1
|
Colin R, Aguirre-Planter E, Eguiarte LE. Genetic and ecological characterization of the giant reed (Arundo donax) in Central Mexico. PLoS One 2025; 20:e0319214. [PMID: 40333912 PMCID: PMC12057871 DOI: 10.1371/journal.pone.0319214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/28/2025] [Indexed: 05/09/2025] Open
Abstract
Arundo donax (giant reed) is currently found in all tropical-subtropical and warm-temperate areas of the world. In Mexico, A. donax is a common introduced species, growing in a variety of climates and habitats. We used Inter Simple Sequence Repeats (ISSRs) markers to analyze 20 populations across different geographic regions of Mexico to estimate the geographic structure of its genetic variation, the levels of clonal diversity, and their predominant reproductive mode (clonal vs. sexual), and to explore environmental factors that may be related to genetic differentiation. In addition, we used bioclimatic variables to perform multivariate statistical analyses. We detected a total of 77 different genotypes, finding that all the analyzed populations are multiclonal (including from 3 to 9 different genotypes). The data suggest that sporadic sexual reproduction takes place in some populations. We found four main genetic groups and low levels of gene flow among clusters. Ecological characterization analyses indicate that the distribution and abundance of genotypes is structured and influenced by environmental factors, supporting the existence of three main ecological-genetic groups in Mexico (Central Highlands, Coasts, and North).
Collapse
Affiliation(s)
- Ricardo Colin
- Departamento de Ecología Evolutiva, Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Universidad Nacional Autónoma de México. Ciudad de México, México
- Facultad de Ciencias, Universidad Nacional Autónoma de México. Licenciatura de Biología. Ciudad de México, México.
| | - Erika Aguirre-Planter
- Departamento de Ecología Evolutiva, Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Universidad Nacional Autónoma de México. Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Universidad Nacional Autónoma de México. Ciudad de México, México
| |
Collapse
|
2
|
Pereyra RT, Kinnby A, Le Moan A, Ortega-Martinez O, Jonsson PR, Piarulli S, Pinder MIM, Töpel M, De Wit P, André C, Knutsen H, Johannesson K. An Evolutionary Mosaic Challenges Traditional Monitoring of a Foundation Species in a Coastal Environment-The Baltic Fucus vesiculosus. Mol Ecol 2025:e17699. [PMID: 39957665 DOI: 10.1111/mec.17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
During periods of environmental change, genetic diversity in foundation species is critical for ecosystem function and resilience, but it remains overlooked in environmental monitoring. In the Baltic Sea, a key species for monitoring is the brown seaweed Fucus vesiculosus, which forms sublittoral 3D habitats providing shelter and food for fish and invertebrates. Ecological distribution models predict a significant loss of Baltic F. vesiculosus due to ocean warming, unless populations can adapt. Genetic variation and recombination during sexual reproduction are essential for adaptation, but studies have revealed large-scale clonal reproduction within the Baltic Sea. We analysed genome-wide single nucleotide polymorphism (SNP) data from the east Atlantic, the "Transition zone," and the Baltic Sea, and found a mosaic of divergent lineages in the Baltic Sea, contrasting an outside dominance of a few genetic groups. We determined that the previously described endemic species Fucus radicans is predominantly a large female clone of F. vesiculosus in its northern Baltic distribution. In the two Estonian sites, however, individuals earlier referred to as F. radicans are sexually and reproductively isolated from Baltic F. vesiculosus, revealing a separate lineage that may have diverged long before the formation of the Baltic Sea. Monitoring Baltic Fucus without considering this genetic complexity will fail to prioritise populations with adaptive potential to new climate conditions. From our genomic data, we can extract informative and diagnostic genetic markers that differentiate major genetic entities. Such a SNP panel will provide a straightforward tool for spatial and temporal monitoring and informing management decisions and actions.
Collapse
Affiliation(s)
- Ricardo T Pereyra
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Alexandra Kinnby
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Alan Le Moan
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Olga Ortega-Martinez
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Per R Jonsson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Stefania Piarulli
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
- Department of Climate and Environment, SINTEF Ocean, Trondheim, Norway
| | - Matthew I M Pinder
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mats Töpel
- IVL Swedish Environmental Research Institute, Gothenburg, Sweden
| | - Pierre De Wit
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Carl André
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Halvor Knutsen
- Center for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
- Institute of Marine Research, Flødevigen, Norway
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
3
|
Hecker AS, Raulf MK, König S, May K, Strube C. Population genetic analysis of the liver fluke Fasciola hepatica in German dairy cattle reveals high genetic diversity and associations with fluke size. Parasit Vectors 2025; 18:51. [PMID: 39948588 PMCID: PMC11827327 DOI: 10.1186/s13071-025-06701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The liver fluke Fasciola hepatica is one of the most important endoparasites in domestic ruminants worldwide and can cause considerable economic losses. This study presents the first population genetic analysis of F. hepatica in Germany and aims at providing new insights into genetic diversity and population structure. METHODS A total of 774 liver flukes, collected from 60 cows of 17 herds and 13 cows of unknown herd origin, were subjected to comparative analysis of two mitochondrial genes (cox1 and nad1), one nuclear region (internal transcribed spacer (ITS)-1) and eight nuclear microsatellite markers. In addition, individual fluke measurements allowed comparison of morphometric differences between genotypes. RESULTS The nuclear ITS-1 region showed minimal variability, with 772 of 774 flukes having identical sequences, while the mitochondrial sequences revealed a high genetic diversity, with 119 distinct haplotypes, a mean haplotype diversity (Hd) of 0.81 and a mean nucleotide diversity (π) of 0.0041. Mitochondrial phylogenetic analysis identified two clusters with no clear association with the host or farm of origin. In the microsatellite analysis, all eight loci were highly polymorphic, with a mean allele frequency of 19.0 and a mean genotype frequency of 73.5 per locus. A total of 500 unique multilocus genotypes (MLGs) were found across all fluke samples, indicating that 68.5% of all genotypes were unique. A mean expected heterozygosity of 0.71 suggested a high potential for adaptability and the number of migrants (Nm = 3.5) indicated high gene flow between farms. Population structure analysis based on microsatellite data revealed that flukes from two farms differed genetically from the others. Linear mixed model results revealed that fluke length differed significantly between the two mitochondrial clusters, although it should be noted that fluke age could not be considered in the analyses. CONCLUSIONS Fasciola hepatica in German dairy farms showed high genetic diversity and gene flow. The differences in population structure identified by mitochondrial sequences compared with microsatellite loci highlight the benefits of analysing genetic markers of different origins. This is the first study to correlate fluke morphometry measurements with genetic markers, indicating that the identified markers can influence fluke size.
Collapse
Affiliation(s)
- Anna Sophie Hecker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marie-Kristin Raulf
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Katharina May
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
4
|
Li W, Liu F, Chen S, Wingfield MJ, Duong TA. High Genetic Diversity and Limited Regional Population Differentiation in Populations of Calonectria pseudoreteaudii from Eucalyptus Plantations. PHYTOPATHOLOGY 2025; 115:97-105. [PMID: 39320987 DOI: 10.1094/phyto-05-24-0154-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Calonectria pseudoreteaudii causes a serious and widespread disease known as Calonectria leaf blight in Eucalyptus plantations of southern China. Little is known regarding the population biology or reproductive biology of this pathogen in the affected areas. The aims of this study were to investigate the genetic diversity, population structure, and reproductive mode of C. pseudoreteaudii from affected Eucalyptus plantations of southern China. Ten polymorphic simple sequence repeat markers were developed for the species and were used to genotype 311 isolates from eight populations. The mating types of all isolates were identified using the MAT gene primers. The results revealed a high level of genetic diversity of the pathogen in all investigated populations. Of the 90 multilocus genotypes detected, 10 were shared between at least two populations. With the exception of one population from HuiZhou, GuangDong (7HZ), the most dominant genotype was shared in the seven remaining populations. Discriminant analysis of principal components and population differentiation analyses showed that the 7HZ population was well differentiated from the others and that there was no significant differentiation between the remaining populations. Analysis of molecular variance suggested that most molecular variation was within populations (86%). Index of association analysis was consistent with a predominantly asexual life cycle for C. pseudoreteaudii in the studied regions. Although both mating types were detected in seven of the eight populations, the MAT1-1/MAT1-2 ratios in these populations deviated significantly from the 1:1 ratio expected in a randomly mating population.
Collapse
Affiliation(s)
- WenWen Li
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
- Research Institute of Fast-growing Trees (RIFT), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
| | - FeiFei Liu
- Research Institute of Fast-growing Trees (RIFT), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - ShuaiFei Chen
- Research Institute of Fast-growing Trees (RIFT), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
5
|
Waraniak JM, Eackles MS, Keagy J, Smith GD, Schall M, Stark S, White SL, Kazyak DC, Wagner T. Population genetic structure and demographic history reconstruction of introduced flathead catfish (Pylodictis olivaris) in two US Mid-Atlantic rivers. JOURNAL OF FISH BIOLOGY 2024; 105:1614-1627. [PMID: 39135361 PMCID: PMC11650961 DOI: 10.1111/jfb.15888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 12/18/2024]
Abstract
Population genetic analysis of invasive populations can provide valuable insights into the source of introductions, pathways for expansion, and their demographic histories. Flathead catfish (Pylodictis olivaris) are a prolific invasive species with high fecundity, long-distance dispersal, and piscivorous feeding habits that can lead to declines in native fish populations. In this study, we analyse the genetics of invasive P. olivaris in the Mid-Atlantic region to assess their connectivity and attempt to reconstruct the history of introduced populations. Based on an assessment across 13 microsatellite loci, P. olivaris from the Susquehanna River system (N = 537), Schuylkill River (N = 33), and Delaware River (N = 1) have low genetic diversity (global Hobs = 0.504), although we detected no evidence of substantial inbreeding (FIS = -0.083 to 0.022). P. olivaris from these different river systems were genetically distinct, suggesting separate introductions. However, population structure was much weaker within each river system and exhibited a pattern of high connectivity, with some evidence of isolation by distance. P. olivaris from the Susquehanna and Schuylkill rivers showed evidence for recent genetic bottlenecks, and demographic models were consistent with historical records, which suggest that populations were established by recent founder events consisting of a small number of individuals. Our results show the risk posed by small introductions of P. olivaris, which can spread widely once a population is established, and highlight the importance of prevention and sensitive early detection methods to prevent the spread of P. olivaris in the future.
Collapse
Affiliation(s)
- Justin M. Waraniak
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Michael S. Eackles
- U.S. Geological Survey Eastern Ecological Science CenterKearneysvilleWest VirginiaUSA
| | - Jason Keagy
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Megan Schall
- Pennsylvania State University, Biological ServicesHazletonPennsylvaniaUSA
| | - Sydney Stark
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Shannon L. White
- U.S. Geological Survey Eastern Ecological Science CenterKearneysvilleWest VirginiaUSA
| | - David C. Kazyak
- U.S. Geological Survey Eastern Ecological Science CenterKearneysvilleWest VirginiaUSA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research UnitPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
6
|
Quintela M, García‐Seoane E, Dahle G, Klevjer TA, Melle W, Lille‐Langøy R, Besnier F, Tsagarakis K, Geoffroy M, Rodríguez‐Ezpeleta N, Jacobsen E, Côté D, Knutar S, Unneland L, Strand E, Glover K. Genetics in the Ocean's Twilight Zone: Population Structure of the Glacier Lanternfish Across Its Distribution Range. Evol Appl 2024; 17:e70032. [PMID: 39513049 PMCID: PMC11540841 DOI: 10.1111/eva.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/15/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024] Open
Abstract
The mesopelagic zone represents one of the few habitats that remains relatively untouched from anthropogenic activities. Among the many species inhabiting the north Atlantic mesopelagic zone, glacier lanternfish (Benthosema glaciale) is the most abundant and widely distributed. This species has been regarded as a potential target for a dedicated fishery despite the scarce knowledge of its population genetic structure. Here, we investigated its genetic structure across the North Atlantic and into the Mediterranean Sea using 121 SNPs, which revealed strong differentiation among three main groups: the Mediterranean Sea, oceanic samples, and Norwegian fjords. The Mediterranean samples displayed less than half the genetic variation of the remaining ones. Very weak or nearly absent genetic structure was detected among geographically distinct oceanic samples across the North Atlantic, which contrasts with the low motility of the species. In contrast, a longitudinal gradient of differentiation was observed in the Mediterranean Sea, where genetic connectivity is known to be strongly shaped by oceanographic processes such as current patterns and oceanographic discontinuities. In addition, 12 of the SNPs, in linkage disequilibrium, drove a three clusters' pattern detectable through Principal Component Analysis biplot matching the genetic signatures generally associated with large chromosomal rearrangements, such as inversions. The arrangement of this putative inversion showed frequency differences between open-ocean and more confined water bodies such as the fjords and the Mediterranean, as it was fixed in the latter for the second most common arrangement of the fjord's samples. However, whether genetic differentiation was driven by local adaptation, secondary contact, or a combination of both factors remains undetermined. The major finding of this study is that B. glaciale in the North Atlantic-Mediterranean is divided into three major genetic units, information that should be combined with demographic properties to outline the management of this species prior to any eventual fishery attempt.
Collapse
Affiliation(s)
- María Quintela
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Eva García‐Seoane
- Plankton GroupInstitute of Marine ResearchBergenNorway
- Sustainable Oceans and CoastsMøreforsking ASÅlesundNorway
| | - Geir Dahle
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Thor A. Klevjer
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Webjørn Melle
- Plankton GroupInstitute of Marine ResearchBergenNorway
| | | | - François Besnier
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Konstantinos Tsagarakis
- Hellenic Centre for Marine ResearchInstitute of Marine Biological Resources and Inland WatersAthensGreece
| | - Maxime Geoffroy
- Centre for Fisheries Ecosystems ResearchFisheries and Marine Institute of Memorial University of Newfoundland and LabradorSt. John'sNewfoundland and LabradorCanada
- Faculty of Biosciences, Fisheries and EconomicsUiT the Arctic University of NorwayTromsøNorway
| | | | - Eugenie Jacobsen
- Centre for Fisheries Ecosystems ResearchFisheries and Marine Institute of Memorial University of Newfoundland and LabradorSt. John'sNewfoundland and LabradorCanada
| | - David Côté
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sCanada
| | - Sofie Knutar
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Laila Unneland
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Espen Strand
- Plankton GroupInstitute of Marine ResearchBergenNorway
| | - Kevin Glover
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| |
Collapse
|
7
|
Meriño BM, Villalobos-Barrantes HM, Guerrero PC. Pleistocene climate oscillations have shaped the expansion and contraction speciation model of the globose Eriosyce sect. Neoporteria cacti in Central Chile. ANNALS OF BOTANY 2024; 134:651-664. [PMID: 38824400 PMCID: PMC11523624 DOI: 10.1093/aob/mcae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND AIMS Pleistocene climatic oscillations, characterized by arid (interglacial) and pluvial (glacial) phases, have profoundly impacted the floras of Mediterranean climates. Our study investigates the hypothesis that these climatic extremes have promoted phases of range expansion and contraction in the Eriosyce sect. Neoporteria, resulting in pronounced genetic structuring and restricted gene flow. METHODS Using nuclear microsatellite markers, we genotyped 251 individuals across 18 populations, encompassing all 14 species and one subspecies within the Eriosyce sect. Neoporteria. Additionally, species distribution models were used to reconstruct past (Last Interglacial, Last Glacial Maximum and Mid-Holocene) and current potential distribution patterns, aiming to delineate the climatic influences on species range dynamics. KEY RESULTS The gene flow analysis disclosed disparate levels of genetic interchange among species, with marked restrictions observed between entities that are geographically or ecologically separated. Notably, Eriosyce subgibbosa from Hualpen emerged as genetically distinct, warranting its exclusion for clearer genetic clustering into north, central and south clusters. The species distribution models corroborated these findings, showing marked range expansions during warmer periods and contractions during colder times, indicating significant shifts in distribution patterns in response to climatic changes. CONCLUSIONS Our findings emphasize the critical role of Pleistocene climatic fluctuations in driving the dynamic patterns of range expansions and contractions that have led to geographical isolation and speciation within the Eriosyce sect. Neoporteria. Even in the face of ongoing gene flow, these climate-driven processes have played a pivotal role in sculpting the genetic architecture and diversity of species. This study elucidates the complex interplay between climatic variability and evolutionary dynamics among mediterranean cacti in central Chile, highlighting the necessity of considering historical climatic millennial oscillations in conservation and evolutionary biology studies.
Collapse
Affiliation(s)
- Beatriz M Meriño
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), 4030000, Concepción, Chile
| | - Heidy M Villalobos-Barrantes
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Pablo C Guerrero
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), 4030000, Concepción, Chile
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems, 7800003, Santiago, Chile
| |
Collapse
|
8
|
Hong A, Cheek RG, De Silva SN, Mukherjee K, Yooseph I, Oliva M, Heim M, W. Funk C, Tallmon D, Boucher C. ONeSAMP 3.0: estimation of effective population size via single nucleotide polymorphism data from one population. G3 (BETHESDA, MD.) 2024; 14:jkae153. [PMID: 38996058 PMCID: PMC11457061 DOI: 10.1093/g3journal/jkae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
The genetic effective size (Ne) is arguably one of the most important characteristics of a population as it impacts the rate of loss of genetic diversity. Methods that estimate Ne are important in population and conservation genetic studies as they quantify the risk of a population being inbred or lacking genetic diversity. Yet there are very few methods that can estimate the Ne from data from a single population and without extensive information about the genetics of the population, such as a linkage map, or a reference genome of the species of interest. We present ONeSAMP 3.0, an algorithm for estimating Ne from single nucleotide polymorphism data collected from a single population sample using approximate Bayesian computation and local linear regression. We demonstrate the utility of this approach using simulated Wright-Fisher populations, and empirical data from five endangered Channel Island fox (Urocyon littoralis) populations to evaluate the performance of ONeSAMP 3.0 compared to a commonly used Ne estimator. Our results show that ONeSAMP 3.0 is broadly applicable to natural populations and is flexible enough that future versions could easily include summary statistics appropriate for a suite of biological and sampling conditions. ONeSAMP 3.0 is publicly available under the GNU General Public License at https://github.com/AaronHong1024/ONeSAMP_3.
Collapse
Affiliation(s)
- Aaron Hong
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca G Cheek
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Suhashi Nihara De Silva
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Kingshuk Mukherjee
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Isha Yooseph
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Marco Oliva
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Mark Heim
- Department of Math, Colorado State University, Fort Collins, CO 80523, USA
| | - Chris W. Funk
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David Tallmon
- Biology and Marine Biology Program, University of Alaska Southeast, Juneau, AK 99801, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Belair M, Picot A, Lepais O, Masson C, Hébrard MN, Moronvalle A, Comont G, Gabri Martin VM, Tréguer S, Laloum Y, Corio-Costet MF, Michailides TJ, Moral J, Le Floch G, Pensec F. Genetic diversity and population structure of Botryosphaeria dothidea and Neofusicoccum parvum on English walnut (Juglans regia L.) in France. Sci Rep 2024; 14:19817. [PMID: 39191814 PMCID: PMC11350086 DOI: 10.1038/s41598-024-67613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Botryosphaeriaceae species are the major causal agents of walnut dieback worldwide, along with Diaporthe species. Botryosphaeria dothidea and Neofusicoccum parvum are the only two Botryosphaeriaceae species associated with this recently emergent disease in France, and little is known about their diversity, structure, origin and dispersion in French walnut orchards. A total of 381 isolates of both species were genetically typed using a sequence-based microsatellite genotyping (SSR-seq) method. This analysis revealed a low genetic diversity and a high clonality of these populations, in agreement with their clonal mode of reproduction. The genetic similarity among populations, regardless of the tissue type and the presence of symptoms, supports the hypothesis that these pathogens can move between fruits and twigs and display latent pathogen lifestyles. Contrasting genetic patterns between N. parvum populations from Californian and Spanish walnut orchards and the French ones suggested no conclusive evidence for pathogen transmission from infected materials. The high genetic similarity with French vineyards populations suggested instead putative transmission between these hosts, which was also observed with B. dothidea populations. Overall, this study provides critical insight into the epidemiology of two important pathogens involved in the emerging dieback of French walnut orchards, including their distribution, potential to mate, putative origin and disease pathways.
Collapse
Affiliation(s)
- Marie Belair
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France
| | | | - Cyrielle Masson
- Station d'expérimentation Nucicole Rhône Alpes, 38160, Chatte, France
| | | | - Aude Moronvalle
- Centre Technique Interprofessionnel des Fruits et Légumes, Centre Opérationnel de Lanxade, 24130, Prigonrieux, France
| | - Gwénaëlle Comont
- INRAE, UMR Santé et Agroécologie du Vignoble, ISVV, Labex Cote, CS 20032, 33882, Villenave d'Ornon, France
| | - Victor M Gabri Martin
- University of California Davis, Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - Sylvie Tréguer
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France
| | - Yohana Laloum
- Centre Technique Interprofessionnel des Fruits et Légumes, Centre Opérationnel de Lanxade, 24130, Prigonrieux, France
| | - Marie-France Corio-Costet
- INRAE, UMR Santé et Agroécologie du Vignoble, ISVV, Labex Cote, CS 20032, 33882, Villenave d'Ornon, France
| | - Themis J Michailides
- University of California Davis, Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - Juan Moral
- Department of Agronomy (Maria de Maetzu Excellence Unit), University of Córdoba, Campus de Rabanales, 14071, Córdoba, Spain
| | - Gaétan Le Floch
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France
| | - Flora Pensec
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France.
| |
Collapse
|
10
|
Çetin C, Jokela J, Feulner PGD, Schlegel T, Tardent N, Seppälä O. Population genetic structure in a self-compatible hermaphroditic snail is driven by drift independently of its contemporary mating system. Ecol Evol 2024; 14:e70162. [PMID: 39139911 PMCID: PMC11319733 DOI: 10.1002/ece3.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Genetic drift, gene flow, and natural selection commonly influence population genetic diversity. In populations of self-compatible hermaphrodites, the mating system (e.g., self-fertilization) further reduces individual heterozygosity. Furthermore, selfing, as a form of inbreeding, significantly impacts genetic drift by reducing effective population size (N e). This can potentially accelerate genetic drift, particularly in small populations where self-fertilization is likely during founder events. To investigate the roles of genetic drift and contemporary mating system in populations of the freshwater snail Lymnaea stagnalis, we examined their effective population sizes (N e) and Tajima's D values, which reflect genetic drift over extended time periods, as well as estimates of within-population selfing rates and pairwise relatedness reflecting contemporary mating system. We used 4054 SNP markers obtained using restriction site associated DNA (RAD) sequencing from individuals in five snail populations originating from geographically closely located ponds. We found strong population genetic structure and differences in genetic diversity among populations. Covariation between genetic diversity and N e estimates and Tajima's D values suggested drift being an important determinant of genetic diversity and structure in these populations. However, this effect was independent of the contemporary mating system, as indicated by the similarity of selfing rates and relatedness estimates among populations. Thus, founder events (possibly including historical inbreeding) and/or drift due to small sizes of L. stagnalis populations are likely to explain their genetic structure and limit within-population genetic diversity.
Collapse
Affiliation(s)
- Cansu Çetin
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Jukka Jokela
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Philine G. D. Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Tamara Schlegel
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Nadine Tardent
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Otto Seppälä
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
- Research Department for LimnologyUniversität InnsbruckMondseeAustria
| |
Collapse
|
11
|
Mullett MS, Harris AR, Scanu B, Van Poucke K, LeBoldus J, Stamm E, Bourret TB, Christova PK, Oliva J, Redondo MA, Talgø V, Corcobado T, Milenković I, Jung MH, Webber J, Heungens K, Jung T. Phylogeography, origin and population structure of the self-fertile emerging plant pathogen Phytophthora pseudosyringae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13450. [PMID: 38590129 PMCID: PMC11002350 DOI: 10.1111/mpp.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.
Collapse
Affiliation(s)
- Martin S. Mullett
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | | | - Bruno Scanu
- Department of Agricultural SciencesUniversity of SassariSassariItaly
| | - Kris Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitMerelbekeBelgium
| | - Jared LeBoldus
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
- Department of Forest Engineering, Resources, and ManagementOregon State UniversityCorvallisOregonUSA
| | - Elizabeth Stamm
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
| | - Tyler B. Bourret
- USDA‐ARS Mycology and Nematology Genetic Diversity and Biology LaboratoryBeltsvilleMarylandUSA
- Department of Plant PathologyUC DavisDavisCaliforniaUSA
| | | | - Jonás Oliva
- Department of Agricultural and Forest Sciences and EngineeringUniversity of LleidaLleidaSpain
- Joint Research Unit CTFC–AGROTECNIO–CERCALleidaSpain
| | - Miguel A. Redondo
- National Bioinformatics Infrastructure Sweden, Science for Life LaboratorySweden
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Venche Talgø
- Division of Biotechnology and Plant HealthNorwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
| | - Tamara Corcobado
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Ivan Milenković
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Marília Horta Jung
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | | | - Kurt Heungens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitMerelbekeBelgium
| | - Thomas Jung
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| |
Collapse
|
12
|
Babarinde S, Burlakoti RR, Peters RD, Al-Mughrabi K, Novinscak A, Sapkota S, Prithiviraj B. Genetic structure and population diversity of Phytophthora infestans strains in Pacific western Canada. Appl Microbiol Biotechnol 2024; 108:237. [PMID: 38407622 PMCID: PMC10896882 DOI: 10.1007/s00253-024-13040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
Late blight caused by Phytophthora infestans is an economically important disease of potato and tomato worldwide. In Canada, an increase in late blight incidence and severity coincided with changes in genetic composition of P. infestans. We monitored late blight incidence on tomato and potato in Pacific western and eastern Canada between 2019 and 2022, identified genotypes of P. infestans, and examined their population genetic diversity. We identified four major existing genotypes US11, US17, US8, and US23 as well as 25 new genotypes. The US11 genotype was dominant in Pacific western Canada, accounting for 59% of the total population. We discovered the US17 genotype for the first time in Canada. We revealed a higher incidence of late blight and quite diverse genotypes of P. infestans in Pacific western Canada than in eastern Canada. We found high genetic diversity of P. infestans population from Pacific western Canada, as evidenced by the high number of multilocus genotypes, high values of genetic diversity indices, and emergence of 25 new genotypes. Considering the number of disease incidence, the detection of diverse known genotypes, the emergence of novel genotypes, and the high number of isolates resistant to metalaxyl-m (95%) from Pacific western Canada, the region could play a role in establishing sexual recombination and diverse populations, which could ultimately pose challenges for late blight management. Therefore, continuous monitoring of P. infestans populations in Pacific western region and across Canada is warranted. KEY POINTS: • Genotypes of P. infestans in Pacific western were quite diverse than in eastern Canada. • We discovered US17 genotype for the first time in Canada and identified 26 novel genotypes. • Approximately 95% of P. infestans isolates were resistant to metalaxyl-m.
Collapse
Affiliation(s)
- Segun Babarinde
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Rishi R Burlakoti
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada.
| | - Rick D Peters
- Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Khalil Al-Mughrabi
- New Brunswick Department of Agriculture, Aquaculture and Fisheries, 39 Barker Lane, Wicklow, NB, E7L 3S4, Canada
| | - Amy Novinscak
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Sanjib Sapkota
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
13
|
Shirley AM, Vallad GE, Quesada-Ocampo L, Dufault N, Raid R. Effect of Cucurbit Host, Production Region, and Season on the Population Structure of Pseudoperonospora cubensis in Florida. PLANT DISEASE 2024; 108:442-450. [PMID: 37642548 DOI: 10.1094/pdis-12-22-2939-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pseudoperonospora cubensis, the causal agent of Cucurbit downy mildew (CDM), is one of the most important diseases affecting cucurbit production in the United States. This disease is especially damaging to Florida production areas, as the state is a top producer of many cucurbit species. In addition, winter production in central and south Florida likely serves as a likely source of P. cubensis inoculum for spring and summer cucurbit production throughout the eastern United States, where CDM is unable to overwinter in the absence of a living host. Over 2 years (2017 and 2018) and four seasons (spring 2017, spring 2018, fall 2017, and fall 2018), 274 P. cubensis isolates were collected from cucurbit hosts at production sites in south, central, and north Florida. The isolates were analyzed with 10 simple sequence repeat (SSR) markers to establish population structure and genetic diversity and further assigned to a clade based on a qPCR assay. Results of population structure and genetic diversity analyses differentiated isolates based on cucurbit host and clade (1 or 2). Of the isolates assigned to clade by qPCR, butternut squash, watermelon, and zucchini were dominated by clade 1 isolates, whereas cucumber isolates were split 34 and 59% between clades 1 and 2, respectively. Clade assignments agreed with isolate clustering observed within discriminant analysis of principal components (DAPC) based on SSR markers, although watermelon isolates formed a group distinct from the other clade 1 isolates. For seasonal collections from cucumber at each location, isolates were typically skewed to one clade or the other and varied across locations and seasons within each year of the study. This variable population structure of cucumber isolates could have consequences for regional disease management. This is the first study to characterize P. cubensis populations in Florida and evaluate the effect of cucurbit host and clade-type on isolate diversity and population structure, with implications for CDM management in Florida and other United States cucurbit production areas.
Collapse
Affiliation(s)
- Andrew M Shirley
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Lina Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| | - Nicholas Dufault
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Richard Raid
- Department of Plant Pathology, Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430
| |
Collapse
|
14
|
Kaur N, Mehl HL, Langston D, Haak DC. Evaluation of Stagonospora Nodorum Blotch Severity and Parastagonospora nodorum Population Structure and Genetic Diversity Across Multiple Locations and Wheat Varieties in Virginia. PHYTOPATHOLOGY 2024; 114:258-268. [PMID: 37316953 DOI: 10.1094/phyto-10-22-0392-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Parastagonospora nodorum is a necrotrophic pathogen that causes Stagonospora nodorum blotch (SNB) in wheat. Wheat varieties grown in Virginia vary in susceptibility to SNB, and the severity of SNB varies across locations and years. However, the impacts of wheat genetic backgrounds and environments on SNB severity and the structure of P. nodorum populations in the region have not been well studied. Thus, a population genetic study was conducted utilizing P. nodorum isolates collected from different wheat varieties and locations in Virginia. A total of 320 isolates were collected at seven locations over 2 years from five wheat varieties. Isolates were genotyped using multilocus simple sequence repeat markers, and necrotrophic effector (NE) and mating type genes were amplified using gene-specific primers. Wheat varieties varied in susceptibility to SNB, but site-specific environmental conditions were the primary drivers of disease severity. Fungal populations were genetically diverse, but no genetic subdivision was observed among locations or varieties. The ratio of the two mating type idiomorphs was not significantly different from 1:1, consistent with the P. nodorum population undergoing sexual reproduction. Three major NE genes were detected within the P. nodorum population, but not with equal frequency. However, NE gene profiles were similar for groups of isolates originating from different varieties, suggesting that wheat genetic backgrounds do not differentially select for NEs. There was no evidence of population structure among P. nodorum populations in Virginia and, thus, no support for wheat genetic backgrounds shaping these populations. Finally, although varieties only exhibited moderate resistance to SNB, current levels of resistance are likely to be durable over time and remain a useful tool for integrated management of SNB in the region. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Navjot Kaur
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
- Virginia Tech Tidewater Agricultural Research and Extension Center, Suffolk, VA 23437
| | - Hillary L Mehl
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
- Virginia Tech Tidewater Agricultural Research and Extension Center, Suffolk, VA 23437
| | - David Langston
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
- Virginia Tech Tidewater Agricultural Research and Extension Center, Suffolk, VA 23437
| | - David C Haak
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
| |
Collapse
|
15
|
Hopken MW, Piaggio AJ, Abdo Z, Chipman RB, Mankowski CP, Nelson KM, Hilton MS, Thurber C, Tsuchiya MTN, Maldonado JE, Gilbert AT. Are rabid raccoons ( Procyon lotor) ready for the rapture? Determining the geographic origin of rabies virus-infected raccoons using RADcapture and microhaplotypes. Evol Appl 2023; 16:1937-1955. [PMID: 38143904 PMCID: PMC10739080 DOI: 10.1111/eva.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/06/2023] [Accepted: 10/18/2023] [Indexed: 12/26/2023] Open
Abstract
North America is recognized for the exceptional richness of rabies virus (RV) wildlife reservoir species. Management of RV is accomplished through vaccination targeting mesocarnivore reservoir populations, such as the raccoon (Procyon lotor) in Eastern North America. Raccoons are a common generalist species, and populations may reach high densities in developed areas, which can result in contact with humans and pets with potential exposures to the raccoon variant of RV throughout the eastern United States. Understanding the spatial movement of RV by raccoon populations is important for monitoring and refining strategies supporting the landscape-level control and local elimination of this lethal zoonosis. We developed a high-throughput genotyping panel for raccoons based on hundreds of microhaplotypes to identify population structure and genetic diversity relevant to rabies management programs. Throughout the eastern United States, we identified hierarchical population genetic structure with clusters that were connected through isolation-by-distance. We also illustrate that this genotyping approach can be used to support real-time management priorities by identifying the geographic origin of a rabid raccoon that was collected in an area of the United States that had been raccoon RV-free for 8 years. The results from this study and the utility of the microhaplotype panel and genotyping method will provide managers with information on raccoon ecology that can be incorporated into future management decisions.
Collapse
Affiliation(s)
- Matthew W. Hopken
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Antoinette J. Piaggio
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Richard B. Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Clara P. Mankowski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Kathleen M. Nelson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mikaela Samsel Hilton
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Christine Thurber
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mirian T. N. Tsuchiya
- Data Science Lab, Office of the Chief Information OfficerSmithsonian InstitutionWashingtonDCUSA
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Amy T. Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| |
Collapse
|
16
|
Thorn V, Xu J. Mitogenome Variations in a Global Population of Aspergillus fumigatus. J Fungi (Basel) 2023; 9:995. [PMID: 37888251 PMCID: PMC10608017 DOI: 10.3390/jof9100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous, critical priority human fungal pathogen. Despite its clinical importance, there is limited knowledge regarding the variations of the genome within mitochondria, the powerhouse organelle within eukaryotic cells. In this study, we leveraged publicly available, raw, whole genome sequence data isolates from 1939 to investigate the variations in the mitochondrial genomes of A. fumigatus. These isolates were isolated from 22 countries on six continents, as well as from outer space and from within the International Space Station. In total, our analysis revealed 39 mitochondrial single nucleotide polymorphisms (mtSNPs) within this global sample, and, together, these 39 mtSNPs grouped the 1939 isolates into 79 mitochondrial multilocus genotypes (MLGs). Among the 79 MLGs, 39 were each distributed in at least two countries and 30 were each shared by at least two continents. The two most frequent MLGs were also broadly distributed: MLG11 represented 420 isolates from 11 countries and four continents and while MLG79 represented 418 isolates from 18 countries and five continents, consistent with long-distance dispersals of mitogenomes. Our population genetic analyses of the mtSNPs revealed limited differentiation among continental populations, but highly variable genetic differences among national populations, largely due to localized clonal expansions of different MLGs. Phylogenetic analysis and Discriminant Analysis of Principal Components of mtSNPs suggested the presence of at least three mitogenome clusters. Linkage disequilibrium, Index of Association, and phylogenetic incompatibility analyses collectively suggested evidence for mitogenome recombination in natural populations of A. fumigatus. In addition, sequence read depth analyses revealed an average ratio of ~20 mitogenomes per nuclear genome in this global population, but the ratios varied among strains within and between certain geographic populations. Together, our results suggest evidence for organelle dynamics, genetic differentiation, recombination, and both widespread and localized clonal expansion of the mitogenomes in the global A. fumigatus population.
Collapse
Affiliation(s)
| | - Jianping Xu
- Department of Biology, Institute of Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
17
|
Su Y, Liu L, Deng Q, Lü Z, Wang Z, He Z, Wang T. Epigenetic architecture of Pseudotaxus chienii: Revealing the synergistic effects of climate and soil variables. Ecol Evol 2023; 13:e10511. [PMID: 37701023 PMCID: PMC10493196 DOI: 10.1002/ece3.10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Whether conifers can withstand environmental changes especially temperature fluctuations has been controversial. Epigenetic analysis may provide new perspectives for solving the issue. Pseudotaxus chienii is an endangered gymnosperm species endemic to China. In this study, we have examined the genetic and epigenetic variations in its natural populations aiming to disentangle the synergistic effects of climate and soil on its population (epi)genetic differentiation by using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MSAP) techniques. We identified 23 AFLP and 26, 7, and 5 MSAP outliers in P. chienii. Twenty-one of the putative adaptive AFLP loci were found associated with climate and/or soil variables including precipitation, temperature, K, Fe, Zn, and Cu, whereas 21, 7, and 4 MSAP outliers were significantly related to precipitation of wettest month (Bio13), precipitation driest of month (Bio14), percent tree cover (PTC), and soil Fe, Mn, and Cu compositions. Total precipitation and precipitation in the driest seasons were the most influential factors for genetic and epigenetic variation, respectively. In addition, a high full-methylation level and a strong correlation between genetic and epigenetic variation were detected in P. chienii. Climate is found of greater importance than soil in shaping adaptive (epi)genetic differentiation, and the synergistic effects of climate and climate-soil variables were also observed. The identified climate and soil variables should be considered when applying ex situ conservation.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| | - Li Liu
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Qi Deng
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- School of MedicineGuangxi University of Science and TechnologyLiuzhouChina
| | - Zhuyan Lü
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ziqing He
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
18
|
Pereyra RT, Rafajlović M, De Wit P, Pinder M, Kinnby A, Töpel M, Johannesson K. Clones on the run: The genomics of a recently expanded partially clonal species. Mol Ecol 2023; 32:4209-4223. [PMID: 37199478 DOI: 10.1111/mec.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Why species that in their core areas mainly reproduce sexually become enriched with clones in marginal populations ("geographic parthenogenesis") remains unclear. Earlier hypotheses have emphasized that selection might promote clonality because it protects locally adapted genotypes. On the other hand, it also hampers recombination and adaptation to changing conditions. The aim of the present study was to investigate the early stages of range expansion in a partially clonal species and what drives an increase in cloning during such expansion. We used genome-wide sequencing to investigate the origin and evolution of large clones formed in a macroalgal species (Fucus vesiculosus) during a recent expansion into the postglacial Baltic Sea. We found low but persistent clonality in core populations, while at range margins, large dominant clonal lineages had evolved repeatedly from different sexual populations. A range expansion model showed that even when asexual recruitment is less favourable than sexual recruitment in core populations, repeated bottlenecks at the expansion front can establish a genetically eroded clonal wave that spreads ahead of a sexual wave into the new area. Genetic variation decreases by drift following repeated bottlenecks at the expansion front. This results in the emerging clones having low expected heterozygosity, which corroborated our empirical observations. We conclude that Baker's Law (clones being favoured by uniparental reproductive assurance in new areas) can play an important role during range expansion in partially clonal species, resulting in a complex spatiotemporal mosaic of clonal and sexual lineages that might persist during thousands of generations.
Collapse
Affiliation(s)
- Ricardo T Pereyra
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marina Rafajlović
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Pierre De Wit
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthew Pinder
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Kinnby
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mats Töpel
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Johannesson
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Li J, Lee CR. The role of gene presence-absence variations on genetic incompatibility in Asian rice. THE NEW PHYTOLOGIST 2023; 239:778-791. [PMID: 37194454 PMCID: PMC7615310 DOI: 10.1111/nph.18969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Genetic incompatibilities are widespread between species. However, it remains unclear whether they all originated after population divergence as suggested by the Bateson-Dobzhansky-Muller model, and if not, what is their prevalence and distribution within populations. The gene presence-absence variations (PAVs) provide an opportunity for investigating gene-gene incompatibility. Here, we searched for the repulsion of coexistence between gene PAVs to identify the negative interaction of gene functions separately in two Oryza sativa subspecies. Many PAVs are involved in subspecies-specific negative epistasis and segregate at low-to-intermediate frequencies in focal subspecies but at low or high frequencies in the other subspecies. Incompatible PAVs are enriched in two functional groups, defense response and protein phosphorylation, which are associated with plant immunity and consistent with autoimmunity being a known mechanism of hybrid incompatibility in plants. Genes in the two enriched functional groups are older and seldom directly interact with each other. Instead, they interact with other younger gene PAVs with diverse functions. Our results illustrate the landscape of genetic incompatibility at gene PAVs in rice, where many incompatible pairs have already segregated as polymorphisms within subspecies, and many are novel negative interactions between older defense-related genes and younger genes with diverse functions.
Collapse
Affiliation(s)
- Juan Li
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106319, Taiwan
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106319, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
20
|
Ortiz V, Chang HX, Sang H, Jacobs J, Malvick DK, Baird R, Mathew FM, Estévez de Jensen C, Wise KA, Mosquera GM, Chilvers MI. Population genomic analysis reveals geographic structure and climatic diversification for Macrophomina phaseolina isolated from soybean and dry bean across the United States, Puerto Rico, and Colombia. Front Genet 2023; 14:1103969. [PMID: 37351341 PMCID: PMC10282554 DOI: 10.3389/fgene.2023.1103969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/20/2023] [Indexed: 06/24/2023] Open
Abstract
Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.
Collapse
Affiliation(s)
- Viviana Ortiz
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Janette Jacobs
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Dean K. Malvick
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Richard Baird
- BCH-EPP Department, Mississippi State University, Mississippi State, MS, United States
| | - Febina M. Mathew
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | | | - Kiersten A. Wise
- Department of Plant Pathology, College of Agriculture, Food and Environment, University of Kentucky, Princeton, KY, United States
| | - Gloria M. Mosquera
- Plant Pathology, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Palmira, Colombia
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Queiroz CA, Caniato FF, Siqueira VKS, de Moraes Catarino A, Hanada RE, O'Donnell K, Laraba I, Rehner SA, Sousa NR, Silva GF. Population Genetic Analysis of Fusarium decemcellulare, a Guaraná Pathogen, Reveals High Genetic Diversity in the Amazonas State, Brazil. PLANT DISEASE 2023:PDIS01220083RE. [PMID: 36350732 DOI: 10.1094/pdis-01-22-0083-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Guaraná is indigenous to the Brazilian Amazon where it has cultural and agroeconomic significance. However, its cultivation is constrained by a disease termed oversprouting of guaraná caused by Fusarium decemcellulare, with yield losses reaching as high as 100%. The disease can affect different parts of the plant, causing floral hypertrophy and hyperplasia, stem galls, and oversprouting of vegetative buds. To date, no study has been conducted characterizing the genetic diversity and population structure of this pathogen. Here, we report genetic diversity and genetic structure among 224 isolates from eight guaraná production areas of Amazonas State, Brazil, that were genotyped using a set of 10 inter-simple-sequence repeat (ISSR) markers. Despite moderate gene diversity (Hexp = 0.21 to 0.32), genotypic diversity was at or near maximum (223 multilocus genotypes among 224 isolates). Population genetic analysis of the 10 ISSR marker fragments with STRUCTURE software identified two populations designated C1 and C2 within the F. decemcellulare collection from the eight sites. Likewise, UPGMA hierarchical clustering and discriminant analysis of principal components of the strains from guaraná resolved these same two groups. Analysis of molecular variance demonstrated that 71% of genetic diversity occurred within the C1 and C2 populations. A pairwise comparison of sampling sites for both genetic populations revealed that 59 of 66 were differentiated from one another (P < 0.05), and high and significant gene flow was detected only between sampling sites assigned to the same genetic population. The presence of MAT1-1 and MAT1-2 strains, in conjunction with the high genotypic diversity and no significant linkage disequilibrium, suggests that each population of F. decemcellulare might be undergoing sexual reproduction. Isolation by distance was not observed (R2 = 0.02885, P > 0.05), which suggests that human-mediated movement of seedlings may have played a role in shaping the F. decemcellulare genetic structure in Amazonas State, Brazil.
Collapse
Affiliation(s)
- Claudia A Queiroz
- Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Brazil
| | - Fernanda F Caniato
- Departamento de Ciências Fundamentais e Desenvolvimento Agrícola, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | | | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Imane Laraba
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| | | | | |
Collapse
|
22
|
Genetic structuring and invasion status of the perennial Ambrosia psilostachya (Asteraceae) in Europe. Sci Rep 2023; 13:3736. [PMID: 36878947 PMCID: PMC9988885 DOI: 10.1038/s41598-023-30377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
The perennial western ragweed (Ambrosia psilostachya DC.) arrived from North America to Europe in the late nineteenth century and behaves invasive in its non-native range. Due to its efficient vegetative propagation via root suckers, A. psilostachya got naturalized in major parts of Europe forming extensive populations in Mediterranean coastal areas. The invasion history, the spreading process, the relationships among the populations as well as population structuring is not yet explored. This paper aims to give first insights into the population genetics of A. psilostachya in its non-native European range based on 60 sampled populations and 15 Simple Sequence Repeats (SSR). By AMOVA analysis we detected 10.4% of genetic variation occurring among (pre-defined) regions. These regions represent important harbors for trading goods from America to Europe that might have served as source for founder populations. Bayesian Clustering revealed that spatial distribution of genetic variation of populations is best explained by six groups, mainly corresponding to regions around important harbors. As northern populations show high degrees of clonality and lowest levels of within-population genetic diversity (mean Ho = 0.40 ± 0.09), they could preserve the initial genetic variation levels by long-lived clonal genets. In Mediterranean populations A. psilostachya expanded to millions of shoots. Some of those were obviously spread by sea current along the coast to new sites, where they initiated populations characterized by a lower genetic diversity. For the future, the invasion history in Europe might get clearer after consideration of North American source populations of western ragweed.
Collapse
|
23
|
Phylogeography and population structure of the global, wide host-range hybrid pathogen Phytophthora × cambivora. IMA Fungus 2023; 14:4. [PMID: 36823663 PMCID: PMC9951538 DOI: 10.1186/s43008-023-00109-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Invasive, exotic plant pathogens pose a major threat to native and agricultural ecosystems. Phytophthora × cambivora is an invasive, destructive pathogen of forest and fruit trees causing severe damage worldwide to chestnuts (Castanea), apricots, peaches, plums, almonds and cherries (Prunus), apples (Malus), oaks (Quercus), and beech (Fagus). It was one of the first damaging invasive Phytophthora species to be introduced to Europe and North America, although its origin is unknown. We determined its population genetic history in Europe, North and South America, Australia and East Asia (mainly Japan) using genotyping-by-sequencing. Populations in Europe and Australia appear clonal, those in North America are highly clonal yet show some degree of sexual reproduction, and those in East Asia are partially sexual. Two clonal lineages, each of opposite mating type, and a hybrid lineage derived from these two lineages, dominated the populations in Europe and were predominantly found on fagaceous forest hosts (Castanea, Quercus, Fagus). Isolates from fruit trees (Prunus and Malus) belonged to a separate lineage found in Australia, North America, Europe and East Asia, indicating the disease on fruit trees could be caused by a distinct lineage of P. × cambivora, which may potentially be a separate sister species and has likely been moved with live plants. The highest genetic diversity was found in Japan, suggesting that East Asia is the centre of origin of the pathogen. Further surveys in unsampled, temperate regions of East Asia are needed to more precisely identify the location and range of the centre of diversity.
Collapse
|
24
|
Fariña-Flores D, Berbegal M, Iturritxa E, Hernandez-Escribano L, Aguín O, Raposo R. Temporal and Spatial Variation in the Population Structure of Spanish Fusarium circinatum Infecting Pine Stands. J Fungi (Basel) 2023; 9:jof9020159. [PMID: 36836273 PMCID: PMC9962447 DOI: 10.3390/jof9020159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Fusarium circinatum is an introduced fungal pathogen extended to the northern regions of Spain that causes Pine Pitch Canker (PPC) disease. In this work, we analyzed the pathogen's genetic diversity to study changes over time and space since the first outbreak occurred in Spain. Using six polymorphic SSR markers, 15 MLGs were identified in 66 isolates, and only three haplotypes were found with frequencies higher than one. In general, genotypic diversity was low and decreased shortly over time in the northwestern regions while maintained at País Vasco, where only one haplotype (MLG32) was detected 10 years. This population also included isolates of a single mating type (MAT-2) and VCGs identified in only two groups, while isolates from NW regions were of both mating types and VCGs represented in 11 groups. The existence of haplotype MLG32 maintained on time and widely distributed suggests its good adaptation to the environment and the host. Results showed that the pathogen in País Vasco remains clearly differentiated from other northwestern populations. This fact was supported with no evidence of migration among regions. Results are explained by the asexual reproduction, but also selfing at least to a lesser extent that leads to identification of two new haplotypes.
Collapse
Affiliation(s)
- David Fariña-Flores
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, 28040 Madrid, Spain
| | - Mónica Berbegal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Correspondence:
| | - Eugenia Iturritxa
- NEIKER, Granja Modelo—Arkaute, Apdo. 46, 01080 Vitoria-Gasteiz, Spain
| | | | - Olga Aguín
- Estación Fitopatolóxica Areeiro, Diputación Pontevedra, 36153 Pontevedra, Spain
| | - Rosa Raposo
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
25
|
D'Arcangelo KN, Wallace EC, Miles TD, Quesada-Ocampo LM. Carboxylic Acid Amide but Not Quinone Outside Inhibitor Fungicide Resistance Mutations Show Clade-Specific Occurrence in Pseudoperonospora cubensis Causing Downy Mildew in Commercial and Wild Cucurbits. PHYTOPATHOLOGY 2023; 113:80-89. [PMID: 35918851 DOI: 10.1094/phyto-05-22-0166-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since its reemergence in 2004, Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew (CDM), has experienced significant changes in fungicide sensitivity. Presently, frequent fungicide applications are required to control the disease in cucumber due to the loss of host resistance. Carboxylic acid amides (CAA) and quinone outside inhibitors (QoI) are two fungicide groups used to control foliar diseases in cucurbits, including CDM. Resistance to these fungicides is associated with single nucleotide polymorphism (SNP) mutations. In this study, we used population analyses to determine the occurrence of fungicide resistance mutations to CAA and QoI fungicides in host-adapted clade 1 and clade 2 P. cubensis isolates. Our results revealed that CAA-resistant genotypes occurred more prominently in clade 2 isolates, with more sensitive genotypes observed in clade 1 isolates, while QoI resistance was widespread across isolates from both clades. We also determined that wild cucurbits can serve as reservoirs for P. cubensis isolates containing fungicide resistance alleles. Finally, we report that the G1105W substitution associated with CAA resistance was more prominent within clade 2 P. cubensis isolates while the G1105V resistance substitution and sensitivity genotypes were more prominent in clade 1 isolates. Our findings of clade-specific occurrence of fungicide resistance mutations highlight the importance of understanding the population dynamics of P. cubensis clades by crop and region to design effective fungicide programs and establish accurate baseline sensitivity to active ingredients in P. cubensis populations.
Collapse
Affiliation(s)
- K N D'Arcangelo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
| | - E C Wallace
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
| | - T D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - L M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
| |
Collapse
|
26
|
van der Nest A, Wingfield MJ, Sadiković D, Mullett MS, Marçais B, Queloz V, Adamčíková K, Davydenko K, Barnes I. Population structure and diversity of the needle pathogen Dothistroma pini suggests human-mediated movement in Europe. Front Genet 2023; 14:1103331. [PMID: 36873952 PMCID: PMC9978111 DOI: 10.3389/fgene.2023.1103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Dothistroma needle blight (DNB) is an important disease of Pinus species that can be caused by one of two distinct but closely related pathogens; Dothistroma septosporum and Dothistroma pini. Dothistroma septosporum has a wide geographic distribution and is relatively well-known. In contrast, D. pini is known only from the United States and Europe, and there is a distinct lack of knowledge regarding its population structure and genetic diversity. The recent development of 16 microsatellite markers for D. pini provided an opportunity to investigate the diversity, structure, and mode of reproduction for populations collected over a period of 12 years, on eight different hosts in Europe. In total, 345 isolates from Belgium, the Czech Republic, France, Hungary, Romania, Western Russia, Serbia, Slovakia, Slovenia, Spain, Switzerland, and Ukraine were screened using microsatellite and species-specific mating type markers. A total of 109 unique multilocus haplotypes were identified and structure analyses suggested that the populations are influenced by location rather than host species. Populations from France and Spain displayed the highest levels of genetic diversity followed by the population in Ukraine. Both mating types were detected in most countries, with the exception of Hungary, Russia and Slovenia. Evidence for sexual recombination was supported only in the population from Spain. The observed population structure and several shared haplotypes between non-bordering countries provides good evidence that the movement of D. pini in Europe has been strongly influenced by human activity in Europe.
Collapse
Affiliation(s)
- Ariska van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Dušan Sadiković
- Slovenian Forestry Institute, Ljubljana, Slovenia.,Southern Swedish Forest Research Centre, Swedish University of Agricultural Science, Alnarp, Sweden
| | - Martin S Mullett
- Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Benoit Marçais
- Université de Lorraine, INRAE-Grand-Est, UMR1136 Interactions Arbres, Microorganismes, Nancy, France
| | - Valentin Queloz
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Katarina Adamčíková
- Institute of Forest Ecology Slovak Academy of Sciences, Department of Plant Pathology and Mycology, Nitra, Slovakia
| | - Kateryna Davydenko
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Science, Uppsala, Sweden.,Ukrainian Forest Research Institute, Forestry and Forest Melioration, Kharkiv, Ukraine, Slovakia
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Naegele RP, Abdelsamad N, DeLong JA, Saito S, Xiao CL, Miles TD. Fungicide Resistance and Host Influence on Population Structure in Botrytis spp. from Specialty Crops in California. PHYTOPATHOLOGY 2022; 112:2549-2559. [PMID: 35801851 DOI: 10.1094/phyto-03-22-0070-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Botrytis is an important genus of plant pathogens causing pre- and postharvest disease on diverse crops worldwide. This study evaluated Botrytis isolates collected from strawberry, blueberry, and table grape berries in California. Isolates were evaluated for resistance to eight different fungicides, and 60 amplicon markers were sequenced (neutral, species identification, and fungicide resistance associated) distributed across 15 of the 18 B. cinerea chromosomes. Fungicide resistance was common among the populations, with resistance to pyraclostrobin and boscalid being most frequent. Isolates from blueberry had resistance to the least number of fungicides, whereas isolates from strawberry had resistance to the highest number. Host and fungicide resistance-specific population structure explained 12 and 7 to 26%, respectively, of the population variability observed. Fungicide resistance was the major driver for population structure, with select fungicides explaining up to 26% and multiple fungicide resistance explaining 17% of the variability observed. Shared and unique significant single-nucleotide polymorphisms (SNPs) associated with host and fungicide (fluopyram, thiabendazole, pyraclostrobin, and fenhexamid) resistance-associated population structures were identified. Although overlap between host and fungicide resistance SNPs were detected, unique SNPs suggest that both host and fungicide resistance play an important role in Botrytis population structure.
Collapse
Affiliation(s)
- Rachel P Naegele
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Noor Abdelsamad
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Jeff A DeLong
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Seiya Saito
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Chang-Lin Xiao
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Timothy D Miles
- Michigan State University, Plant Pathology, 426 Auditorium Road, East Lansing, MI 48824
| |
Collapse
|
28
|
Havenga M, Halleen F, Baloyi A, Bester M, Linde CC, Mostert L. Predominant Clonal Reproduction with Infrequent Genetic Recombination of Phaeoacremonium minimum in Western Cape Vineyards. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02142-1. [PMID: 36369598 DOI: 10.1007/s00248-022-02142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Phaeoacremonium minimum is an important esca and Petri disease pathogen that causes dieback of grapevines in South Africa. Little is known regarding the reproductive strategy of the pathogen. Sexual reproduction could lead to a better adaptation of the pathogen to disease management strategies by combining alleles through recombination. The study aimed to investigate the genetic diversity and recombination potential of eight populations in the Western Cape, from six commercial vineyards and two nursery rootstock mother blocks. This was achieved by developing and applying nine polymorphic microsatellites and mating-type-specific markers. Thirty-seven genotypes were identified from 295 isolates. Populations were characterised by the same dominant genotype (MLG20 occurring 65.43%), low genotypic diversity (H) and high numbers of clones (81.36% of dataset). However, genotypes from the same sampling sites were not closely related based on a minimum spanning network and had high molecular variation within populations (94%), suggesting that multiple introductions of different genotypes occurred over time. Significant linkage disequilibrium among loci (r̅d) further indicated a dominant asexual cycle, even though perithecia have been observed in these four populations. The two rootstock mother blocks had unique genotypes and genotypes shared with the vineyard populations. Propagation material obtained from infected rootstock mother blocks could lead to the spread of more genotypes to newly established vineyards. Based on our results, it is important to determine the health status of rootstock mother blocks. Management strategies must focus on reducing aerial inoculum to prevent repeated infections and further spread of P. minimum genotypes.
Collapse
Affiliation(s)
- Minette Havenga
- Plant Protection Division, ARC Infruitec-Nietvoorbji, The Fruit, Vine and Wine Institute of the Agricultural Research Council, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Francois Halleen
- Plant Protection Division, ARC Infruitec-Nietvoorbji, The Fruit, Vine and Wine Institute of the Agricultural Research Council, Private Bag X5026, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa
| | - Annabella Baloyi
- Plant Protection Division, ARC Infruitec-Nietvoorbji, The Fruit, Vine and Wine Institute of the Agricultural Research Council, Private Bag X5026, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa
| | - Michael Bester
- Plant Protection Division, ARC Infruitec-Nietvoorbji, The Fruit, Vine and Wine Institute of the Agricultural Research Council, Private Bag X5026, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Lizel Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
29
|
Olivera PD, Szabo LJ, Kokhmetova A, Morgounov A, Luster DG, Jin Y. Puccinia graminis f. sp. tritici Population Causing Recent Wheat Stem Rust Epidemics in Kazakhstan Is Highly Diverse and Includes Novel Virulence Pathotypes. PHYTOPATHOLOGY 2022; 112:2403-2415. [PMID: 35671480 DOI: 10.1094/phyto-08-21-0320-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a reemerging disease that caused severe epidemics in northern Kazakhstan and western Siberia in the period of 2015 to 2019. We analyzed 51 stem rust samples collected between 2015 and 2017 in five provinces in Kazakhstan. A total of 112 Pgt races were identified from 208 single-pustule isolates. These races are phenotypically and genotypically diverse, and most of them are likely of sexual origin. No differentiation of phenotypes and single-nucleotide polymorphism genotypes was observed between isolates from Akmola and North Kazakhstan provinces, supporting the idea of a wide dispersal of inoculum in the northern regions of the country. Similarities in virulence profiles with Pgt races previously reported in Siberia, Russia, suggest that northern Kazakhstan and western Siberia constitute a single stem rust epidemiological region. In addition to the races of sexual origin, six races reported in Europe, the Caucasus, and East Africa were detected in Kazakhstan, indicating that this epidemiological region is not isolated, and spore inflow from the west occurs. Virulence alone or in combination to several genes effective against the Ug99 race group was detected, including novel virulence on Sr32 + Sr40 and Sr47. The occurrence of a highly diverse Pgt population with virulence to an important group of Sr genes demonstrated the importance of the pathogen's sexual cycle in generating new and potentially damaging virulence combinations.
Collapse
Affiliation(s)
- P D Olivera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - L J Szabo
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - A Kokhmetova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - A Morgounov
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | - D G Luster
- USDA-ARS Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Y Jin
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| |
Collapse
|
30
|
Aboul-Naga AM, Alsamman AM, El Allali A, Elshafie MH, Abdelal ES, Abdelkhalek TM, Abdelsabour TH, Mohamed LG, Hamwieh A. Genome-wide analysis identified candidate variants and genes associated with heat stress adaptation in Egyptian sheep breeds. Front Genet 2022; 13:898522. [PMID: 36263427 PMCID: PMC9574253 DOI: 10.3389/fgene.2022.898522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Heat stress caused by climatic changes is one of the most significant stresses on livestock in hot and dry areas. It has particularly adverse effects on the ability of the breed to maintain homeothermy. Developing countries are advised to protect and prepare their animal resources in the face of potential threats such as climate change. The current study was conducted in Egypt's three hot and dry agro-ecological zones. Three local sheep breeds (Saidi, Wahati, and Barki) were studied with a total of 206 ewes. The animals were exercised under natural heat stress. The heat tolerance index of the animals was calculated to identify animals with high and low heat tolerance based on their response to meteorological and physiological parameters. Genomic variation in these breeds was assessed using 64,756 single nucleotide polymorphic markers (SNPs). From the perspective of comparative adaptability to harsh conditions, our objective was to investigate the genomic structure that might control the adaptability of local sheep breeds to environmental stress under hot and dry conditions. In addition, indices of population structure and diversity of local breeds were examined. Measures of genetic diversity showed a significant influence of breed and location on populations. The standardized index of association (rbarD) ranged from 0.0012 (Dakhla) to 0.026 (Assuit), while for the breed, they ranged from 0.004 (Wahati) to 0.0103 (Saidi). The index of association analysis (Ia) ranged from 1.42 (Dakhla) to 35.88 (Assuit) by location and from 6.58 (Wahati) to 15.36 (Saidi) by breed. The most significant SNPs associated with heat tolerance were found in the MYO5A, PRKG1, GSTCD, and RTN1 genes (p ≤ 0.0001). MYO5A produces a protein widely distributed in the melanin-producing neural crest of the skin. Genetic association between genetic and phenotypic variations showed that OAR1_18300122.1, located in ST3GAL3, had the greatest positive effect on heat tolerance. Genome-wide association analysis identified SNPs associated with heat tolerance in the PLCB1, STEAP3, KSR2, UNC13C, PEBP4, and GPAT2 genes.
Collapse
Affiliation(s)
- Adel M. Aboul-Naga
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | | | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohmed H. Elshafie
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Ehab S. Abdelal
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Tarek M. Abdelkhalek
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Taha H. Abdelsabour
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Layaly G. Mohamed
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Aladdin Hamwieh
- International Center For Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| |
Collapse
|
31
|
Bock CH, Frusso E, Zoppolo R, Ortiz ER, Shiller J, Charlton ND, Young CA, Randall JJ. Population Genetic Characteristics and Mating Type Frequency of Venturia effusa from Pecan in South America. PHYTOPATHOLOGY 2022; 112:2224-2235. [PMID: 35596236 DOI: 10.1094/phyto-01-22-0031-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scab, caused by the plant-pathogenic fungus Venturia effusa, is a major disease of pecan in South America, resulting in loss of quantity and quality of nut yield. Characteristics of the populations of V. effusa in South America are unknown. We used microsatellites to describe the genetic diversity and population structure of V. effusa in South America, and determined the mating type status of the pathogen. The four hierarchically sampled orchard populations from Argentina (AR), Brazil (BRC and BRS), and Uruguay (UR) had moderate to high genotypic and gene diversity. There was evidence of population differentiation (Fst = 0.196) but the correlation between geographic distance and genetic distance was not statistically significant. Genetic differentiation was minimal between the UR, BRC, and BRS populations, and these populations were more clearly differentiated from the AR population. The MAT1-1 and MAT1-2 mating types occurred in all four orchards and their frequencies did not deviate from the 1:1 ratio expected under random mating; however, multilocus linkage equilibrium was rejected in three of the four populations. The population genetics of South American populations of V. effusa has many similarities to the population genetics of V. effusa previously described in the United States. Characterizing the populations genetics and reproductive systems of V. effusa are important to establish the evolutionary potential of the pathogen and, thus, its adaptability-and can provide a basis for informed approaches to utilizing available host resistance and determining phytosanitary needs.
Collapse
Affiliation(s)
- Clive H Bock
- United States Department of Agriculture-Agriculture Research Service, Southeastern Fruit and Tree Nut Research Lab, 21 Dunbar Road, Byron, GA 31008, U.S.A
| | - Enrique Frusso
- Instituto de Recursos Biológicos, INTA Castelar, Las Cabañas y De Los Reseros s.n., (1686) Hurlingham, Buenos Aires, Argentina
| | - Roberto Zoppolo
- Instituto Nacional de Investigación Agropecuaria - INIA Las Brujas, Ruta 48 - km 10, El Colorado, Canelones, Uruguay, CP 90200
| | - Edson R Ortiz
- Divinut Indústria de Nozes Ltda., Rodovia BR-153, km 375, CEP 96504-800 - Cachoeira do Sul/RS, Brazil
| | | | - Nikki D Charlton
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, U.S.A
| | - Carolyn A Young
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, U.S.A
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, 74078, U.S.A
| | | |
Collapse
|
32
|
Atuh NI, Anong DN, Jerome FC, Oriero E, Mohammed NI, D’Alessandro U, Amambua-Ngwa A. High genetic complexity but low relatedness in Plasmodium falciparum infections from Western Savannah Highlands and coastal equatorial Lowlands of Cameroon. Pathog Glob Health 2022; 116:428-437. [PMID: 34308788 PMCID: PMC9518281 DOI: 10.1080/20477724.2021.1953686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the diversity and connectivity of infections in Northwestern and Southwestern Cameroon, 232 Plasmodium falciparum infections, collected in 2018 from the Ndop Health District (NHD) in the western savannah highlands in the Northwest and the Limbe Health District (LHD) in the coastal lowland forests in the Southwest of Cameroon were genotyped for nine neutral microsatellite markers. Overall infection complexity and genetic diversity was significantly (p < 0.05) lower in NHD than LHD, (Mean MOI = 2.45 vs. 2.97; Fws = 0.42 vs. 0.47; Mean He = 0.84 vs. 0.89, respectively). Multi-locus linkage disequilibrium was generally low but significantly higher in the NHD than LHD population (mean ISA= 0.376 vs 0.093). Consequently, highly related pairs of isolates were observed in NHD (mean IBS = 0.086) compared to those from the LHD (mean IBS = 0.059). Infections from the two regions were mostly unrelated (mean IBS = 0.059), though the overall genetic differentiation across the geographical range was low. Indices of differentiation between the populations were however significant (overall pairwise Fst = 0.048, Jost's D = 0.133, p < 0.01). Despite the high human migration across the 270km separating the study sites, these results suggest significant restrictions to gene flow against contiguous geospatial transmission of malaria in west Cameroon. Clonal infections in the highland sites could be driven by lower levels of malaria prevalence and seasonal transmission. How these differences in genetic diversity and complexity affect responses to interventions such as drugs will require further investigations from broader community sampling.
Collapse
Affiliation(s)
- Ngoh Ines Atuh
- Department of Biomedical Science, Faculty of Health Science, University of Buea, Buea, Cameroon
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| | - Damian Nota Anong
- Department of Microbiology & Parasitology, Faculty of Science, University of Buea, Molyko Buea, Cameroon
| | - Fru-Cho Jerome
- Department of Biomedical Science, Faculty of Health Science, University of Buea, Buea, Cameroon
| | - Eniyou Oriero
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| | - Nuredin Ibrahim Mohammed
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| | - Umberto D’Alessandro
- Department of Microbiology & Parasitology, Faculty of Science, University of Buea, Molyko Buea, Cameroon
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| |
Collapse
|
33
|
Li YS, Liao PC, Chang CT, Hwang SY. Pattern of Adaptive Divergence in Zingiber kawagoii Hayata (Zingiberaceae) along a Narrow Latitudinal Range. PLANTS 2022; 11:plants11192490. [PMID: 36235357 PMCID: PMC9573048 DOI: 10.3390/plants11192490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Ecological and evolutionary processes linking adaptation to environment are related to species’ range shifts. In this study, we employed amplified-fragment-length-polymorphism-based genome scan methods to identify candidate loci among Zingiber kawagoii populations inhabiting varying environments distributed at low to middle elevations (143–1488 m) in a narrow latitudinal range (between 21.90 and 25.30° N). Here, we show evidence of selection driving the divergence of Z. kawagoii. Twenty-six FST outliers were detected, which were significantly correlated with various environmental variables. The allele frequencies of nine FST outliers were either positively or negatively correlated with the population mean FST. Using several independent approaches, we found environmental variables act in a combinatorial fashion, best explaining outlier genetic variation. Nonetheless, we found that adaptive divergence was affected mostly by annual temperature range, and it is significantly positively correlated with latitude and significantly negatively correlated with the population mean FST. This study addresses a latitudinal pattern of changes in annual temperature range (which ranged from 13.8 °C in the Lanyu population to 18.5 °C in the Wulai population) and emphasizes the pattern of latitudinal population divergence closely linked to the allele frequencies of adaptive loci, acting in a narrow latitudinal range. Our results also indicate environmentally dependent local adaptation for both leading- and trailing-edge populations.
Collapse
Affiliation(s)
- Yi-Shao Li
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| | - Chung-Te Chang
- Department of Life Science, Tunghai University, 1727 Taiwan Boulevard, Section 4, Taichung 40704, Taiwan
| | - Shih-Ying Hwang
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
- Correspondence: ; Tel.: +886-2-7749-6250
| |
Collapse
|
34
|
Jiang B, Wang C, Guo C, Lv X, Gong W, Chang J, He H, Feng J, Chen X, Ma Z. Genetic Relationships of Puccinia striiformis f. sp. tritici in Southwestern and Northwestern China. Microbiol Spectr 2022; 10:e0153022. [PMID: 35894618 PMCID: PMC9430570 DOI: 10.1128/spectrum.01530-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a crucial disease for wheat worldwide and constantly threatens wheat production in southwestern and northwestern China, where the environment is a good fit for Pst oversummering and overwintering. However, the underlying genetic dynamics of spring epidemic Pst populations across large areas of continuous planting in the southwestern and northwestern regions are poorly understood. A total of 2,103 Pst isolates were sampled in the spring of 2019 from the two agroecosystems and grouped into three horizontal spatial scales (countywide, provincial, and regional subpopulations) and two vertical spatial scales that consisted of elevational and geomorphic subpopulations. A total of 776 multilocus genotypes were identified, with the highest genetic diversity found in the northern and Sichuan populations, particularly in the Ningxia and Sichuan Basins, while the lowest genetic diversity was found in the Yunnan and Guizhou populations. Multivariate discriminant analysis of principal components (DAPC) and STRUCTURE (STRUCTURE 2.3.4) analyses revealed variation in the genotypic compositions of the molecular groups on horizontal and vertical dimensions from north to south or vice versa and from low to high or vice versa, respectively. The regional neighbor-joining tree revealed three large spatial structures consisting of the southwestern, the northwestern, and the Xinjiang regions, while the Tibetan population connected the southwestern and northwestern regions. The isolates of the Sichuan Basin were scattered over the four quartiles by principal coordinate analysis, which indicated frequent genotype interchange with others. Greater genetic differentiation was observed between the southwestern and northwestern regions. Linkage equilibrium (P ≥ 0.05) was detected on different spatial scales, suggesting that Pst populations are using sexual reproduction or mixed reproduction (sexual and clonal reproduction) in southwestern and northwestern China. IMPORTANCE Understanding the epidemiology and population genetics of plant pathogens is crucial to formulate efficient predictions of disease outbreaks and achieve sustainable integrated disease management, especially for pathogens with migratory capability. Here, this study covers the genetic homogeneity and heterogeneity of different geographical Pst populations on broad to fine spatial scales from the key epidemic regions of the two agroecosystems in China, where wheat stripe rust occurs annually. We provide knowledge of the population genetics of Pst and reveal that, for instance, there is greater genetic diversity in northwestern China, there are close genetic relationships between Yunnan and Guizhou and between Gansu-Ningxia and Qinghai, and there are effects of altitude on genetic compositions, etc. All of these findings clarify the genetic relationships and expand the insights into the population dynamics and evolutionary mechanisms of Pst in southwestern and northwestern China, providing a theoretical basis for achieving sustainable control of wheat stripe rust in key epidemic regions.
Collapse
Affiliation(s)
- Bingbing Jiang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Cuicui Wang
- Shandong Provincial University Laboratory for Protected Horticulture, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang, China
| | - Cunwu Guo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xuan Lv
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wenfeng Gong
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jie Chang
- Yingjiang County Bureau of Agriculture and Rural Animal Husbandry Station, Yingjiang, China
| | - Hongpan He
- Wenshan Prefecture Malipo County Dong Gan Town Agricultural Integrated Service Center, Wenshan, China
| | - Jing Feng
- Gejiu City Plant Protection Plant Inspection Station, Ge Jiu, China
| | - Xianming Chen
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Zhanhong Ma
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
McAllister CH, Cullingham CI, Peery RM, Mbenoun M, McPeak E, Feau N, Hamelin RC, Ramsfield TD, Myrholm CL, Cooke JEK. Evidence of Coevolution Between Cronartium harknessii Lineages and Their Corresponding Hosts, Lodgepole Pine and Jack Pine. PHYTOPATHOLOGY 2022; 112:1795-1807. [PMID: 35166574 DOI: 10.1094/phyto-09-21-0370-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Variation in rate of infection and susceptibility of Pinus spp. to the fungus Cronartium harknessii (syn. Endocronartium harknessii), the causative agent of western gall rust, has been well documented. To test the hypothesis that there is a coevolutionary relationship between C. harknessii and its hosts, we examined genetic structure and virulence of C. harknessii associated with lodgepole pine (P. contorta var. latifolia), jack pine (P. banksiana), and their hybrids. A secondary objective was to improve assessment and diagnosis of infection in hosts. Using 18 microsatellites, we assessed genetic structure of C. harknessii from 90 sites within the ranges of lodgepole pine and jack pine. We identified two lineages (East and West, FST = 0.677) associated with host genetic structure (r = 0.81, P = 0.001), with East comprising three sublineages. In parallel, we conducted a factorial experiment in which lodgepole pine, jack pine, and hybrid seedlings were inoculated with spores from the two primary genetic lineages. With this experiment, we refined the phenotypic categories associated with infection and demonstrated that stem width can be used as a quantitative measure of host response to infection. Overall, each host responded differentially to the fungal lineages, with jack pine exhibiting more resiliency to infection than lodgepole pine and hybrids exhibiting intermediate resiliency. Taken together, the shared genetic structure between fungus and host species, and the differential interaction of the fungal species with the hosts, supports a coevolutionary relationship between host and pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chandra H McAllister
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Rhiannon M Peery
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Mbenoun
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eden McPeak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nicolas Feau
- Department of Forest Science, University of British Columbia, Vancouver, British Columbia, Canada
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Richard C Hamelin
- Department of Forest Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tod D Ramsfield
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, Alberta, Canada
| | - Colin L Myrholm
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, Alberta, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Gangwar OP, Kumar S, Bhardwaj SC, Prasad P, Lata C, Adhikari S, Singh GP. Elucidating the Population Structure and Genetic Diversity of Indian Puccinia striiformis f. sp. tritici Pathotypes Based on Microsatellite Markers. PHYTOPATHOLOGY 2022; 112:1444-1453. [PMID: 35050682 DOI: 10.1094/phyto-10-21-0422-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In India, systematic wheat yellow rust survey and pathotype (race) analysis work began in 1930. However, information on population structure and genetic diversity of yellow rust pathogen has not been available. To address this, we conducted studies on population structure and genetic diversity of Puccinia striiformis f. sp. tritici (Pst) pathotypes using 38 simple sequence repeat primer-pairs. Bayesian assignment and discriminant analysis of principal components indicated the presence of two distinct Pst subpopulations (Pop1 and Pop2) along with 37.9% admixed pathotypes. The unweighted pair-group method with arithmetic mean also categorized these pathotypes into two major clusters. Principal coordinates analysis explained 20.06 and 12.50% variance in horizontal and vertical coordinates, respectively. Index of association (IA) and the standardized index of association ([Formula: see text]) values showed that Pst subpopulations reproduced asexually (clonally). In total, 102 alleles were detected, with the expected heterozygosity (Hexp) per locus ranging from 0.13 to 0.73, with a mean of 0.47. The average polymorphic information content value of 0.40 indicated high genetic diversity among pathotypes. Analysis of molecular variance revealed 12% of the total variance between subpopulations, 11% among the pathotypes of each subpopulation, and 77% within pathotypes. A significant moderate level of genetic differentiation (FST = 0.122, P < 0.001) and gene flow (Nm = 1.80) were observed between subpopulations. The Pst virulence phenotypes showed a weak positive correlation (R2 = 0.027, P < 0.02) with molecular genotypes.
Collapse
Affiliation(s)
- Om Prakash Gangwar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Subodh Kumar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Subhash Chander Bhardwaj
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Pramod Prasad
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Charu Lata
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Sneha Adhikari
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
37
|
Olarte RA, Hall R, Tabima JF, Malvick D, Bushley K. Genetic Diversity and Aggressiveness of Fusarium virguliforme Isolates Across the Midwestern United States. PHYTOPATHOLOGY 2022; 112:1273-1283. [PMID: 34907789 DOI: 10.1094/phyto-05-21-0191-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sudden death syndrome (SDS) of soybean is a damaging disease caused by the fungus Fusarium virguliforme. Since this pathogen was first reported in the southern U.S. state of Arkansas in 1971, it has spread throughout the midwestern United States. The SDS pathogen primarily colonizes roots but also produces toxins that translocate to and damage leaves. Previous studies have detected little to no genetic differentiation among isolates, suggesting F. virguliforme in North America has limited genetic diversity and a clonal population structure. Yet, isolates vary in virulence to roots and leaves. We characterized a set of F. virguliforme isolates from the midwestern United States, representing a south to north latitudinal gradient from Arkansas to Minnesota. Ten previously tested microsatellite loci were used to genotype isolates, and plant assays were conducted to assess virulence. Three distinct population clusters were differentiated across isolates. Although isolates ranged in virulence classes from low to very high, little correlation was found between virulence phenotype and cluster membership. Similarly, population structure and geographic location were not highly correlated. However, the earliest diverging cluster had the lowest genetic diversity and was detected only in southern states, whereas the two other clusters were distributed across the Midwest and were predominant in Minnesota. One of the midwestern clusters had the greatest genetic diversity and was found along the northern edge of the known distribution. The results support three genetically distinct population clusters of F. virguliforme in the United States, with two clusters contributing most to spread of this fungus across the Midwest.
Collapse
Affiliation(s)
- Rodrigo A Olarte
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Rebecca Hall
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | | | - Dean Malvick
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
38
|
Freilij D, Ferreyra LI, Vilardi JC, Rodriguez AI, Gómez-Cendra P. Fine Scale Microevolutionary and Demographic Processes Shaping a Wild Metapopulation Dynamics of the South American Fruit Fly Anastrepha fraterculus. NEOTROPICAL ENTOMOLOGY 2022; 51:339-355. [PMID: 35103980 DOI: 10.1007/s13744-022-00944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Anastrepha fraterculus (Wiedmann) is an important American pest species. Knowledge of its population dynamics is of particular interest for ecology, evolutionary biology, and management programs. In the present study, phenotypic, genotypic, and spatial data were combined, within the frame of landscape genetics, to uncover the spatial population genetic structure (SGS) and demographic processes of an Argentinian local population from the Yungas ecoregion. Eight simple sequence repeats (SSR) loci and six morphometric traits were analysed considering the hierarchical levels: tree/fruit/individual. Genetic variability estimates were high (HE = 0.72, RA = 4.39). Multivariate analyses of phenotypic data showed that in average 52.81% of variance is explained by the tree level, followed by between individuals 28.37%. Spatial analysis of morphological traits revealed a negative autocorrelation in all cases. SGS analysis and isolation by distance based on SSR showed no significant autocorrelation for molecular coancestry. The comparison between phenotypic (PST) and molecular (FST) differentiation identified positive selection in different fruits for all traits. Bayesian analysis revealed a cryptic structure within the population, with three clusters spatially separated. The results of this study showed a metapopulation dynamics. The genetic background of the components of this metapopulation is expected to change through time due to seasonality, repopulation activities, and high gene flow, with an estimated dispersal ability of at least 10 km. Effective population size (Ne) of the metapopulation was estimated in around 800 flies, and within subpopulations (clusters) Ne was associated with the levels of genetic drift experienced by the founding lineages.
Collapse
Affiliation(s)
- Damián Freilij
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura I Ferreyra
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan C Vilardi
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angeles I Rodriguez
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Gómez-Cendra
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Runno-Paurson E, Agho CA, Zoteyeva N, Koppel M, Hansen M, Hallikma T, Cooke DEL, Nassar H, Niinemets Ü. Highly Diverse Phytophthora infestans Populations Infecting Potato Crops in Pskov Region, North-West Russia. J Fungi (Basel) 2022; 8:472. [PMID: 35628727 PMCID: PMC9147476 DOI: 10.3390/jof8050472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
There is limited understanding of the genetic variability in Phytophthora infestans in the major potato cultivation region of north-western Russia, where potato is grown primarily by small households with limited chemical treatment of late blight. In this study, the mating type, sensitivity to metalaxyl, and genotype and population genetic diversity (based on 12 simple sequence repeat (SSR) markers) of 238 isolates of P. infestans from the Pskov region during the years 2010-2013 were characterized. The aim was to examine the population structure, phenotypic and genotypic diversity, and the prevalent reproductive mode of P. infestans, as well as the influence of the location, time, and agricultural management practices on the pathogen population. The frequency of the A2 mating was stable over the four seasons and ranged from 33 to 48% of the sampled population. Both mating types occurred simultaneously in 90% of studied fields, suggesting the presence of sexual reproduction and oospore production in P. infestans in the Pskov region. Metalaxyl-sensitive isolates prevailed in all four years (72%), however, significantly fewer sensitive isolates were found in samples from large-scale conventional fields. A total of 50 alleles were detected in the 141 P. infestans isolates analyzed for genetic diversity. Amongst the 83 SSR multilocus genotypes (MLGs) detected, 65% were unique and the number of MLGs varied between locations from 3 to 20. These results, together with the high genotypic diversity observed in all the locations and the lack of significance of linkage disequilibrium, suggest that sexual recombination is likely responsible for the unique MLGs and the high genetic diversity found in the Pskov region population, resembling those of north-eastern European populations.
Collapse
Affiliation(s)
- Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Collins A. Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Nadezda Zoteyeva
- N. I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Mati Koppel
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Merili Hansen
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Tiit Hallikma
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | | | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| |
Collapse
|
40
|
Cao JJ, Li YS, Chang CT, Chung JD, Hwang SY. Adaptive Divergence without Distinct Species Relationships Indicate Early Stage Ecological Speciation in Species of the Rhododendronpseudochrysanthum Complex Endemic to Taiwan. PLANTS (BASEL, SWITZERLAND) 2022; 11:1226. [PMID: 35567227 PMCID: PMC9101530 DOI: 10.3390/plants11091226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/13/2023]
Abstract
The testing association of environmental variables with genetic and epigenetic variation could be crucial to deciphering the effects of environmental factors playing roles as selective drivers in ecological speciation. Although ecological speciation may occur in closely related species, species boundaries may not be established over a short evolutionary timescale. Here, we investigated the genetic and epigenetic variations using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP), respectively, and tested their associations with environmental variables in populations of four closely related species in the R. pseudochrysanthum complex. No distinctive species relationships were found using genetic clustering analyses, neighbor-joining tree, and neighbor-net tree based on the total AFLP variation, which is suggestive of the incomplete lineage sorting of ancestral variation. Nonetheless, strong isolation-by-environment and adaptive divergence were revealed, despite the significant isolation-by-distance. Annual mean temperature, elevation, normalized difference vegetation index, and annual total potential evapotranspiration were found to be the most important environmental variables explaining outlier genetic and epigenetic variations. Our results suggest that the four closely related species of the R. pseudochrysanthum complex share the polymorphism of their ancestor, but reproductive isolation due to ecological speciation can occur if local environmental divergence persists over time.
Collapse
Affiliation(s)
- Jia-Jia Cao
- Department of Life Science, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan;
| | - Yi-Shao Li
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan;
| | - Chung-Te Chang
- Department of Life Science, Tunghai University, 1727 Taiwan Boulevard, Section 4, Taichung 40704, Taiwan;
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, 53 Nanhai Road, Taipei 10066, Taiwan;
| | - Shih-Ying Hwang
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan;
| |
Collapse
|
41
|
Li J, Schumer M, Bank C. Imbalanced segregation of recombinant haplotypes in hybrid populations reveals inter- and intrachromosomal Dobzhansky-Muller incompatibilities. PLoS Genet 2022; 18:e1010120. [PMID: 35344560 PMCID: PMC8989332 DOI: 10.1371/journal.pgen.1010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/07/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
Dobzhansky-Muller incompatibilities (DMIs) are a major component of reproductive isolation between species. DMIs imply negative epistasis and are exposed when two diverged populations hybridize. Mapping the locations of DMIs has largely relied on classical genetic mapping. Approaches to date are hampered by low power and the challenge of identifying DMI loci on the same chromosome, because strong initial linkage of parental haplotypes weakens statistical tests. Here, we propose new statistics to infer negative epistasis from haplotype frequencies in hybrid populations. When two divergent populations hybridize, the variance in heterozygosity at two loci decreases faster with time at DMI loci than at random pairs of loci. When two populations hybridize at near-even admixture proportions, the deviation of the observed variance from its expectation becomes negative for the DMI pair. This negative deviation enables us to detect intermediate to strong negative epistasis both within and between chromosomes. In practice, the detection window in hybrid populations depends on the demographic scenario, the recombination rate, and the strength of epistasis. When the initial proportion of the two parental populations is uneven, only strong DMIs can be detected with our method unless migration prevents parental haplotypes from being lost. We use the new statistics to infer candidate DMIs from three hybrid populations of swordtail fish. We identify numerous new DMI candidates, some of which are inferred to interact with several loci within and between chromosomes. Moreover, we discuss our results in the context of an expected enrichment in intrachromosomal over interchromosomal DMIs.
Collapse
Affiliation(s)
- Juan Li
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Gulbenkian Science Institute, Oeiras, Portugal
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Claudia Bank
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Gulbenkian Science Institute, Oeiras, Portugal
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
42
|
Hebb LM, Bradley CA, Mideros SX, Telenko DEP, Wise K, Dorrance AE. Pathotype Complexity and Genetic Characterization of Phytophthora sojae Populations in Illinois, Indiana, Kentucky, and Ohio. PHYTOPATHOLOGY 2022; 112:663-681. [PMID: 34289716 DOI: 10.1094/phyto-12-20-0561-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytophthora sojae, the causal agent of Phytophthora root and stem rot of soybean, has been managed with single Rps genes since the 1960s but has subsequently adapted to many of these resistance genes, rendering them ineffective. The objective of this study was to examine the pathotype and genetic diversity of P. sojae from soil samples across Illinois, Indiana, Kentucky, and Ohio by assessing which Rps genes were still effective and identifying possible population clusters. There were 218 pathotypes identified from 473 P. sojae isolates with an average of 6.7 out of 15 differential soybean lines exhibiting a susceptible response for each isolate. Genetic characterization of 103 P. sojae isolates from across Illinois, Indiana, Kentucky, and Ohio with 19 simple sequence repeat markers identified 92 multilocus genotypes. There was a moderate level of population differentiation between these four states, with pairwise FST values ranging from 0.026 to 0.246. There were also moderate to high levels of differentiation between fields, with pairwise FST values ranging from 0.071 to 0.537. Additionally, cluster analysis detected the presence of P. sojae population structure across neighboring states. The level of pathotype and genetic diversity, in addition to the identification of population clusters, supports the hypothesis of occasional outcrossing events that allow an increase in diversity and the potential to select for a loss in avirulence to specific resistance genes within regions. The trend of suspected gene flow among neighboring fields is expected to be an ongoing issue with current agricultural practices.
Collapse
Affiliation(s)
- Linda M Hebb
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Center for Soybean Research, Wooster, OH 44691
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky Research and Education Center, Grain and Forage Center of Excellence, Princeton, KY 40546
| | | | - Darcy E P Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Kiersten Wise
- Department of Plant Pathology, University of Kentucky Research and Education Center, Grain and Forage Center of Excellence, Princeton, KY 40546
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Center for Soybean Research, Wooster, OH 44691
| |
Collapse
|
43
|
Costa D, Ramos V, Tavares RM, Baptista P, Lino-Neto T. Phylogenetic analysis and genetic diversity of the xylariaceous ascomycete Biscogniauxia mediterranea from cork oak forests in different bioclimates. Sci Rep 2022; 12:2646. [PMID: 35173202 PMCID: PMC8850622 DOI: 10.1038/s41598-022-06303-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/31/2021] [Indexed: 11/09/2022] Open
Abstract
Cork oak is a tree species with ecological importance that contributes to economic and social development in the Mediterranean region. Cork oak decline is a major concern for forest sustainability and has negative impacts on cork oak growth and production. This event has been increasingly reported in the last decades and seems to be related with climate changes. Biscogniauxia mediterranea is an endophytic fungus of healthy cork oak trees that turns into a pathogen in trees weaken by environmental stress. Understanding the drivers of B. mediterranea populations diversity and differentiation is expected to allow a better control of cork oak decline and preserve forest sustainability. Endophyte isolates from different cork oak forests were identified as B. mediterranea and their genetic diversity was evaluated using phylogenetic and microsatellite-primed PCR analyses. Genetic diversity and variability of this fungus was correlated with environmental/phytosanitary conditions present in forests/trees from which isolates were collected. High genetic diversity and variability was found in B. mediterranea populations obtained from different forests, suggesting some degree of isolation by distance. Bioclimate was the most significant effect that explained the genetic variability of B. mediterranea, rather than precipitation or temperature intensities alone or disease symptoms. These findings bring new implications for the changing climate to cork oak forests sustainability, cork production and quality.
Collapse
Affiliation(s)
- Daniela Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Vitor Ramos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Rui M Tavares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
44
|
Nowicki M, Hadziabdic D, Trigiano RN, Runge F, Thines M, Boggess SL, Ristaino J, Spring O. Microsatellite Markers from Peronospora tabacina, the Cause of Blue Mold of Tobacco, Reveal Species Origin, Population Structure, and High Gene Flow. PHYTOPATHOLOGY 2022; 112:422-434. [PMID: 34058860 DOI: 10.1094/phyto-03-21-0092-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peronospora tabacina is an obligate parasite that causes blue mold of tobacco. The pathogen reproduces primarily by sporangia, whereas the sexual oospores are rarely observed. A collection of 122 isolates of P. tabacina was genotyped using nine microsatellites to assess the population structure of individuals from subpopulations collected from central, southern, and western Europe; the Middle East; Central America; North America; and Australia. Genetic variations among the six subpopulations accounted for ∼8% of the total variation, including moderate levels of genetic differentiation, high gene flow among these subpopulations, and a positive correlation between geographic and genetic distance (r = 0.225; P < 0.001). Evidence of linkage disequilibrium (P < 0.001) showed that populations contained partially clonal subpopulations but that subpopulations from Australia and Mediterranean Europe did not. High genetic variation and population structure among samples could be explained by continuous gene flow across continents via infected transplant exchange and/or long-distance dispersal of sporangia via wind currents. This study analyzed the most numerous P. tabacina collection and allowed conclusions regarding the migration, mutation, and evolutionary history of this obligate biotrophic oomycete. The evidence pointed to the species origin in Australia and identified intracontinental and intercontinental migration patterns of this important pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Fabian Runge
- Institute of Botany 210, University of Hohenheim, D-70593 Stuttgart, Germany
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, D-60325 Frankfurt am Main, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, D-60325 Frankfurt am Main, Germany
- Department of Life Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, D-60323 Frankfurt am Main, Germany
| | - Sarah L Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Jean Ristaino
- Department of Entomology and Plant Pathology, Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh 27650, U.S.A
| | - Otmar Spring
- Institute of Botany 210, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
45
|
Wang C, Li Y, Wang B, Hu X. Genetic Analysis Reveals Relationships Among Populations of Puccinia striiformis f. sp. tritici from the Longnan, Longdong, and Central Shaanxi Regions of China. PHYTOPATHOLOGY 2022; 112:278-289. [PMID: 34129356 DOI: 10.1094/phyto-07-20-0312-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. In China, Longnan (LN) and Longdong (LD) in the south and east of Gansu province, respectively, are important P. striiformis f. sp. tritici oversummering areas and are a source of P. striiformis f. sp. tritici inoculum for the major wheat-growing regions in eastern China. Central Shaanxi (CS) is a wheat-growing region that acts as an important bridge zone for stripe rust epidemic development between LN and LD in the west and the Huanghuai wheat-growing region in the east, and thus, it plays an essential role in P. striiformis f. sp. tritici epidemics in China. To study the relationships among P. striiformis f. sp. tritici populations in the three regions (LN, LD, and CS), we sampled 284 isolates from different geographic locations. Based on 10 simple sequence repeat markers, the results demonstrated high genetic diversity in all three regions, although diversity did vary among regions, with LN > LD > CS. Genetic differentiation was lower, with more extensive gene flow between LD and CS. P. striiformis f. sp. tritici populations in the CS region were genetically closer to those from LD than those from LN, which may be a result of geographical proximity and topography. A positive and significant correlation existed between linearized fixation index (FST) and the log of geographical distances among all subpopulations. Linkage disequilibrium analysis showed that subpopulations of P. striiformis f. sp. tritici from Qinzhou, Qincheng, Beidao, and Maiji from LN and Qianyang and Longxian from CS were in equilibrium (P > 0.05), suggesting that somatic hybridization and/or sexual reproduction may exist in these subpopulations.
Collapse
Affiliation(s)
- Conghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
46
|
Goodman J, Brand J, Laptev G, Auld SKJR. Radiation‐mediated supply of genetic variation outweighs the effects of selection and drift in Chernobyl
Daphnia
populations. J Evol Biol 2022; 35:413-422. [PMID: 35048452 PMCID: PMC9303301 DOI: 10.1111/jeb.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Jessica Goodman
- Biological & Environmental Sciences University of Stirling Stirling United Kingdom
| | - June Brand
- Biological & Environmental Sciences University of Stirling Stirling United Kingdom
| | | | - Stuart K. J. R. Auld
- Biological & Environmental Sciences University of Stirling Stirling United Kingdom
| |
Collapse
|
47
|
McTaggart AR, James TY, Shivas RG, Drenth A, Wingfield BD, Summerell BA, Duong TA. Population genomics reveals historical and ongoing recombination in the Fusarium oxysporum species complex. Stud Mycol 2022; 99:100132. [PMID: 35027981 PMCID: PMC8693468 DOI: 10.1016/j.simyco.2021.100132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Fusarium oxysporum species complex (FOSC) is a group of closely related plant pathogens long-considered strictly clonal, as sexual stages have never been recorded. Several studies have questioned whether recombination occurs in FOSC, and if it occurs its nature and frequency are unknown. We analysed 410 assembled genomes to answer whether FOSC diversified by occasional sexual reproduction interspersed with numerous cycles of asexual reproduction akin to a model of predominant clonal evolution (PCE). We tested the hypothesis that sexual reproduction occurred in the evolutionary history of FOSC by examining the distribution of idiomorphs at the mating locus, phylogenetic conflict and independent measures of recombination from genome-wide SNPs and genes. A phylogenomic dataset of 40 single copy orthologs was used to define structure a priori within FOSC based on genealogical concordance. Recombination within FOSC was tested using the pairwise homoplasy index and divergence ages were estimated by molecular dating. We called SNPs from assembled genomes using a k-mer approach and tested for significant linkage disequilibrium as an indication of PCE. We clone-corrected and tested whether SNPs were randomly associated as an indication of recombination. Our analyses provide evidence for sexual or parasexual reproduction within, but not between, clades of FOSC that diversified from a most recent common ancestor about 500 000 years ago. There was no evidence of substructure based on geography or host that might indicate how clades diversified. Competing evolutionary hypotheses for FOSC are discussed in the context of our results.
Collapse
Affiliation(s)
- A R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - T Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - R G Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, 4350, Australia
| | - A Drenth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| | - B A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, Australia
| | - T A Duong
- Department of Biochemistry, Genetics and Microbiology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| |
Collapse
|
48
|
Jerney J, Rengefors K, Nagai S, Krock B, Sjöqvist C, Suikkanen S, Kremp A. Seasonal genotype dynamics of a marine dinoflagellate: Pelagic populations are homogeneous and as diverse as benthic seed banks. Mol Ecol 2022; 31:512-528. [PMID: 34716943 PMCID: PMC9298838 DOI: 10.1111/mec.16257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
Genetic diversity is the basis for evolutionary adaptation and selection under changing environmental conditions. Phytoplankton populations are genotypically diverse, can become genetically differentiated within small spatiotemporal scales and many species form resting stages. Resting stage accumulations in sediments (seed banks) are expected to serve as reservoirs for genetic information, but so far their role in maintaining phytoplankton diversity and in evolution has remained unclear. In this study we used the toxic dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as a model organism to investigate if (i) the benthic seed bank is more diverse than the pelagic population and (ii) the pelagic population is seasonally differentiated. Resting stages (benthic) and plankton (pelagic) samples were collected at a coastal bloom site in the Baltic Sea, followed by cell isolation and genotyping using microsatellite markers (MS) and restriction site associated DNA sequencing (RAD). High clonal diversity (98%-100%) combined with intermediate to low gene diversity (0.58-0.03, depending on the marker) was found. Surprisingly, the benthic and pelagic fractions of the population were equally diverse, and the pelagic fraction was temporally homogeneous, despite seasonal fluctuation of environmental selection pressures. The results of this study suggest that continuous benthic-pelagic coupling, combined with frequent sexual reproduction, as indicated by persistent linkage equilibrium, prevent the dominance of single clonal lineages in a dynamic environment. Both processes harmonize the pelagic with the benthic population and thus prevent seasonal population differentiation. At the same time, frequent sexual reproduction and benthic-pelagic coupling maintain high clonal diversity in both habitats.
Collapse
Affiliation(s)
- Jacqueline Jerney
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
- Marine Research CenterFinnish Environment InstituteHelsinkiFinland
| | | | - Satoshi Nagai
- National Research Institute of Fisheries ScienceYokohamaKanagawaJapan
| | - Bernd Krock
- Alfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
| | - Conny Sjöqvist
- Faculty of Science and Engineering, Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
| | - Sanna Suikkanen
- Marine Research CenterFinnish Environment InstituteHelsinkiFinland
| | - Anke Kremp
- Marine Research CenterFinnish Environment InstituteHelsinkiFinland
- Present address:
Leibniz Institut für Ostseeforschung WarnemündeRostockGermany
| |
Collapse
|
49
|
Huang K, Dunn DW, Li W, Wang D, Li B. Linkage disequilibrium under polysomic inheritance. Heredity (Edinb) 2022; 128:11-20. [PMID: 34983965 PMCID: PMC8733019 DOI: 10.1038/s41437-021-00482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Linkage disequilibrium (LD) is the non-random association of alleles at different loci. Squared LD coefficients r2 (for phased genotypes) and [Formula: see text] (for unphased genotypes) will converge to constants that are determined by the sample size, the recombination frequency, the effective population size and the mating system. LD can therefore be used for gene mapping and the estimation of effective population size. However, current methods work only with diploids. To resolve this problem, we here extend the linkage disequilibrium measures to include polysomic inheritance. We derive the values of r2 and [Formula: see text] at equilibrium state for various mating systems and different ploidy levels. For unlinked loci, [Formula: see text] for monoecious and dioecious (with random pairing) mating systems or [Formula: see text] for dioecious mating systems (with lifetime pairing), where f is the number of females in a half-sib family and η is a constant related to the ploidy level. We simulate the application of estimating Ne using unphased genotypes. We find that estimating Ne in polyploids requires similar sample sizes and numbers of loci as in diploids, with the main source of bias due to using 0.5 as the recombination frequency.
Collapse
Affiliation(s)
- Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Derek W Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wenkai Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dan Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
50
|
Genome-wide association analysis of chickpea germplasms differing for salinity tolerance based on DArTseq markers. PLoS One 2021; 16:e0260709. [PMID: 34852014 PMCID: PMC8635330 DOI: 10.1371/journal.pone.0260709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
Soil salinity is significant abiotic stress that severely limits global crop production. Chickpea (Cicer arietinum L.) is an important grain legume that plays a substantial role in nutritional food security, especially in the developing world. This study used a chickpea population collected from the International Center for Agricultural Research in the Dry Area (ICARDA) genebank using the focused identification of germplasm strategy. The germplasm included 186 genotypes with broad Asian and African origins and genotyped with 1856 DArTseq markers. We conducted phenotyping for salinity in the field (Arish, Sinai, Egypt) and greenhouse hydroponic experiments at 100 mM NaCl concentration. Based on the performance in both hydroponic and field experiments, we identified seven genotypes from Azerbaijan and Pakistan (IGs: 70782, 70430, 70764, 117703, 6057, 8447, and 70249) as potential sources for high salinity tolerance. Multi-trait genome-wide association analysis (mtGWAS) detected one locus on chromosome Ca4 at 10618070 bp associated with salinity tolerance under hydroponic and field conditions. In addition, we located another locus specific to the hydroponic system on chromosome Ca2 at 30537619 bp. Gene annotation analysis revealed the location of rs5825813 within the Embryogenesis-associated protein (EMB8-like), while the location of rs5825939 is within the Ribosomal Protein Large P0 (RPLP0). Utilizing such markers in practical breeding programs can effectively improve the adaptability of current chickpea cultivars in saline soil. Moreover, researchers can use our markers to facilitate the incorporation of new genes into commercial cultivars.
Collapse
|