1
|
McCluskey BM, Batzel P, Postlethwait JH. The hybrid history of zebrafish. G3 (BETHESDA, MD.) 2025; 15:jkae299. [PMID: 39698833 PMCID: PMC11797037 DOI: 10.1093/g3journal/jkae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Since the description of zebrafish (Danio rerio) in 1822, the identity of its closest living relative has been unclear. To address this problem, we sequenced the exomes of 10 species in genus Danio, using the closely related Devario aequipinnatus as outgroup, to infer relationships across the 25 chromosomes of the zebrafish genome. The majority of relationships within Danio were remarkably consistent across all chromosomes. Relationships of chromosome segments, however, depended systematically upon their genomic location within zebrafish chromosomes. Regions near chromosome centers identified Danio kyathit and/or Danio aesculapii as the closest relative of zebrafish, while segments near chromosome ends supported only D. aesculapii as the zebrafish sister species. Genome-wide comparisons of derived character states revealed that danio relationships are inconsistent with a simple bifurcating species history but support an ancient hybrid origin of the D. rerio lineage by homoploid hybrid speciation. We also found evidence of more recent gene flow limited to the high recombination ends of chromosomes and several megabases of chromosome 20 with a history distinct from the rest of the genome. Additional insights gained from incorporating genome structure into a phylogenomic study demonstrate the utility of such an approach for future studies in other taxa. The multiple genomic histories of species in the genus Danio have important implications for comparative studies in these morphologically varied and beautiful species and for our understanding of the hybrid evolutionary history of zebrafish.
Collapse
Affiliation(s)
- Braedan M McCluskey
- Minnesota Supercomputing Institute, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
2
|
Baer L, Barthelson K, Postlethwait JH, Adelson DL, Pederson SM, Lardelli M. Differential allelic representation (DAR) identifies candidate eQTLs and improves transcriptome analysis. PLoS Comput Biol 2024; 20:e1011868. [PMID: 38346074 PMCID: PMC10890730 DOI: 10.1371/journal.pcbi.1011868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal the direct impacts of a mutation, together with the homeostatic responses of the biological system. Recent studies have highlighted that, when the effects of homozygosity for recessive mutations are studied in non-isogenic backgrounds, genes located proximal to the mutation on the same chromosome often appear over-represented among those genes identified as differentially expressed (DE). One hypothesis suggests that DE genes chromosomally linked to a mutation may not reflect functional responses to the mutation but, instead, result from an unequal distribution of expression quantitative trait loci (eQTLs) between sample groups of mutant or wild-type genotypes. This is problematic because eQTL expression differences are difficult to distinguish from genes that are DE due to functional responses to a mutation. Here we show that chromosomally co-located differentially expressed genes (CC-DEGs) are also observed in analyses of dominant mutations in heterozygotes. We define a method and a metric to quantify, in RNA-sequencing data, localised differential allelic representation (DAR) between those sample groups subjected to differential expression analysis. We show how the DAR metric can predict regions prone to eQTL-driven differential expression, and how it can improve functional enrichment analyses through gene exclusion or weighting-based approaches. Advantageously, this improved ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be functionally related to a mutant phenotype. This supports a long-standing prediction that selection for advantageous linkage disequilibrium influences chromosome evolution. By comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost with a conserved ancestral karyotype, we find possible examples of chromosomal aggregation of CC-DEGs during evolution of the zebrafish lineage. Our method for DAR analysis requires only RNA-sequencing data, facilitating its application across new and existing datasets.
Collapse
Affiliation(s)
- Lachlan Baer
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - David L. Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen M. Pederson
- Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, South Australia, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Lardelli M, Baer L, Hin N, Allen A, Pederson SM, Barthelson K. The Use of Zebrafish in Transcriptome Analysis of the Early Effects of Mutations Causing Early Onset Familial Alzheimer's Disease and Other Inherited Neurodegenerative Conditions. J Alzheimers Dis 2024; 99:S367-S381. [PMID: 37742650 DOI: 10.3233/jad-230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The degree to which non-human animals can be used to model Alzheimer's disease is a contentious issue, particularly as there is still widespread disagreement regarding the pathogenesis of this neurodegenerative dementia. The currently popular transgenic models are based on artificial expression of genes mutated in early onset forms of familial Alzheimer's disease (EOfAD). Uncertainty regarding the veracity of these models led us to focus on heterozygous, single mutations of endogenous genes (knock-in models) as these most closely resemble the genetic state of humans with EOfAD, and so incorporate the fewest assumptions regarding pathological mechanism. We have generated a number of lines of zebrafish bearing EOfAD-like and non-EOfAD-like mutations in genes equivalent to human PSEN1, PSEN2, and SORL1. To analyze the young adult brain transcriptomes of these mutants, we exploited the ability of zebrafish to produce very large families of simultaneous siblings composed of a variety of genotypes and raised in a uniform environment. This "intra-family" analysis strategy greatly reduced genetic and environmental "noise" thereby allowing detection of subtle changes in gene sets after bulk RNA sequencing of entire brains. Changes to oxidative phosphorylation were predicted for all EOfAD-like mutations in the three genes studied. Here we describe some of the analytical lessons learned in our program combining zebrafish genome editing with transcriptomics to understand the molecular pathologies of neurodegenerative disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, The University of Adelaide, Adelaide, SA, Australia
| | - Lachlan Baer
- Alzheimer's Disease Genetics Laboratory, The University of Adelaide, Adelaide, SA, Australia
| | - Nhi Hin
- Alkahest Inc., San Carlos, CA, USA
| | - Angel Allen
- Alzheimer's Disease Genetics Laboratory, The University of Adelaide, Adelaide, SA, Australia
| | - Stephen Martin Pederson
- Black Ochre Data Labs, Indigenous Genomics, Telethon Kinds Institute, Adelaide, SA, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, The University of Adelaide, Adelaide, SA, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
4
|
Baer L, Barthelson K, Postlethwait J, Adelson D, Pederson S, Lardelli M. Differential allelic representation (DAR) identifies candidate eQTLs and improves transcriptome analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530865. [PMID: 36945478 PMCID: PMC10028786 DOI: 10.1101/2023.03.02.530865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal the direct impacts of a mutation, together with the homeostatic responses of the biological system. Recent studies have highlighted that, when homozygous mutations are studied in non-isogenic backgrounds, genes from the same chromosome as a mutation often appear over-represented among differentially expressed (DE) genes. One hypothesis suggests that DE genes chromosomally linked to a mutation may not reflect true biological responses to the mutation but, instead, result from differences in representation of expression quantitative trait loci (eQTLs) between sample groups selected on the basis of mutant or wild-type genotype. This is problematic when inclusion of spurious DE genes in a functional enrichment study results in incorrect inferences of mutation effect. Here we show that chromosomally co-located differentially expressed genes (CC-DEGs) can also be observed in analyses of dominant mutations in heterozygotes. We define a method and a metric to quantify, in RNA-sequencing data, localised differential allelic representation (DAR) between groups of samples subject to differential expression analysis. We show how the DAR metric can predict regions prone to eQTL-driven differential expression, and how it can improve functional enrichment analyses through gene exclusion or weighting of gene-level rankings. Advantageously, this improved ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be functionally related to a mutant phenotype. This supports a long-standing prediction that selection for advantageous linkage disequilibrium influences chromosome evolution. By comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost with a conserved ancestral karyotype, we find possible examples of chromosomal aggregation of CC-DEGs during evolution of the zebrafish lineage. The DAR metric provides a solid foundation for addressing the eQTL issue in new and existing datasets because it relies solely on RNA-sequencing data.
Collapse
Affiliation(s)
- Lachlan Baer
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | | | - David Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Pederson
- Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Abstract
KEY MESSAGE Chromatin state, and dynamic loading of pro-crossover protein HEI10 at recombination intermediates shape meiotic chromosome patterning in plants. Meiosis is the basis of sexual reproduction, and its basic progression is conserved across eukaryote kingdoms. A key feature of meiosis is the formation of crossovers which result in the reciprocal exchange of segments of maternal and paternal chromosomes. This exchange generates chromosomes with new combinations of alleles, increasing the efficiency of both natural and artificial selection. Crossovers also form a physical link between homologous chromosomes at metaphase I which is critical for accurate chromosome segregation and fertility. The patterning of crossovers along the length of chromosomes is a highly regulated process, and our current understanding of its regulation forms the focus of this review. At the global scale, crossover patterning in plants is largely governed by the classically observed phenomena of crossover interference, crossover homeostasis and the obligatory crossover which regulate the total number of crossovers and their relative spacing. The molecular actors behind these phenomena have long remained obscure, but recent studies in plants implicate HEI10 and ZYP1 as key players in their coordination. In addition to these broad forces, a wealth of recent studies has highlighted how genomic and epigenomic features shape crossover formation at both chromosomal and local scales, revealing that crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|
6
|
Akopyan M, Tigano A, Jacobs A, Wilder AP, Baumann H, Therkildsen NO. Comparative linkage mapping uncovers recombination suppression across massive chromosomal inversions associated with local adaptation in Atlantic silversides. Mol Ecol 2022; 31:3323-3341. [DOI: 10.1111/mec.16472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Akopyan
- Department of Ecology and Evolutionary Biology Cornell University NY USA
| | - Anna Tigano
- Department of Biology UBC Okanagan Campus British Columbia Canada
- Department of Natural Resources and the Environment Cornell University NY USA
| | - Arne Jacobs
- Institute of Biodiversity Animal Health & Comparative Medicine University of Glasgow UK
- Department of Natural Resources and the Environment Cornell University NY USA
| | - Aryn P. Wilder
- Conservation Science Wildlife Health San Diego Zoo Wildlife Alliance CA USA
- Department of Natural Resources and the Environment Cornell University NY USA
| | - Hannes Baumann
- Department of Marine Sciences University of Connecticut CT USA
| | - Nina O. Therkildsen
- Department of Natural Resources and the Environment Cornell University NY USA
| |
Collapse
|
7
|
Imai Y, Olaya I, Sakai N, Burgess SM. Meiotic Chromosome Dynamics in Zebrafish. Front Cell Dev Biol 2021; 9:757445. [PMID: 34692709 PMCID: PMC8531508 DOI: 10.3389/fcell.2021.757445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies in zebrafish have revealed key features of meiotic chromosome dynamics, including clustering of telomeres in the bouquet configuration, biogenesis of chromosome axis structures, and the assembly and disassembly of the synaptonemal complex that aligns homologs end-to-end. The telomere bouquet stage is especially pronounced in zebrafish meiosis and sub-telomeric regions play key roles in mediating pairing and homologous recombination. In this review, we discuss the temporal progression of these events in meiosis prophase I and highlight the roles of proteins associated with meiotic chromosome architecture in homologous recombination. Finally, we discuss the interplay between meiotic mutants and gonadal sex differentiation and future research directions to study meiosis in living cells, including cell culture.
Collapse
Affiliation(s)
- Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Ivan Olaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Barthelson K, Baer L, Dong Y, Hand M, Pujic Z, Newman M, Goodhill GJ, Richards RI, Pederson SM, Lardelli M. Zebrafish Chromosome 14 Gene Differential Expression in the fmr1 h u2787 Model of Fragile X Syndrome. Front Genet 2021; 12:625466. [PMID: 34135935 PMCID: PMC8203322 DOI: 10.3389/fgene.2021.625466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish represent a valuable model for investigating the molecular and cellular basis of Fragile X syndrome (FXS). Reduced expression of the zebrafish FMR1 orthologous gene, fmr1, causes developmental and behavioural phenotypes related to FXS. Zebrafish homozygous for the hu2787 non-sense mutation allele of fmr1 are widely used to model FXS, although FXS-relevant phenotypes seen from morpholino antisense oligonucleotide (morpholino) suppression of fmr1 transcript translation were not observed when hu2787 was first described. The subsequent discovery of transcriptional adaptation (a form of genetic compensation), whereby mutations causing non-sense-mediated decay of transcripts can drive compensatory upregulation of homologous transcripts independent of protein feedback loops, suggested an explanation for the differences reported. We examined the whole-embryo transcriptome effects of homozygosity for fmr1 h u2787 at 2 days post fertilisation. We observed statistically significant changes in expression of a number of gene transcripts, but none from genes showing sequence homology to fmr1. Enrichment testing of differentially expressed genes implied effects on lysosome function and glycosphingolipid biosynthesis. The majority of the differentially expressed genes are located, like fmr1, on Chromosome 14. Quantitative PCR tests did not support that this was artefactual due to changes in relative chromosome abundance. Enrichment testing of the "leading edge" differentially expressed genes from Chromosome 14 revealed that their co-location on this chromosome may be associated with roles in brain development and function. The differential expression of functionally related genes due to mutation of fmr1, and located on the same chromosome as fmr1, is consistent with R.A. Fisher's assertion that the selective advantage of co-segregation of particular combinations of alleles of genes will favour, during evolution, chromosomal rearrangements that place them in linkage disequilibrium on the same chromosome. However, we cannot exclude that the apparent differential expression of genes on Chromosome 14 genes was, (if only in part), caused by differences between the expression of alleles of genes unrelated to the effects of the fmr1 h u2787 mutation and made manifest due to the limited, but non-zero, allelic diversity between the genotypes compared.
Collapse
Affiliation(s)
- Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Lachlan Baer
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yang Dong
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Melanie Hand
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Zac Pujic
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Morgan Newman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey J. Goodhill
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- School of Mathematics and Physics, University of Queensland, Brisbane, QLD, Australia
| | - Robert I. Richards
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Guo W, He S, Liang X, Tian C, Dou Y, Lv L. A high-density genetic linkage map for Chinese perch (Siniperca chuatsi) using 2.3K genotyping-by-sequencing SNPs. Anim Genet 2021; 52:311-320. [PMID: 33598959 DOI: 10.1111/age.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2021] [Indexed: 11/27/2022]
Abstract
Chinese perch, Siniperca chuatsi (Basilewsky), is one of the most commercially important cultured fishes in China. In the present study, a high-density genetic linkage map of Chinese perch was constructed by genotyping-by-sequencing technique with an F1 mapping panel containing 190 progenies. A total of 2328 SNPs were assigned to 24 linkage groups (LGs), agreeing with the chromosome haploid number in this species (n = 24). The sex-averaged map covered 97.9% of the Chinese perch genome, with the length of 1694.3 cM and a marker density of 0.7 cM/locus. The number of markers per LG ranged from 57 to 222, with a mean of 97. The length of LGs varied from 43.2 to 108.2 cM, with a mean size of 70.6 cM. The recombination rate of females was 1.5:1, which was higher than that of males. To better understand the distribution pattern of segregation distortion between the two sexes of Chinese perch, the skewed markers were retained and used to reconstruct the sex-specific maps. The 16 segregation distortion regions were identified on 10 LGs of the female map, while 12 segregation distortion regions on eight LGs of the male map. Among these LGs, six LGs matched between the sex-specific maps. This high-density linkage map could provide a solid basis for identifying QTL associated with economically important traits, and for implementing marker-assisted selection breeding of Chinese perch.
Collapse
Affiliation(s)
- Wenjie Guo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shan He
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xufang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxu Tian
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yaqi Dou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Liyuan Lv
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Aslam ML, Carraro R, Sonesson AK, Meuwissen T, Tsigenopoulos CS, Rigos G, Bargelloni L, Tzokas K. Genetic Variation, GWAS and Accuracy of Prediction for Host Resistance to Sparicotyle chrysophrii in Farmed Gilthead Sea Bream ( Sparus aurata). Front Genet 2021; 11:594770. [PMID: 33424925 PMCID: PMC7793675 DOI: 10.3389/fgene.2020.594770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/27/2020] [Indexed: 11/26/2022] Open
Abstract
Gilthead sea bream (Sparus aurata) belongs to a group of teleost which has high importance in Mediterranean aquaculture industry. However, industrial production is increasingly compromised by an elevated outbreak of diseases in sea cages, especially a disease caused by monogeneans parasite Sparicotyle chrysophrii. This parasite mainly colonizes gill tissues of host and causes considerable economical losses with mortality and reduction in growth. The aim of current study was to explore the genetics of host resistance against S. chrysophrii and investigate the potential for genomic selection to possibly accelerate genetic progress. To achieve the desired goals, a test population derived from the breeding nucleus of Andromeda Group was produced. This experimental population was established by crossing of parents mated in partial factorial crosses of ∼8 × 8 using 58 sires and 62 dams. The progeny obtained from this mating design was challenged with S. chrysophrii using a controllable cohabitation infection model. At the end of the challenge, fish were recorded for parasite count, and all the recorded fish were tissue sampled for genotyping by sequencing using 2b-RAD methodology. The initial (before challenge test) and the final body weight (after challenge test) of the fish were also recorded. The results obtained through the analysis of phenotypic records (n = 615) and the genotypic data (n = 841, 724 offspring and 117 parents) revealed that the resistance against this parasite is lowly heritable (h2 = 0.147 with pedigree and 0.137 with genomic information). We observed moderately favorable genetic correlation (Rg = −0.549 to −0.807) between production traits (i.e., body weight and specific growth rate) and parasite count, which signals a possibility of indirect selection. A locus at linkage group 17 was identified that surpassed chromosome-wide Bonferroni threshold which explained 22.68% of the total genetic variance, and might be playing role in producing genetic variation. The accuracy of prediction was improved by 8% with genomic information compared to pedigree.
Collapse
Affiliation(s)
| | | | | | | | | | - George Rigos
- Hellenic Centre for Marine Research, Heraklion, Greece
| | | | | |
Collapse
|
11
|
Abstract
Sex differences in overall recombination rates are well known, but little theoretical or empirical attention has been given to how and why sexes differ in their recombination landscapes: the patterns of recombination along chromosomes. In the first scientific review of this phenomenon, we find that recombination is biased toward telomeres in males and more uniformly distributed in females in most vertebrates and many other eukaryotes. Notable exceptions to this pattern exist, however. Fine-scale recombination patterns also frequently differ between males and females. The molecular mechanisms responsible for sex differences remain unclear, but chromatin landscapes play a role. Why these sex differences evolve also is unclear. Hypotheses suggest that they may result from sexually antagonistic selection acting on coding genes and their regulatory elements, meiotic drive in females, selection during the haploid phase of the life cycle, selection against aneuploidy, or mechanistic constraints. No single hypothesis, however, can adequately explain the evolution of sex differences in all cases. Sex-specific recombination landscapes have important consequences for population differentiation and sex chromosome evolution.
Collapse
Affiliation(s)
- Jason M. Sardell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
12
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biol Evol 2019; 11:1552-1572. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
13
|
Wei J, Chen Y, Wang W. A High-Density Genetic Linkage Map and QTL Mapping for Sex and Growth-Related Traits of Large-Scale Loach ( Paramisgurnus dabryanus). Front Genet 2019; 10:1023. [PMID: 31708968 PMCID: PMC6823184 DOI: 10.3389/fgene.2019.01023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022] Open
Abstract
Large-scale loach (Paramisgurnus dabryanus) is a commercially important species in East Asia; however, the cultured population that exhibited degradation of germplasm resource cannot meet the market needs, and the genome resources for P. dabryanus are still lacking. In this study, the first high-density genetic map of P. dabryanus was constructed using 15,830 SNP markers based on high-throughput sequencing with an improved SLAF-seq strategy. The quantitative trait locus (QTL) mapping for sex, growth, and morphology traits was performed for the first time. The genetic map spanned 4,657.64 cM in length with an average inter-marker distance of 0.30 cM. QTL mapping and association analysis identified eight QTLs of growth traits, nine QTLs of morphology traits, and five QTLs of sex-related traits, respectively. Interestingly, the most significant QTLs for almost all the traits were concentrated on the same linkage group LG11. Seven candidate markers and 12 potentially key genes, which were associated with sex determination and growth, were identified within the overlapped QTL regions on LG11. Further, the first genome survey analysis of P. dabryanus was performed which represents the first step toward fully decoding the P. dabryanus genome. The genome scaffolds were anchored to the high-density linkage map, spanning 960.27 Mb of P. dabryanus reference genome. The collinearity analysis revealed a high level of collinearity between the genetic map and the reference genome of P. dabryanus. Moreover, a certain degree of homology was observed between large-scale loach and zebrafish using comparative genomic analysis. The constructed high-density genetic map was an important basis for QTL fine mapping, genome assembly, and genome comparison. The present study will provide a valuable resource for future marker-assisted breeding, and further genetic and genomic researches in P. dabryanus.
Collapse
Affiliation(s)
- Jin Wei
- Key Lab of Agricultural Animal Genetics, College of Fisheries, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Chen
- Key Lab of Agricultural Animal Genetics, College of Fisheries, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biol Evol 2019; 11:1573-1585. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/27/2022] Open
Abstract
Meiotic recombination is a highly conserved process that has profound effects on genome evolution. At a fine-scale, recombination rates can vary drastically across genomes, often localized into small recombination "hotspots" with highly elevated rates, surrounded by regions with little recombination. In most species studied, the location of hotspots within genomes is highly conserved across broad evolutionary timescales. The main exception to this pattern is in mammals, where hotspot location can evolve rapidly among closely related species and even among populations within a species. Hotspot position in mammals is controlled by the gene, Prdm9, whereas in species with conserved hotspots, a functional Prdm9 is typically absent. Due to a limited number of species where recombination rates have been estimated at a fine-scale, it remains unclear whether hotspot conservation is always associated with the absence of a functional Prdm9. Threespine stickleback fish (Gasterosteus aculeatus) are an excellent model to examine the evolution of recombination over short evolutionary timescales. Using a linkage disequilibrium-based approach, we found recombination rates indeed varied at a fine-scale across the genome, with many regions organized into narrow hotspots. Hotspots had highly divergent landscapes between stickleback populations, where only ∼15% of these hotspots were shared. Our results indicate that fine-scale recombination rates may be diverging between closely related populations of threespine stickleback fish. Interestingly, we found only a weak association of a PRDM9 binding motif within hotspots, which suggests that threespine stickleback fish may possess a novel mechanism for targeting recombination hotspots at a fine-scale.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
15
|
Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ, Roberts RB, Carleton KL, Lien S, Kocher TD. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. Gigascience 2019; 8:giz030. [PMID: 30942871 PMCID: PMC6447674 DOI: 10.1093/gigascience/giz030] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/11/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages. RESULTS We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (∼2-28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage. CONCLUSION This study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Rajesh Joshi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, PO Box 5003, Ås, Norway
| | - Emily C Moore
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Reade B Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, PO Box 5003, Ås, Norway
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
16
|
Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc Natl Acad Sci U S A 2019; 116:6924-6931. [PMID: 30894479 DOI: 10.1073/pnas.1818486116] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is often stated that polymorphisms for mutations affecting fitness of males and females in opposite directions [sexually antagonistic (SA) polymorphisms] are the main selective force for the evolution of recombination suppression between sex chromosomes. However, empirical evidence to discriminate between different hypotheses is difficult to obtain. We report genetic mapping results in laboratory-raised families of the guppy (Poecilia reticulata), a sexually dimorphic fish with SA polymorphisms for male coloration genes, mostly on the sex chromosomes. Comparison of the genetic and physical maps shows that crossovers are distributed very differently in the two sexes (heterochiasmy); in male meiosis, they are restricted to the termini of all four chromosomes studied, including chromosome 12, which carries the sex-determining locus. Genome resequencing of male and female guppies from a population also indicates sex linkage of variants across almost the entire chromosome 12. More than 90% of the chromosome carrying the male-determining locus is therefore transmitted largely through the male lineage. A lack of heterochiasmy in a related fish species suggests that it originated recently in the lineage leading to the guppy. Our findings do not support the hypothesis that suppressed recombination evolved in response to the presence of SA polymorphisms. Instead, a low frequency of recombination on a chromosome that carries a male-determining locus and has not undergone genetic degeneration has probably facilitated the establishment of male-beneficial coloration polymorphisms.
Collapse
|
17
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
18
|
Modelling Sex-Specific Crossover Patterning in Arabidopsis. Genetics 2019; 211:847-859. [PMID: 30670541 DOI: 10.1534/genetics.118.301838] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 11/18/2022] Open
Abstract
"Interference" is a major force governing the patterning of meiotic crossovers. A leading model describing how interference influences crossover patterning is the beam-film model, a mechanical model based on the accumulation and redistribution of crossover-promoting "stress" along the chromosome axis. We use the beam-film model in conjunction with a large Arabidopsis reciprocal backcross data set to gain "mechanistic" insights into the differences between male and female meiosis, and crossover patterning. Beam-film modeling suggests that the underlying mechanics of crossover patterning and interference are identical in the two sexes, with the large difference in recombination rates and distributions able to be entirely explained by the shorter chromosome axes in females. The modeling supports previous indications that fewer crossovers occur via the class II pathway in female meiosis and that this could be explained by reduced DNA double-strand breaks in female meiosis, paralleling the observed reduction in synaptonemal complex length between the two sexes. We also demonstrate that changes in the strength of suppression of neighboring class I crossovers can have opposite effects on "effective" interference depending on the distance between two genetic intervals.
Collapse
|
19
|
Blokhina YP, Nguyen AD, Draper BW, Burgess SM. The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLoS Genet 2019; 15:e1007730. [PMID: 30653507 PMCID: PMC6336226 DOI: 10.1371/journal.pgen.1007730] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022] Open
Abstract
Meiosis is a cellular program that generates haploid gametes for sexual reproduction. While chromosome events that contribute to reducing ploidy (homologous chromosome pairing, synapsis, and recombination) are well conserved, their execution varies across species and even between sexes of the same species. The telomere bouquet is a conserved feature of meiosis that was first described nearly a century ago, yet its role is still debated. Here we took advantage of the prominent telomere bouquet in zebrafish, Danio rerio, and super-resolution microscopy to show that axis morphogenesis, synapsis, and the formation of double-strand breaks (DSBs) all take place within the immediate vicinity of telomeres. We established a coherent timeline of events and tested the dependence of each event on the formation of Spo11-induced DSBs. First, we found that the axis protein Sycp3 loads adjacent to telomeres and extends inward, suggesting a specific feature common to all telomeres seeds the development of the axis. Second, we found that newly formed axes near telomeres engage in presynaptic co-alignment by a mechanism that depends on DSBs, even when stable juxtaposition of homologous chromosomes at interstitial regions is not yet evident. Third, we were surprised to discover that ~30% of telomeres in early prophase I engage in associations between two or more chromosome ends and these interactions decrease in later stages. Finally, while pairing and synapsis were disrupted in both spo11 males and females, their reproductive phenotypes were starkly different; spo11 mutant males failed to produce sperm while females produced offspring with severe developmental defects. Our results support zebrafish as an important vertebrate model for meiosis with implications for differences in fertility and genetically derived birth defects in males and females. Inherent to reproduction is the transmission of genetic information from one generation to the next. In sexually reproducing organisms, each parent contributes an equal amount of genetic information, packaged in chromosomes, to the offspring. Diploid organisms, like humans, have two copies of every chromosome, while their haploid gametes (e.g. eggs and sperm) have only one. This reduction in ploidy depends on the segregation of chromosomes during meiosis, resulting in gametes with one copy of each chromosome. Missegregation of the chromosomes in the parents leads to abnormal chromosome numbers in the offspring, which is usually lethal or has detrimental developmental effects. While it has been known for over a century that homologous chromosomes pair and recombine to facilitate proper segregation, how homologs find their partners has remained elusive. A structure that has been central to the discussion of homolog pairing is the bouquet, or the dynamic clustering of telomeres during early stages of meiosis. Here we use zebrafish to show that the telomere bouquet is the site where key events leading to homologous chromosome pairing are coordinated. Furthermore, we show that deletion of spo11, a gene required for proper recombination in most studied organisms, resulted in very different effects in males and females where males were sterile while females produced deformed progeny.
Collapse
Affiliation(s)
- Yana P. Blokhina
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, United States of America
| | - An D. Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
20
|
A high-density genetic linkage map and QTL mapping for growth and sex of yellow drum (Nibea albiflora). Sci Rep 2018; 8:17271. [PMID: 30467365 PMCID: PMC6250659 DOI: 10.1038/s41598-018-35583-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 11/07/2018] [Indexed: 11/08/2022] Open
Abstract
A high-density genetic linkage map is essential for the studies of comparative genomics and gene mapping, and can facilitate assembly of reference genome. Herein, we constructed a high-density genetic linkage map with 8,094 SNPs selected from 113 sequenced fish of a F1 family. Ultimately, the consensus map spanned 3818.24 cM and covered nearly the whole genome (99.4%) with a resolution of 0.47 cM. 1,457 scaffolds spanning 435.15 Mb were anchored onto 24 linkage groups, accounting for 80.7% of the draft genome assembly of the yellow drum. Comparative genomic analyses with medaka and zebrafish genomes showed superb chromosome-scale synteny between yellow drum and medaka. QTL mapping and association analysis congruously revealed 22 QTLs for growth-related traits and 13 QTLs for sex dimorphism. Some important candidate genes such as PLA2G4A, BRINP3 and P2RY1 were identified from these growth-related QTL regions. A gene family including DMRT1, DMRT2 and DMRT3 was identified from these sex-related QTL regions on the linkage group LG9. We demonstrate that this linkage map can facilitate the ongoing marker-assisted selection and genomic and genetic studies for yellow drum.
Collapse
|
21
|
Artificially designed hybrids facilitate efficient generation of high-resolution linkage maps. Sci Rep 2018; 8:16104. [PMID: 30382134 PMCID: PMC6208418 DOI: 10.1038/s41598-018-34431-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
When sequencing eukaryotic genomes, linkage maps are indispensable for building scaffolds to assemble and/or to validate chromosomes. However, current approaches to constructing linkage maps are limited by marker density and cost-effectiveness, especially for wild organisms. We have now devised a new strategy based on artificially generated hybrid organisms to acquire ultrahigh-density genomic markers at reduced cost and build highly accurate linkage maps. We have also developed the novel analysis pipeline Scaffold Extender with Low Depth Linkage Analysis (SELDLA) for data processing to generate linkage maps and draft genomes. Using SELDLA, linkage maps and improved genomes for two species of pufferfish, Takifugu rubripes and Takifugu stictonotus, were obtained simultaneously. The strategy is applicable to a wide range of sexually reproducing organisms, and could, therefore, accelerate the whole genome analysis of various organisms including fish, mollusks, amphibians, insects, plants, and even mammals.
Collapse
|
22
|
Maroso F, Hermida M, Millán A, Blanco A, Saura M, Fernández A, Dalla Rovere G, Bargelloni L, Cabaleiro S, Villanueva B, Bouza C, Martínez P. Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly. DNA Res 2018; 25:439-450. [PMID: 29897548 PMCID: PMC6105115 DOI: 10.1093/dnares/dsy015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/05/2018] [Indexed: 12/26/2022] Open
Abstract
Highly dense linkage maps enable positioning thousands of landmarks useful for anchoring the whole genome and for analysing genome properties. Turbot is the most important cultured flatfish worldwide and breeding programs in the fifth generation of selection are targeted to improve growth rate, obtain disease resistant broodstock and understand sex determination to control sex ratio. Using a Restriction-site Associated DNA approach, we genotyped 18,214 single nucleotide polymorphism in 1,268 turbot individuals from 31 full-sibling families. Individual linkage maps were combined to obtain a male, female and species consensus maps. The turbot consensus map contained 11,845 markers distributed across 22 linkage groups representing a total normalised length of 3,753.9 cM. The turbot genome was anchored to this map, and scaffolds representing 96% of the assembly were ordered and oriented to obtain the expected 22 megascaffolds according to its karyotype. Recombination rate was lower in males, especially around centromeres, and pairwise comparison of 44 individual maps suggested chromosome polymorphism at specific genomic regions. Genome comparison across flatfish provided new evidence on karyotype reorganisations occurring across the evolution of this fish group.
Collapse
Affiliation(s)
| | - M Hermida
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - A Blanco
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - M Saura
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - A Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - G Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - S Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira, Spain
| | - B Villanueva
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - C Bouza
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - P Martínez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
23
|
Aslam ML, Carraro R, Bestin A, Cariou S, Sonesson AK, Bruant JS, Haffray P, Bargelloni L, Meuwissen THE. Genetics of resistance to photobacteriosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing. BMC Genet 2018; 19:43. [PMID: 29996763 PMCID: PMC6042378 DOI: 10.1186/s12863-018-0631-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background Photobacteriosis is an infectious disease developed by a Gram-negative bacterium Photobacterium damselae subsp. piscicida (Phdp), which may cause high mortalities (90–100%) in sea bream. Selection and breeding for resistance against infectious diseases is a highly valuable tool to help prevent or diminish disease outbreaks, and currently available advanced selection methods with the application of genomic information could improve the response to selection. An experimental group of sea bream juveniles was derived from a Ferme Marine de Douhet (FMD, Oléron Island, France) selected line using ~ 109 parents (~ 25 females and 84 males). This group of 1187 individuals represented 177 full-sib families with 1–49 sibs per family, which were challenged with virulent Phdp for a duration of 18 days, and mortalities were recorded within this duration. Tissue samples were collected from the parents and the recorded offspring for DNA extraction, library preparation using 2b-RAD and genotyping by sequencing. Genotypic data was used to develop a linkage map, genome wide association analysis and for the estimation of breeding values. Results The analysis of genetic variation for resistance against Phdp revealed moderate genomic heritability with estimates of ~ 0.32. A genome-wide association analysis revealed a quantitative trait locus (QTL) including 11 SNPs at linkage group 17 presenting significant association to the trait with p-value crossing genome-wide Bonferroni corrected threshold P ≤ 2.22e-06. The proportion total genetic variance explained by the single top most significant SNP was ranging from 13.28–16.14% depending on the method used to compute the variance. The accuracies of predicting breeding values obtained using genomic vs. pedigree information displayed 19–24% increase when using genomic information. Conclusion The current study demonstrates that SNPs-based genotyping of a sea bream population with 2b-RAD approach is effective at capturing the genetic variation for resistance against Phdp. Prediction accuracies obtained using genomic information were significantly higher than the accuracies obtained using pedigree information which highlights the importance and potential of genomic selection in commercial breeding programs. Electronic supplementary material The online version of this article (10.1186/s12863-018-0631-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Anastasia Bestin
- SYSAAF, French poultry and aquaculture breeders, 35042, Rennes Cedex, France
| | | | | | | | - Pierrick Haffray
- SYSAAF, French poultry and aquaculture breeders, 35042, Rennes Cedex, France
| | | | | |
Collapse
|
24
|
Abstract
Recombination often differs markedly between males and females. Here we present the first analysis of sex-specific recombination in Gasterosteus sticklebacks. Using whole-genome sequencing of 15 crosses between G. aculeatus and G. nipponicus, we localized 698 crossovers with a median resolution of 2.3 kb. We also used a bioinformatic approach to infer historical sex-averaged recombination patterns for both species. Recombination is greater in females than males on all chromosomes, and overall map length is 1.64 times longer in females. The locations of crossovers differ strikingly between sexes. Crossovers cluster toward chromosome ends in males, but are distributed more evenly across chromosomes in females. Suppression of recombination near the centromeres in males causes crossovers to cluster at the ends of long arms in acrocentric chromosomes, and greatly reduces crossing over on short arms. The effect of centromeres on recombination is much weaker in females. Genomic differentiation between G. aculeatus and G. nipponicus is strongly correlated with recombination rate, and patterns of differentiation along chromosomes are strongly influenced by male-specific telomere and centromere effects. We found no evidence for fine-scale correlations between recombination and local gene content in either sex. We discuss hypotheses for the origin of sexual dimorphism in recombination and its consequences for sexually antagonistic selection and sex chromosome evolution.
Collapse
|
25
|
Messmer AM, Leong JS, Rondeau EB, Mueller A, Despins CA, Minkley DR, Kent MP, Lien S, Boyce B, Morrison D, Fast MD, Norman JD, Danzmann RG, Koop BF. A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate. Mar Genomics 2018; 40:45-57. [PMID: 29673959 DOI: 10.1016/j.margen.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/28/2018] [Accepted: 03/27/2018] [Indexed: 11/28/2022]
Abstract
Antiparasitic drugs such as emamectin benzoate (EMB) are relied upon to reduce the parasite load, particularly of the sea louse Lepeophtheirus salmonis, on farmed salmon. The decline in EMB treatment efficacy for this purpose is an important issue for salmon producers around the world, and particularly for those in the Atlantic Ocean where widespread EMB tolerance in sea lice is recognized as a significant problem. Salmon farms in the Northeast Pacific Ocean have not historically experienced the same issues with treatment efficacy, possibly due to the relatively large population of endemic salmonid hosts that serve to both redistribute surviving lice and dilute populations potentially under selection by introducing naïve lice to farms. Frequent migration of lice among farmed and wild hosts should limit the effect of farm-specific selection pressures on changes to the overall allele frequencies of sea lice in the Pacific Ocean. A previous study using microsatellites examined L. salmonis oncorhynchi from 10 Pacific locations from wild and farmed hosts and found no population structure. Recently however, a farm population of sea lice was detected where EMB bioassay exposure tolerance was abnormally elevated. In response, we have developed a Pacific louse draft genome that complements the previously-released Atlantic louse sequence. These genomes were combined with whole-genome re-sequencing data to design a highly sensitive 201,279 marker SNP array applicable for both subspecies (90,827 validated Pacific loci; 153,569 validated Atlantic loci). Notably, kmer spectrum analysis of the re-sequenced samples indicated that Pacific lice exhibit a large within-individual heterozygosity rate (average of 1 in every 72 bases) that is markedly higher than that of Atlantic individuals (1 in every 173 bases). The SNP chip was used to produce a high-density map for Atlantic sea louse linkage group 5 that was previously shown to be associated with EMB tolerance in Atlantic lice. Additionally, 478 Pacific louse samples from farmed and wild hosts obtained between 2005 and 2014 were also genotyped on the array. Clustering analysis allowed us to detect the apparent emergence of an otherwise rare genotype at a high frequency among the lice collected from two farms in 2013 that had reported elevated EMB tolerance. This genotype was not observed in louse samples collected from the same farm in 2010, nor in any lice sampled from other locations prior to 2013. However, this genotype was detected at low frequencies in louse samples from farms in two locations reporting elevated EMB tolerance in 2014. These results suggest that a rare genotype present in Pacific lice may be locally expanded in farms after EMB treatment. Supporting this hypothesis, 437 SNPs associated with this genotype were found to be in a region of linkage group 5 that overlaps the region associated with EMB resistance in Atlantic lice. Finally, five of the top diagnostic SNPs within this region were used to screen lice that had been subjected to an EMB survival assay, revealing a significant association between these SNPs and EMB treatment outcome. To our knowledge this work is the first report to identify a genetic link to altered EMB efficacy in L. salmonis in the Pacific Ocean.
Collapse
Affiliation(s)
- Amber M Messmer
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Jong S Leong
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Eric B Rondeau
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Anita Mueller
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Cody A Despins
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - David R Minkley
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Matthew P Kent
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Brad Boyce
- Marine Harvest Canada, Campbell River, BC, Canada.
| | | | - Mark D Fast
- Department of Pathology and Microbiology, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada.
| | - Joseph D Norman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Present address: The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4, Canada.
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada; Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
26
|
Chang Y, Ding J, Xu Y, Li D, Zhang W, Li L, Song J. SLAF-based high-density genetic map construction and QTL mapping for major economic traits in sea urchin Strongylocentrotus intermedius. Sci Rep 2018; 8:820. [PMID: 29339742 PMCID: PMC5770408 DOI: 10.1038/s41598-017-18768-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Sea urchin (Strongylocentrotus intermedius) has long been a model species for developmental and evolutionary research, but only a few studies have focused on gene mapping. Here, we reported a high-density genetic map containing 4,387 polymorphism specific-length amplified fragment (SLAF) markers spanning 21 linkage groups (LG) for sea urchin. Based on this genetic map and phenotyping data for eight economic traits, 33 potentially significant QTLs were detected on ten different LGs with explanations ranging from 9.90% to 46.30%, partly including 10 QTLs for test diameter, six QTLs for body weight and eight QTLs for Aristotle's lantern weight. Moreover, we found a QTL enrichment LG, LG15, gathering QTLs for test diameter, body weight, gonad weight, light orange-yellow color difference (≥E1) and light yellow color difference (≥E2). Among all QTLs, we genotyped four QTLs for test diameter, Aristotle's lantern weight and body weight using High Resolution Melting (HRM) technology. Finally, we used the verified SNP marker (detected using SLAF sequencing) to explore their marker-assisted selection (MAS) breeding application potential and found that SNP-29 associated tightly with body weight and that heterozygous genotype was a dominant genotype, indicating that SNP-29 was a promising marker for MAS.
Collapse
Affiliation(s)
- Yaqing Chang
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China.
| | - Jun Ding
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| | - Yuhui Xu
- Biomarker technology Corporation, Beijing, 101300, China
| | - Dan Li
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| | - Weijie Zhang
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| | - Lei Li
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| | - Jian Song
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| |
Collapse
|
27
|
Theodosiou L, McMillan WO, Puebla O. Recombination in the eggs and sperm in a simultaneously hermaphroditic vertebrate. Proc Biol Sci 2017; 283:rspb.2016.1821. [PMID: 27974520 DOI: 10.1098/rspb.2016.1821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/14/2016] [Indexed: 01/15/2023] Open
Abstract
When there is no recombination (achiasmy) in one sex, it is in the heterogametic one. This observation is so consistent that it constitutes one of the few patterns in biology that may be regarded as a 'rule' and Haldane (Haldane 1922 J. Genet. 12, 101-109. (doi:10.1007/BF02983075)) proposed that it might be driven by selection against recombination in the sex chromosomes. Yet differences in recombination rates between the sexes (heterochiasmy) have also been reported in hermaphroditic species that lack sex chromosomes. In plants-the vast majority of which are hermaphroditic-selection at the haploid stage has been proposed to drive heterochiasmy. Yet few data are available for hermaphroditic animals, and barely any for hermaphroditic vertebrates. Here, we leverage reciprocal crosses between two black hamlets (Hypoplectrus nigricans, Serranidae), simultaneously hermaphroditic reef fishes from the wider Caribbean, to generate high-density egg- and sperm-specific linkage maps for each parent. We find globally higher recombination rates in the eggs, with dramatically pronounced heterochiasmy at the chromosome peripheries. We suggest that this pattern may be due to female meiotic drive, and that this process may be an important source of heterochiasmy in animals. We also identify a large non-recombining region that may play a role in speciation and local adaptation in Hypoplectrus.
Collapse
Affiliation(s)
- L Theodosiou
- Max-Planck-Institute for Evolutionary Biology, Research Group for Community Dynamics, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - W O McMillan
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| | - O Puebla
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105 Kiel, Germany .,Faculty of Mathematics and Natural Sciences, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
28
|
Linkage mapping aided by de novo genome and transcriptome assembly in Portunus trituberculatus: applications in growth-related QTL and gene identification. Sci Rep 2017; 7:7874. [PMID: 28801606 PMCID: PMC5554138 DOI: 10.1038/s41598-017-08256-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/06/2017] [Indexed: 11/09/2022] Open
Abstract
A high-resolution genetic linkage map is an essential tool for decoding genetics and genomics in non-model organisms. In this study, a linkage map was constructed for the swimming crab (Portunus trituberculatus) with 10,963 markers; as far as we know, this number of markers has never been achieved in any other crustacean. The linkage map covered 98.85% of the whole genome with a mean marker interval of 0.51 cM. The de novo assembly based on genome and transcriptome sequencing data enabled 2,378 explicit annotated markers to be anchored to the map. Quantitative trait locus (QTL) mapping revealed 10 growth-related QTLs with a phenotypic variance explained (PVE) range of 12.0-35.9. Eight genes identified from the growth-related QTL regions, in particular, RE1-silencing transcription factor and RNA-directed DNA polymerase genes with nonsynonymous substitutions, were considered important growth-related candidate genes. We have demonstrated that linkage mapping aided by de novo assembly of genome and transcriptome sequencing could serve as an important platform for QTL mapping and the identification of trait-related genes.
Collapse
|
29
|
Sutherland BJG, Rico C, Audet C, Bernatchez L. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis. G3 (BETHESDA, MD.) 2017; 7:2749-2762. [PMID: 28626004 PMCID: PMC5555479 DOI: 10.1534/g3.117.040915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Whole-genome duplication (WGD) can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy), which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera). Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL) for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic architecture of these traits important to aquaculture and evolution.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Ciro Rico
- School of Marine Studies, Molecular Diagnostics Laboratory, University of the South Pacific, Suva, Fiji
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), 41092 Sevilla, Spain
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Quebec G5L 3A1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
30
|
A High-Density Genetic Linkage Map and QTL Fine Mapping for Body Weight in Crucian Carp ( Carassius auratus) Using 2b-RAD Sequencing. G3-GENES GENOMES GENETICS 2017; 7:2473-2487. [PMID: 28600439 PMCID: PMC5555455 DOI: 10.1534/g3.117.041376] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A high-resolution genetic linkage map is essential for a wide range of genetics and genomics studies such as comparative genomics analysis and QTL fine mapping. Crucian carp (Carassius auratus) is widely distributed in Eurasia, and is an important aquaculture fish worldwide. In this study, a high-density genetic linkage map was constructed for crucian carp using 2b-RAD technology. The consensus map contains 8487 SNP markers, assigning to 50 linkage groups (LGs) and spanning 3762.88 cM, with an average marker interval of 0.44 cM and genome coverage of 98.8%. The female map had 4410 SNPs, and spanned 3500.42 cM (0.79 cM/marker), while the male map had 4625 SNPs and spanned 3346.33 cM (0.72 cM/marker). The average recombination ratio of female to male was 2.13:1, and significant male-biased recombination suppressions were observed in LG47 and LG49. Comparative genomics analysis revealed a clear 2:1 syntenic relationship between crucian carp LGs and chromosomes of zebrafish and grass carp, and a 1:1 correspondence, but extensive chromosomal rearrangement, between crucian carp and common carp, providing evidence that crucian carp has experienced a fourth round of whole genome duplication (4R-WGD). Eight chromosome-wide QTL for body weight at 2 months after hatch were detected on five LGs, explaining 10.1-13.2% of the phenotypic variations. Potential candidate growth-related genes, such as an EGF-like domain and TGF-β, were identified within the QTL intervals. This high-density genetic map and QTL analysis supplies a basis for genome evolutionary studies in cyprinid fishes, genome assembly, and QTL fine mapping for complex traits in crucian carp.
Collapse
|
31
|
Cold Fusion: Massive Karyotype Evolution in the Antarctic Bullhead Notothen Notothenia coriiceps. G3-GENES GENOMES GENETICS 2017; 7:2195-2207. [PMID: 28576775 PMCID: PMC5498148 DOI: 10.1534/g3.117.040063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Half of all vertebrate species share a series of chromosome fusions that preceded the teleost genome duplication (TGD), but we do not understand the causative evolutionary mechanisms. The "Robertsonian-translocation hypothesis" suggests a regular fusion of each ancestral acro- or telocentric chromosome to just one other by centromere fusions, thus halving the karyotype. An alternative "genome-stirring hypothesis" posits haphazard and repeated fusions, inversions, and reciprocal and nonreciprocal translocations. To study large-scale karyotype reduction, we investigated the decrease of chromosome numbers in Antarctic notothenioid fish. Most notothenioids have 24 haploid chromosomes, but bullhead notothen (Notothenia coriiceps) has 11. To understand mechanisms, we made a RAD-tag meiotic map with ∼10,000 polymorphic markers. Comparative genomics aligned about a thousand orthologs of platyfish and stickleback genes along bullhead chromosomes. Results revealed that 9 of 11 bullhead chromosomes arose by fusion of just two ancestral chromosomes and two others by fusion of three ancestral chromosomes. All markers from each ancestral chromosome remained contiguous, implying no inversions across fusion borders. Karyotype comparisons support a history of: (1) Robertsonian fusions of 22 ancestral chromosomes in pairs to yield 11 fused plus two small unfused chromosomes, like N. angustata; (2) fusion of one of the remaining two ancestral chromosomes to a preexisting fused pair, giving 12 chromosomes like N. rossii; and (3) fusion of the remaining ancestral chromosome to another fused pair, giving 11 chromosomes in N. coriiceps These results raise the question of what selective forces promoted the systematic fusion of chromosomes in pairs and the suppression of pericentric inversions in this lineage, and provide a model for chromosome fusions in stem teleosts.
Collapse
|
32
|
Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence. Sci Rep 2017; 7:40347. [PMID: 28079141 PMCID: PMC5228154 DOI: 10.1038/srep40347] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/05/2016] [Indexed: 02/02/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such as SNP arrays. In this work, we developed a high-density SNP array with 690,662 unique SNPs (herein 690 K array) that were relatively evenly distributed across the entire genome, and covered 98.6% of the reference genome sequence. Here we also report linkage mapping using the 690 K array, which allowed mapping of over 250,000 SNPs on the linkage map, the highest marker density among all the constructed linkage maps. These markers were mapped to 29 linkage groups (LGs) with 30,591 unique marker positions. This linkage map anchored 1,602 scaffolds of the reference genome sequence to LGs, accounting for over 97% of the total genome assembly. A total of 1,007 previously unmapped scaffolds were placed to LGs, allowing validation and in few instances correction of the reference genome sequence assembly. This linkage map should serve as a valuable resource for various genetic and genomic analyses, especially for GWAS and QTL mapping for genes associated with economically important traits.
Collapse
|
33
|
Wang L, Bai B, Liu P, Huang SQ, Wan ZY, Chua E, Ye B, Yue GH. Construction of high-resolution recombination maps in Asian seabass. BMC Genomics 2017; 18:63. [PMID: 28068919 PMCID: PMC5223582 DOI: 10.1186/s12864-016-3462-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022] Open
Abstract
Background A high-density genetic map is essential for de novo genome assembly, fine mapping QTL for important complex traits, comparative genomic studies and understanding the mechanisms of genome evolution. Although a number of genomic resources are available in Asian seabass (Lates calcarifer), a high-density linkage map is still lacking. To facilitate QTL mapping for marker-assisted selection and genome assembly, and to understand the genome-wide recombination rates, we constructed high density linkage maps using three families and genotyping by sequencing. Results A high-density consensus linkage map consisting of 8, 274 markers was constructed based on sex-averaged genetic maps. The genetic maps were then aligned and integrated with the current genome assembly of Asian seabass. More than 90% of the genome contig sequences were anchored onto the consensus genetic map. Evidence of assembly errors in the current genome assembly was identified. A fragment of up to 2.5 Mb belonging to LG14 was assembled into Chr15. The length of family-specific sex-averaged maps ranged from 1348.96 to 1624.65 cM. Female maps were slightly longer than male maps using common markers. Female-to-male ratios were highly variable both across chromosomes within each family and throughout three families for each chromosome. However, the distribution patterns of recombination along chromosomes were similar between sexes across the whole genome. The overall recombination rates were significantly correlated with genome-wide GC content and the correlations were revealed to be stronger in females than in males. Conclusions These high-density genetic maps provide not only essential tools for facilitating de novo genome assembly and comparative genomic studies in teleosts, but also critical resources for fine mapping QTL and genome-wide association mapping for economically important traits in Asian seabass. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3462-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Bin Bai
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Peng Liu
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Shu Qing Huang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Elaine Chua
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
34
|
A second generation SNP and SSR integrated linkage map and QTL mapping for the Chinese mitten crab Eriocheir sinensis. Sci Rep 2017; 7:39826. [PMID: 28045132 PMCID: PMC5206627 DOI: 10.1038/srep39826] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/28/2016] [Indexed: 02/03/2023] Open
Abstract
The Chinese mitten crab Eriocheir sinensis is the most economically important cultivated crab species in China, and its genome has a high number of chromosomes (2n = 146). To obtain sufficient markers for construction of a dense genetic map for this species, we employed the recently developed specific-locus amplified fragment sequencing (SLAF-seq) method for large-scale SNPs screening and genotyping in a F1 full-sib family of 149 individuals. SLAF-seq generated 127,677 polymorphic SNP markers, of which 20,803 valid markers were assigned into five segregation types and were used together with previous SSR markers for linkage map construction. The final integrated genetic map included 17,680 SNP and 629 SSR markers on the 73 linkage groups (LG), and spanned 14,894.9 cM with an average marker interval of 0.81 cM. QTL mapping localized three significant growth-related QTL to a 1.2 cM region in LG53 as well as 146 sex-linked markers in LG48. Genome-wide QTL-association analysis further identified four growth-related QTL genes named LNX2, PAK2, FMRFamide and octopamine receptors. These genes are involved in a variety of different signaling pathways including cell proliferation and growth. The map and SNP markers described here will be a valuable resource for the E. sinensis genome project and selective breeding programs.
Collapse
|
35
|
Dor L, Shirak A, Rosenfeld H, Ashkenazi IM, Band MR, Korol A, Ronin Y, Seroussi E, Weller JI, Ron M. Identification of the sex-determining region in flathead grey mullet (Mugil cephalus). Anim Genet 2016; 47:698-707. [PMID: 27611243 DOI: 10.1111/age.12486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/29/2022]
Abstract
Elucidation of the sex-determination mechanism in flathead grey mullet (Mugil cephalus) is required to exploit its economic potential by production of genetically determined monosex populations and application of hormonal treatment to parents rather than to the marketed progeny. Our objective was to construct a first-generation linkage map of the M. cephalus in order to identify the sex-determining region and sex-determination system. Deep-sequencing data of a single male was assembled and aligned to the genome of Nile tilapia (Oreochromis niloticus). A total 245 M. cephalus microsatellite markers were designed, spanning the syntenic tilapia genome assembly at intervals of 10 Mb. In the mapping family of full-sib progeny, 156 segregating markers were used to construct a first-generation linkage map of 24 linkage groups (LGs), corresponding to the number of chromosomes. The linkage map spanned approximately 1200 cM with an average inter-marker distance of 10.6 cM. Markers segregating on LG9 in two independent mapping families showed nearly complete concordance with gender (R2 = 0.95). The sex determining locus was fine mapped within an interval of 8.6 cM on LG9. The sex of offspring was determined only by the alleles transmitted from the father, thus indicating an XY sex-determination system.
Collapse
Affiliation(s)
- L Dor
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - A Shirak
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - H Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, 88112, Israel
| | - I M Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, 88112, Israel
| | - M R Band
- The Carver Biotechnology Center, University of Illinois, Urbana, IL, 61801, USA
| | - A Korol
- Faculty of Science, Institute of Evolution, University Haifa, Haifa, 31905, Israel
| | - Y Ronin
- Faculty of Science, Institute of Evolution, University Haifa, Haifa, 31905, Israel
| | - E Seroussi
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - J I Weller
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - M Ron
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel.
| |
Collapse
|
36
|
Coding and noncoding variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B affect recombination rate in cattle. Genome Res 2016; 26:1323-1332. [PMID: 27516620 PMCID: PMC5052053 DOI: 10.1101/gr.204214.116] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/10/2016] [Indexed: 11/29/2022]
Abstract
We herein study genetic recombination in three cattle populations from France, New Zealand, and the Netherlands. We identify 2,395,177 crossover (CO) events in 94,516 male gametes, and 579,996 CO events in 25,332 female gametes. The average number of COs was found to be larger in males (23.3) than in females (21.4). The heritability of global recombination rate (GRR) was estimated at 0.13 in males and 0.08 in females, with a genetic correlation of 0.66 indicating that shared variants are influencing GRR in both sexes. A genome-wide association study identified seven quantitative trait loci (QTL) for GRR. Fine-mapping following sequence-based imputation in 14,401 animals pinpointed likely causative coding (5) and noncoding (1) variants in genes known to be involved in meiotic recombination (HFM1, MSH4, RNF212, MLH3, MSH5) for 5/7 QTL, and noncoding variants (3) in RNF212B for 1/7 QTL. This suggests that this RNF212 paralog might also be involved in recombination. Most of the identified mutations had significant effects in both sexes, with three of them each accounting for ∼10% of the genetic variance in males.
Collapse
|
37
|
Pelegri F, Mullins MC. Genetic screens for mutations affecting adult traits and parental-effect genes. Methods Cell Biol 2016; 135:39-87. [PMID: 27443920 DOI: 10.1016/bs.mcb.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Forward genetics remains an important approach for the unbiased identification of factors involved in biological pathways. Forward genetic analysis in the zebrafish has until now largely been restricted to the developmental period from zygotic genome activation through the end of embryogenesis. However, the use of the zebrafish as a model system for the analysis of late larval, juvenile and adult traits, including fertility and maternal and paternal effects, continues to gain momentum. Here, we describe two approaches, based on an F3-extended family and gynogenetic methods, that allow genetic screening for, and recovery of mutations affecting post-embryonic stages, including adult traits, fertility, and parental effects. For each approach, we also describe strategies to maintain, map, and molecularly clone the identified mutations.
Collapse
Affiliation(s)
- F Pelegri
- University of Wisconsin-Madison, Madison, WI, United States
| | - M C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
38
|
A High-Density SNP Genetic Linkage Map and QTL Analysis of Growth-Related Traits in a Hybrid Family of Oysters (Crassostrea gigas × Crassostrea angulata) Using Genotyping-by-Sequencing. G3-GENES GENOMES GENETICS 2016; 6:1417-26. [PMID: 26994291 PMCID: PMC4856092 DOI: 10.1534/g3.116.026971] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oysters are among the most important species in global aquaculture. Crassostrea gigas, and its subspecies C. angulata, are the major cultured species. To determine the genetic basis of growth-related traits in oysters, we constructed a second-generation linkage map from 3367 single-nucleotide polymorphisms (SNPs) based on genotyping-by-sequencing, genotyped from a C. gigas × C. angulata hybrid family. These 3367 SNPs were distributed on 1695 markers, which were assigned to 10 linkage groups. The genetic linkage map had a total length of 1084.3 cM, with an average of 0.8 cM between markers; it thus represents the densest genetic map constructed for oysters to date. Twenty-seven quantitative trait loci (QTL) for five growth-related traits were detected. These QTL could explain 4.2-7.7% (mean = 5.4%) of the phenotypic variation. In total, 50.8% of phenotypic variance for shell width, 7.7% for mass weight, and 34.1% for soft tissue weight were explained. The detected QTL were distributed among eight linkage groups, and more than half (16) were concentrated within narrow regions in their respective linkage groups. Thirty-eight annotated genes were identified within the QTL regions, two of which are key genes for carbohydrate metabolism. Other genes were found to participate in assembly and regulation of the actin cytoskeleton, signal transduction, and regulation of cell differentiation and development. The newly developed high-density genetic map, and the QTL and candidate genes identified provide a valuable genetic resource and a basis for marker-assisted selection for C. gigas and C. angulata.
Collapse
|
39
|
Preliminary genetic linkage map of Indian major carp, Labeo rohita (Hamilton 1822) based on microsatellite markers. J Genet 2016; 94:271-7. [PMID: 26174674 DOI: 10.1007/s12041-015-0528-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Linkage map with wide marker coverage is an essential resource for genetic improvement study for any species. Sex-averaged genetic linkage map of Labeo rohita, popularly known as 'rohu', widely cultured in the Indian subcontinent, was developed by placing 68 microsatellite markers generated by a simplified method. The parents and their F1 progeny (92 individuals) were used as segregating populations. The genetic linkage map spans a sex-averaged total length of 1462.2 cM, in 25 linkage groups. The genome length of rohu was estimated to be 3087.9 cM. This genetic linkage map may facilitate systematic searches of the genome to identify genes associated with commercially important characters and marker-assisted selection programmes of this species.
Collapse
|
40
|
Rastas P, Calboli FCF, Guo B, Shikano T, Merilä J. Construction of Ultradense Linkage Maps with Lep-MAP2: Stickleback F2 Recombinant Crosses as an Example. Genome Biol Evol 2015; 8:78-93. [PMID: 26668116 PMCID: PMC4758246 DOI: 10.1093/gbe/evv250] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
High-density linkage maps are important tools for genome biology and evolutionary genetics by quantifying the extent of recombination, linkage disequilibrium, and chromosomal rearrangements across chromosomes, sexes, and populations. They provide one of the best ways to validate and refine de novo genome assemblies, with the power to identify errors in assemblies increasing with marker density. However, assembly of high-density linkage maps is still challenging due to software limitations. We describe Lep-MAP2, a software for ultradense genome-wide linkage map construction. Lep-MAP2 can handle various family structures and can account for achiasmatic meiosis to gain linkage map accuracy. Simulations show that Lep-MAP2 outperforms other available mapping software both in computational efficiency and accuracy. When applied to two large F2-generation recombinant crosses between two nine-spined stickleback (Pungitius pungitius) populations, it produced two high-density (∼6 markers/cM) linkage maps containing 18,691 and 20,054 single nucleotide polymorphisms. The two maps showed a high degree of synteny, but female maps were 1.5–2 times longer than male maps in all linkage groups, suggesting genome-wide recombination suppression in males. Comparison with the genome sequence of the three-spined stickleback (Gasterosteus aculeatus) revealed a high degree of interspecific synteny with a low frequency (<5%) of interchromosomal rearrangements. However, a fairly large (ca. 10 Mb) translocation from autosome to sex chromosome was detected in both maps. These results illustrate the utility and novel features of Lep-MAP2 in assembling high-density linkage maps, and their usefulness in revealing evolutionarily interesting properties of genomes, such as strong genome-wide sex bias in recombination rates.
Collapse
Affiliation(s)
- Pasi Rastas
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Federico C F Calboli
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Baocheng Guo
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Takahito Shikano
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Zhou Z, Liu S, Dong Y, Gao S, Chen Z, Jiang J, Yang A, Sun H, Guan X, Jiang B, Wang B. High-Density Genetic Mapping with Interspecific Hybrids of Two Sea Urchins, Strongylocentrotus nudus and S. intermedius, by RAD Sequencing. PLoS One 2015; 10:e0138585. [PMID: 26398139 PMCID: PMC4580576 DOI: 10.1371/journal.pone.0138585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022] Open
Abstract
Sea urchins have long been used as research model organisms for developmental biology and evolutionary studies. Some of them are also important aquaculture species in East Asia. In this work, we report the construction of RAD-tag based high-density genetic maps by genotyping F1 interspecific hybrids derived from a crossing between a female sea urchin Strongylocentrotus nudus and a male Strongylocentrotus intermedius. With polymorphisms present in these two wild individuals, we constructed a female meiotic map containing 3,080 markers for S. nudus, and a male meiotic map for S. intermedius which contains 1,577 markers. Using the linkage maps, we were able to anchor a total of 1,591 scaffolds (495.9 Mb) accounting for 60.8% of the genome assembly of Strongylocentrotus purpuratus. A genome-wide scan resulted in the identification of one putative QTL for body size which spanned from 25.3 cM to 30.3 cM. This study showed the efficiency of RAD-Seq based high-density genetic map construction using F1 progenies for species with no prior genomic information. The genetic maps are essential for QTL mapping and are useful as framework to order and orientate contiguous scaffolds from sea urchin genome assembly. The integration of the genetic map with genome assembly would provide an unprecedented opportunity to conduct QTL analysis, comparative genomics, and population genetics studies.
Collapse
Affiliation(s)
- Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
- * E-mail:
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, United States of America
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Xiaoyan Guan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Bei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Bai Wang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| |
Collapse
|
42
|
Li Y, Liu S, Qin Z, Waldbieser G, Wang R, Sun L, Bao L, Danzmann RG, Dunham R, Liu Z. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish. DNA Res 2014; 22:39-52. [PMID: 25428894 PMCID: PMC4379976 DOI: 10.1093/dnares/dsu038] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits.
Collapse
Affiliation(s)
- Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Geoff Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, MS 38776, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
43
|
Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, Lemon C, Bird NH, Koop BF. The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One 2014; 9:e102089. [PMID: 25069045 PMCID: PMC4113312 DOI: 10.1371/journal.pone.0102089] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/14/2014] [Indexed: 11/19/2022] Open
Abstract
The northern pike is the most frequently studied member of the Esociformes, the closest order to the diverse and economically important Salmoniformes. The ancestor of all salmonids purportedly experienced a whole-genome duplication (WGD) event, making salmonid species ideal for studying the early impacts of genome duplication while complicating their use in wider analyses of teleost evolution. Studies suggest that the Esociformes diverged from the salmonid lineage prior to the WGD, supporting the use of northern pike as a pre-duplication outgroup. Here we present the first genome assembly, reference transcriptome and linkage map for northern pike, and evaluate the suitability of this species to provide a representative pre-duplication genome for future studies of salmonid and teleost evolution. The northern pike genome sequence is composed of 94,267 contigs (N50 = 16,909 bp) contained in 5,688 scaffolds (N50 = 700,535 bp); the total scaffolded genome size is 878 million bases. Multiple lines of evidence suggest that over 96% of the protein-coding genome is present in the genome assembly. The reference transcriptome was constructed from 13 tissues and contains 38,696 transcripts, which are accompanied by normalized expression data in all tissues. Gene-prediction analysis produced a total of 19,601 northern pike-specific gene models. The first-generation linkage map identifies 25 linkage groups, in agreement with northern pike's diploid karyotype of 2N = 50, and facilitates the placement of 46% of assembled bases onto linkage groups. Analyses reveal a high degree of conserved synteny between northern pike and other model teleost genomes. While conservation of gene order is limited to smaller syntenic blocks, the wider conservation of genome organization implies the northern pike exhibits a suitable approximation of a non-duplicated Protacanthopterygiian genome. This dataset will facilitate future studies of esocid biology and empower ongoing examinations of the Atlantic salmon and rainbow trout genomes by facilitating their comparison with other major teleost groups.
Collapse
Affiliation(s)
- Eric B. Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - David R. Minkley
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Jong S. Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Amber M. Messmer
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Johanna R. Jantzen
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Kristian R. von Schalburg
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Craig Lemon
- The Charles O. Hayford Hackettstown State Fish Hatchery, Hackettstown, New Jersey, United States of America
| | - Nathan H. Bird
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Ben F. Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
44
|
Kai W, Nomura K, Fujiwara A, Nakamura Y, Yasuike M, Ojima N, Masaoka T, Ozaki A, Kazeto Y, Gen K, Nagao J, Tanaka H, Kobayashi T, Ototake M. A ddRAD-based genetic map and its integration with the genome assembly of Japanese eel (Anguilla japonica) provides insights into genome evolution after the teleost-specific genome duplication. BMC Genomics 2014; 15:233. [PMID: 24669946 PMCID: PMC3986909 DOI: 10.1186/1471-2164-15-233] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/17/2014] [Indexed: 12/30/2022] Open
Abstract
Background Recent advancements in next-generation sequencing technology have enabled cost-effective sequencing of whole or partial genomes, permitting the discovery and characterization of molecular polymorphisms. Double-digest restriction-site associated DNA sequencing (ddRAD-seq) is a powerful and inexpensive approach to developing numerous single nucleotide polymorphism (SNP) markers and constructing a high-density genetic map. To enrich genomic resources for Japanese eel (Anguilla japonica), we constructed a ddRAD-based genetic map using an Ion Torrent Personal Genome Machine and anchored scaffolds of the current genome assembly to 19 linkage groups of the Japanese eel. Furthermore, we compared the Japanese eel genome with genomes of model fishes to infer the history of genome evolution after the teleost-specific genome duplication. Results We generated the ddRAD-based linkage map of the Japanese eel, where the maps for female and male spanned 1748.8 cM and 1294.5 cM, respectively, and were arranged into 19 linkage groups. A total of 2,672 SNP markers and 115 Simple Sequence Repeat markers provide anchor points to 1,252 scaffolds covering 151 Mb (13%) of the current genome assembly of the Japanese eel. Comparisons among the Japanese eel, medaka, zebrafish and spotted gar genomes showed highly conserved synteny among teleosts and revealed part of the eight major chromosomal rearrangement events that occurred soon after the teleost-specific genome duplication. Conclusions The ddRAD-seq approach combined with the Ion Torrent Personal Genome Machine sequencing allowed us to conduct efficient and flexible SNP genotyping. The integration of the genetic map and the assembled sequence provides a valuable resource for fine mapping and positional cloning of quantitative trait loci associated with economically important traits and for investigating comparative genomics of the Japanese eel.
Collapse
Affiliation(s)
| | | | - Atushi Fujiwara
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama-shi, Kanagawa 236-8648, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jones DB, Jerry DR, Khatkar MS, Raadsma HW, Zenger KR. A high-density SNP genetic linkage map for the silver-lipped pearl oyster, Pinctada maxima: a valuable resource for gene localisation and marker-assisted selection. BMC Genomics 2013; 14:810. [PMID: 24252414 PMCID: PMC4046678 DOI: 10.1186/1471-2164-14-810] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/18/2013] [Indexed: 11/26/2022] Open
Abstract
Background The silver-lipped pearl oyster, Pinctada maxima, is an important tropical aquaculture species extensively farmed for the highly sought "South Sea" pearls. Traditional breeding programs have been initiated for this species in order to select for improved pearl quality, but many economic traits under selection are complex, polygenic and confounded with environmental factors, limiting the accuracy of selection. The incorporation of a marker-assisted selection (MAS) breeding approach would greatly benefit pearl breeding programs by allowing the direct selection of genes responsible for pearl quality. However, before MAS can be incorporated, substantial genomic resources such as genetic linkage maps need to be generated. The construction of a high-density genetic linkage map for P. maxima is not only essential for unravelling the genomic architecture of complex pearl quality traits, but also provides indispensable information on the genome structure of pearl oysters. Results A total of 1,189 informative genome-wide single nucleotide polymorphisms (SNPs) were incorporated into linkage map construction. The final linkage map consisted of 887 SNPs in 14 linkage groups, spans a total genetic distance of 831.7 centimorgans (cM), and covers an estimated 96% of the P. maxima genome. Assessment of sex-specific recombination across all linkage groups revealed limited overall heterochiasmy between the sexes (i.e. 1.15:1 F/M map length ratio). However, there were pronounced localised differences throughout the linkage groups, whereby male recombination was suppressed near the centromeres compared to female recombination, but inflated towards telomeric regions. Mean values of LD for adjacent SNP pairs suggest that a higher density of markers will be required for powerful genome-wide association studies. Finally, numerous nacre biomineralization genes were localised providing novel positional information for these genes. Conclusions This high-density SNP genetic map is the first comprehensive linkage map for any pearl oyster species. It provides an essential genomic tool facilitating studies investigating the genomic architecture of complex trait variation and identifying quantitative trait loci for economically important traits useful in genetic selection programs within the P. maxima pearling industry. Furthermore, this map provides a foundation for further research aiming to improve our understanding of the dynamic process of biomineralization, and pearl oyster evolution and synteny. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-810) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David B Jones
- Centre for Sustainable Tropical Fisheries & Aquaculture, The School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia.
| | | | | | | | | |
Collapse
|
46
|
Abstract
In this review, we provide a detailed overview of studies on the elusive sex determination (SD) and gonad differentiation mechanisms of zebrafish (Danio rerio). We show that the data obtained from most studies are compatible with polygenic sex determination (PSD), where the decision is made by the allelic combinations of several loci. These loci are typically dispersed throughout the genome, but in some teleost species a few of them might be located on a preferential pair of (sex) chromosomes. The PSD system has a much higher level of variation of SD genotypes both at the level of gametes and the sexual genotype of individuals, than that of the chromosomal sex determination systems. The early sexual development of zebrafish males is a complicated process, as they first develop a ‘juvenile ovary’, that later undergoes a transformation to give way to a testis. To date, three major developmental pathways were shown to be involved with gonad differentiation through the modulation of programmed cell death. In our opinion, there are more pathways participating in the regulation of zebrafish gonad differentiation/transformation. Introduction of additional powerful large-scale genomic approaches into the analysis of zebrafish reproduction will result in further deepening of our knowledge as well as identification of additional pathways and genes associated with these processes in the near future.
Collapse
Affiliation(s)
- Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore.
| | | |
Collapse
|
47
|
Rondeau EB, Messmer AM, Sanderson DS, Jantzen SG, von Schalburg KR, Minkley DR, Leong JS, Macdonald GM, Davidsen AE, Parker WA, Mazzola RSA, Campbell B, Koop BF. Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene. BMC Genomics 2013; 14:452. [PMID: 23829495 PMCID: PMC3708741 DOI: 10.1186/1471-2164-14-452] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The sablefish (order: Scorpaeniformes) is an economically important species in commercial fisheries of the North Pacific and an emerging species in aquaculture. Aside from a handful of sequences in NCBI and a few published microsatellite markers, little is known about the genetics of this species. The development of genetic tools, including polymorphic markers and a linkage map will allow for the successful development of future broodstock and mapping of phenotypes of interest. The significant sexual dimorphism between females and males makes a genetic test for early identification of sex desirable. RESULTS A full mitochondrial genome is presented and the resulting phylogenetic analysis verifies the placement of the sablefish within the Scorpaeniformes. Nearly 35,000 assembled transcript sequences are used to identify genes and obtain polymorphic SNP and microsatellite markers. 360 transcribed polymorphic loci from two sablefish families produce a map of 24 linkage groups. The sex phenotype maps to sablefish LG14 of the male map. We show significant conserved synteny and conservation of gene-order between the threespine stickleback Gasterosteus aculeatus and sablefish. An additional 1843 polymorphic SNP markers are identified through next-generation sequencing techniques. Sex-specific markers and sequence insertions are identified immediately upstream of the gene gonadal-soma derived factor (gsdf), the master sex determinant locus in the medaka species Oryzias luzonensis. CONCLUSIONS The first genomic resources for sablefish provide a foundation for further studies. Over 35,000 transcripts are presented, and the genetic map represents, as far as we can determine, the first linkage map for a member of the Scorpaeniformes. The observed level of conserved synteny and comparative mapping will allow the use of the stickleback genome in future genetic studies on sablefish and other related fish, particularly as a guide to whole-genome assembly. The identification of sex-specific insertions immediately upstream of a known master sex determinant implicates gsdf as an excellent candidate for the master sex determinant for sablefish.
Collapse
Affiliation(s)
- Eric B Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Amber M Messmer
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Dan S Sanderson
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Stuart G Jantzen
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Kristian R von Schalburg
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - David R Minkley
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Jong S Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Graham M Macdonald
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Amanda E Davidsen
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - William A Parker
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Rosetta SA Mazzola
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Briony Campbell
- Sablefish Canada Ltd, 335 Walkers Hook Rd., Salt Spring Island, British Columbia V8K 1N7, Canada
| | - Ben F Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| |
Collapse
|
48
|
Jiang L, Chu G, Zhang Q, Wang Z, Wang X, Zhai J, Yu H. A microsatellite genetic linkage map of half smooth tongue sole (Cynoglossus semilaevis). Mar Genomics 2013; 9:17-23. [DOI: 10.1016/j.margen.2012.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
|
49
|
Fine-scale heterogeneity in crossover rate in the garnet-scalloped region of the Drosophila melanogaster X chromosome. Genetics 2013; 194:375-87. [PMID: 23410829 DOI: 10.1534/genetics.112.146746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity.
Collapse
|
50
|
Liu F, Sun F, Li J, Xia JH, Lin G, Tu RJ, Yue GH. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp.) and mapping of sex-determining loci. BMC Genomics 2013; 14:58. [PMID: 23356773 PMCID: PMC3565888 DOI: 10.1186/1471-2164-14-58] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/22/2013] [Indexed: 11/16/2022] Open
Abstract
Background Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. Results We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. Conclusions A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex-determining loci could be used in the selection of YY males for breeding all-male populations of salt tolerant tilapia, as well as in studies on mechanisms of sex determination in fish.
Collapse
Affiliation(s)
- Feng Liu
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|