1
|
Chen Z, Shi J, Zhang Y, Zhang J, Li S, Guan L, Jia G. Lipidomics Profiles and Lipid Metabolite Biomarkers in Serum of Coal Workers' Pneumoconiosis. TOXICS 2022; 10:496. [PMID: 36136461 PMCID: PMC9500698 DOI: 10.3390/toxics10090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
As a serious occupational pulmonary fibrosis disease, pneumoconiosis still lacks effective biomarkers. Previous studies suggest that pneumoconiosis may affect the body's lipid metabolism. The purpose of this study was to explore lipidomics profiles and lipid metabolite biomarkers in the serum of coal workers' pneumoconiosis (CWP) by a population case-control study. A total of 150 CWP cases and 120 healthy controls from Beijing, China were included. Blood lipids were detected in serum biochemistry. Lipidomics was performed in serum samples for high-throughput detection of lipophilic metabolites. Serum high density lipoprotein cholesterol (HDL-C) decreased significantly in CWP cases. Lipidomics data found 131 differential lipid metabolites between the CWP case and control groups. Further, the top eight most important differential lipid metabolites were screened. They all belonged to differential metabolites of CWP at different stages. However, adjusting for potential confounding factors, only three of them were significantly related to CWP, including acylhexosylceramide (AHEXCER 43:5), diacylglycerol (DG 34:8) and dimethyl-phosphatidylethanolamine (DMPE 36:0|DMPE 18:0_18:0), of which good sensitivity and specificity were proven. The present study demonstrated that lipidomics profiles could change significantly in the serum of CWP patients and that the lipid metabolites represented by AHEXCER, DG and DMPE may be good biomarkers of CWP.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shuqiang Li
- Department of Occupational Disease, Peking University Third Hospital, Beijing 100191, China
| | - Li Guan
- Department of Occupational Disease, Peking University Third Hospital, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Frandsen J, Sahl RE, Rømer T, Hansen MT, Nielsen AB, Lie‐Olesen MM, Rasmusen HK, Søgaard D, Ingersen A, Rosenkilde M, Westerterp K, Holst JJ, Andersen JL, Markowski AR, Blachnio‐Zabielska A, Clemmensen C, Sacchetti M, Cataldo A, Traina M, Larsen S, Dela F, Helge JW. Extreme duration exercise affects old and younger men differently. Acta Physiol (Oxf) 2022; 235:e13816. [PMID: 35347845 PMCID: PMC9287057 DOI: 10.1111/apha.13816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Aim & Methods Extreme endurance exercise provides a valuable research model for understanding the adaptive metabolic response of older and younger individuals to intense physical activity. Here, we compare a wide range of metabolic and physiologic parameters in two cohorts of seven trained men, age 30 ± 5 years or age 65 ± 6 years, before and after the participants travelled ≈3000 km by bicycle over 15 days. Results Over the 15‐day exercise intervention, participants lost 2–3 kg fat mass with no significant change in body weight. V̇O2max did not change in younger cyclists, but decreased (p = 0.06) in the older cohort. The resting plasma FFA concentration decreased markedly in both groups, and plasma glucose increased in the younger group. In the older cohort, plasma LDL‐cholesterol and plasma triglyceride decreased. In skeletal muscle, fat transporters CD36 and FABPm remained unchanged. The glucose handling proteins GLUT4 and SNAP23 increased in both groups. Mitochondrial ROS production decreased in both groups, and ADP sensitivity increased in skeletal muscle in the older but not in the younger cohort. Conclusion In summary, these data suggest that older but not younger individuals experience a negative adaptive response affecting cardiovascular function in response to extreme endurance exercise, while a positive response to the same exercise intervention is observed in peripheral tissues in younger and older men. The results also suggest that the adaptive thresholds differ in younger and old men, and this difference primarily affects central cardiovascular functions in older men after extreme endurance exercise.
Collapse
Affiliation(s)
- Jacob Frandsen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Ronni Eg Sahl
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Tue Rømer
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Mikkel Thunestvedt Hansen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Andreas Blaaholm Nielsen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Michelle Munk Lie‐Olesen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Hanne Kruuse Rasmusen
- Department of Cardiology Bispebjerg‐Frederiksberg University Hospital Copenhagen Denmark
| | - Ditte Søgaard
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Arthur Ingersen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Mads Rosenkilde
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Klaas Westerterp
- NUTRIM Maastricht University Medical Centre Maastricht The Netherlands
| | - Jens Juul Holst
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jesper Løvind Andersen
- Department of Orthopedic Surgery M Institute of Sports Medicine Copenhagen Bispebjerg Hospital and Center for Healthy Aging Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Adam Roman Markowski
- Epidemiology and Metabolic disorder Department Medical University of Bialystok Bialystok Poland
| | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences University of Rome “Foro Italico” Rome Italy
| | - Angelo Cataldo
- Department of Sports Science (DISMOT) University of Palermo Palermo Italy
| | - Marcello Traina
- Department of Sports Science (DISMOT) University of Palermo Palermo Italy
| | - Steen Larsen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Clinical Research Centre Medical University of Bialystok Bialystok Poland
| | - Flemming Dela
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Geriatrics Bispebjerg‐Frederiksberg University Hospital Copenhagen Denmark
| | - Jørn Wulff Helge
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
3
|
The Importance of Lipidomic Approach for Mapping and Exploring the Molecular Networks Underlying Physical Exercise: A Systematic Review. Int J Mol Sci 2021; 22:ijms22168734. [PMID: 34445440 PMCID: PMC8395903 DOI: 10.3390/ijms22168734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Maintaining appropriate levels of physical exercise is an optimal way for keeping a good state of health. At the same time, optimal exercise performance necessitates an integrated organ system response. In this respect, physical exercise has numerous repercussions on metabolism and function of different organs and tissues by enhancing whole-body metabolic homeostasis in response to different exercise-related adaptations. Specifically, both prolonged and intensive physical exercise produce vast changes in multiple and different lipid-related metabolites. Lipidomic technologies allow these changes and adaptations to be clarified, by using a biological system approach they provide scientific understanding of the effect of physical exercise on lipid trajectories. Therefore, this systematic review aims to indicate and clarify the identifying biology of the individual response to different exercise workloads, as well as provide direction for future studies focused on the body’s metabolome exercise-related adaptations. It was performed using five databases (Medline (PubMed), Google Scholar, Embase, Web of Science, and Cochrane Library). Two author teams reviewed 105 abstracts for inclusion and at the end of the screening process 50 full texts were analyzed. Lastly, 14 research articles specifically focusing on metabolic responses to exercise in healthy subjects were included. The Oxford quality scoring system scale was used as a quality measure of the reviews. Information was extracted using the participants, intervention, comparison, outcomes (PICOS) format. Despite that fact that it is well-known that lipids are involved in different sport-related changes, it is unclear what types of lipids are involved. Therefore, we analyzed the characteristic lipid species in blood and skeletal muscle, as well as their alterations in response to chronic and acute exercise. Lipidomics analyses of the studies examined revealed medium- and long-chain fatty acids, fatty acid oxidation products, and phospholipids qualitative changes. The main cumulative evidence indicates that both chronic and acute bouts of exercise determine significant changes in lipidomic profiles, but they manifested in very different ways depending on the type of tissue examined. Therefore, this systematic review may offer the possibility to fully understand the individual lipidomics exercise-related response and could be especially important to improve athletic performance and human health.
Collapse
|
4
|
Dong X, Huang Y, Yang Z, Chu X, Wu J, Wang S, He X, Gao C, Chen X, Yang K, Zhang D. Downregulation of ROR2 promotes dental pulp stem cell senescence by inhibiting STK4-FOXO1/SMS1 axis in sphingomyelin biosynthesis. Aging Cell 2021; 20:e13430. [PMID: 34278704 PMCID: PMC8373368 DOI: 10.1111/acel.13430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/09/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
Dental pulp stem cells (DPSCs) play a vital role in tooth restoration, regeneration, and homeostasis. The link between DPSC senescence and tooth aging has been well‐recognized. ROR2 plays an important role in aging‐related gene expression. However, the expression and function of ROR2 in DPSC aging remain largely unknown. In this study, we found that ROR2 expression was significantly decreased in aged pulp tissues and DPSCs. The depletion of ROR2 in young DPSCs inhibits their self‐renewal capacity, while its overexpression in aged DPSCs restores their self‐renewal capacity. Interestingly, we found that sphingomyelin (SM) is involved in the senescence of DPSCs regulated by ROR2. Mechanistically, we confirmed that ROR2 inhibited the phosphorylation of STK4, which promoted the translocation of Forkhead Box O1 (FOXO1) to the nucleus. STK4 inhibition or knockdown of FOXO1 markedly increased the proliferation of DPSCs and upregulated the expression of SMS1, which catalyzed SM biogenesis. Moreover, FOXO1 directly bound to the SMS1 promoter, repressing its transcription. Our findings demonstrated the critical role of the ROR2/STK4‐FOXO1/SMS1 axis in the regulation of SM biogenesis and DPSC senescence, providing a novel target for antagonizing tooth aging.
Collapse
Affiliation(s)
- Xing‐yue Dong
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Yan‐xia Huang
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center The Second Hospital of Hebei Medical University Shijiazhang China
| | - Xiao‐yang Chu
- Department of Stomatology Fifth Medical Center of Chinese, PLA General HospitalBeijing China
| | - Jue Wu
- Translational Medical Research Center Medical Innovation Research Division of Chinese PLA General HospitalBeijing China
| | - Shan Wang
- Translational Medical Research Center Medical Innovation Research Division of Chinese PLA General HospitalBeijing China
| | - Xin He
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Chun‐Yan Gao
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Xu Chen
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Kai Yang
- Prenatal Diagnosis Center Beijing Obstetrics and Gynecology Hospital Capital Medical University Beijing China
| | - Dong‐liang Zhang
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| |
Collapse
|
5
|
Reidy PT, Mahmassani ZS, McKenzie AI, Petrocelli JJ, Summers SA, Drummond MJ. Influence of Exercise Training on Skeletal Muscle Insulin Resistance in Aging: Spotlight on Muscle Ceramides. Int J Mol Sci 2020; 21:ijms21041514. [PMID: 32098447 PMCID: PMC7073171 DOI: 10.3390/ijms21041514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Intramuscular lipid accumulation has been associated with insulin resistance (IR), aging, diabetes, dyslipidemia, and obesity. A substantial body of evidence has implicated ceramides, a sphingolipid intermediate, as potent antagonists of insulin action that drive insulin resistance. Indeed, genetic mouse studies that lower ceramides are potently insulin sensitizing. Surprisingly less is known about how physical activity (skeletal muscle contraction) regulates ceramides, especially in light that muscle contraction regulates insulin sensitivity. The purpose of this review is to critically evaluate studies (rodent and human) concerning the relationship between skeletal muscle ceramides and IR in response to increased physical activity. Our review of the literature indicates that chronic exercise reduces ceramide levels in individuals with obesity, diabetes, or hyperlipidemia. However, metabolically healthy individuals engaged in increased physical activity can improve insulin sensitivity independent of changes in skeletal muscle ceramide content. Herein we discuss these studies and provide context regarding the technical limitations (e.g., difficulty assessing the myriad ceramide species, the challenge of obtaining information on subcellular compartmentalization, and the paucity of flux measurements) and a lack of mechanistic studies that prevent a more sophisticated assessment of the ceramide pathway during increased contractile activity that lead to divergences in skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Paul T. Reidy
- Department of Kinesiology and Health, Miami University, 420 S Oak St, Oxford, OH 45056, USA;
| | - Ziad S. Mahmassani
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
| | - Alec I. McKenzie
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
| | - Jonathan J. Petrocelli
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 250 1850 E, Salt Lake City, UT 84112, USA;
| | - Micah J. Drummond
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
- Correspondence:
| |
Collapse
|
6
|
Jayasinghe SU, Tankeu AT, Amati F. Reassessing the Role of Diacylglycerols in Insulin Resistance. Trends Endocrinol Metab 2019; 30:618-635. [PMID: 31375395 DOI: 10.1016/j.tem.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle (SM) insulin resistance (IR) plays an important role in the burden of obesity, particularly because it leads to glucose intolerance and type 2 diabetes. Among the mechanisms thought to link IR to obesity is the accumulation, in muscle cells, of different lipid metabolites. Diacylglycerols (DAGs) are subject of particular attention due to reported interactions with the insulin signaling cascade. Given that SM accounts for the majority of insulin-stimulated glucose uptake, this review integrates recent observational and mechanistic works with the sole focus on questioning the role of DAGs in SM IR. Particular attention is given to the subcellular distributions and specific structures of DAGs, highlighting future research directions towards reaching a consensus on the mechanistic role played by DAGs.
Collapse
Affiliation(s)
- Sisitha U Jayasinghe
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Aurel T Tankeu
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne, Switzerland; Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland; Service of Endocrinology, Diabetology and Metabolism, Department of Medicine, University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
7
|
Muscle-Saturated Bioactive Lipids Are Increased with Aging and Influenced by High-Intensity Interval Training. Int J Mol Sci 2019; 20:ijms20051240. [PMID: 30871020 PMCID: PMC6429484 DOI: 10.3390/ijms20051240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
Ceramide and diacylglycerol are linked to insulin resistance in rodents, but in humans the data are inconsistent. Insulin resistance is frequently observed with aging, but the role of ceramide and diacylglycerol is not clarified. Training improves metabolic health and, therefore, we aimed to elucidate the influence of age and high-intensity interval training (HIIT) on ceramide and diacylglycerol content in muscle. Fourteen young (33 ± 1) and 22 older (63 ± 1) overweight to obese subjects performed 6 weeks HIIT three times a week. Maximal oxygen uptake and body composition were measured and muscle biopsies and fasting blood samples were obtained. Muscle ceramide and diacylglycerol were measured by gas-liquid chromatography and proteins in insulin signaling, lipid and glucose metabolism were measured by Western blotting. Content of ceramide and diacylglycerol total, saturated, C16:0 and C18:0 fatty acids and C18:1 ceramide were higher in older compared to young. HIIT reduced saturated and C18:0 ceramides, while the content of the proteins involved in glucose (GLUT4, glycogen synthase, hexokinase II, AKT) and lipid metabolism (adipose triglyceride lipase, fatty acid binding protein) were increased after HIIT. We demonstrate a higher content of saturated ceramide and diacylglycerol fatty acids in the muscle of older subjects compared to young. Moreover, the content of saturated ceramides was reduced and muscle glucose metabolism improved at protein level after HIIT. This study highlights an increased content of saturated ceramides in aging which could be speculated to influence insulin sensitivity.
Collapse
|