1
|
Bene M, Salmon AB. Testing the evidence that lifespan-extending compound interventions are conserved across laboratory animal model species. GeroScience 2023; 45:1401-1409. [PMID: 36637786 PMCID: PMC10400519 DOI: 10.1007/s11357-022-00722-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
A growing number of pharmaceutical and small molecule interventions are reported to extend the lifespan of laboratory animals including Caenorhabditis, Drosophila, and mouse. However, the degree to which these pro-longevity interventions are conserved across species is unclear. Here, we took two approaches to ask the question: to what extent do longevity intervention studies in Caenorhabditis and Drosophila recapitulate effects on mouse lifespan? The first approach analyzes all published reports on longevity in the literature collated by the DrugAge database, and the second approach focused on results designed for reproducibility as reported from the NIA-supported Interventions Testing Program (ITP) and the Caenorhabditis Interventions Testing Program (CITP). Using published data sources, we identify only modest sensitivity and specificity of Drosophila interventional studies for identifying pro-longevity compounds in mouse lifespan studies. Surprisingly, reported studies in C. elegans show little predictive value for identifying drugs that extend lifespan in mice. The results therefore suggest caution should be used when making assumptions about the translatability of lifespan-extending compounds across species, including human intervention.
Collapse
Affiliation(s)
- Michael Bene
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Adam B Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA.
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, South Texas Veterans Health Care System, San Antonio, Texas, 78229, USA.
| |
Collapse
|
2
|
Semaniuk UV, Gospodaryov DV, Strilbytska OM, Kucharska AZ, Sokół-Łętowska A, Burdyliuk NI, Storey KB, Bayliak MM, Lushchak O. Chili pepper extends lifespan in a concentration-dependent manner and confers cold resistance on Drosophila melanogaster cohorts by influencing specific metabolic pathways. Food Funct 2022; 13:8313-8328. [PMID: 35842943 DOI: 10.1039/d2fo00930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chili powder is a widely used spice with pungent taste, often consumed on a daily basis in several countries. Recent prospective cohort studies showed that the regular use of chili pepper improves healthspan in humans. Indeed, chili pepper fruits contain phenolic substances which are structurally similar to those that show anti-aging properties. The objective of our study was to test whether consumption of chili-supplemented food by the fruit fly, Drosophila melanogaster, would prolong lifespan and in which way this chili-supplemented food affects animal metabolism. Chili powder added to food in concentrations of 0.04%-0.12% significantly extended median lifespan in fruit fly cohorts of both genders by 9% to 13%. However, food supplemented with 3% chili powder shortened lifespan of male cohorts by 9%. Lifespan extension was accompanied by a decrease in age-independent mortality (i.e., death in early ages). The metabolic changes caused by consumption of chili-supplemented food had a pronounced dependence on gender. A characteristic of both fruit fly sexes that ate chili-supplemented food was an increased resistance to cold shock. Flies of both sexes had lower levels of hemolymph glucose when they ate food supplemented with low concentrations of chili powder, as compared with controls. However, males fed on food with 3% chili had lower levels of storage lipids and pyruvate reducing activity of lactate dehydrogenase compared with controls. Females fed on this food showed lower activities of hexokinase and pyruvate kinase, as well as lower ADP/O ratios, compared with control flies.
Collapse
Affiliation(s)
- Uliana V Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Olha M Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Nadia I Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine. .,Research and Development University, 13a Shota Rustaveli str., Ivano-Frankivsk, 76000, Ukraine
| |
Collapse
|
3
|
Macena JC, Renzi DF, Grigoletto DF. Chemical and biological properties of nordihydroguaiaretic acid. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
A collective analysis of lifespan-extending compounds in diverse model organisms, and of species whose lifespan can be extended the most by the application of compounds. Biogerontology 2021; 22:639-653. [PMID: 34687363 DOI: 10.1007/s10522-021-09941-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
Research on aging and lifespan-extending compounds has been carried out using diverse model organisms, including yeast, worms, flies and mice. Many studies reported the identification of novel lifespan-extending compounds in different species, some of which may have the potential to translate to the clinic. However, studies collectively and comparatively analyzing all the data available in these studies are highly limited. Here, by using data from the DrugAge database, we first identified top compounds in terms of their effects on percent change in average lifespan of diverse organisms, collectively (n = 1728). We found that, when data from all organisms studied were combined for each compound, aspirin resulted in the highest percent increase in average lifespan (52.01%), followed by minocycline (27.30%), N-acetyl cysteine (17.93%), nordihydroguaiaretic acid (17.65%) and rapamycin (15.66%), in average. We showed that minocycline led to the highest percent increase in average lifespan among other compounds, in both Drosophila melanogaster (28.09%) and Caenorhabditis elegans (26.67%), followed by curcumin (11.29%) and gluconic acid (5.51%) for D. melanogaster and by metformin (26.56%), resveratrol (15.82%) and quercetin (9.58%) for C. elegans. Moreover, we found that top 5 species whose lifespan can be extended the most by compounds with lifespan-extending properties are Philodina acuticornis, Acheta domesticus, Aeolosoma viride, Mytilina brevispina and Saccharomyces cerevisiae (211.80%, 76%, 70.26%, 55.18% and 45.71% in average, respectively). This study provides novel insights on lifespan extension in model organisms, and highlights the importance of databases with high quality content curated by researchers from multiple resources, in aging research.
Collapse
|
5
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
6
|
Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary 2021; 24:438-456. [PMID: 33459974 PMCID: PMC8122064 DOI: 10.1007/s11102-020-01117-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Progress made in the years of aging research have allowed the opportunity to explore potential interventions to slow aging and extend healthy lifespan. Studies performed in yeast, worms, flies and mice subjected to genetic and pharmacological interventions have given insight into the cellular and molecular mechanisms associated with longevity. Furthermore, it is now possible to effectively modulate pathways that slow aging at different stages of life (early life or at an adult age). Interestingly, interventions that extend longevity in adult mice have had sex-specific success, suggesting a potential link between particular pathways that modulate aging and sex. For example, reduction of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis at an adult age extends lifespan preferentially in females. Moreover, several postnatal dietary interventions tested by the 'Intervention Testing Program (ITP)' from the National Institute of Aging (NIA) have shown that while pharmacological interventions like rapamycin affect the IGF-1/insulin pathway and preferentially extend lifespan in females; dietary compounds that target other cellular pathways are effective only in male mice-indicating mutually exclusive sex-specific pathways. Therefore, a combination of interventions that target non-overlapping aging-related pathways appears to be an effective approach to further extend healthy lifespan in both sexes. Here, we review the germline and postnatal mouse lines that target the GH/IGF-1 axis as a mechanism to extend longevity as well as the dietary compounds that tested positive in the NIA program to increase lifespan. We believe that the interventions reviewed in this paper could constitute feasible combinations for an extended healthy lifespan in both male and female mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
7
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
8
|
Han L, Bittner S, Dong D, Cortez Y, Dulay H, Arshad S, Shen WJ, Kraemer FB, Azhar S. Creosote bush-derived NDGA attenuates molecular and pathological changes in a novel mouse model of non-alcoholic steatohepatitis (NASH). Mol Cell Endocrinol 2019; 498:110538. [PMID: 31415794 PMCID: PMC7273809 DOI: 10.1016/j.mce.2019.110538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
Abstract
Creosote bush (Larrea tridentata)-derived nordihydroguaiaretic acid (NDGA) was shown to have profound effects on the core components of metabolic syndrome. This study investigated the in vivo potential of NDGA for prevention or attenuation of the pathophysiologic abnormalities of NASH. A novel dietary NASH model with feeding C57BL/6J mice with a high trans-fat, high cholesterol and high fructose (HTF) diet, was used. The HTF diet fed mice exhibited obesity, insulin resistance, hepatic steatosis, fibrosis, inflammation, ER stress, oxidative stress, and liver injury. NDGA attenuated these metabolic abnormalities as well as hepatic steatosis and fibrosis together with attenuated expression of genes encoding fibrosis, progenitor and macrophage markers with no effect on the levels of mRNAs for lipogenic enzymes. NDGA increased expression of fatty acid oxidation genes. In conclusion, NDGA exerts anti-NASH/anti-fibrotic actions and raises the therapeutic potential of NDGA for treatment of NASH patients with fibrosis and other associated complications.
Collapse
Affiliation(s)
- Lu Han
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Stefanie Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Dachuan Dong
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Yuan Cortez
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Hunter Dulay
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Sara Arshad
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA.
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, USA.
| |
Collapse
|
9
|
Abstract
Cardiovascular ageing and the atherosclerotic process begin very early in life, most likely in utero. They progress over decades of exposure to suboptimal or abnormal metabolic and hormonal risk factors, eventually culminating in very common, costly, and mostly preventable target-organ pathologies, including coronary heart disease, stroke, heart failure, aortic aneurysm, peripheral artery disease, and vascular dementia. In this Review, we discuss findings from preclinical and clinical studies showing that calorie restriction (CR), intermittent fasting, and adjusted diurnal rhythm of feeding, with adequate intake of specific macronutrients and micronutrients, are powerful interventions not only for the prevention of cardiovascular disease but also for slowing the accumulation of molecular damage leading to cardiometabolic dysfunction. Furthermore, we discuss the mechanisms through which a number of other nondietary interventions, such as regular physical activity, mindfulness-based stress-reduction exercises, and some CR-mimetic drugs that target pro-ageing pathways, can potentiate the beneficial effects of a healthy diet in promoting cardiometabolic health.
Collapse
|
10
|
Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD. Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev 2019; 39:1515-1552. [PMID: 30648267 DOI: 10.1002/med.21559] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Biomedical Sciences; University of the Pacific, Arthur Dugoni School of Dentistry; San Francisco California
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| | - Chih-Jung Chang
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University; Taoyuan Taiwan Republic of China
- Department of Microbiology and Immunology; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
| | - John D. Young
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| |
Collapse
|
11
|
Aliper A, Belikov AV, Garazha A, Jellen L, Artemov A, Suntsova M, Ivanova A, Venkova L, Borisov N, Buzdin A, Mamoshina P, Putin E, Swick AG, Moskalev A, Zhavoronkov A. In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging (Albany NY) 2017; 8:2127-2152. [PMID: 27677171 PMCID: PMC5076455 DOI: 10.18632/aging.101047] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/10/2016] [Indexed: 12/19/2022]
Abstract
Populations in developed nations throughout the world are rapidly aging, and the search for geroprotectors, or anti-aging interventions, has never been more important. Yet while hundreds of geroprotectors have extended lifespan in animal models, none have yet been approved for widespread use in humans. GeroScope is a computational tool that can aid prediction of novel geroprotectors from existing human gene expression data. GeroScope maps expression differences between samples from young and old subjects to aging-related signaling pathways, then profiles pathway activation strength (PAS) for each condition. Known substances are then screened and ranked for those most likely to target differential pathways and mimic the young signalome. Here we used GeroScope and shortlisted ten substances, all of which have lifespan-extending effects in animal models, and tested 6 of them for geroprotective effects in senescent human fibroblast cultures. PD-98059, a highly selective MEK1 inhibitor, showed both life-prolonging and rejuvenating effects. Natural compounds like N-acetyl-L-cysteine, Myricetin and Epigallocatechin gallate also improved several senescence-associated properties and were further investigated with pathway analysis. This work not only highlights several potential geroprotectors for further study, but also serves as a proof-of-concept for GeroScope, Oncofinder and other PAS-based methods in streamlining drug prediction, repurposing and personalized medicine.
Collapse
Affiliation(s)
- Alexander Aliper
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Aleksey V Belikov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Andrew Garazha
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Center for Biogerontology and Regenerative Medicine, Moscow, 121099, Russia
| | - Leslie Jellen
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Artem Artemov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Maria Suntsova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Alena Ivanova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Larisa Venkova
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Nicolas Borisov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Anton Buzdin
- Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Polina Mamoshina
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Evgeny Putin
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | | | - Alexey Moskalev
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia.,School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA.,Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,The Biogerontology Research Foundation, Oxford, UK
| |
Collapse
|
12
|
Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, Qi SH, Luo HR. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:335-404. [PMID: 28567542 PMCID: PMC5655361 DOI: 10.1007/s13659-017-0135-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Aging is a process characterized by accumulating degenerative damages, resulting in the death of an organism ultimately. The main goal of aging research is to develop therapies that delay age-related diseases in human. Since signaling pathways in aging of Caenorhabditis elegans (C. elegans), fruit flies and mice are evolutionarily conserved, compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human. Natural products have special resource advantage and with few side effect. Recently, many compounds or extracts from natural products slowing aging and extending lifespan have been reported. Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C. elegans or other species, and the prospect in developing anti-aging medicine from natural products.
Collapse
Affiliation(s)
- Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ti-Kun Xing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hua-Ying Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shu-Hua Qi
- Guangdong Key Laboratory of Marine Material Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 134 Lanhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
13
|
Abstract
Human beings are subjected to aging and age-associated diseases. Life expectancy has improved impressively in the last century due to social and economic development, but despite increasing improvement is still more limited than average in those ones with chronic diseases such as treated HIV infection. There has been a substantial research on the underlying factors responsible for aging both in the general and the HIV-infected populations. Several specific targets for potential intervention have been identified but studies so far have been limited to small experiments in cultured cells or living beings other than humans such as mice or flies. Time has come for designing and developing human studies with those candidate therapies showing most promising benefits and least potential toxicities to treat age-related diseases.
Collapse
Affiliation(s)
- Esteban Martinez
- a Infectious Diseases Unit , Hospital Clínic, University of Barcelona , Barcelona , Spain
| |
Collapse
|
14
|
Spindler SR, Mote PL, Flegal JM. Combined statin and angiotensin-converting enzyme (ACE) inhibitor treatment increases the lifespan of long-lived F1 male mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:379-391. [PMID: 27590905 PMCID: PMC5266223 DOI: 10.1007/s11357-016-9948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 05/09/2023]
Abstract
Statins, such as simvastatin, and ACE inhibitors (ACEis), such as ramipril, are standard therapies for the prevention and treatment of cardiovascular diseases. These types of drugs are commonly administered together. More recently, angiotensin II type 1 receptor (AT1R) antagonists, such as candesartan cilexetil (candesartan), have been used in the place of, or in combination with, ACEis. Here, we investigated the effects of simvastatin and ramipril single and combination therapy, and candesartan treatment on the lifespan of isocalorically fed, long-lived, B6C3F1 mice. Males were used for their relative endocrine simplicity and to minimize animal usage. The drugs were administered daily in food. The simvastatin and ramipril combination therapy significantly increased the mean and median lifespan by 9 %. In contrast, simvastatin, ramipril, or candesartan monotherapy was ineffective. All groups consumed the same number of calories. Simvastatin, alone or administered with ramipril, decreased body weight without changing caloric consumption, suggesting it may alter energy utilization in mice. Combination therapy elevated serum triglyceride and glucose levels, consistent with altered energy homeostasis. Few significant or consistent differences were found in mortality-associated pathologies among the groups. Simvastatin treatment did not reduce normal serum cholesterol or lipid levels in these mice, suggesting that the longevity effects may stem from the pleiotropic, non-cholesterol-related, effects of statins. Together, the results suggest that statins and ACEis together may enhance mouse longevity. Statins and ACE inhibitors are generally well-tolerated, and in combination, they have been shown to increase the lifespan of normotensive, normocholesterolemic humans.
Collapse
Affiliation(s)
- Stephen R. Spindler
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521 USA
| | - Patricia L. Mote
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521 USA
| | - James M. Flegal
- Department of Statistics, University of California at Riverside, Riverside, CA 92521 USA
| |
Collapse
|
15
|
Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KSVGK, Chintala R, Duddukuri GR. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41:48-81. [PMID: 26853158 DOI: 10.1016/j.semcancer.2016.02.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A2s (PLA2s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA2s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed.
Collapse
Affiliation(s)
- Nagendra Sastry Yarla
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India; Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bhadrapura Lakkappa Dhananjaya
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global Campus, Jain University, Kanakapura Taluk, Ramanagara 562 112, Karnataka, India
| | - Kaladhar S V G K Dowluru
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India; Department of Microbiology and Bioinformatics, Bilaspur University, Bilaspur 495 001, Chhattisgarh, India
| | - Ramakrishna Chintala
- Department of Environmental Sciences, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Govinda Rao Duddukuri
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India.
| |
Collapse
|
16
|
Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, Fernandez E, Flurkey K, Hamilton KL, Lamming DW, Javors MA, de Magalhães JP, Martinez PA, McCord JM, Miller BF, Müller M, Nelson JF, Ndukum J, Rainger GE, Richardson A, Sabatini DM, Salmon AB, Simpkins JW, Steegenga WT, Nadon NL, Harrison DE. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 2016; 15:872-84. [PMID: 27312235 PMCID: PMC5013015 DOI: 10.1111/acel.12496] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
The National Institute on Aging Interventions Testing Program (ITP) evaluates agents hypothesized to increase healthy lifespan in genetically heterogeneous mice. Each compound is tested in parallel at three sites, and all results are published. We report the effects of lifelong treatment of mice with four agents not previously tested: Protandim, fish oil, ursodeoxycholic acid (UDCA) and metformin - the latter with and without rapamycin, and two drugs previously examined: 17-α-estradiol and nordihydroguaiaretic acid (NDGA), at doses greater and less than used previously. 17-α-estradiol at a threefold higher dose robustly extended both median and maximal lifespan, but still only in males. The male-specific extension of median lifespan by NDGA was replicated at the original dose, and using doses threefold lower and higher. The effects of NDGA were dose dependent and male specific but without an effect on maximal lifespan. Protandim, a mixture of botanical extracts that activate Nrf2, extended median lifespan in males only. Metformin alone, at a dose of 0.1% in the diet, did not significantly extend lifespan. Metformin (0.1%) combined with rapamycin (14 ppm) robustly extended lifespan, suggestive of an added benefit, based on historical comparison with earlier studies of rapamycin given alone. The α-glucosidase inhibitor, acarbose, at a concentration previously tested (1000 ppm), significantly increased median longevity in males and 90th percentile lifespan in both sexes, even when treatment was started at 16 months. Neither fish oil nor UDCA extended lifespan. These results underscore the reproducibility of ITP longevity studies and illustrate the importance of identifying optimal doses in lifespan studies.
Collapse
Affiliation(s)
- Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMI48109‐2200USA
| | - Adam Antebi
- Max Planck Institute for Biology of AgeingCologneD‐50931Germany
| | | | | | | | - Elizabeth Fernandez
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | | | | | - Dudley W. Lamming
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Martin A. Javors
- Department of PsychiatryUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - João Pedro de Magalhães
- School of Biological SciencesUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUK
- Present address: Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolL7 8TX, LiverpoolUnited Kingdom
| | - Paul Anthony Martinez
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Joe M. McCord
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraCOUSA
| | | | - Michael Müller
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | - James F. Nelson
- Department of Physiology and Barshop Center for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | | | - G. Ed. Rainger
- Centre for Cardiovascular SciencesSchool of Clinical and Experimental MedicineThe Medical SchoolThe University of BirminghamBirminghamUK
| | - Arlan Richardson
- Department of Geriatric MedicineUniversity of Oklahoma Health Science CenterOklahoma CityOK73104USA
- VA Medical CenterOklahoma CityOK73104USA
| | - David M. Sabatini
- Whitehead Institute for Biomedical ResearchCambridgeMA02142USA
- Department of BiologyMITCambridgeMA02139USA
- Howard Hughes Medical InstituteMITCambridgeMA02139USA
- Broad Institute of Harvard and MITSeven Cambridge CenterCambridgeMA02142USA
- The David H. Koch Institute for Integrative Cancer Research at MITCambridgeMA02139USA
| | - Adam B. Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - James W. Simpkins
- Center for Basic & Translational Stroke ResearchWest Virginia UniversityMorgantownWV26506USA
| | - Wilma T. Steegenga
- Division of Human NutritionWageningen University and Research CentreWageningenThe Netherlands
| | - Nancy L. Nadon
- Division of Aging BiologyNational Institute on AgingBethesdaMD20892USA
| | | |
Collapse
|
17
|
Longo VD, Antebi A, Bartke A, Barzilai N, Brown‐Borg HM, Caruso C, Curiel TJ, Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, Kenyon C, Klein S, Kopchick JJ, Lepperdinger G, Madeo F, Mirisola MG, Mitchell JR, Passarino G, Rudolph KL, Sedivy JM, Shadel GS, Sinclair DA, Spindler SR, Suh Y, Vijg J, Vinciguerra M, Fontana L. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell 2015; 14:497-510. [PMID: 25902704 PMCID: PMC4531065 DOI: 10.1111/acel.12338] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 12/17/2022] Open
Abstract
The workshop entitled ‘Interventions to Slow Aging in Humans: Are We Ready?’ was held in Erice, Italy, on October 8–13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and old age. Essential pathways have been identified, and behavioral, dietary, and pharmacologic approaches have emerged. Although many gene targets and drugs were discussed and there was not complete consensus about all interventions, the participants selected a subset of the most promising strategies that could be tested in humans for their effects on healthspan. These were: (i) dietary interventions mimicking chronic dietary restriction (periodic fasting mimicking diets, protein restriction, etc.); (ii) drugs that inhibit the growth hormone/IGF-I axis; (iii) drugs that inhibit the mTOR–S6K pathway; or (iv) drugs that activate AMPK or specific sirtuins. These choices were based in part on consistent evidence for the pro-longevity effects and ability of these interventions to prevent or delay multiple age-related diseases and improve healthspan in simple model organisms and rodents and their potential to be safe and effective in extending human healthspan. The authors of this manuscript were speakers and discussants invited to the workshop. The following summary highlights the major points addressed and the conclusions of the meeting.
Collapse
|