is among the most common transitions in flowering plants. Here, we use dense genome sequence data to identify where in the genome two individuals have inherited the same or different segments of ancestral diversity present in the founders of the selfing species, Capsella rubella to obtain a genome-wide view of this transition. This identification of founding haplotypes allows us to partition mutations into those that occurred before and after C. rubella separated from its outcrossing progenitor, C. grandiflora. With this partitioning, we estimate that C. rubella split from C. grandiflora between 50 and 100 kya. In this relatively short time frame, an extreme reduction in C. rubella's population size is associated with a massive loss of genetic variation and an increase in the relative proportion of putatively deleterious polymorphisms.
Collapse
|
15
|
Slugina MA, Snigir EA, Ryzhova NN, Kochieva EZ. Structure and polymorphism of a fragment of the Pain-1 vacuolar invertase locus in Solanum species. Mol Biol 2013. [DOI: 10.1134/s0026893313020143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 2013; 14:262-74. [PMID: 23478346 DOI: 10.1038/nrg3425] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and the removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive differences in linked selection among species--including roles for selective sweeps being 'hard' or 'soft'--and the concealing effects of demography and confounding genomic variables. We advocate targeted studies of closely related species to unify our understanding of how selection and linkage interact to shape genome evolution.
Collapse
|
17
|
Hazzouri KM, Escobar JS, Ness RW, Killian Newman L, Randle AM, Kalisz S, Wright SI. Comparative population genomics in Collinsia sister species reveals evidence for reduced effective population size, relaxed selection, and evolution of biased gene conversion with an ongoing mating system shift. Evolution 2013; 67:1263-78. [PMID: 23617907 DOI: 10.1111/evo.12027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
Abstract
Selfing species experience reduced effective recombination rates and effective population size, which can lead to reductions in polymorphism and the efficacy of natural selection. Here, we use illumina transcriptome sequencing and population resequencing to test for changes in polymorphism, base composition, and selection in the selfing angiosperm Collinsia rattanii (Plantaginaceae) compared with its more outcrossing sister species Collinsia linearis. Coalescent analysis indicates intermediate species divergence (500,000-1 million years) with no ongoing gene flow, but also evidence that the C. rattanii clade remains polymorphic for floral morphology and mating system, suggesting either an ongoing shift to selfing or a potential reversal from selfing to outcrossing. We identify a significant reduction in polymorphism in C. rattanii, particularly within populations. Analysis of polymorphisms suggests an elevated ratio of unique nonsynonymous to synonymous polymorphism in C. rattanii, consistent with relaxed selection in selfing lineages. We additionally find higher linkage disequilibrium and differentiation, lower GC content at variable sites, and reduced expression of genes important in pollen production and pollinator attraction in C. rattanii compared with C. linearis. Together, our results highlight the potential for rapid shifts in the efficacy of selection, gene expression and base composition associated with ongoing evolution of selfing.
Collapse
Affiliation(s)
- Khaled M Hazzouri
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Hörger AC, Ilyas M, Stephan W, Tellier A, van der Hoorn RAL, Rose LE. Balancing selection at the tomato RCR3 Guardee gene family maintains variation in strength of pathogen defense. PLoS Genet 2012; 8:e1002813. [PMID: 22829777 PMCID: PMC3400550 DOI: 10.1371/journal.pgen.1002813] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022] Open
Abstract
Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the "Guard-Hypothesis," R proteins (the "guards") can sense modification of target molecules in the host (the "guardees") by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the "guardee-effector" interface for pathogen recognition, natural selection acts on the "guard-guardee" interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen.
Collapse
Affiliation(s)
- Anja C Hörger
- Section of Evolutionary Biology, Department of Biology II, University of Munich, LMU, Planegg-Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Mboup M, Fischer I, Lainer H, Stephan W. Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes. Mol Biol Evol 2012; 29:3641-52. [PMID: 22787283 DOI: 10.1093/molbev/mss176] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abiotic stresses such as drought, extreme temperatures, and salinity have a strong impact on plant adaptation. They act as selective forces on plant physiology and morphology. These selective pressures leave characteristic footprints that can be detected at the DNA sequence level using population genetic tools. On the basis of a candidate gene approach, we investigated signatures of adaptation in two wild tomato species, Solanum peruvianum and S. chilense. These species are native to western South America and constitute a model system for studying adaptation, due to their ability to colonize diverse habitats and the available genetic resources. We have determined the selective forces acting on the C-repeat binding factor (CBF) gene family, which consists of three genes, and is known to be involved in tolerance to abiotic stresses, in particular in cold tolerance. We also analyzed the expression pattern of these genes after drought and cold stresses. We found that CBF3 evolves under very strong purifying selection, CBF2 is under balancing selection in some populations of both species (S. peruvianum/Quicacha and S. chilense/Nazca) maintaining a trans-species polymorphism, and CBF1 is a pseudogene. In contrast to previous studies of cultivated tomatoes showing that only CBF1 was cold induced, we found that all three CBF genes are cold induced in wild tomatoes. All three genes are also drought induced. CBF2 exhibits an allele-specific expression pattern associated with the trans-species polymorphism.
Collapse
Affiliation(s)
- Mamadou Mboup
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany.
| | | | | | | |
Collapse
|
20
|
Thomas CG, Woodruff GC, Haag ES. Causes and consequences of the evolution of reproductive mode in Caenorhabditis nematodes. Trends Genet 2012; 28:213-20. [PMID: 22480920 DOI: 10.1016/j.tig.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 12/12/2022]
Abstract
Reproduction is directly connected to the suite of developmental and physiological mechanisms that enable it, but how it occurs also has consequences for the genetics, ecology and longer term evolutionary potential of a lineage. In the nematode Caenorhabditis elegans, anatomically female XX worms can self-fertilize their eggs. This ability evolved recently and in multiple Caenorhabditis lineages from male-female ancestors, providing a model for examining both the developmental causes and longer term consequences of a novel, convergently evolved reproductive mode. Here, we review recent work that implicates translation control in the evolution of XX spermatogenesis, with different selfing lineages possessing both reproducible and idiosyncratic features. We also discuss the consequences of selfing, which leads to a rapid loss of variation and relaxation of natural and sexual selection on mating-related traits, and may ultimately put selfing lineages at a higher risk of extinction.
Collapse
Affiliation(s)
- Cristel G Thomas
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
21
|
Rose LE, Grzeskowiak L, Hörger AC, Groth M, Stephan W. Targets of selection in a disease resistance network in wild tomatoes. MOLECULAR PLANT PATHOLOGY 2011; 12:921-7. [PMID: 21726387 PMCID: PMC6640331 DOI: 10.1111/j.1364-3703.2011.00720.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Studies combining comparative genomics and information on biochemical pathways have revealed that protein evolution can be affected by the amount of pleiotropy associated with a particular gene. The amount of pleiotropy, in turn, can be a function of the position at which a gene operates in a pathway and the pathway structure. Genes that serve as convergence points and have several partners (so-called hubs) often show the greatest constraint and hence the slowest rate of protein evolution. In this article, we have studied five genes (Pto, Fen, Rin4, Prf and Pfi) in a defence signalling network in a wild tomato species, Solanum peruvianum. These proteins operate together and contribute to bacterial resistance in tomato. We predicted that Prf (and possibly Pfi), which serves as a convergence point for upstream signals, should show greater evolutionary constraint. However, we found instead that two of the genes which potentially interact with pathogen ligands, Rin4 and Fen, have evolved under strong evolutionary constraint, whereas Prf and Pfi, which probably function further downstream in the network, show evidence of balancing selection. This counterintuitive observation may be probable in pathogen defence networks, because pathogens may target positions throughout resistance networks to manipulate or nullify host resistance, thereby leaving a molecular signature of host-parasite co-evolution throughout a single network.
Collapse
Affiliation(s)
- Laura E Rose
- Section of Evolutionary Biology, LMU Munich, Planegg, Germany.
| | | | | | | | | |
Collapse
|
22
|
Smukowski CS, Noor MAF. Recombination rate variation in closely related species. Heredity (Edinb) 2011; 107:496-508. [PMID: 21673743 PMCID: PMC3242630 DOI: 10.1038/hdy.2011.44] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/21/2011] [Accepted: 04/27/2011] [Indexed: 11/09/2022] Open
Abstract
Despite their importance to successful meiosis and various evolutionary processes, meiotic recombination rates sometimes vary within species or between closely related species. For example, humans and chimpanzees share virtually no recombination hotspot locations in the surveyed portion of the genomes. However, conservation of recombination rates between closely related species has also been documented, raising an apparent contradiction. Here, we evaluate how and why conflicting patterns of recombination rate conservation and divergence may be observed, with particular emphasis on features that affect recombination, and the scale and method with which recombination is surveyed. Additionally, we review recent studies identifying features influencing fine-scale and broad-scale recombination patterns and informing how quickly recombination rates evolve, how changes in recombination impact selection and evolution in natural populations, and more broadly, which forces influence genome evolution.
Collapse
Affiliation(s)
- C S Smukowski
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
23
|
Fischer I, Camus-Kulandaivelu L, Allal F, Stephan W. Adaptation to drought in two wild tomato species: the evolution of the Asr gene family. THE NEW PHYTOLOGIST 2011; 190:1032-1044. [PMID: 21323928 DOI: 10.1111/j.1469-8137.2011.03648.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wild tomato species are a valuable system in which to study local adaptation to drought: they grow in diverse environments ranging from mesic to extremely arid conditions. Here, we investigate the evolution of members of the Asr (ABA/water stress/ripening induced) gene family, which have been reported to be involved in the water stress response. We analysed molecular variation in the Asr gene family in populations of two closely related species, Solanum chilense and Solanum peruvianum. We concluded that Asr1 has evolved under strong purifying selection. In contrast to previous reports, we did not detect evidence for positive selection at Asr2. However, Asr4 shows patterns consistent with local adaptation in an S. chilense population that lives in an extremely dry environment. We also discovered a new member of the gene family, Asr5. Our results show that the Asr genes constitute a dynamic gene family and provide an excellent example of tandemly arrayed genes that are of importance in adaptation. Taking the potential distribution of the species into account, it appears that S. peruvianum can cope with a great variety of environmental conditions without undergoing local adaptation, whereas S. chilense undergoes local adaptation more frequently.
Collapse
Affiliation(s)
- Iris Fischer
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Létizia Camus-Kulandaivelu
- CIRAD, Biological System Department - Research Unit 39 'Genetic Diversity and Breeding of Forest Tree Species', Campus international de Baillarguet TA A-39/C, 34398 Montpellier Cedex 5, France
| | - François Allal
- CIRAD, Biological System Department - Research Unit 39 'Genetic Diversity and Breeding of Forest Tree Species', Campus international de Baillarguet TA A-39/C, 34398 Montpellier Cedex 5, France
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
24
|
Tellier A, Fischer I, Merino C, Xia H, Camus-Kulandaivelu L, Städler T, Stephan W. Fitness effects of derived deleterious mutations in four closely related wild tomato species with spatial structure. Heredity (Edinb) 2011; 107:189-99. [PMID: 21245893 DOI: 10.1038/hdy.2010.175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A key issue in evolutionary biology is an improved understanding of the genetic mechanisms by which species adapt to various environments. Using DNA sequence data, it is possible to quantify the number of adaptive and deleterious mutations, and the distribution of fitness effects of new mutations (its mean and variance) by simultaneously taking into account the demography of a given species. We investigated how selection functions at eight housekeeping genes of four closely related, outcrossing species of wild tomatoes that are native to diverse environments in western South America (Solanum arcanum, S. chilense, S. habrochaites and S. peruvianum). We found little evidence for adaptive mutations but pervasive evidence for strong purifying selection in coding regions of the four species. In contrast, the strength of purifying selection seems to vary among the four species in non-coding (NC) regions (introns). Using F(ST)-based measures of fixation in subdivided populations, we suggest that weak purifying selection has affected the NC regions of S. habrochaites, S. chilense and S. peruvianum. In contrast, NC regions in S. arcanum show a distribution of fitness effects with mutations being either nearly neutral or very strongly deleterious. These results suggest that closely related species with similar genetic backgrounds but experiencing contrasting environments differ in the variance of deleterious fitness effects.
Collapse
Affiliation(s)
- A Tellier
- Section of Evolutionary Biology, Department Biology II, University of Munich (LMU), Planegg-Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Busch JW, Joly S, Schoen DJ. Demographic signatures accompanying the evolution of selfing in Leavenworthia alabamica. Mol Biol Evol 2011; 28:1717-29. [PMID: 21199892 DOI: 10.1093/molbev/msq352] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolution of selfing from outcrossing is a common transition, yet little is known about the mutations and selective factors that promote this shift. In the mustard family, single-locus self-incompatibility (SI) enforces outcrossing. In this study, we test whether mutations causing self-compatibility (SC) are linked to the self-incompatibility locus (S-locus) in Leavenworthia alabamica, a species where two selfing races (a2 and a4) co-occur with outcrossing populations. We also infer the ecological circumstances associated with origins of selfing using molecular sequence data. Genealogical reconstruction of the Lal2 locus, the putative ortholog of the SRK locus, showed that both selfing races are fixed for one of two different S-linked Lal2 sequences, whereas outcrossing populations harbor many S-alleles. Hybrid crosses demonstrated that S-linked mutations cause SC in each selfing race. These results strongly suggest two origins of selfing in this species, a result supported by population admixture analysis of 16 microsatellite loci and by a population tree built from eight nuclear loci. One selfing race (a4) shows signs of a severe population bottleneck, suggesting that reproductive assurance might have caused the evolution of selfing in this case. In contrast, the population size of race a2 cannot be distinguished from that of outcrossing populations after correcting for differences in selfing rates. Coalescent-based analyses suggest a relatively old origin of selfing in the a4 race (∼150 ka ago), whereas selfing evolved recently in the a2 race (∼12-48 ka ago). These results imply that S-locus mutations have triggered two recent shifts to selfing in L. alabamica, but that these transitions are not always associated with a severe population bottleneck, suggesting that factors other than reproductive assurance may play a role in its evolution.
Collapse
Affiliation(s)
- Jeremiah W Busch
- School of Biological Sciences and The Center for Reproductive Biology, Washington State University, WA, USA.
| | | | | |
Collapse
|
26
|
Foxe JP, Stift M, Tedder A, Haudry A, Wright SI, Mable BK. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 2010; 64:3495-510. [PMID: 20681985 DOI: 10.1111/j.1558-5646.2010.01094.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Theoretical and empirical comparisons of molecular diversity in selfing and outcrossing plants have primarily focused on long-term consequences of differences in mating system (between species). However, improving our understanding of the causes of mating system evolution requires ecological and genetic studies of the early stages of mating system transition. Here, we examine nuclear and chloroplast DNA sequences and microsatellite variation in a large sample of populations of Arabidopsis lyrata from the Great Lakes region of Eastern North American that show intra- and interpopulation variation in the degree of self-incompatibility and realized outcrossing rates. Populations show strong geographic clustering irrespective of mating system, suggesting that selfing either evolved multiple times or has spread to multiple genetic backgrounds. Diversity is reduced in selfing populations, but not to the extent of the severe loss of variation expected if selfing evolved due to selection for reproductive assurance in connection with strong founder events. The spread of self-compatibility in this region may have been favored as colonization bottlenecks following glaciation or migration from Europe reduced standing levels of inbreeding depression. However, our results do not suggest a single transition to selfing in this system, as has been suggested for some other species in the Brassicaceae.
Collapse
Affiliation(s)
- John Paul Foxe
- Department of Biology, York University, 4700 Keele St. Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Xia H, Camus-Kulandaivelu L, Stephan W, Tellier A, Zhang Z. Nucleotide diversity patterns of local adaptation at drought-related candidate genes in wild tomatoes. Mol Ecol 2010; 19:4144-54. [PMID: 20831645 DOI: 10.1111/j.1365-294x.2010.04762.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We surveyed nucleotide diversity at two candidate genes LeNCED1 and pLC30-15, involved in an ABA (abscisic acid) signalling pathway, in two closely related tomato species Solanum peruvianum and Solanum chilense. Our six population samples (three for each species) cover a range of mesic to very dry habitats. The ABA pathway plays an important role in the plants' response to drought stress. LeNCED1 is an upstream gene involved in ABA biosynthesis, and pLC30-15 is a dehydrin gene positioned downstream in the pathway. The two genes show very different patterns of nucleotide variation. LeNCED1 exhibits very low nucleotide diversity relative to the eight neutral reference loci that were previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, pLC30-15 exhibits higher levels of nucleotide diversity and, in particular in S. chilense, higher genetic differentiation between populations than the reference loci, which is indicative of local adaptation. In the more drought-tolerant species S. chilense, one population (from Quicacha) shows a significant haplotype structure, which appears to be the result of positive (diversifying) selection.
Collapse
Affiliation(s)
- Hui Xia
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, ChinaSection of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Planegg-Martinsried, GermanyResearch Unit 'Genetic Diversity and Breeding of Forest Tree Species', Cirad Biological System Department, TA A-39/C, Campus International de Baillarguet, 34398 Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Cutter AD, Choi JY. Natural selection shapes nucleotide polymorphism across the genome of the nematode Caenorhabditis briggsae. Genome Res 2010; 20:1103-11. [PMID: 20508143 PMCID: PMC2909573 DOI: 10.1101/gr.104331.109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 05/14/2010] [Indexed: 01/01/2023]
Abstract
The combined actions of natural selection, mutation, and recombination forge the landscape of genetic variation across genomes. One frequently observed manifestation of these processes is a positive association between neutral genetic variation and local recombination rates. Two selective mechanisms and/or recombination-associated mutation (RAM) could generate this pattern, and the relative importance of these alternative possibilities remains unresolved generally. Here we quantify nucleotide differences within populations, between populations, and between species to test for genome-wide effects of selection and RAM in the partially selfing nematode Caenorhabditis briggsae. We find that nearly half of genome-wide variation in nucleotide polymorphism is explained by differences in local recombination rates. By quantifying divergence between several reproductively isolated lineages, we demonstrate that ancestral polymorphism generates a spurious signal of RAM for closely related lineages, with implications for analyses of humans and primates; RAM is, at most, a minor factor in C. briggsae. We conclude that the positive relation between nucleotide polymorphism and the rate of crossover represents the footprint of natural selection across the C. briggsae genome and demonstrate that background selection against deleterious mutations is sufficient to explain this pattern. Hill-Robertson interference also leaves a signature of more effective purifying selection in high-recombination regions of the genome. Finally, we identify an emerging contrast between widespread adaptive hitchhiking effects in species with large outcrossing populations (e.g., Drosophila) versus pervasive background selection effects on the genomes of organisms with self-fertilizing lifestyles and/or small population sizes (e.g., Caenorhabditis elegans, C. briggsae, Arabidopsis thaliana, Lycopersicon, human). These results illustrate how recombination, mutation, selection, and population history interact in important ways to shape molecular heterogeneity within and between genomes.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada.
| | | |
Collapse
|
29
|
Dwivedi SL, Perotti E, Upadhyaya HD, Ortiz R. Sexual and apomictic plant reproduction in the genomics era: exploring the mechanisms potentially useful in crop plants. ACTA ACUST UNITED AC 2010; 23:265-79. [PMID: 20509033 DOI: 10.1007/s00497-010-0144-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 05/11/2010] [Indexed: 11/26/2022]
Abstract
Arabidopsis, Mimulus and tomato have emerged as model plants in researching genetic and molecular basis of differences in mating systems. Variations in floral traits and loss of self-incompatibility have been associated with mating system differences in crops. Genomics research has advanced considerably, both in model and crop plants, which may provide opportunities to modify breeding systems as evidenced in Arabidopsis and tomato. Mating system, however, not recombination per se, has greater effect on the level of polymorphism. Generating targeted recombination remains one of the most important factors for crop genetic enhancement. Asexual reproduction through seeds or apomixis, by producing maternal clones, presents a tremendous potential for agriculture. Although believed to be under simple genetic control, recent research has revealed that apomixis results as a consequence of the deregulation of the timing of sexual events rather than being the product of specific apomixis genes. Further, forward genetic studies in Arabidopsis have permitted the isolation of novel genes reported to control meiosis I and II entry. Mutations in these genes trigger the production of unreduced or apomeiotic megagametes and are an important step toward understanding and engineering apomixis.
Collapse
Affiliation(s)
- Sangam L Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 502324 AP, India.
| | | | | | | |
Collapse
|
30
|
Albrecht E, Escobar M, Chetelat RT. Genetic diversity and population structure in the tomato-like nightshades Solanum lycopersicoides and S. sitiens. ANNALS OF BOTANY 2010; 105:535-54. [PMID: 20154348 PMCID: PMC2850793 DOI: 10.1093/aob/mcq009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/24/2009] [Accepted: 12/10/2009] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Two closely related, wild tomato-like nightshade species, Solanum lycopersicoides and Solanum sitiens, inhabit a small area within the Atacama Desert region of Peru and Chile. Each species possesses unique traits, including abiotic and biotic stress tolerances, and can be hybridized with cultivated tomato. Conservation and utilization of these tomato relatives would benefit from an understanding of genetic diversity and relationships within and between populations. METHODS Levels of genetic diversity and population genetic structure were investigated by genotyping representative accessions of each species with a set of simple sequence repeat (SSR) and allozyme markers. KEY RESULTS As expected for self-incompatible species, populations of S. lycopersicoides and S. sitiens were relatively diverse, but contained less diversity than the wild tomato Solanum chilense, a related allogamous species native to this region. Populations of S. lycopersicoides were slightly more diverse than populations of S. sitiens according to SSRs, but the opposite trend was found with allozymes. A higher coefficient of inbreeding was noted in S. sitiens. A pattern of isolation by distance was evident in both species, consistent with the highly fragmented nature of the populations in situ. The populations of each taxon showed strong geographical structure, with evidence for three major groups, corresponding to the northern, central and southern elements of their respective distributions. CONCLUSIONS This information should be useful for optimizing regeneration strategies, for sampling of the populations for genes of interest, and for guiding future in situ conservation efforts.
Collapse
Affiliation(s)
- Elena Albrecht
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Miguel Escobar
- Universidad de Chile, Depto. Producción Agrícola, Universidad de Chile, Casilla 1004, Santiago, Chile
| | - Roger T. Chetelat
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
31
|
Genome-wide discovery of DNA polymorphism in Brassica rapa. Mol Genet Genomics 2009; 283:135-45. [PMID: 20024583 DOI: 10.1007/s00438-009-0504-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/02/2009] [Indexed: 01/14/2023]
Abstract
Single nucleotide polymorphisms (SNPs) and/or insertion/deletions (InDels) are frequent sequence variations in the plant genome, which can be developed as molecular markers for genetic studies on crop improvement. The ongoing Brassica rapa genome sequencing project has generated vast amounts of sequence data useful in genetic research. Here, we report a genome-wide survey of DNA polymorphisms in the B. rapa genome based on the 557 bacterial artificial clone sequences of B. rapa ssp. pekinensis cv. Chiifu. We identified and characterized 21,311 SNPs and 6,753 InDels in the gene space of the B. rapa genome by re-sequencing 1,398 sequence-tagged sites (STSs) in eight genotypes. Comparison of our findings with a B. rapa genetic linkage map confirmed that STS loci were distributed randomly over the B. rapa whole genome. In the 1.4 Mb of aligned sequences, mean nucleotide polymorphism and diversity were theta = 0.00890 and pi = 0.00917, respectively. Additionally, the nucleotide diversity in introns was almost three times greater than that in exons, and the frequency of observed InDel was almost 17 times higher in introns than in exons. Information regarding SNPs/InDels obtained here will provide an important resource for genetic studies and breeding programs of B. rapa.
Collapse
|
32
|
Mating-system variation, demographic history and patterns of nucleotide diversity in the Tristylous plant Eichhornia paniculata. Genetics 2009; 184:381-92. [PMID: 19917767 DOI: 10.1534/genetics.109.110130] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inbreeding in highly selfing populations reduces effective size and, combined with demographic conditions associated with selfing, this can erode genetic diversity and increase population differentiation. Here we investigate the role that variation in mating patterns and demographic history play in shaping the distribution of nucleotide variation within and among populations of the annual neotropical colonizing plant Eichhornia paniculata, a species with wide variation in selfing rates. We sequenced 10 EST-derived nuclear loci in 225 individuals from 25 populations sampled from much of the geographic range and used coalescent simulations to investigate demographic history. Highly selfing populations exhibited moderate reductions in diversity but there was no significant difference in variation between outcrossing and mixed mating populations. Population size interacted strongly with mating system and explained more of the variation in diversity within populations. Bayesian structure analysis revealed strong regional clustering and selfing populations were highly differentiated on the basis of an analysis of F(st). There was no evidence for a significant loss of within-locus linkage disequilibrium within populations, but regional samples revealed greater breakdown in Brazil than in selfing populations from the Caribbean. Coalescent simulations indicate a moderate bottleneck associated with colonization of the Caribbean from Brazil approximately 125,000 years before the present. Our results suggest that the recent multiple origins of selfing in E. paniculata from diverse outcrossing populations result in higher diversity than expected under long-term equilibrium.
Collapse
|
33
|
Ingvarsson PK. Natural selection on synonymous and nonsynonymous mutations shapes patterns of polymorphism in Populus tremula. Mol Biol Evol 2009; 27:650-60. [PMID: 19837657 DOI: 10.1093/molbev/msp255] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One important goal of population genetics is to understand the relative importance of different evolutionary processes for shaping variation in natural populations. Here, I use multilocus data to show that natural selection on both synonymous and nonsynonymous mutations plays an important role in shaping levels of synonymous polymorphism in European aspen (Populus tremula). Previous studies have documented a preferential fixation of synonymous mutations encoding preferred codons in P. tremula. The results presented here show that this has resulted in an increase in codon bias in P. tremula, consistent with stronger selection acting on synonymous codon usage. In addition, positive selection on nonsynonymous mutations appears to be common in P. tremula, with approximately 30% of all mutations having been fixed by positive selection. In addition, the recurrent fixation of beneficial mutations also reduces standing levels of polymorphism as evidenced by a significantly negative relationship between the rate of protein evolution synonymous site diversity and silent site diversity. Finally, I use approximate Bayesian methods to estimate the strength of selection acting on beneficial substitutions. These calculations show that recurrent hitchhiking reduces polymorphism by, on average, 30%. The product of strength of selection acting on beneficial mutations and the rate by which these occur across the genome (2N(e)lambdas) equals 1.54x10( - 7), which is in line with estimates from Drosophila where recurrent hitchhiking has also been shown to have significant effects on standing levels of polymorphism.
Collapse
Affiliation(s)
- Pär K Ingvarsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.
| |
Collapse
|
34
|
Labate JA, Robertson LD, Baldo AM. Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato (Solanum lycopersicum L.). Heredity (Edinb) 2009; 103:257-67. [DOI: 10.1038/hdy.2009.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
35
|
Marii L, Chiriac G. The role of viral infection in inducing variability in virus-free progeny in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:476-488. [PMID: 19508359 DOI: 10.1111/j.1744-7909.2009.00817.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effect of virus-host interactions on subsequent generations is poorly understood. The evaluation of the effects of viral infection on inheritance of quantitative traits in the progeny of infected plants and elucidation of a possible relationship between chiasma frequency in the infected plants and variability of traits in the progeny were investigated. The current study involved genotypes of four intraspecific hybrids of tomato (Solanum lycopersicum L.), their parental forms and two additional cultivars. Used as infection were the tobacco mosaic virus (TMV) and potato virus X (PVX). The consequences of the effect of viral infection were evaluated based on chromosome pairing in diakinesis and/or by examining quantitative and qualitative traits in the progeny of the infected tomato plants. Tomato plants infected with TMV + PVX were found to differ in chiasma frequency per pollen mother cell or per bivalent. Deviations have been observed for genotypes of both F(1) hybrids and cultivars. At the same time, differences in mean values of the traits under study have only been found for progeny populations (F(2)-F(4)) derived from virus-infected F(1) hybrids, but not in the case of progeny of the infected cultivars. The rate of recombinants combining traits of both parents increased significantly (2.22-8.24 times) in progeny populations of hybrids infected with TMV + PVX. The above suggests that the observed effects could be the result of modification of recombination frequencies that can be manifested in heterozygous hybrids and make small contributions to variability in cases of 'homozygous' tomato genotypes (i.e. cultivars).
Collapse
Affiliation(s)
- Liliana Marii
- Institute of Genetics and Plant Physiology, Academy of Sciences of Moldova, Chisinau, MD 2002, Republic Moldova.
| | | |
Collapse
|
36
|
Bartkowska MP, Johnston MO. Quantitative genetic variation in populations of Amsinckia spectabilis that differ in rate of self-fertilization. Evolution 2009; 63:1103-17. [PMID: 19236472 DOI: 10.1111/j.1558-5646.2008.00607.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Self-fertilization is expected to reduce genetic diversity within populations and consequently to limit adaptability to changing environments. Little is known, however, about the way the evolution of self-fertilization changes the amount or pattern of the components of genetic variation in natural populations. In this study, a reciprocal North Carolina II design and maximum-likelihood methods were implemented to investigate the genetic basis of variation for 15 floral and vegetative traits in four populations of the annual plant Amsinckia spectabilis (Boraginaceae) differing in mating system. Six variance components were estimated according to Cockerham and Weir's "bio" model c. Compared to the three partially selfing populations, we found significantly lower levels of nuclear variance for several traits in the nearly completely self-fertilizing population. Furthermore, for 11 of 15 traits we did not detect nuclear variation to be significantly greater than zero. We also found high maternal variance in one of the partially selfing populations for several traits, and little dominance variance in any population. These results are in agreement with the evolutionary dead-end hypothesis for highly self-fertilizing taxa.
Collapse
Affiliation(s)
- Magdalena P Bartkowska
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada.
| | | |
Collapse
|
37
|
Zhou HF, Zheng XM, Wei RX, Second G, Vaughan DA, Ge S. Contrasting population genetic structure and gene flow between Oryza rufipogon and Oryza nivara. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1181-9. [PMID: 18712516 DOI: 10.1007/s00122-008-0855-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 07/28/2008] [Indexed: 05/17/2023]
Abstract
The cross compatible wild relatives of crops have furnished valuable genes for crop improvement. Understanding the genetics of these wild species may enhance their further use in breeding. In this study, sequence variation of the nuclear Lhs1 gene was used to investigate the population genetic structure and gene flow of Oryza rufipogon and O. nivara, two wild species most closely related to O. sativa. The two species diverge markedly in life history and mating system, with O. rufipogon being perennial and outcrossing and O. nivara being annual and predominantly inbreeding. Based on sequence data from 105 plants representing 11 wild populations covering the entire geographic range of these wild species, we detected significantly higher nucleotide variation in O. rufipogon than in O. nivara at both the population and species levels. At the population level the diversity in O. rufipogon (Hd = 0.712; theta (sil) = 0.0017) is 2-3 folds higher than that in O. nivara (Hd = 0.306; theta (sil) = 0.0005). AMOVA partitioning indicated that genetic differentiation among O. nivara populations (78.2%) was much higher than that among O. rufipogon populations (52.3%). The different level of genetic diversity and contrasting population genetic structure between O. rufipogon and O. nivara might be explained by their distinct life histories and mating systems. Our simulation using IM models demonstrated significant gene flow from O. nivara to O. rufipogon, indicating a directional introgression from the annual and selfing species into the perennial and outcrossing species. The ongoing introgression has played an important role in shaping current patterns of genetic diversity of these two wild species.
Collapse
Affiliation(s)
- Hai-Fei Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | | | | | | | | | | |
Collapse
|
38
|
A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet 2008; 4:e1000183. [PMID: 18769710 PMCID: PMC2515631 DOI: 10.1371/journal.pgen.1000183] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 07/30/2008] [Indexed: 11/30/2022] Open
Abstract
The abundance and identity of functional variation segregating in natural populations is paramount to dissecting the molecular basis of quantitative traits as well as human genetic diseases. Genome sequencing of multiple organisms of the same species provides an efficient means of cataloging rearrangements, insertion, or deletion polymorphisms (InDels) and single-nucleotide polymorphisms (SNPs). While inbreeding depression and heterosis imply that a substantial amount of polymorphism is deleterious, distinguishing deleterious from neutral polymorphism remains a significant challenge. To identify deleterious and neutral DNA sequence variation within Saccharomyces cerevisiae, we sequenced the genome of a vineyard and oak tree strain and compared them to a reference genome. Among these three strains, 6% of the genome is variable, mostly attributable to variation in genome content that results from large InDels. Out of the 88,000 polymorphisms identified, 93% are SNPs and a small but significant fraction can be attributed to recent interspecific introgression and ectopic gene conversion. In comparison to the reference genome, there is substantial evidence for functional variation in gene content and structure that results from large InDels, frame-shifts, and polymorphic start and stop codons. Comparison of polymorphism to divergence reveals scant evidence for positive selection but an abundance of evidence for deleterious SNPs. We estimate that 12% of coding and 7% of noncoding SNPs are deleterious. Based on divergence among 11 yeast species, we identified 1,666 nonsynonymous SNPs that disrupt conserved amino acids and 1,863 noncoding SNPs that disrupt conserved noncoding motifs. The deleterious coding SNPs include those known to affect quantitative traits, and a subset of the deleterious noncoding SNPs occurs in the promoters of genes that show allele-specific expression, implying that some cis-regulatory SNPs are deleterious. Our results show that the genome sequences of both closely and distantly related species provide a means of identifying deleterious polymorphisms that disrupt functionally conserved coding and noncoding sequences. DNA sequence variation makes an important contribution to most traits that vary in natural populations. However, mapping mutations that underlie a trait of interest is a significant challenge. Genome sequencing of multiple organisms provides a complete list of DNA sequence differences responsible for any trait that differs among the organisms. Yet, distinguishing those DNA sequence variants that contribute to a trait from all other variants is not easy. Here, we sequence the genomes of two strains of yeast and, through comparisons with a reference genome, we catalog multiple types of DNA sequence variation among the three strains. Using a variety of comparative genomics methods, we show that a substantial fraction of DNA sequence variations has deleterious effects on fitness. Finally, we show that a subset of deleterious mutations is associated with changes in gene expression levels. Our results imply that comparative genomics methods will be a valuable approach to identifying DNA sequence changes underlying numerous traits of interest.
Collapse
|
39
|
Moyle LC. Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 2008; 62:2995-3013. [PMID: 18752600 DOI: 10.1111/j.1558-5646.2008.00487.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The plant group Solanum section Lycopersicon (the clade containing the domesticated tomato and its wild relatives) is ideal for integrating genomic tools and approaches into ecological and evolutionary research. Wild species within Lycopersicon span broad morphological, physiological, life history, mating system, and biochemical variation, and are separated by substantial, but incomplete postmating reproductive barriers, making this an ideal system for genetic analyses of these traits. This ecological and evolutionary diversity is matched by many logistical advantages, including extensive historical occurrence records for all species in the group, publicly available germplasm for hundreds of known wild accessions, demonstrated experimental tractability, and extensive genetic, genomic, and functional tools and information from the tomato research community. Here I introduce the numerous advantages of this system for Ecological and Evolutionary Functional Genomics (EEFG), and outline several ecological and evolutionary phenotypes and questions that can be fruitfully tackled in this system. These include biotic and abiotic adaptation, reproductive trait evolution, and the genetic basis of speciation. With the modest enhancement of some research strengths, this system is poised to join the best of our currently available model EEFG systems.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 474051, USA.
| |
Collapse
|
40
|
Kawabe A, Forrest A, Wright SI, Charlesworth D. High DNA sequence diversity in pericentromeric genes of the plant Arabidopsis lyrata. Genetics 2008; 179:985-95. [PMID: 18505875 PMCID: PMC2429891 DOI: 10.1534/genetics.107.085282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 04/05/2008] [Indexed: 11/18/2022] Open
Abstract
Differences in neutral diversity at different loci are predicted to arise due to differences in mutation rates and from the "hitchhiking" effects of natural selection. Consistent with hitchhiking models, Drosophila melanogaster chromosome regions with very low recombination have unusually low nucleotide diversity. We compared levels of diversity from five pericentromeric regions with regions of normal recombination in Arabidopsis lyrata, an outcrossing close relative of the highly selfing A. thaliana. In contrast with the accepted theoretical prediction, and the pattern in Drosophila, we found generally high diversity in pericentromeric genes, which is consistent with the observation in A. thaliana. Our data rule out balancing selection in the pericentromeric regions, suggesting that hitchhiking is more strongly reducing diversity in the chromosome arms than the pericentromere regions.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | | | |
Collapse
|
41
|
|
42
|
Population genetics of speciation in two closely related wild tomatoes (Solanum section Lycopersicon). Genetics 2008; 178:339-50. [PMID: 18202377 DOI: 10.1534/genetics.107.081810] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a multilocus sequencing study to assess patterns of polymorphism and divergence in the closely related wild tomato species, Solanum peruvianum and S. chilense (Solanum section Lycopersicon, Solanaceae). The data set comprises seven mapped nuclear loci (approximately 9.3 kb of analyzed sequence across loci) and four local population samples per species that cover much of the species' range (between 80 and 88 sequenced alleles across both species). We employ the analytical framework of divergence population genetics (DPG) in evaluating the utility of the "isolation" model of speciation to explain observed patterns of polymorphism and divergence. Whereas the isolation model is not rejected by goodness-of-fit criteria established via coalescent simulations, patterns of intragenic linkage disequilibrium provide evidence for postdivergence gene flow at two of the seven loci. These results suggest that speciation occurred under residual gene flow, implying that natural selection is one of the evolutionary forces driving the divergence of these tomato species. This inference is fully consistent with their recent divergence, conservatively estimated to be <or=0.55 million years. We discuss possible biases in the demographic parameter estimates due to the current restriction of DPG algorithms to panmictic species.
Collapse
|
43
|
Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei. Genetics 2008; 178:1661-72. [PMID: 18245859 DOI: 10.1534/genetics.107.085803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.
Collapse
|
44
|
Tenaillon MI, Austerlitz F, Tenaillon O. Apparent mutational hotspots and long distance linkage disequilibrium resulting from a bottleneck. J Evol Biol 2008; 21:541-50. [PMID: 18205779 DOI: 10.1111/j.1420-9101.2007.01490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genome wide patterns of nucleotide diversity and recombination reveal considerable variation including hotspots. Some studies suggest that these patterns are primarily dictated by individual locus history related at a broader scale to the population demographic history. Because bottlenecks have occurred in the history of numerous species, we undertook a simulation approach to investigate their impact on the patterns of aggregation of polymorphic sites and linkage disequilibrium (LD). We developed a new index (Polymorphism Aggregation Index) to characterize this aggregation and showed that variation in the density of polymorphic sites results from an interplay between the bottleneck scenario and the recombination rate. Under particular conditions, aggregation is maximized and apparent mutation hotspots resulting in a 50-fold increase in polymorphic sites density can occur. In similar conditions, long distance LD can be detected.
Collapse
Affiliation(s)
- M I Tenaillon
- UMR8120 de Génétique Végétale, INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
45
|
Johnson SG, Howard RS. Contrasting patterns of synonymous and nonsynonymous sequence evolution in asexual and sexual freshwater snail lineages. Evolution 2007; 61:2728-35. [PMID: 17908244 DOI: 10.1111/j.1558-5646.2007.00233.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In asexual lineages, both synonymous and nonsynonymous sequence polymorphism may be reduced due to severe founder effects when asexual lineages originate. However, mildly deleterious (nonsynonymous) mutations may accumulate after asexual lineages are formed, because the efficiency of purifying selection is reduced even in the nonrecombining mitochondrial genome. Here we examine patterns of synonymous and nonsynonymous mitochondrial sequence polymorphism in asexual and sexual lineages of the freshwater snail Campeloma. Using clade-specific estimates, we found that synonymous sequence polymorphism was significantly reduced by 75% in asexuals relative to sexuals, whereas nonsynonymous sequence polymorphism did not differ significantly between sexuals and asexuals. Two asexual clades had high negative values for Tajima's D statistic. Coalescent simulations confirmed that various bottleneck scenarios can account for this result. We also used branch-specific estimates of the ratio of amino acid to silent substitutions, K(a)/K(s). Our study revealed that K(a)/K(s) ratios are six times higher in terminal branches of independent asexual lineages compared to sexuals. Coalescent-based reconstruction of gene networks for all sexual and asexual clades indicated that nonsynonymous mutations occurred at a higher frequency in recently derived asexual haplotypes. These findings suggest that patterns of synonymous and nonsynonymous nucleotide polymorphism in asexual snail lineages may be shaped by both severe founder effect and relaxed purifying selection.
Collapse
Affiliation(s)
- Steven G Johnson
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | |
Collapse
|
46
|
Comeron JM, Williford A, Kliman RM. The Hill–Robertson effect: evolutionary consequences of weak selection and linkage in finite populations. Heredity (Edinb) 2007; 100:19-31. [PMID: 17878920 DOI: 10.1038/sj.hdy.6801059] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The 'Hill-Robertson (HR) effect' describes that linkage between sites under selection will reduce the overall effectiveness of selection in finite populations. Here we discuss the major concepts associated with the HR effect and present results of computer simulations focusing on the linkage effects generated by multiple sites under weak selection. Most models of linkage and selection forecast differences in effectiveness of selection between chromosomes or chromosomal regions involving a number of genes. The abundance and physical clustering of weakly selected mutations across genomes, however, justify the investigation of HR effects at a very local level and we pay particular attention to linkage effects among selected sites of the same gene. Overall, HR effects caused by weakly selected mutations predict differences in effectiveness of selection between genes that differ in exon-intron structures and across genes. Under this scenario, introns might play an advantageous role reducing intragenic HR effects. Finally, we summarize observations that are consistent with local HR effects in Drosophila, discuss potential consequences on population genetic studies and suggest future lines of research.
Collapse
Affiliation(s)
- J M Comeron
- Department of Biological Sciences, University of Iowa, IA, USA.
| | | | | |
Collapse
|
47
|
Arunyawat U, Stephan W, Städler T. Using multilocus sequence data to assess population structure, natural selection, and linkage disequilibrium in wild tomatoes. Mol Biol Evol 2007; 24:2310-22. [PMID: 17675653 DOI: 10.1093/molbev/msm162] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We employed a multilocus approach to examine the effects of population subdivision and natural selection on DNA polymorphism in 2 closely related wild tomato species (Solanum peruvianum and Solanum chilense), using sequence data for 8 nuclear loci from populations across much of the species' range. Both species exhibit substantial levels of nucleotide variation. The species-wide level of silent nucleotide diversity is 18% higher in S. peruvianum (pi(sil) approximately 2.50%) than in S. chilense (pi(sil) approximately 2.12%). One of the loci deviates from neutral expectations, showing a clinal pattern of nucleotide diversity and haplotype structure in S. chilense. This geographic pattern of variation is suggestive of an incomplete (ongoing) selective sweep, but neutral explanations cannot be entirely dismissed. Both wild tomato species exhibit moderate levels of population differentiation (average F(ST) approximately 0.20). Interestingly, the pooled samples (across different demes) exhibit more negative Tajima's D and Fu and Li's D values; this marked excess of low-frequency polymorphism can only be explained by population (or range) expansion and is unlikely to be due to population structure per se. We thus propose that population structure and population/range expansion are among the most important evolutionary forces shaping patterns of nucleotide diversity within and among demes in these wild tomatoes. Patterns of population differentiation may also be impacted by soil seed banks and historical associations mediated by climatic cycles. Intragenic linkage disequilibrium (LD) decays very rapidly with physical distance, suggesting high recombination rates and effective population sizes in both species. The rapid decline of LD seems very promising for future association studies with the purpose of mapping functional variation in wild tomatoes.
Collapse
Affiliation(s)
- Uraiwan Arunyawat
- Section of Evolutionary Biology, Department Biologie II, University of Munich (LMU), Planegg-Martinsried, Germany
| | | | | |
Collapse
|
48
|
Glémin S, Bazin E, Charlesworth D. Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc Biol Sci 2007; 273:3011-9. [PMID: 17015349 PMCID: PMC1639510 DOI: 10.1098/rspb.2006.3657] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A fundamental challenge in population genetics and molecular evolution is to understand the forces shaping the patterns of genetic diversity within and among species. Among them, mating systems are thought to have important influences on molecular diversity and genome evolution. Selfing is expected to reduce effective population size, Ne, and effective recombination rates, directly leading to reduced polymorphism and increased linkage disequilibrium compared with outcrossing. Increased isolation between populations also results directly from selfing or indirectly from evolutionary changes, such as small flowers and low pollen output, leading to greater differentiation of molecular markers than under outcrossing. The lower effective recombination rate increases the likelihood of hitch-hiking, further reducing within-deme diversity of selfers and thus increasing their genetic differentiation. There are also indirect effects on molecular evolutionary processes. Low Ne reduces the efficacy of selection; in selfers, selection should thus be less efficient in removing deleterious mutations. The rarity of heterozygous sites in selfers leads to infrequent action of biased conversion towards GC, which tends to increase sequences' GC content in the most highly recombining genome regions of outcrossers. To test these predictions in plants, we used a newly developed sequence polymorphism database to investigate the effects of mating system differences on sequence polymorphism and genome evolution in a wide set of plant species. We also took into account other life-history traits, including life form (whether annual or perennial herbs, and woody perennial) and the modes of pollination and seed dispersal, which are known to affect enzyme and DNA marker polymorphism. We show that among various life-history traits, mating systems have the greatest influence on patterns of polymorphism.
Collapse
Affiliation(s)
- Sylvain Glémin
- UMR 5171 Génome, Populations, Interactions, Adaptation, Université Montpellier II, 34095 Montpellier, France.
| | | | | |
Collapse
|
49
|
Chang SB, Anderson LK, Sherman JD, Royer SM, Stack SM. Predicting and testing physical locations of genetically mapped loci on tomato pachytene chromosome 1. Genetics 2007; 176:2131-8. [PMID: 17565940 PMCID: PMC1950619 DOI: 10.1534/genetics.107.074138] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicting the chromosomal location of mapped markers has been difficult because linkage maps do not reveal differences in crossover frequencies along the physical structure of chromosomes. Here we combine a physical crossover map based on the distribution of recombination nodules (RNs) on Solanum lycopersicum (tomato) synaptonemal complex 1 with a molecular genetic linkage map from the interspecific hybrid S. lycopersicum x S. pennellii to predict the physical locations of 17 mapped loci on tomato pachytene chromosome 1. Except for one marker located in heterochromatin, the predicted locations agree well with the observed locations determined by fluorescence in situ hybridization. One advantage of this approach is that once the RN distribution has been determined, the chromosomal location of any mapped locus (current or future) can be predicted with a high level of confidence.
Collapse
Affiliation(s)
- Song-Bin Chang
- Departmrent of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
50
|
Tam SM, Causse M, Garchery C, Burck H, Mhiri C, Grandbastien MA. The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. J Evol Biol 2007; 20:1056-72. [PMID: 17465916 DOI: 10.1111/j.1420-9101.2007.01293.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Retrotransposons are mobile genetic elements that amplify throughout the genome and may be important contributors of genetic diversity. Their distribution is influenced by element behaviour and host-driven controls. We analysed the distribution of three copia-type retrotransposons, ToRTL1, T135 and Tnt1 using sequence-specific amplification polymorphism in self-compatible (SC) and incompatible (SI) species of Solanum subsection Lycopersicon, and genetically mapped polymorphic insertions in S. lycopersicum (tomato). The majority of polymorphic insertions (61%) are located in centromeric regions of the tomato genome. A significant positive relationship was detected between insertion polymorphisms and mating system, independent of selection as most insertions were found to be neutral. As insertion patterns successfully inferred interspecific relationships of Solanum subsection Lycopersicon, our results suggest that the distribution of ToRTL1, T135 and Tnt1 may essentially be determined by selection removing strongly deleterious insertions, with genetic drift and mating system, but not recombination rate, playing important roles.
Collapse
Affiliation(s)
- S M Tam
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Centre de Versailles, F-78026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|