1
|
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
Affiliation(s)
- John W. Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Worawan B. Limpitikul
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Ivy E. Dick School of Medicine, University of Maryland, Baltimore, MD21210
| |
Collapse
|
2
|
Gap Junction Channelopathies and Calmodulinopathies. Do Disease-Causing Calmodulin Mutants Affect Direct Cell-Cell Communication? Int J Mol Sci 2021; 22:ijms22179169. [PMID: 34502077 PMCID: PMC8431743 DOI: 10.3390/ijms22179169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022] Open
Abstract
The cloning of connexins cDNA opened the way to the field of gap junction channelopathies. Thus far, at least 35 genetic diseases, resulting from mutations of 11 different connexin genes, are known to cause numerous structural and functional defects in the central and peripheral nervous system as well as in the heart, skin, eyes, teeth, ears, bone, hair, nails and lymphatic system. While all of these diseases are due to connexin mutations, minimal attention has been paid to the potential diseases of cell–cell communication caused by mutations of Cx-associated molecules. An important Cx accessory protein is calmodulin (CaM), which is the major regulator of gap junction channel gating and a molecule relevant to gap junction formation. Recently, diseases caused by CaM mutations (calmodulinopathies) have been identified, but thus far calmodulinopathy studies have not considered the potential effect of CaM mutations on gap junction function. The major goal of this review is to raise awareness on the likely role of CaM mutations in defects of gap junction mediated cell communication. Our studies have demonstrated that certain CaM mutants affect gap junction channel gating or expression, so it would not be surprising to learn that CaM mutations known to cause diseases also affect cell communication mediated by gap junction channels.
Collapse
|
3
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
4
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Tsurumi A, Xue S, Zhang L, Li J, Li WX. Genome-wide Kdm4 histone demethylase transcriptional regulation in Drosophila. Mol Genet Genomics 2019; 294:1107-1121. [PMID: 31020413 PMCID: PMC6813854 DOI: 10.1007/s00438-019-01561-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/03/2019] [Indexed: 12/23/2022]
Abstract
The histone lysine demethylase 4 (Kdm4/Jmjd2/Jhdm3) family is highly conserved across species and reverses di- and tri-methylation of histone H3 lysine 9 (H3K9) and lysine 36 (H3K36) at the N-terminal tail of the core histone H3 in various metazoan species including Drosophila, C.elegans, zebrafish, mice and humans. Previous studies have shown that the Kdm4 family plays a wide variety of important biological roles in different species, including development, oncogenesis and longevity by regulating transcription, DNA damage response and apoptosis. Only two functional Kdm4 family members have been identified in Drosophila, compared to five in mammals, thus providing a simple model system. Drosophila Kdm4 loss-of-function mutants do not survive past the early 2nd instar larvae stage and display a molting defect phenotype associated with deregulated ecdysone hormone receptor signaling. To further characterize and identify additional targets of Kdm4, we employed a genome-wide approach to investigate transcriptome alterations in Kdm4 mutants versus wild-type during early development. We found evidence of increased deregulated transcripts, presumably associated with a progressive accumulation of H3K9 and H3K36 methylation through development. Gene ontology analyses found significant enrichment of terms related to the ecdysteroid hormone signaling pathway important in development, as expected, and additionally previously unidentified potential targets that warrant further investigation. Since Kdm4 is highly conserved across species, our results may be applicable more widely to other organisms and our genome-wide dataset may serve as a useful resource for further studies.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA.
- Department of Microbiology and Immunology, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115, USA.
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA.
| | - Shuang Xue
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Lin Zhang
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jinghong Li
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Willis X Li
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Wang L, Dong Z, Wang J, Yin Y, Liu H, Hu W, Peng Z, Liu C, Li M, Banno Y, Shimada T, Xia Q, Zhao P. Proteomic Analysis of Larval Integument in a Dominant Obese Translucent (Obs) Silkworm Mutant. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5168485. [PMID: 30412263 PMCID: PMC6225826 DOI: 10.1093/jisesa/iey098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The dominant obese translucent (Obs) mutant of the silkworm (Bombyx mori) results in a short and stout larval body, translucent phenotype, and abnormal pigmentation in the integument. The Obs mutant also displays deficiency in ecdysis and metamorphosis. In the present study, to gain an understanding of multiple Obs phenotypes, we investigated the phenotypes of Obs and performed a comparative analysis of the larval integument proteomes of Obs and normal silkworms. The phenotypic analysis revealed that the Obs larvae were indeed short and fat, and that chitin and uric acid content were lower but melanin content was higher in the Obs mutant. Proteomic analysis revealed that 244 proteins were significantly differentially expressed between Obs and normal silkworms, some of which were involved in uric acid metabolism and melanin pigmentation. Twenty-six proteins were annotated as cuticular proteins, including RR motif-rich cuticular proteins (CPR), glycine-rich cuticular protein (CPG), hypothetical cuticular protein (CPH), cuticular protein analogous to peritrophins (CPAPs), and the chitin_bind_3 motif proteins, and accounted for over 84% of the abundance of the total significantly differentially expressed proteins. Moreover, 22 of the 26 cuticular proteins were downregulated in the Obs mutant. Comparative proteomic analysis suggested that the multiple phenotypes of the Obs mutant might be related to changes in the expression of proteins that participate in cuticular formation, uric acid metabolism, and melanin pigmentation. These results could lay a basis for further identification of the gene responsible for the Obs mutant. The data have been deposited to ProteomeXchange with identifier PXD010998.
Collapse
Affiliation(s)
- Lingyan Wang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Juan Wang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Yaru Yin
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Zhangchuan Peng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Muwang Li
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Yutaka Banno
- Institute of Genetic Resources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| |
Collapse
|
7
|
Tan D, Hu H, Tong X, Han M, Wu S, Ding X, Dai F, Lu C. Comparative Analysis of the Integument Transcriptomes between Stick Mutant and Wild-Type Silkworms. Int J Mol Sci 2018; 19:ijms19103158. [PMID: 30322193 PMCID: PMC6214029 DOI: 10.3390/ijms19103158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022] Open
Abstract
In insects, the integument provides mechanical support for the whole body and protects them from infections, physical and chemical injuries, and dehydration. Diversity in integument properties is often related to body shape, behavior, and survival rate. The stick (sk) silkworm is a spontaneous mutant with a stick-like larval body that is firm to the touch and, thus, less flexible. Analysis of the mechanical properties of the cuticles at day 3 of the fifth instar (L5D3) of sk larvae revealed higher storage modulus and lower loss tangent. Transcriptome sequencing identified a total of 19,969 transcripts that were expressed between wild-type Dazao and the sk mutant at L5D2, of which 11,596 transcripts were novel and detected in the integument. Differential expression analyses identified 710 upregulated genes and 1009 downregulated genes in the sk mutant. Gene Ontology (GO) enrichment analysis indicated that four chitin-binding peritrophin A domain genes and a chitinase gene were upregulated, whereas another four chitin-binding peritrophin A domain genes, a trehalase, and nine antimicrobial peptides were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two functional pathways, namely, fructose and mannose metabolism and tyrosine metabolism, were significantly enriched with differentially-expressed transcripts. This study provides a foundation for understanding the molecular mechanisms underlying the development of the stiff exoskeleton in the sk mutant.
Collapse
Affiliation(s)
- Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Wang RX, Tong XL, Gai TT, Li CL, Qiao L, Hu H, Han MJ, Xiang ZH, Lu C, Dai FY. A serine protease homologue Bombyx mori scarface induces a short and fat body shape in silkworm. INSECT MOLECULAR BIOLOGY 2018; 27:319-332. [PMID: 29441628 DOI: 10.1111/imb.12373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Body shape is one of the most prominent and basic characteristics of any organism. In insects, abundant variations in body shape can be observed both within and amongst species. However, the molecular mechanism underlying body shape fine-tuning is very complex and has been largely unknown until now. In the silkworm Bombyx mori, the tubby (tub) mutant has an abnormal short fat body shape and the abdomen of tub larvae expands to form a fusiform body shape. Morphological investigation revealed that the body length was shorter and the body width was wider than that of the Dazao strain. Thus, this mutant is a good model for studying the molecular mechanisms of body shape fine-tuning. Using positional cloning, we identified a gene encoding the serine protease homologue, B. mori scarface (Bmscarface), which is associated with the tub phenotype. Sequence analysis revealed a specific 312-bp deletion from an exon of Bmscarface in the tub strain. In addition, recombination was not observed between the tub and Bmscarface loci. Moreover, RNA interference of Bmscarface resulted in the tub-like phenotype. These results indicate that Bmscarface is responsible for the tub mutant phenotype. This is the first study to report that mutation of a serine protease homologue can induce an abnormal body shape in insects.
Collapse
Affiliation(s)
- R-X Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - X-L Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - T-T Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C-L Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - L Qiao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - H Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - M-J Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Z-H Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - F-Y Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Limpitikul WB, Dick IE, Joshi-Mukherjee R, Overgaard MT, George AL, Yue DT. Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca(2+) currents and promote proarrhythmic behavior in ventricular myocytes. J Mol Cell Cardiol 2014; 74:115-24. [PMID: 24816216 DOI: 10.1016/j.yjmcc.2014.04.022] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 01/13/2023]
Abstract
Recent work has identified missense mutations in calmodulin (CaM) that are associated with severe early-onset long-QT syndrome (LQTS), leading to the proposition that altered CaM function may contribute to the molecular etiology of this subset of LQTS. To date, however, no experimental evidence has established these mutations as directly causative of LQTS substrates, nor have the molecular targets of CaM mutants been identified. Here, therefore, we test whether expression of CaM mutants in adult guinea-pig ventricular myocytes (aGPVM) induces action-potential prolongation, and whether affiliated alterations in the Ca(2+) regulation of L-type Ca(2+) channels (LTCC) might contribute to such prolongation. In particular, we first overexpressed CaM mutants in aGPVMs, and observed both increased action potential duration (APD) and heightened Ca(2+) transients. Next, we demonstrated that all LQTS CaM mutants have the potential to strongly suppress Ca(2+)/CaM-dependent inactivation (CDI) of LTCCs, whether channels were heterologously expressed in HEK293 cells, or present in native form within myocytes. This attenuation of CDI is predicted to promote action-potential prolongation and boost Ca(2+) influx. Finally, we demonstrated how a small fraction of LQTS CaM mutants (as in heterozygous patients) would nonetheless suffice to substantially diminish CDI, and derange electrical and Ca(2+) profiles. In all, these results highlight LTCCs as a molecular locus for understanding and treating CaM-related LQTS in this group of patients.
Collapse
Affiliation(s)
- Worawan B Limpitikul
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ivy E Dick
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rosy Joshi-Mukherjee
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael T Overgaard
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Denmark
| | - Alfred L George
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - David T Yue
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205.
| |
Collapse
|
10
|
Hwang HS, Nitu FR, Yang Y, Walweel K, Pereira L, Johnson CN, Faggioni M, Chazin WJ, Laver D, George AL, Cornea RL, Bers DM, Knollmann BC. Divergent regulation of ryanodine receptor 2 calcium release channels by arrhythmogenic human calmodulin missense mutants. Circ Res 2014; 114:1114-24. [PMID: 24563457 DOI: 10.1161/circresaha.114.303391] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE Calmodulin (CaM) mutations are associated with an autosomal dominant syndrome of ventricular arrhythmia and sudden death that can present with divergent clinical features of catecholaminergic polymorphic ventricular tachycardia (CPVT) or long QT syndrome (LQTS). CaM binds to and inhibits ryanodine receptor (RyR2) Ca release channels in the heart, but whether arrhythmogenic CaM mutants alter RyR2 function is not known. OBJECTIVE To gain mechanistic insight into how human CaM mutations affect RyR2 Ca channels. METHODS AND RESULTS We studied recombinant CaM mutants associated with CPVT (N54I and N98S) or LQTS (D96V, D130G, and F142L). As a group, all LQTS-associated CaM mutants (LQTS-CaMs) exhibited reduced Ca affinity, whereas CPVT-associated CaM mutants (CPVT-CaMs) had either normal or modestly lower Ca affinity. In permeabilized ventricular myocytes, CPVT-CaMs at a physiological intracellular concentration (100 nmol/L) promoted significantly higher spontaneous Ca wave and spark activity, a typical cellular phenotype of CPVT. Compared with wild-type CaM, CPVT-CaMs caused greater RyR2 single-channel open probability and showed enhanced binding affinity to RyR2. Even a 1:8 mixture of CPVT-CaM:wild-type-CaM activated Ca waves, demonstrating functional dominance. In contrast, LQTS-CaMs did not promote Ca waves and exhibited either normal regulation of RyR2 single channels (D96V) or lower RyR2-binding affinity (D130G and F142L). None of the CaM mutants altered Ca/CaM binding to CaM-kinase II. CONCLUSIONS A small proportion of CPVT-CaM is sufficient to evoke arrhythmogenic Ca disturbances, whereas LQTS-CaMs do not. Our findings explain the clinical presentation and autosomal dominant inheritance of CPVT-CaM mutations and suggest that RyR2 interactions are unlikely to explain arrhythmogenicity of LQTS-CaM mutations.
Collapse
Affiliation(s)
- Hyun Seok Hwang
- From the Departments of Medicine (H.S.H., M.F., A.L.G., B.C.K.), Biochemistry (C.N.J., W.J.C.), Chemistry (W.J.C.), and Pharmacology (A.L.G., B.C.K.), Vanderbilt University, Nashville, TN; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis (F.R.N., R.L.C.); Department of Pharmacology, University of California, Davis (Y.Y., L.P., D.M.B.); and Department of School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia (K.W., D.L.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chorna T, Hasan G. The genetics of calcium signaling in Drosophila melanogaster. Biochim Biophys Acta Gen Subj 2011; 1820:1269-82. [PMID: 22100727 DOI: 10.1016/j.bbagen.2011.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Genetic screens for behavioral and physiological defects in Drosophila melanogaster, helped identify several components of calcium signaling of which some, like the Trps, were novel. For genes initially identified in vertebrates, reverse genetic methods have allowed functional studies at the cellular and systemic levels. SCOPE OF REVIEW The aim of this review is to explain how various genetic methods available in Drosophila have been used to place different arms of Ca2+ signaling in the context of organismal development, physiology and behavior. MAJOR CONCLUSION Mutants generated in genes encoding a range of Ca2+ transport systems, binding proteins and enzymes affect multiple aspects of neuronal and muscle physiology. Some also affect the maintenance of ionic balance and excretion from malpighian tubules and innate immune responses in macrophages. Aspects of neuronal physiology affected include synaptic growth and plasticity, sensory transduction, flight circuit development and function. Genetic interaction screens have shown that mechanisms of maintaining Ca2+ homeostasis in Drosophila are cell specific and require a synergistic interplay between different intracellular and plasma membrane Ca2+ signaling molecules. GENERAL SIGNIFICANCE Insights gained through genetic studies of conserved Ca2+ signaling pathways have helped understand multiple aspects of fly physiology. The similarities between mutant phenotypes of Ca2+ signaling genes in Drosophila with certain human disease conditions, especially where homologous genes are causative factors, are likely to aid in the discovery of underlying disease mechanisms and help develop novel therapeutic strategies. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Tetyana Chorna
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
12
|
van de Hoef DL, Hughes J, Livne-Bar I, Garza D, Konsolaki M, Boulianne GL. Identifying genes that interact with Drosophila presenilin and amyloid precursor protein. Genesis 2009; 47:246-60. [PMID: 19241393 DOI: 10.1002/dvg.20485] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gamma-secretase complex is involved in cleaving transmembrane proteins such as Notch and one of the genes targeted in Alzheimer's disease known as amyloid precursor protein (APP). Presenilins function within the catalytic core of gamma-secretase, and mutated forms of presenilins were identified as causative factors in familial Alzheimer's disease. Recent studies show that in addition to Notch and APP, numerous signal transduction pathways are modulated by presenilins, including intracellular calcium signaling. Thus, presenilins appear to have diverse roles. To further understand presenilin function, we searched for Presenilin-interacting genes in Drosophila by performing a genetic modifier screen for enhancers and suppressors of Presenilin-dependent Notch-related phenotypes. We identified 177 modifiers, including known members of the Notch pathway and genes involved in intracellular calcium homeostasis. We further demonstrate that 53 of these modifiers genetically interacted with APP. Characterization of these genes may provide valuable insights into Presenilin function in development and disease.
Collapse
Affiliation(s)
- Diana L van de Hoef
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Michno K, Knight D, Campusano JM, Campussano JM, van de Hoef D, Boulianne GL. Intracellular calcium deficits in Drosophila cholinergic neurons expressing wild type or FAD-mutant presenilin. PLoS One 2009; 4:e6904. [PMID: 19730737 PMCID: PMC2733141 DOI: 10.1371/journal.pone.0006904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 08/01/2009] [Indexed: 01/07/2023] Open
Abstract
Much of our current understanding about neurodegenerative diseases can be attributed to the study of inherited forms of these disorders. For example, mutations in the presenilin 1 and 2 genes have been linked to early onset familial forms of Alzheimer's disease (FAD). Using the Drosophila central nervous system as a model we have investigated the role of presenilin in one of the earliest cellular defects associated with Alzheimer's disease, intracellular calcium deregulation. We show that expression of either wild type or FAD-mutant presenilin in Drosophila CNS neurons has no impact on resting calcium levels but does give rise to deficits in intracellular calcium stores. Furthermore, we show that a loss-of-function mutation in calmodulin, a key regulator of intracellular calcium, can suppress presenilin-induced deficits in calcium stores. Our data support a model whereby presenilin plays a role in regulating intracellular calcium stores and demonstrate that Drosophila can be used to study the link between presenilin and calcium deregulation.
Collapse
Affiliation(s)
- Kinga Michno
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Peron S, Zordan MA, Magnabosco A, Reggiani C, Megighian A. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:173-83. [PMID: 19427393 DOI: 10.1016/j.cbpa.2009.04.626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/16/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
Abstract
The neuromuscular system of Drosophila melanogaster has been studied for many years for its relative simplicity and because of the genetic and molecular versatilities. Three main types of striated muscles are present in this dipteran: fibrillar muscles, tubular muscles and supercontractile muscles. The visceral muscles in adult flies and the body wall segmental muscles in embryos and larvae belong to the group of supercontractile muscles. Larval body wall muscles have been the object of detailed studies as a model for neuromuscular junction function but have received much less attention with respect to their mechanical properties and to the control of contraction. In this review we wish to assess available information on the physiology of the Drosophila larval muscular system. Our aim is to establish whether this system has the requisites to be considered a good model in which to perform a functional characterization of Drosophila genes, with a known muscular expression, as well as Drosophila homologs of human genes, the dysfunction of which, is known to be associated with human hereditary muscle pathologies.
Collapse
Affiliation(s)
- Samantha Peron
- Department of Anatomy and Physiology, University of Padua, Italy
| | | | | | | | | |
Collapse
|
15
|
Hsouna A, VanBerkum MFA. Abelson tyrosine kinase and Calmodulin interact synergistically to transduce midline guidance cues in the Drosophila embryonic CNS. Int J Dev Neurosci 2007; 26:345-54. [PMID: 18243630 DOI: 10.1016/j.ijdevneu.2007.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/18/2022] Open
Abstract
Calmodulin and Abelson tyrosine kinase are key signaling molecules transducing guidance cues at the Drosophila embryonic midline. A reduction in the signaling strength of either pathway alone induces ectopic midline crossing errors in a few segments. When Calmodulin and Abelson signaling levels are simultaneously reduced, the frequency of ectopic crossovers is synergistically enhanced as all segments exhibit crossing errors. But as the level of signaling is further reduced, commissures begin to fuse and large gaps form in the longitudinal connectives. Quantitative analysis suggests that the level of Abelson activity is particularly important. Like Calmodulin, Abelson interacts with son-of-sevenless to increase ectopic crossovers suggesting all three contribute to midline repulsive signaling. Axons cross the midline in almost every segment if Frazzled is co-overexpressed with the Calmodulin inhibitor, but the crossovers induced by the Calmodulin inhibitor itself do not require endogenous Frazzled. Thus, Calmodulin and Abelson tyrosine kinase are key signaling molecules working synergistically to transduce both midline attractive and repulsive cues. While they may function downstream of specific receptors, the emergence of commissural and longitudinal connective defects point to a novel convergence of Calmodulin and Abelson signaling during the regulation of actin and myosin dynamics underlying a guidance decision.
Collapse
Affiliation(s)
- Anita Hsouna
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
16
|
Haines N, Stewart BA. Functional roles for beta1,4-N-acetlygalactosaminyltransferase-A in Drosophila larval neurons and muscles. Genetics 2007; 175:671-9. [PMID: 17151241 PMCID: PMC1800592 DOI: 10.1534/genetics.106.065565] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/07/2006] [Indexed: 11/18/2022] Open
Abstract
Adult Drosophila mutant for the glycosyltransferase beta1,4-N-acetlygalactosaminyltransferase-A (beta4GalNAcTA) display an abnormal locomotion phenotype, indicating a role for this enzyme, and the glycan structures that it generates, in the neuromuscular system. To investigate the functional role of this enzyme in more detail, we turned to the accessible larval neuromuscular system and report here that larvae mutant for beta4GalNAcTA display distinct nerve and muscle phenotypes. Mutant larvae exhibit abnormal backward crawling, reductions in nerve terminal bouton number, decreased spontaneous transmitter-release frequency, and short, wide muscles. This muscle shape change appears to result from hypercontraction since the individual sarcomeres are shorter in mutant muscles. Analysis of muscle calcium signals showed altered calcium handling in the mutant, suggesting a mechanism by which hypercontraction could occur. All of these phenotypes can be rescued by a transgene carrying the beta4GalNAcTA genomic region. Tissue-specific expression, using the Gal4-UAS system, reveals that neural expression rescues the mutant crawling phenotype, while muscle expression rescues the muscle defect. Tissue-specific expression did not appear to rescue the decrease in neuromuscular junction bouton number, suggesting that this defect arises from cooperation between nerve and muscle. Altogether, these results suggest that beta4GalNAcTA has at least three distinct functional roles.
Collapse
Affiliation(s)
- Nicola Haines
- Department of Biology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada.
| | | |
Collapse
|
17
|
Guan X, Middlebrooks BW, Alexander S, Wasserman SA. Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc Natl Acad Sci U S A 2006; 103:16794-9. [PMID: 17075064 PMCID: PMC1636534 DOI: 10.1073/pnas.0607616103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Body shape determination represents a critical aspect of morphogenesis. In the course of investigating body shape regulation in Drosophila, we have identified a dominant mutation, TweedleD(1) (TwdlD(1)), that alters overall dimensions at the larval and pupal stages. Characterization of the affected locus led to the discovery of a gene family that has 27 members in Drosophila and is found only among insects. Analysis of gene expression at the RNA and protein levels revealed gene-specific temporal and spatial patterns in ectodermally derived tissues. In addition, light microscopic studies of fluorescently tagged proteins demonstrated that Tweedle proteins are incorporated into larval cuticular structures. This demonstration that a mutation in a Drosophila cuticular protein gene alters overall morphology confirms a role for the fly exoskeleton in determining body shape. Furthermore, parallels between these findings and studies of cuticle collagen genes in Caenorhabditis elegans suggest that the exoskeleton influences body shape in diverse organisms.
Collapse
Affiliation(s)
- Xiao Guan
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
| | - Brooke W. Middlebrooks
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
| | - Sherry Alexander
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
| | - Steven A. Wasserman
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Wang B, Martin SR, Newman RA, Hamilton SL, Shea MA, Bayley PM, Beckingham KM. Biochemical properties of V91G calmodulin: A calmodulin point mutation that deregulates muscle contraction in Drosophila. Protein Sci 2005; 13:3285-97. [PMID: 15557269 PMCID: PMC2287309 DOI: 10.1110/ps.04928204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A mutation (Cam7) to the single endogenous calmodulin gene of Drosophila generates a mutant protein with valine 91 changed to glycine (V91G D-CaM). This mutation produces a unique pupal lethal phenotype distinct from that of a null mutation. Genetic studies indicate that the phenotype reflects deregulation of calcium fluxes within the larval muscles, leading to hypercontraction followed by muscle failure. We investigated the biochemical properties of V91G D-CaM. The effects of the mutation on free CaM are minor: Calcium binding, and overall secondary and tertiary structure are indistinguishable from those of wild type. A slight destabilization of the C-terminal domain is detectable in the calcium-free (apo-) form, and the calcium-bound (holo-) form has a somewhat lower surface hydrophobicity. These findings reinforce the indications from the in vivo work that interaction with a specific CaM target(s) underlies the mutant defects. In particular, defective regulation of ryanodine receptor (RyR) channels was indicated by genetic interaction analysis. Studies described here establish that the putative CaM binding region of the Drosophila RyR (D-RyR) binds wild-type D-CaM comparably to the equivalent CaM-RyR interactions seen for the mammalian skeletal muscle RyR channel isoform (RYR1). The V91G mutation weakens the interaction of both apo- and holo-D-CaM with this binding region, and decreases the enhancement of the calcium-binding affinity of CaM that is detectable in the presence of the RyR target peptide. The predicted functional consequences of these changes are consonant with the in vivo phenotype, and indicate that D-RyR is one, if not the major, target affected by the V91G mutation in CaM.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Sanyal S, Consoulas C, Kuromi H, Basole A, Mukai L, Kidokoro Y, Krishnan KS, Ramaswami M. Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability. Genetics 2004; 169:737-50. [PMID: 15520268 PMCID: PMC1449089 DOI: 10.1534/genetics.104.031930] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Individual contributions made by different calcium release and sequestration mechanisms to various aspects of excitable cell physiology are incompletely understood. SERCA, a sarco-endoplasmic reticulum calcium ATPase, being the main agent for calcium uptake into the ER, plays a central role in this process. By isolation and extensive characterization of conditional mutations in the Drosophila SERCA gene, we describe novel roles of this key protein in neuromuscular physiology and enable a genetic analysis of SERCA function. At motor nerve terminals, SERCA inhibition retards calcium sequestration and reduces the amplitude of evoked excitatory junctional currents. This suggests a direct contribution of store-derived calcium in determining the quantal content of evoked release. Conditional paralysis of SERCA mutants is also marked by prolonged neural activity-driven muscle contraction, thus reflecting the phylogenetically conserved role of SERCA in terminating contraction. Further analysis of ionic currents from mutants uncovers SERCA-dependent mechanisms regulating voltage-gated calcium channels and calcium-activated potassium channels that together control muscle excitability. Finally, our identification of dominant loss-of-function mutations in SERCA indicates novel intra- and intermolecular interactions for SERCA in vivo, overlooked by current structural models.
Collapse
Affiliation(s)
- S Sanyal
- MCB Department, Life Sciences South, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|