1
|
Rishik S, Hirsch P, Grandke F, Fehlmann T, Keller A. miRNATissueAtlas 2025: an update to the uniformly processed and annotated human and mouse non-coding RNA tissue atlas. Nucleic Acids Res 2025; 53:D129-D137. [PMID: 39540421 PMCID: PMC11701691 DOI: 10.1093/nar/gkae1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
MiRNAs represent a non-coding RNA class that regulate gene expression and pathways. While miRNAs are evolutionary conserved most data stems from Homo sapiens and Mus musculus. As miRNA expression is highly tissue specific, we developed miRNATissueAtlas to comprehensively explore this landscape in H. sapiens. We expanded the H. sapiens tissue repertoire and included M. musculus. In past years, the number of public miRNA expression datasets has grown substantially. Our previous releases of the miRNATissueAtlas represent a great framework for a uniformly pre-processed and label-harmonized resource containing information on these datasets. We incorporate the respective data in the newest release, miRNATissueAtlas 2025, which contains expressions from 9 classes of ncRNA from 799 billion reads across 61 593 samples for H. sapiens and M. musculus. The number of organs and tissues has increased from 28 and 54 to 74 and 373, respectively. This number includes physiological tissues, cell lines and extracellular vesicles. New tissue specificity index calculations build atop the knowledge of previous iterations. Calculations from cell lines enable comparison with physiological tissues, providing a valuable resource for translational research. Finally, between H. sapiens and M. musculus, 35 organs overlap, allowing cross-species comparisons. The updated miRNATissueAtlas 2025 is available at https://www.ccb.uni-saarland.de/tissueatlas2025.
Collapse
Affiliation(s)
- Shusruto Rishik
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Pascal Hirsch
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Friederike Grandke
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | | | - Andreas Keller
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- Department of Neurology and Neurobiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Clarke A, Høye E, Hembrom A, Paynter V, Vinther J, Wyrożemski Ł, Biryukova I, Formaggioni A, Ovchinnikov V, Herlyn H, Pierce A, Wu C, Aslanzadeh M, Cheneby J, Martinez P, Friedländer M, Hovig E, Hackenberg M, Umu SU, Johansen M, Peterson K, Fromm B. MirGeneDB 3.0: improved taxonomic sampling, uniform nomenclature of novel conserved microRNA families and updated covariance models. Nucleic Acids Res 2025; 53:D116-D128. [PMID: 39673268 PMCID: PMC11701709 DOI: 10.1093/nar/gkae1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/16/2024] Open
Abstract
We present a major update of MirGeneDB (3.0), the manually curated animal microRNA gene database. Beyond moving to a new server and the creation of a computational mirror, we have expanded the database with the addition of 33 invertebrate species, including representatives of 5 previously unsampled phyla, and 6 mammal species. MirGeneDB now contains entries for 21 822 microRNA genes (5160 of these from the new species) belonging to 1743 microRNA families. The inclusion of these new species allowed us to refine both the evolutionary node of appearance of a number of microRNA genes/families, as well as MirGeneDB's phylogenetically informed nomenclature system. Updated covariance models of all microRNA families, along with all smallRNA read data are now downloadable. These enhanced annotations will allow researchers to analyze microRNA properties such as secondary structure and features of their biogenesis within a robust phylogenetic context and without the database plagued with numerous false positives and false negatives. In light of these improvements, MirGeneDB 3.0 will assume the responsibility for naming conserved novel metazoan microRNAs. MirGeneDB is part of RNAcentral and Elixir Norway and is publicly and freely available at mirgenedb.org.
Collapse
Affiliation(s)
- Alexander W Clarke
- Department of Biological Sciences, 321 Life Sciences Center, Dartmouth College, 78 College St., Hanover, NH 03755, USA
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Eirik Høye
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Anju Angelina Hembrom
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Vanessa Molin Paynter
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Jakob Vinther
- School of Earth Sciences & School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, BS5 8EH, Bristol, UK
| | - Łukasz Wyrożemski
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691,Stockholm, Sweden
| | - Alessandro Formaggioni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Vladimir Ovchinnikov
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Alexandra Pierce
- Department of Biological Sciences, 321 Life Sciences Center, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Charles Wu
- Valley Stream North High School, 750 Herman Ave, Franklin Square, NY 11010, USA
| | - Morteza Aslanzadeh
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691,Stockholm, Sweden
| | - Jeanne Cheneby
- Center for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal, 643; 08028-Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Passeig Lluis Companys 23; 08010-Barcelona, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691,Stockholm, Sweden
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway
| | - Michael Hackenberg
- Department of Genetics, Faculty of Sciences, University of Granada, Avenida de la Fuente Nueva S/N, C.P. 18071 Granada, Spain
- Bioinformatics Laboratory, Biotechnology Institute & Biomedical Research Centre (CIBM), Avenida del Conocimiento 19 Granada, 18100, Spain
| | - Sinan Uğur Umu
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Morten Johansen
- Center for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, 321 Life Sciences Center, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| |
Collapse
|
3
|
Liu XM, Halushka MK. Beyond the Bubble: A Debate on microRNA Sorting Into Extracellular Vesicles. J Transl Med 2024; 105:102206. [PMID: 39647608 DOI: 10.1016/j.labinv.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024] Open
Abstract
Over the past decade, a scientific field has been developed demonstrating microRNAs (miRNAs) to be actively sorted into extracellular vesicles via specific nucleotide motifs that interact with discrete RNA-binding proteins. These miRNAs are proposed to be transported into recipient cells in which they can regulate specific cellular pathways. This mechanism could have enormous potential in explaining how cells signal and regulate other cells nearby or at a distance. Tens of studies have built this theme of a regulated transport of miRNAs. However, some concerns exist about this field. Taken together, there are concerns of a lack of a consistent motif, RNA-binding protein, or preferential miRNA involved in this process. In this study, we provide an expert and extensive analysis of the field that makes the cases for and against an active sorting mechanism. We provide potential explanations on why there is a lack of agreement. Most importantly, we provide ideas on how to move this field forward with more rigor and reproducibility. It is hoped that by engaging in a scientific debate of the pros and cons of this field, more rigorous experiments can be performed to conclusively demonstrate this biological activity.
Collapse
Affiliation(s)
- Xiao-Man Liu
- The Stanley Center for Psychiatric Research, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Marc K Halushka
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
4
|
Fatehi Hassanabad A, Zarzycki AN, Patel VB, Fedak PWM. Current concepts in the epigenetic regulation of cardiac fibrosis. Cardiovasc Pathol 2024; 73:107673. [PMID: 38996851 DOI: 10.1016/j.carpath.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
Cardiac fibrosis is a significant driver of congestive heart failure, a syndrome that continues to affect a growing patient population globally. Cardiac fibrosis results from a constellation of complex processes at the transcription, receptor, and signaling axes levels. Various mediators and signaling cascades, such as the transformation growth factor-beta pathway, have been implicated in the pathophysiology of cardiac tissue fibrosis. Our understanding of these markers and pathways has improved in recent years as more advanced technologies and assays have been developed, allowing for better delineation of the crosstalk between specific factors. There is mounting evidence suggesting that epigenetic modulation plays a pivotal role in the progression of cardiac fibrosis. Transcriptional regulation of key pro- and antifibrotic pathways can accentuate or blunt the rate and extent of fibrosis at the tissue level. Exosomes, micro-RNAs, and long noncoding RNAs all belong to factors that can impact the epigenetic signature in cardiac fibrosis. Herein, we comprehensively review the latest literature about exosomes, their contents, and cardiac fibrosis. In doing so, we highlight the specific transcriptional factors with pro- or antifibrotic properties. We also assimilate the data supporting these mediators' potential utility as diagnostic or prognostic biomarkers. Finally, we offer insight into where further work can be done to fill existing gaps to translate preclinical findings better and improve clinical outcomes.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Whitehead B, Sørensen Rossen L, Zippor M, Boysen AT, Indira Chandran V, Skallerup P, Thamsborg SM, Nejsum P. Micro RNA profiles of host extracellular vesicles are modulated by Ascaris suum infection but parasite extracellular vesicle miRNAs are systemically undetectable using in-depth miRNA sequencing. Int J Parasitol 2024; 54:691-696. [PMID: 39116918 DOI: 10.1016/j.ijpara.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The intestinal helminth Ascaris lumbricoides infects over 800 million people. Infections are often chronic and immunity is not sterilizing due to host-immune modulation, therefore reinfection is common after antihelmintic treatment. We have previously demonstrated a role for Ascaris spp. extracellular vesicles (EVs) in host immune modulation but whether EVs are recognized by the adaptive immune system and are present systemically in the host remains unknown. Therefore, we employed a well-established trickle infection model in pigs to mimic natural Ascaris infection in humans. EVs were isolated from adult Ascaris suum followed by immunoblotting of EV and EV-depleted secretory fractions using plasma from infected and uninfected pigs. Next, EVs were isolated from pig plasma at day 56 post first infection and subjected to deep small RNAseq analysis. RNAs were aligned to A. suum and Sus scrofa miRNA complements to detect A. suum EVs and elucidate the host EV micro RNA (miRNA) response to infection, respectively. Infection generates robust antibody responses against A. suum EVs that is distinct from EV-depleted fractions. However, A. suum miRNAs were not detectable in EVs from the peripheral blood. Notably, host plasma-derived EV miRNA profiles showed significant changes between infected and uninfected pigs, indicating that Ascaris infection drives systemic changes in host EV composition.
Collapse
Affiliation(s)
- Bradley Whitehead
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | - Litten Sørensen Rossen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Zippor
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anders T Boysen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Vineesh Indira Chandran
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Guo H, Zhang L, Cui X, Cheng L, Zhao T, Wang Y. SCancerRNA: Expression at the Single-cell Level and Interaction Resource of Non-coding RNA Biomarkers for Cancers. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae023. [PMID: 39341795 DOI: 10.1093/gpbjnl/qzae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 10/01/2024]
Abstract
Non-coding RNAs (ncRNAs) participate in multiple biological processes associated with cancers as tumor suppressors or oncogenic drivers. Due to their high stability in plasma, urine, and many other fluids, ncRNAs have the potential to serve as key biomarkers for early diagnosis and screening of cancers. During cancer progression, tumor heterogeneity plays a crucial role, and it is particularly important to understand the gene expression patterns of individual cells. With the development of single-cell RNA sequencing (scRNA-seq) technologies, uncovering gene expression in different cell types for human cancers has become feasible by profiling transcriptomes at the cellular level. However, a well-organized and comprehensive online resource that provides access to the expression of genes corresponding to ncRNA biomarkers in different cell types at the single-cell level is not available yet. Therefore, we developed the SCancerRNA database to summarize experimentally supported data on long ncRNA, microRNA, PIWI-interacting RNA, small nucleolar RNA, and circular RNA biomarkers, as well as data on their differential expression at the cellular level. Furthermore, we collected biological functions and clinical applications of biomarkers to facilitate the application of ncRNA biomarkers to cancer diagnosis, as well as the monitoring of progression and targeted therapies. SCancerRNA also allows users to explore interaction networks of different types of ncRNAs, and build computational models in the future. SCancerRNA is freely accessible at http://www.scancerrna.com/BioMarker.
Collapse
Affiliation(s)
- Hongzhe Guo
- Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Liyuan Zhang
- Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Xinran Cui
- Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Tianyi Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Yadong Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
Helin TA, Lemponen M, Immonen K, Lakkisto P, Joutsi-Korhonen L. Circulating microRNAs targeting coagulation and fibrinolysis in patients with severe COVID-19. Thromb J 2024; 22:80. [PMID: 39237986 PMCID: PMC11375984 DOI: 10.1186/s12959-024-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Coronavirus-19 disease (COVID-19) frequently causes coagulation disturbances. Data remains limited on the effects of microRNAs (miRNAs) on coagulation during COVID-19 infection. We aimed to analyze the comprehensive miRNA profile as well as coagulation markers and blood count in hospitalized COVID-19 patients. METHODS Citrated plasma samples from 40 patients (24 men and 16 women) hospitalized for COVID-19 were analyzed. Basic coagulation tests, von Willebrand factor (VWF), ADAMTS13, blood count, C-reactive protein, and 27 miRNAs known to associate with thrombosis or platelet activation were analyzed. MiRNAs were analyzed using quantitative reverse transcription polymerase chain reaction (RT qPCR), with 10 healthy controls serving as a comparator. RESULTS Among the patients, 15/36 (41%) had platelet count of over 360 × 109/L and 10/36 (28%) had low hemoglobin of < 100 g/L, while 26/37 (72%) had high VWF of over 200 IU/dL. Patients had higher levels of the miRNAs miR-27b-3p, miR-320a-3p, miR-320b-3p, and miR-424-5p, whereas levels of miR-103a-3p and miR-145-5p were lower than those in healthy controls. In total, 11 miRNAs were associated with platelet count. Let-7b-3p was associated with low hemoglobin levels of < 100 g/L. miR-24-3p, miR-27b-3p, miR-126-3p, miR-145-5p and miR-338-5p associated with high VWF. CONCLUSION COVID-19 patients differentially express miRNAs with target genes involved in fibrinolysis inhibition, coagulation activity, and increased inflammatory response. These findings support the notion that COVID-19 widely affects hemostasis, including platelets, coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Tuukka A Helin
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland.
| | - Marja Lemponen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| | - Katariina Immonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Päivi Lakkisto
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Lotta Joutsi-Korhonen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| |
Collapse
|
8
|
Baran AM, Patil AH, Aparicio-Puerta E, Halushka MK, McCall MN. miRglmm: a generalized linear mixed model of isomiR-level counts improves estimation of miRNA-level differential expression and uncovers variable differential expression between isomiRs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592274. [PMID: 39071300 PMCID: PMC11275874 DOI: 10.1101/2024.05.03.592274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
MicroRNA-seq data is produced by aligning small RNA sequencing reads of different miRNA transcript isoforms, called isomiRs, to known microRNAs. Aggregation to microRNA-level counts discards information and violates core assumptions of differential expression (DE) methods developed for mRNA-seq data. We establish miRglmm, a DE method for microRNA-seq data, that uses a generalized linear mixed model of isomiR-level counts, facilitating detection of miRNA with differential expression or differential isomiR usage. We demonstrate that miRglmm outperforms current DE methods in estimating DE for miRNA, whether or not there is significant isomiR variability, and simultaneously provides estimates of isomiR-level DE.
Collapse
Affiliation(s)
- Andrea M Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd., Box 630, Rochester, NY 14642, USA
| | - Arun H Patil
- Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe St. Suite 300, Baltimore, MD 21205, USA
| | - Ernesto Aparicio-Puerta
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd., Box 630, Rochester, NY 14642, USA
| | - Marc K Halushka
- Department of Pathology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd., Box 630, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Wagner V, Kern F, Hahn O, Schaum N, Ludwig N, Fehlmann T, Engel A, Henn D, Rishik S, Isakova A, Tan M, Sit R, Neff N, Hart M, Meese E, Quake S, Wyss-Coray T, Keller A. Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues. Nat Biotechnol 2024; 42:109-118. [PMID: 37106037 DOI: 10.1038/s41587-023-01751-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Molecular mechanisms of organismal and cell aging remain incompletely understood. We, therefore, generated a body-wide map of noncoding RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to 27 months) and rejuvenated mice. We found molecular aging trajectories are largely tissue-specific except for eight broadly deregulated microRNAs (miRNAs). Their individual abundance mirrors their presence in circulating plasma and extracellular vesicles (EVs) whereas tissue-specific ncRNAs were less present. For miR-29c-3p, we observe the largest correlation with aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic parabiosis, miR-29c-3p was the most prominent miRNA restored to similar levels found in young liver. miR-29c-3p targets the extracellular matrix and secretion pathways, known to be implicated in aging. We provide a map of organism-wide expression of ncRNAs with aging and rejuvenation and identify a set of broadly deregulated miRNAs, which may function as systemic regulators of aging via plasma and EVs.
Collapse
Affiliation(s)
- Viktoria Wagner
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Saarland, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Annika Engel
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Dominic Henn
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shusruto Rishik
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Alina Isakova
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michelle Tan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rene Sit
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Norma Neff
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Martin Hart
- Department of Human Genetics, Saarland University, Saarland, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Saarland, Germany
| | - Steve Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany.
| |
Collapse
|
10
|
Engel A, Ludwig N, Grandke F, Wagner V, Kern F, Fehlmann T, Schmartz GP, Aparicio-Puerta E, Henn D, Walch-Rückheim B, Hannig M, Rupf S, Meese E, Laschke MW, Keller A. Skin treatment with non-thermal plasma modulates the immune system through miR-223-3p and its target genes. RNA Biol 2024; 21:31-44. [PMID: 38828710 PMCID: PMC11152102 DOI: 10.1080/15476286.2024.2361571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.
Collapse
Affiliation(s)
- Annika Engel
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
- Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Friederike Grandke
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Viktoria Wagner
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics (CLIB), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Georges P. Schmartz
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Dominic Henn
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Barbara Walch-Rückheim
- Center of Human und Molecular Biology (ZHMB), Virology & Immunology, Saarland University, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics (CLIB), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| |
Collapse
|
11
|
Rego N, Libisch MG, Rovira C, Tosar JP, Robello C. Comparative microRNA profiling of Trypanosoma cruzi infected human cells. Front Cell Infect Microbiol 2023; 13:1187375. [PMID: 37424776 PMCID: PMC10322668 DOI: 10.3389/fcimb.2023.1187375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Trypanosoma cruzi, the causative agent of Chagas disease, can infect almost any nucleated cell in the mammalian host. Although previous studies have described the transcriptomic changes that occur in host cells during parasite infection, the understanding of the role of post-transcriptional regulation in this process is limited. MicroRNAs, a class of short non-coding RNAs, are key players in regulating gene expression at the post-transcriptional level, and their involvement in the host-T. cruzi interplay is a growing area of research. However, to our knowledge, there are no comparative studies on the microRNA changes that occur in different cell types in response to T. cruzi infection. Methods and results Here we investigated microRNA changes in epithelial cells, cardiomyocytes and macrophages infected with T. cruzi for 24 hours, using small RNA sequencing followed by careful bioinformatics analysis. We show that, although microRNAs are highly cell type-specific, a signature of three microRNAs -miR-146a, miR-708 and miR-1246, emerges as consistently responsive to T. cruzi infection across representative human cell types. T. cruzi lacks canonical microRNA-induced silencing mechanisms and we confirm that it does not produce any small RNA that mimics known host microRNAs. We found that macrophages show a broad response to parasite infection, while microRNA changes in epithelial and cardiomyocytes are modest. Complementary data indicated that cardiomyocyte response may be greater at early time points of infection. Conclusions Our findings emphasize the significance of considering microRNA changes at the cellular level and complement previous studies conducted at higher organizational levels, such as heart samples. While miR-146a has been previously implicated in T. cruzi infection, similarly to its involvement in many other immunological responses, miR-1246 and miR-708 are demonstrated here for the first time. Given their expression in multiple cell types, we anticipate our work as a starting point for future investigations into their role in the post-transcriptional regulation of T. cruzi infected cells and their potential as biomarkers for Chagas disease.
Collapse
Affiliation(s)
- Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Juan Pablo Tosar
- Laboratorio de Genómica Funcional, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
12
|
Aparicio-Puerta E, Hirsch P, Schmartz GP, Kern F, Fehlmann T, Keller A. miEAA 2023: updates, new functional microRNA sets and improved enrichment visualizations. Nucleic Acids Res 2023:7161530. [PMID: 37177999 DOI: 10.1093/nar/gkad392] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a critical role in regulating diverse biological processes. Extracting functional insights from a list of miRNAs is challenging, as each miRNA can potentially interact with hundreds of genes. To address this challenge, we developed miEAA, a flexible and comprehensive miRNA enrichment analysis tool based on direct and indirect miRNA annotation. The latest release of miEAA includes a data warehouse of 19 miRNA repositories, covering 10 different organisms and 139 399 functional categories. We have added information on the cellular context of miRNAs, isomiRs, and high-confidence miRNAs to improve the accuracy of the results. We have also improved the representation of aggregated results, including interactive Upset plots to aid users in understanding the interaction among enriched terms or categories. Finally, we demonstrate the functionality of miEAA in the context of ageing and highlight the importance of carefully considering the miRNA input list. MiEAA is free to use and publicly available at https://www.ccb.uni-saarland.de/mieaa/.
Collapse
Affiliation(s)
| | - Pascal Hirsch
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Georges P Schmartz
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| |
Collapse
|
13
|
Jenike AE, Jenike KM, Peterson KJ, Fromm B, Halushka MK. Direct observation of the evolution of cell-type-specific microRNA expression signatures supports the hematopoietic origin model of endothelial cells. Evol Dev 2023; 25:226-239. [PMID: 37157156 PMCID: PMC10302300 DOI: 10.1111/ede.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate Ciona robusta. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution.
Collapse
Affiliation(s)
- Ana E. Jenike
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Katharine M. Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
14
|
Aparicio-Puerta E, Hirsch P, Schmartz GP, Fehlmann T, Keller V, Engel A, Kern F, Hackenberg M, Keller A. isomiRdb: microRNA expression at isoform resolution. Nucleic Acids Res 2022; 51:D179-D185. [PMID: 36243964 PMCID: PMC9825445 DOI: 10.1093/nar/gkac884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023] Open
Abstract
A significant fraction of mature miRNA transcripts carries sequence and/or length variations, termed isomiRs. IsomiRs are differentially abundant in cell types, tissues, body fluids or patients' samples. Not surprisingly, multiple studies describe a physiological and pathophysiological role. Despite their importance, systematically collected and annotated isomiR information available in databases remains limited. We thus developed isomiRdb, a comprehensive resource that compiles miRNA expression data at isomiR resolution from various sources. We processed 42 499 human miRNA-seq datasets (5.9 × 1011 sequencing reads) and consistently analyzed them using miRMaster and sRNAbench. Our database provides online access to the 90 483 most abundant isomiRs (>1 RPM in at least 1% of the samples) from 52 tissues and 188 cell types. Additionally, the full set of over 3 million detected isomiRs is available for download. Our resource can be queried at the sample, miRNA or isomiR level so users can quickly answer common questions about the presence/absence of a particular miRNA/isomiR in tissues of interest. Further, the database facilitates to identify whether a potentially interesting new isoform has been detected before and its frequency. In addition to expression tables, isomiRdb can generate multiple interactive visualisations including violin plots and heatmaps. isomiRdb is free to use and publicly available at: https://www.ccb.uni-saarland.de/isomirdb.
Collapse
Affiliation(s)
| | | | - Georges P Schmartz
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany,Rejuvenome, Astera Institute, Berkeley, CA 94705, USA
| | - Verena Keller
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany,Department for Internal Medicine II, Saarland University Hospital, 66421 Homburg, Germany
| | - Annika Engel
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Michael Hackenberg
- Genetics Department, Faculty of Science, Universidad de Granada, 18071 Granada, Spain
| | - Andreas Keller
- To whom correspondence should be addressed. Tel: +49 681 30268611; Fax: +49 681 30268610;
| |
Collapse
|