1
|
Varela-López A, Romero-Márquez JM, Navarro-Hortal MD, Ramirez-Tortosa CL, Battino M, Forbes-Hernández TY, Quiles JL. Dietary antioxidants and lifespan: Relevance of environmental conditions, diet, and genotype of experimental models. Exp Gerontol 2023; 178:112221. [PMID: 37230336 DOI: 10.1016/j.exger.2023.112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The rise of life expectancy in current societies is not accompanied, to date, by a similar increase in healthspan, which represents a great socio-economic problem. It has been suggested that aging can be manipulated and then, the onset of all age-associated chronic disorders can be delayed because these pathologies share age as primary underlying risk factor. One of the most extended ideas is that aging is consequence of the accumulation of molecular damage. According to the oxidative damage theory, antioxidants should slow down aging, extending lifespan and healthspan. The present review analyzes studies evaluating the effect of dietary antioxidants on lifespan of different aging models and discusses the evidence on favor of their antioxidant activity as anti-aging mechanisms. Moreover, possible causes for differences between the reported results are evaluated.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | | | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain; Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain.
| |
Collapse
|
2
|
de la Bella-Garzón R, Fernández-Portero C, Alarcón D, Amián JG, López-Lluch G. Levels of Plasma Coenzyme Q 10 Are Associated with Physical Capacity and Cardiovascular Risk in the Elderly. Antioxidants (Basel) 2022; 11:279. [PMID: 35204162 PMCID: PMC8868547 DOI: 10.3390/antiox11020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential factor for mitochondrial activity and antioxidant protection of cells, tissues and plasma lipoproteins. Its deficiency has been associated with aging progression in animals and humans. To determine if CoQ10 levels in plasma can be associated with frailty in elderly people (aged > 65), we studied the relationship of CoQ10 levels in blood with other parameters in plasma and with the physical activity and capacity in aged people. Our results indicate that high CoQ10 levels are directly associated with lower cardiovascular risk measured by the quotient total cholesterol/HDL cholesterol. Furthermore, high CoQ10 levels were found in people showing higher physical activity, stronger muscle capacity. CoQ10 also showed a strong inverse relationship with sedentarism and the up and go test, which is considered to be a frailty index. Interestingly, we found gender differences, indicating stronger correlations in women than in men. The importance of the maintenance of CoQ10 levels in elderly people to avoid sarcopenia and frailty in elderly people is discussed.
Collapse
Affiliation(s)
- Rocío de la Bella-Garzón
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre of Developmental Biology, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Cristina Fernández-Portero
- Department of Social Antropology, Psychology and Public Health, Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.F.-P.); (D.A.); (J.G.A.)
| | - David Alarcón
- Department of Social Antropology, Psychology and Public Health, Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.F.-P.); (D.A.); (J.G.A.)
| | - Josué G. Amián
- Department of Social Antropology, Psychology and Public Health, Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.F.-P.); (D.A.); (J.G.A.)
| | - Guillermo López-Lluch
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre of Developmental Biology, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U729), Instituto de Salud Carlos III-Madrid, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Centro de Investigación en Rendimiento Físico y Deportivo, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
3
|
Navarro-Hortal MD, Ramírez-Tortosa CL, Varela-López A, Romero-Márquez JM, Ochoa JJ, Ramírez-Tortosa MC, Forbes-Hernández TY, Granados-Principal S, Battino M, Quiles JL. Heart Histopathology and Mitochondrial Ultrastructure in Aged Rats Fed for 24 Months on Different Unsaturated Fats (Virgin Olive Oil, Sunflower Oil or Fish Oil) and Affected by Different Longevity. Nutrients 2019; 11:E2390. [PMID: 31591312 PMCID: PMC6835383 DOI: 10.3390/nu11102390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Diet plays a decisive role in heart physiology, with lipids having especial importance in pathology prevention and development. This study aimed to investigate how dietary lipids varying in lipid profile (virgin olive oil, sunflower oil or fish oil) affected the heart of rats during aging. Heart histopathology, mitochondrial morphometry, and oxidative status were assessed. Typical histopathological features associated with aging, such as valvular lesions, endomyocardical hyperplasia, or papillary muscle calcification, were found at a low extent in all the experimental groups. The most relevant finding was that inflammation registered by fish oil group was lower compared to the other treatments. At the ultrastructural level, heart mitochondrial area, perimeter, and aspect ratio were higher in fish oil-fed rats than in those fed on sunflower oil. Concerning oxidative stress markers, there were differences only in coenzyme Q levels and catalase activity, lower in sunflower oil-fed animals compared with those fed on fish oil. In summary, dietary intake for a long period on dietary fats with different fatty acids profile led to differences in some aspects associated with the aging process at the heart. Fish oil seems to be the fat most protective of heart during aging.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - César L Ramírez-Tortosa
- UGC de Anatomía Patológica, Hospital San Cecilio de Granada, Avda, Conocimiento s/n, 18100 Granada, Spain.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - Julio J Ochoa
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - MCarmen Ramírez-Tortosa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Sergio Granados-Principal
- UGC de Oncología Médica, Hospital Universitario de Jaén, Avenida del Ejército Español 10, 23007 Jaén, Spain.
- Genyo, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica, Università Politecnica delle Marche, Ancona, 60131 Ancona, Italy.
- International Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| |
Collapse
|
4
|
Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, González-García P, Battino M, López LC, Varela-López A. The Paradox of Coenzyme Q 10 in Aging. Nutrients 2019; 11:nu11092221. [PMID: 31540029 PMCID: PMC6770889 DOI: 10.3390/nu11092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential endogenously synthesized molecule that links different metabolic pathways to mitochondrial energy production thanks to its location in the mitochondrial inner membrane and its redox capacity, which also provide it with the capability to work as an antioxidant. Although defects in CoQ biosynthesis in human and mouse models cause CoQ deficiency syndrome, some animals models with particular defects in the CoQ biosynthetic pathway have shown an increase in life span, a fact that has been attributed to the concept of mitohormesis. Paradoxically, CoQ levels decline in some tissues in human and rodents during aging and coenzyme Q10 (CoQ10) supplementation has shown benefits as an anti-aging agent, especially under certain conditions associated with increased oxidative stress. Also, CoQ10 has shown therapeutic benefits in aging-related disorders, particularly in cardiovascular and metabolic diseases. Thus, we discuss the paradox of health benefits due to a defect in the CoQ biosynthetic pathway or exogenous supplementation of CoQ10.
Collapse
Affiliation(s)
- M Elena Díaz-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| | - Eliana Barriocanal-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Pilar González-García
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Luis C López
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| |
Collapse
|
5
|
Abstract
The aging process includes impairment in mitochondrial function, a reduction in anti-oxidant activity, and an increase in oxidative stress, marked by an increase in reactive oxygen species (ROS) production. Oxidative damage to macromolecules including DNA and electron transport proteins likely increases ROS production resulting in further damage. This oxidative theory of cell aging is supported by the fact that diseases associated with the aging process are marked by increased oxidative stress. Coenzyme Q10 (CoQ10) levels fall with aging in the human but this is not seen in all species or all tissues. It is unknown whether lower CoQ10 levels have a part to play in aging and disease or whether it is an inconsequential cellular response to aging. Despite the current lay public interest in supplementing with CoQ10, there is currently not enough evidence to recommend CoQ10 supplementation as an anti-aging anti-oxidant therapy.
Collapse
|
6
|
Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 2018; 59:2240-2257. [DOI: 10.1080/10408398.2018.1442316] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Francisco M. Gutierrez-Mariscal
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Gene pathways associated with mitochondrial function, oxidative stress and telomere length are differentially expressed in the liver of rats fed lifelong on virgin olive, sunflower or fish oils. J Nutr Biochem 2017; 52:36-44. [PMID: 29144994 DOI: 10.1016/j.jnutbio.2017.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
This study investigates the effect of lifelong intake of different fat sources rich in monounsaturated (virgin olive oil), n6 polyunsaturated (sunflower oil) or n3 polyunsaturated (fish oil) fatty acids in the aged liver. Male Wistar rats fed lifelong on diets differing in the fat source were killed at 6 and at 24 months of age. Liver histopathology, mitochondrial ultrastructure, biogenesis, oxidative stress, mitochondrial electron transport chain, relative telomere length and gene expression profiles were studied. Aging led to lipid accumulation in the liver. Virgin olive oil led to the lowest oxidation and ultrastructural alterations. Sunflower oil induced fibrosis, ultrastructural alterations and high oxidation. Fish oil intensified oxidation associated with age, lowered electron transport chain activity and enhanced the relative telomere length. Gene expression changes associated with age in animals fed virgin olive oil and fish oil were related mostly to mitochondrial function and oxidative stress pathways, followed by cell cycle and telomere length control. Sunflower oil avoided gene expression changes related to age. According to the results, virgin olive oil might be considered the dietary fat source that best preserves the liver during the aging process.
Collapse
|
8
|
Varela-López A, Ochoa JJ, Llamas-Elvira JM, López-Frías M, Planells E, Speranza L, Battino M, Quiles JL. Loss of Bone Mineral Density Associated with Age in Male Rats Fed on Sunflower Oil Is Avoided by Virgin Olive Oil Intake or Coenzyme Q Supplementation. Int J Mol Sci 2017; 18:E1397. [PMID: 28661441 PMCID: PMC5535890 DOI: 10.3390/ijms18071397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022] Open
Abstract
The role of dietary fat unsaturation and the supplementation of coenzyme Q have been evaluated in relation to bone health. Male Wistar rats were maintained for 6 or 24 months on two diets varying in the fat source, namely virgin olive oil, rich in monounsaturated fatty acids, or sunflower oil, rich in n-6 polyunsaturated fatty acids. Both dietary fats were supplemented or not with coenzyme Q10 (CoQ10). Bone mineral density (BMD) was evaluated in the femur. Serum levels of osteocalcin, osteopontin, receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), adrenocorticotropin (ACTH) and parathyroid hormone (PTH), as well as urinary F₂-isoprostanes were measured. Aged animals fed on virgin olive oil showed higher BMD than those fed on sunflower oil. In addition, CoQ10 prevented the age-related decline in BMD in animals fed on sunflower oil. Urinary F₂-isoprostanes analysis showed that sunflower oil led to the highest oxidative status in old animals, which was avoided by supplementation with CoQ10. In conclusion, lifelong feeding on virgin olive oil or the supplementation of sunflower oil on CoQ10 prevented, at least in part mediated by a low oxidative stress status, the age-related decrease in BMD found in sunflower oil fed animals.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| | - Julio J Ochoa
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| | - José M Llamas-Elvira
- Department of Medicine and Science of Aging, University of Chieti "G. D'Annunzio", 66100 Chieti, Italy.
| | - Magdalena López-Frías
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| | - Elena Planells
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| | - Lorenza Speranza
- Department of Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maurizio Battino
- Nuclear Medicine Service, Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18014 Granada, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| |
Collapse
|
9
|
Varela-López A, Ochoa JJ, Llamas-Elvira JM, López-Frías M, Planells E, Ramirez-Tortosa MC, Ramirez-Tortosa CL, Giampieri F, Battino M, Quiles JL. Age-Related Loss in Bone Mineral Density of Rats Fed Lifelong on a Fish Oil-Based Diet Is Avoided by Coenzyme Q 10 Addition. Nutrients 2017; 9:E176. [PMID: 28241421 PMCID: PMC5331607 DOI: 10.3390/nu9020176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/24/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022] Open
Abstract
During aging, bone mass declines increasing osteoporosis and fracture risks. Oxidative stress has been related to this bone loss, making dietary compounds with antioxidant properties a promising weapon. Male Wistar rats were maintained for 6 or 24 months on diets with fish oil as unique fat source, supplemented or not with coenzyme Q10 (CoQ10), to evaluate the potential of adding this molecule to the n-3 polyunsaturated fatty acid (n-3 PUFA)-based diet for bone mineral density (BMD) preservation. BMD was evaluated in the femur. Serum osteocalcin, osteopontin, receptor activator of nuclear factor-κB ligand, ostroprotegerin, parathyroid hormone, urinary F₂-isoprostanes, and lymphocytes DNA strand breaks were also measured. BMD was lower in aged rats fed a diet without CoQ10 respect than their younger counterparts, whereas older animals receiving CoQ10 showed the highest BMD. F₂-isoprostanes and DNA strand breaks showed that oxidative stress was higher during aging. Supplementation with CoQ10 prevented oxidative damage to lipid and DNA, in young and old animals, respectively. Reduced oxidative stress associated to CoQ10 supplementation of this n-3 PUFA-rich diet might explain the higher BMD found in aged rats in this group of animals.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | - Julio J Ochoa
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | | | - Magdalena López-Frías
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | - Elena Planells
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | - MCarmen Ramirez-Tortosa
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Biochemistry and Molecular Biology II, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | | | - Francesca Giampieri
- Department of Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maurizio Battino
- Department of Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| |
Collapse
|
10
|
Varela-López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and Its Role in the Dietary Therapy against Aging. Molecules 2016; 21:373. [PMID: 26999099 PMCID: PMC6273282 DOI: 10.3390/molecules21030373] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022] Open
Abstract
Coenzyme Q (CoQ) is a naturally occurring molecule located in the hydrophobic domain of the phospholipid bilayer of all biological membranes. Shortly after being discovered, it was recognized as an essential electron transport chain component in mitochondria where it is particularly abundant. Since then, more additional roles in cell physiology have been reported, including antioxidant, signaling, death prevention, and others. It is known that all cells are able to synthesize functionally sufficient amounts of CoQ under normal physiological conditions. However, CoQ is a molecule found in different dietary sources, which can be taken up and incorporated into biological membranes. It is known that mitochondria have a close relationship with the aging process. Additionally, delaying the aging process through diet has aroused the interest of scientists for many years. These observations have stimulated investigation of the anti-aging potential of CoQ and its possible use in dietary therapies to alleviate the effects of aging. In this context, the present review focus on the current knowledge and evidence the roles of CoQ cells, its relationship with aging, and possible implications of dietary CoQ in relation to aging, lifespan or age-related diseases.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| |
Collapse
|
11
|
Sunflower Oil but Not Fish Oil Resembles Positive Effects of Virgin Olive Oil on Aged Pancreas after Life-Long Coenzyme Q Addition. Int J Mol Sci 2015; 16:23425-45. [PMID: 26426013 PMCID: PMC4632707 DOI: 10.3390/ijms161023425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ) for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources.
Collapse
|
12
|
Varela-Lopez A, Bullon P, Battino M, Ramirez-Tortosa MC, Ochoa JJ, Cordero MD, Ramirez-Tortosa CL, Rubini C, Zizzi A, Quiles JL. Coenzyme Q Protects Against Age-Related Alveolar Bone Loss Associated to n-6 Polyunsaturated Fatty Acid Rich-Diets by Modulating Mitochondrial Mechanisms. J Gerontol A Biol Sci Med Sci 2015. [DOI: 10.1093/gerona/glv063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Rodríguez-Bies E, Navas P, López-Lluch G. Age-dependent effect of every-other-day feeding and aerobic exercise in ubiquinone levels and related antioxidant activities in mice muscle. J Gerontol A Biol Sci Med Sci 2014; 70:33-43. [PMID: 24496576 DOI: 10.1093/gerona/glu002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging affects many biochemical, cellular, and physiological processes in the organisms. Accumulation of damage based on oxidized macromolecules is found in many age-associated diseases. Coenzyme Q (Q) is one of the main molecules involved in metabolic and antioxidant activities in cells. Q-dependent antioxidant activities are importantly involved on the protection of cell membranes against oxidation. Many studies indicate that Q decay in most of the organs during aging. In our study, no changes in Q levels were found in old animals in comparison with young animals. On the other hand, the interventions, caloric restriction based on every-other-day feeding procedure, and physical exercise were able to increase Q levels in muscle, but only in old and not in young animals. Probably, this effect prevented the increase in lipid peroxidation found in aged animals and also protein carbonylation. Further, Q-dependent antioxidant activities such as NADH-cytochrome b5 reductase and NAD(P)H-quinone oxidoreductase 1 are also modulated by both exercise and every other day feeding. Taken together, we demonstrate that exercise and dietary restriction as every-other-day procedure can regulate endogenous synthesized Q levels and Q-dependent antioxidant activities in muscle, preventing oxidative damage in aged muscle.
Collapse
Affiliation(s)
- Elizabeth Rodríguez-Bies
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER-Instituto de Salud San Carlos III, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER-Instituto de Salud San Carlos III, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER-Instituto de Salud San Carlos III, Carretera de Utrera Km 1, 41013, Sevilla, Spain.
| |
Collapse
|
14
|
Tarry-Adkins JL, Blackmore HL, Martin-Gronert MS, Fernandez-Twinn DS, McConnell JM, Hargreaves IP, Giussani DA, Ozanne SE. Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth. Mol Metab 2013; 2:480-90. [PMID: 24327963 DOI: 10.1016/j.molmet.2013.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 01/18/2023] Open
Abstract
Studies in human and animals have demonstrated that nutritionally induced low birth-weight followed by rapid postnatal growth increases the risk of metabolic syndrome and cardiovascular disease. Although the mechanisms underlying such nutritional programming are not clearly defined, increased oxidative-stress leading to accelerated cellular aging has been proposed to play an important role. Using an established rodent model of low birth-weight and catch-up growth, we show here that post-weaning dietary supplementation with coenzyme Q10, a key component of the electron transport chain and a potent antioxidant rescued many of the detrimental effects of nutritional programming on cardiac aging. This included a reduction in nitrosative and oxidative-stress, telomere shortening, DNA damage, cellular senescence and apoptosis. These findings demonstrate the potential for postnatal antioxidant intervention to reverse deleterious phenotypes of developmental programming and therefore provide insight into a potential translatable therapy to prevent cardiovascular disease in at risk humans.
Collapse
Key Words
- 3-NT, 3-nitrotyrosine
- 4-HNE, 4-hydroxynonenal
- BER, base excision repair
- Bax, Bcl2-associated protein
- CAST, computer assisted stereology toolbox.
- CVD, cardiovascular disease
- Cellular senescence
- CoQ, coenzyme Q
- CuZnSOD, copper-zinc superoxide dismutase
- DIG, dioxygenin
- DNA damage
- Developmental programming
- ETC, electron transport chain
- GPx, glutathione peroxidase
- GR, glutathione reductase
- MnSOD, manganese superoxide dismutase
- NEIL1, nei endonuclease VIII-like 1
- NOX, nicotinamide adenine dinucleotide diphosphate oxidase
- NTHL1, Nthl endonuclease III like-1
- O2, superoxide anion
- OGG-1, 8 oxoguanine DNA glycosylase 1
- OH-, hydroxy radicals
- Oxidative-stress
- PGFE, pulsed field gel electrophoresis
- PRDX, peroxidiredoxin
- RIS, reactive inflammatory species
- RNS, reactive nitrogen species
- ROS, reactive oxidative species
- Telomere length
- Ubiquinone
- XO, xanthine oxidase
- acta1, sarco endoplasmic reticulum Ca(2+) ATPase
- actin, alpha-1
- nppa, natriuretic peptide A
- nppb, natriuretic peptide B
- serca2, single strand breaks, SSBs
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust - MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yubero-Serrano EM, Gonzalez-Guardia L, Rangel-Zuñiga O, Delgado-Lista J, Gutierrez-Mariscal FM, Perez-Martinez P, Delgado-Casado N, Cruz-Teno C, Tinahones FJ, Villalba JM, Perez-Jimenez F, Lopez-Miranda J. Mediterranean diet supplemented with coenzyme Q10 modifies the expression of proinflammatory and endoplasmic reticulum stress-related genes in elderly men and women. J Gerontol A Biol Sci Med Sci 2011; 67:3-10. [PMID: 22016358 DOI: 10.1093/gerona/glr167] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have investigated whether the quality of dietary fat and supplementation with coenzyme Q(10) (CoQ) modifies expression of genes related with inflammatory response and endoplasmic reticulum stress in elderly persons. Twenty participants received three diets for 4 weeks each: Mediterranean diet + CoQ (Med + CoQ), Mediterranean diet (Med), and saturated fatty acid-rich diet (SFA). After 12-hour fast, volunteers consumed a breakfast with a fat composition similar to that consumed in each of the diets. Med and Med + CoQ diets produced a lower fasting calreticulin, IL-1b, and JNK-1 gene expression; a lower postprandial p65, IKK-b, MMP-9, IL-1b, JNK-1, sXBP-1, and BiP/Grp78 gene expression; and a higher postprandial IkB-a gene expression compared with the SFA diet. Med + CoQ diet produced a lower postprandial decrease p65 and IKK-b gene expression compared with the other diets. Our results support the anti-inflammatory effect of Med diet and that exogenous CoQ supplementation in synergy with a Med diet modulates the inflammatory response and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Elena M Yubero-Serrano
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Coenzyme Q10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur J Nutr 2011; 51:791-9. [DOI: 10.1007/s00394-011-0257-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/30/2011] [Indexed: 10/17/2022]
|
17
|
Ochoa JJ, Pamplona R, Ramirez-Tortosa MC, Granados-Principal S, Perez-Lopez P, Naudí A, Portero-Otin M, López-Frías M, Battino M, Quiles JL. Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q₁₀. Free Radic Biol Med 2011; 50:1053-64. [PMID: 21335087 DOI: 10.1016/j.freeradbiomed.2011.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 01/24/2011] [Accepted: 02/08/2011] [Indexed: 11/23/2022]
Abstract
Mitochondria-related oxidative damage is a primary event in aging and age-related neurodegenerative disorders. Some dietary treatments, such as antioxidant supplementation or the enrichment of mitochondrial membranes with less oxidizable fatty acids, reduce lipid peroxidation and lengthen life span in rodents. This study compares life-long feeding on monounsaturated fatty acids (MUFAs), such as virgin olive oil, and n-6 polyunsaturated fatty acids, such as sunflower oil, with or without coenzyme Q₁₀ supplementation, with respect to age-related molecular changes in rat brain mitochondria. The MUFA diet led to diminished age-related phenotypic changes, with lipoxidation-derived protein markers being higher among the older animals, whereas protein carbonyl compounds were lower. It is noteworthy that the MUFA diet prevented the age-related increase in levels of mitochondrial DNA deletions in the brain mitochondria from aged animals. The findings of this study suggest that age-related oxidative stress is related, at the mitochondrial level, to other age-related features such as mitochondrial electron transport and mtDNA alterations, and it can be modulated by selecting an appropriate dietary fat type and/or by suitable supplementation with low levels of the antioxidant/electron carrier molecule coenzyme Q.
Collapse
Affiliation(s)
- Julio J Ochoa
- Institute of Nutrition and Food Technology José Mataix Verdú, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chong-Han K. Dietary Lipophilic Antioxidants: Implications and Significance in the Aging Process. Crit Rev Food Sci Nutr 2010; 50:931-7. [DOI: 10.1080/10408390903044073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Quiles JL, Pamplona R, Ramirez-Tortosa MC, Naudí A, Portero-Otin M, Araujo-Nepomuceno E, López-Frías M, Battino M, Ochoa JJ. Coenzyme Q addition to an n-6 PUFA-rich diet resembles benefits on age-related mitochondrial DNA deletion and oxidative stress of a MUFA-rich diet in rat heart. Mech Ageing Dev 2010; 131:38-47. [DOI: 10.1016/j.mad.2009.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 09/19/2009] [Accepted: 11/22/2009] [Indexed: 01/22/2023]
|
20
|
Nunn AV, Bell JD, Guy GW. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe? Nutr Metab (Lond) 2009; 6:16. [PMID: 19371409 PMCID: PMC2678135 DOI: 10.1186/1743-7075-6-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 04/16/2009] [Indexed: 12/16/2022] Open
Abstract
The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility) may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest that as oxidative stress determines functional longevity, a rather more descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his environment.
Collapse
Affiliation(s)
- Alistair Vw Nunn
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 OHS, UK.
| | | | | |
Collapse
|
21
|
Bibliography. Current world literature. Nutrition and metabolism. Curr Opin Lipidol 2009; 20:63-72. [PMID: 19106709 DOI: 10.1097/mol.0b013e32832402a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|