1
|
Clancy SM, Whitehead M, Oliver NAM, Huson KM, Kyle J, Demartini D, Irvine A, Santos FG, Kajugu PE, Hanna REB, Huws SA, Morphew RM, Waite JH, Haldenby S, Robinson MW. The Calicophoron daubneyi genome provides new insight into mechanisms of feeding, eggshell synthesis and parasite-microbe interactions. BMC Biol 2025; 23:11. [PMID: 39800692 PMCID: PMC11727788 DOI: 10.1186/s12915-025-02114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The rumen fluke, Calicophoron daubneyi, is the major paramphistome species infecting ruminants within Europe. Adult flukes reside within the rumen where they are in direct contact with a unique collection of microorganisms. Here, we report a 1.76-Gb draft genome for C. daubneyi, the first for any paramphistome species. RESULTS Several gene families have undergone specific expansion in C. daubneyi, including the peptidoglycan-recognition proteins (PGRPs) and DM9 domain-containing proteins, which function as pattern-recognition receptors, as well as the saposin-like proteins with putative antibacterial properties, and are upregulated upon arrival of the fluke in the microbe-rich rumen. We describe the first characterisation of a helminth PGRP and show that a recombinant C. daubneyi PGRP binds to the surface of bacteria, including obligate anaerobes from the rumen, via specific interaction with cell wall peptidoglycan. We reveal that C. daubneyi eggshell proteins lack L-DOPA typically required for eggshell crosslinking in trematodes and propose that C. daubneyi employs atypical eggshell crosslinking chemistry that produces eggs with greater stability. Finally, although extracellular digestion of rumen ciliates occurs within the C. daubneyi gut, unique ultrastructural and biochemical adaptations of the gastrodermal cells suggest that adult flukes also acquire nutrients via uptake of volatile fatty acids from rumen fluid. CONCLUSIONS Our findings suggest that unique selective pressures, associated with inhabiting a host environment so rich in microbial diversity, have driven the evolution of molecular and morphological adaptations that enable C. daubneyi to defend itself against microorganisms, feed and reproduce within the rumen.
Collapse
Affiliation(s)
- Shauna M Clancy
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Mark Whitehead
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Nicola A M Oliver
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Jake Kyle
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Daniel Demartini
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Allister Irvine
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Fernanda Godoy Santos
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | | | | | - Sharon A Huws
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Russell M Morphew
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - J Herbert Waite
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK.
| |
Collapse
|
2
|
Sandberg TOM, Yahalomi D, Bracha N, Haddas-Sasson M, Pupko T, Atkinson SD, Bartholomew JL, Zhang JY, Huchon D. Evolution of myxozoan mitochondrial genomes: insights from myxobolids. BMC Genomics 2024; 25:388. [PMID: 38649808 PMCID: PMC11034133 DOI: 10.1186/s12864-024-10254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Myxozoa is a class of cnidarian parasites that encompasses over 2,400 species. Phylogenetic relationships among myxozoans remain highly debated, owing to both a lack of informative morphological characters and a shortage of molecular markers. Mitochondrial (mt) genomes are a common marker in phylogeny and biogeography. However, only five complete myxozoan mt genomes have been sequenced: four belonging to two closely related genera, Enteromyxum and Kudoa, and one from the genus Myxobolus. Interestingly, while cytochrome oxidase genes could be identified in Enteromyxum and Kudoa, no such genes were found in Myxobolus squamalis, and another member of the Myxobolidae (Henneguya salminicola) was found to have lost its entire mt genome. To evaluate the utility of mt genomes to reconstruct myxozoan relationships and to understand if the loss of cytochrome oxidase genes is a characteristic of myxobolids, we sequenced the mt genome of five myxozoans (Myxobolus wulii, M. honghuensis, M. shantungensis, Thelohanellus kitauei and, Sphaeromyxa zaharoni) using Illumina and Oxford Nanopore platforms. RESULTS Unlike Enteromyxum, which possesses a partitioned mt genome, the five mt genomes were encoded on single circular chromosomes. An mt plasmid was found in M. wulii, as described previously in Kudoa iwatai. In all new myxozoan genomes, five protein-coding genes (cob, cox1, cox2, nad1, and nad5) and two rRNAs (rnl and rns) were recognized, but no tRNA. We found that Myxobolus and Thelohanellus species shared unidentified reading frames, supporting the view that these mt open reading frames are functional. Our phylogenetic reconstructions based on the five conserved mt genes agree with previously published trees based on the 18S rRNA gene. CONCLUSIONS Our results suggest that the loss of cytochrome oxidase genes is not a characteristic of all myxobolids, the ancestral myxozoan mt genome was likely encoded on a single circular chromosome, and mt plasmids exist in a few lineages. Our findings indicate that myxozoan mt sequences are poor markers for reconstructing myxozoan phylogenetic relationships because of their fast-evolutionary rates and the abundance of repeated elements, which complicates assembly.
Collapse
Affiliation(s)
| | - Dayana Yahalomi
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Noam Bracha
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Michal Haddas-Sasson
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, 97331, Corvallis, OR, USA
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, 97331, Corvallis, OR, USA
| | - Jin Yong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Dorothée Huchon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
3
|
Gastineau R, Lemieux C, Turmel M, Otis C, Boyle B, Coulis M, Gouraud C, Boag B, Murchie AK, Winsor L, Justine JL. The invasive land flatworm Arthurdendyus triangulatus has repeated sequences in the mitogenome, extra-long cox2 gene and paralogous nuclear rRNA clusters. Sci Rep 2024; 14:7840. [PMID: 38570596 PMCID: PMC10991399 DOI: 10.1038/s41598-024-58600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Using a combination of short- and long-reads sequencing, we were able to sequence the complete mitochondrial genome of the invasive 'New Zealand flatworm' Arthurdendyus triangulatus (Geoplanidae, Rhynchodeminae, Caenoplanini) and its two complete paralogous nuclear rRNA gene clusters. The mitogenome has a total length of 20,309 bp and contains repetitions that includes two types of tandem-repeats that could not be solved by short-reads sequencing. We also sequenced for the first time the mitogenomes of four species of Caenoplana (Caenoplanini). A maximum likelihood phylogeny associated A. triangulatus with the other Caenoplanini but Parakontikia ventrolineata and Australopacifica atrata were rejected from the Caenoplanini and associated instead with the Rhynchodemini, with Platydemus manokwari. It was found that the mitogenomes of all species of the subfamily Rhynchodeminae share several unusual structural features, including a very long cox2 gene. This is the first time that the complete paralogous rRNA clusters, which differ in length, sequence and seemingly number of copies, were obtained for a Geoplanidae.
Collapse
Affiliation(s)
- Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland.
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Christian Otis
- Plateforme d'Analyse Génomique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Brian Boyle
- Plateforme d'Analyse Génomique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Mathieu Coulis
- CIRAD, UPR GECO, 97285, Le Lamentin, Martinique, France
- GECO, CIRAD, University Montpellier, Montpellier, France
| | - Clément Gouraud
- UMR CNRS 6553 Ecobio, Université de Rennes, 263 Avenue du Gal Leclerc, CS 74205, CEDEX, 35042, Rennes, France
| | - Brian Boag
- The James Hutton Institute, Invergowrie, DD2 5DA, Scotland
| | - Archie K Murchie
- Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT9 5PX, Northern Ireland
| | - Leigh Winsor
- College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia
| | - Jean-Lou Justine
- ISYEB, Institut de Systématique, Évolution, Biodiversité (UMR7205 CNRS, EPHE, MNHN, UPMC, Université des Antilles), Muséum National d'Histoire Naturelle, CP 51, 55 Rue Buffon, 75231, Paris Cedex 05, France
| |
Collapse
|
4
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
5
|
Blair D. Paragonimiasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:203-238. [PMID: 39008267 DOI: 10.1007/978-3-031-60121-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Paragonimiasis is a zoonotic disease caused by lung flukes of the genus Paragonimus. Humans usually become infected by eating freshwater crabs or crayfish containing encysted metacercariae of these worms. However, an alternative route of infection exists: ingestion of raw meat from a mammalian paratenic host. Adult worms normally occur in pairs in cysts in the lungs from which they void their eggs via air passages. The pulmonary form is typical in cases of human infection due to P. westermani, P. heterotremus, and a few other species. Worms may occupy other sites in the body, notably the brain, but lung flukes have made their presence felt in almost every organ. Ectopic paragonimiasis is particularly common when infection is due to members of the P. skrjabini complex. Human paragonimiasis occurs primarily in the tropics and subtropics of Asia, Africa, and the Americas, with different species being responsible in different areas (Table 6.1).
Collapse
Affiliation(s)
- David Blair
- James Cook University, Townsville, QLD, Australia
| |
Collapse
|
6
|
Gacad JLJ, Yurlova NI, Ponomareva NM, Urabe M. Characterization of the complete mitochondrial genome of Plagiorchis multiglandularis (Digenea, Plagiorchiidae): Comparison with the members of Xiphidiatan species and phylogenetic implications. Parasitol Res 2023:10.1007/s00436-023-07855-x. [PMID: 37140653 DOI: 10.1007/s00436-023-07855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Plagiorchis multiglandularis Semenov, 1927 is a common fluke of birds and mammals, with significant impacts on animals and also human health. However, the systematics of Plagiorchiidae remain ambiguous. In the present study, the complete mitochondrial (mt) genome of P. multiglandularis cercariae was sequenced and compared with other digeneans in the order Xiphidiata. The complete circular mt genome of P. multiglandularis was 14,228 bp in length. The mitogenome contains 12 protein-coding genes and 22 transfer RNA genes. The 3' end of nad4L overlaps the 5' end of nad4 by 40 bp, while the atp8 gene is absent. Twenty-one transfer RNA genes transcribe products with conventional cloverleaf structures, while one transfer RNA gene has unpaired D-arms. Comparative analysis with related digenean trematodes revealed that A + T content of mt genome of P. multiglandularis was significantly higher among all the xiphidiatan trematodes. Phylogenetic analyses demonstrated that Plagiorchiidae formed a monophyletic branch, in which Plagiorchiidae are more closely related to Paragonimidae than Prosthogonimidae. Our data enhanced the Plagiorchis mt genome database and provides molecular resources for further studies of Plagiorchiidae taxonomy, population genetics and systematics.
Collapse
Affiliation(s)
- Janelle Laura J Gacad
- Division of Environmental Dynamics, Graduate School of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan.
| | - Natalia I Yurlova
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, 11 Frunze Str., Novosibirsk, 630091, Russia.
| | - Natalia M Ponomareva
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, 11 Frunze Str., Novosibirsk, 630091, Russia
| | - Misako Urabe
- Department of Ecosystem Studies, Faculty of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan
| |
Collapse
|
7
|
Le TH, Nguyen KT, Pham LTK, Doan HTT, Agatsuma T, Blair D. The complete mitogenome of the Asian lung fluke Paragonimus skrjabini miyazakii and its implications for the family Paragonimidae (Trematoda: Platyhelminthes). Parasitology 2022; 149:1709-1719. [PMID: 36101009 PMCID: PMC11010541 DOI: 10.1017/s0031182022001184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
The complete circular mitogenome of Paragonimus skrjabini miyazakii (Platyhelminthes: Paragonimidae) from Japan, obtained by PacBio long-read sequencing, was 17 591 bp and contained 12 protein-coding genes (PCGs), 2 mitoribosomal RNA and 22 transfer RNA genes. The atp8 gene was absent, and there was a 40 bp overlap between nad4L and nad4. The long non-coding region (4.3 kb) included distinct types of long and short repeat units. The pattern of base usage for PCGs and the mtDNA coding region overall in Asian and American Paragonimus species (P. s. miyazakii, P. heterotremus, P. ohirai and P. kellicotti) and the Indian form of P. westermani was T > G > A > C. On the other hand, East-Asian P. westermani used T > G > C > A. Five Asian and American Paragonimus species and P. westermani had TTT/Phe, TTG/Leu and GTT/Val as the most frequently used codons, whereas the least-used codons were different in each species and between regional forms of P. westermani. The phylogenetic tree reconstructed from a concatenated alignment of amino acids of 12 PCGs from 36 strains/26 species/5 families of trematodes confirmed that the Paragonimidae is monophyletic, with 100% nodal support. Paragonimus skrjabini miyazakii was resolved as a sister to P. heterotremus. The P. westermani clade was clearly separate from remaining congeners. The latter clade was comprised of 2 subclades, one of the East-Asian and the other of the Indian Type 1 samples. Additional mitogenomes in the Paragonimidae are needed for genomic characterization and are useful for diagnostics, identification and genetic/ phylogenetic/ epidemiological/ evolutionary studies of the Paragonimidae.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Khue Thi Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Linh Thi Khanh Pham
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Huong Thi Thanh Doan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Takeshi Agatsuma
- Department of Environmental Health Sciences, Kochi Medical School, Kohasu, Oko-cho 185-1, Nankoku, Kochi, 783-8505, Japan
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
8
|
Voronova AN, Vainutis KS, Tabakaeva TV, Sapotsky MV, Kakareka NN, Volkov YG, Galkina IV, Shchelkanov MY. Molecular identification of the trematode P. ichunensis stat. n. from lungs of siberian tigers justified reappraisal of Paragonimus westermani species complex. J Parasit Dis 2022; 46:744-753. [PMID: 36091260 PMCID: PMC9458828 DOI: 10.1007/s12639-022-01481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
Abstract
Flukes from the genus Paragonimus Braun, 1899 are medically important foodborne trematodes predominantly occurring throughout Asian countries. Providing molecular genetic characteristics based on ITS2 and partial 28 S rDNA of the paragonimids from the Russian Far East, Northeast, South, and Southeast Asian countries, we performed a partial reappraisal of Paragonimus westermani species complex. Members of this complex are genetically distinct worms with different divergence times and explosive expansion during Miocene-Pliocene epochs. We confirm the taxonomic status as valid species for P. ichunensis stat. n. (from the Russian Far East and Northern China), and P. filipinus (from the Philippines), which were previously considered subspecies of P. westermani, and reinstated the species name P. pulmonalis (from Japan). We suggest considering the worms from South Korea the Korean variety of P. ichunensis, because Korean specimens are sister and genetically closest to P. ichunensis from Northeast China and Primorsky region of Russia. Worms from South (India (type 2), Sri Lanka), Southeast (Malaysia, Vietnam, Thailand (types 1 and 2)) and East Asia (Taiwan) were left in the paragonimid systematics as Paragonimus sp. We propose to consider Indian worms of type 1 as true P. westermani, but in further revisions, due to the lack of holotype and unknown exact type locality, new type specimens (neotype) should be established.
Collapse
Affiliation(s)
- Anastasia N. Voronova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1, Selskaya st, 690087 Vladivostok, Russia
| | - Konstantin S. Vainutis
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1, Selskaya st, 690087 Vladivostok, Russia
| | - Tatiana V. Tabakaeva
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1, Selskaya st, 690087 Vladivostok, Russia
- Far Eastern Federal University, Sukhanova st., 8, 690091 Vladivostok, Russia
| | - Mikhail V. Sapotsky
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, pr. Stoletiya Vladivostoka, 159, 690022 Vladivostok, Russia
| | - Nadezhda N. Kakareka
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, pr. Stoletiya Vladivostoka, 159, 690022 Vladivostok, Russia
| | - Yury G. Volkov
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, pr. Stoletiya Vladivostoka, 159, 690022 Vladivostok, Russia
| | - Irina V. Galkina
- Far Eastern Federal University, Sukhanova st., 8, 690091 Vladivostok, Russia
| | - Mikhail Yu. Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1, Selskaya st, 690087 Vladivostok, Russia
- Far Eastern Federal University, Sukhanova st., 8, 690091 Vladivostok, Russia
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, pr. Stoletiya Vladivostoka, 159, 690022 Vladivostok, Russia
| |
Collapse
|
9
|
Vainutis KS, Voronova AN, Duscher GG, Shchelkanov EM, Shchelkanov MY. Origins, phylogenetic relationships and host-parasite interactions of Troglotrematoidea since the cretaceous. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105274. [PMID: 35337967 DOI: 10.1016/j.meegid.2022.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In the current study, we raise the issue concerning origins and historical relationships of the trematodes from the families Troglotrematidae and Paragonimidae using phylogenetic analysis and molecular-clock method for estimating evolutionary rates. For the first time we provided 28S rRNA gene fragment (1764 bp) for the type species Troglotrema acutum - zoonotic trematodes that cause cranial lesions (troglotremiasis) in mustelid and canid mammals of the Central Europe, Iberian Peninsula, and North-West Caucasus. Molecular genetic analysis revealed that T. acutum belongs to the monophyletic family Troglotrematidae sister with the family Paragonimidae. The family Troglotrematidae includes five genera: Nanophyetus, Troglotrema, Skrjabinophyetus, Nephrotrema, and Macroorchis; and the family Paragonimidae is monotypic including the only genus Paragonimus. We recover the superfamily Troglotrematoidea for these two families. Divergence of the common ancestor of the superfamily Troglotrematoidea (common troglotrematoid ancestor) likely occurred during the Cretaceous period of the Mesozoic Era and potentially originated in the Asiatic region. The lineage of the family Troglotrematidae is much closer to the common troglotrematoid ancestor than the species of the family Paragonimidae. The radiation time of the common troglotrematoid ancestor (126 Ma, the Early Cretaceous), and formation of the families Troglotrematidae and Paragonimidae (96 Ma and 73 Ma respectively, the Late Cretaceous) corresponds to the time of settling in East Asia by many species of mammaliaforms (about 130-70 Ma).
Collapse
Affiliation(s)
- Konstantin S Vainutis
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1 Selskaya Street, 690087 Vladivostok, Russian Federation; Far Eastern Federal University, Vladivostok, Russia.
| | - Anastasia N Voronova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1 Selskaya Street, 690087 Vladivostok, Russian Federation; Far Eastern Federal University, Vladivostok, Russia.
| | - Georg G Duscher
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria; AGES-Austrian Agency for Health & Food Safety, Robert-Koch-Gasse 17, A-2340 Moedling, Austria.
| | - Egor M Shchelkanov
- Moscow Region State University, Moscow Region, Radio street, 10/1, Moscow 105005, Russia
| | - Mikhail Yu Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1 Selskaya Street, 690087 Vladivostok, Russian Federation; Far Eastern Federal University, Vladivostok, Russia; Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the RAS, pr. 100-letija, 159, Vladivostok 690022, Russia.
| |
Collapse
|
10
|
Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nat Commun 2022; 13:3239. [PMID: 35688815 PMCID: PMC9187692 DOI: 10.1038/s41467-022-30578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Many species with separate male and female individuals (termed ‘gonochorism’ in animals) have sex-linked genome regions. Here, we investigate evolutionary changes when genome regions become completely sex-linked, by analyses of multiple species of flatworms (Platyhelminthes; among which schistosomes recently evolved gonochorism from ancestral hermaphroditism), and roundworms (Nematoda) which have undergone independent translocations of different autosomes. Although neither the evolution of gonochorism nor translocations fusing ancestrally autosomal regions to sex chromosomes causes inevitable loss of recombination, we document that formerly recombining regions show genomic signatures of recombination suppression in both taxa, and become strongly genetically degenerated, with a loss of most genes. Comparisons with hermaphroditic flatworm transcriptomes show masculinisation and some defeminisation in schistosome gonad gene expression. We also find evidence that evolution of sex-linkage in nematodes is accompanied by transcriptional changes and dosage compensation. Our analyses also identify sex-linked genes that could assist future research aimed at controlling some of these important parasites. Transitions between hermaphroditic and separate sexes are relatively understudied in animals compared to pants. Here, Wang et al. reconstruct the evolution of separate sexes in the flatworms and complex changes of sex chromosomes in the roundworms.
Collapse
|
11
|
Abstract
The title of this article refers to Table 1 in Zhou (2022, Infectious diseases of poverty: progress achieved during the decade gone and perspectives for the future. Infectious Diseases of Poverty 11, 1), in which it is indicated that Paragonimus species, like many other foodborne trematodes, are ancient pathogens that are also re-emerging to cause disease in modern times. This article provides a general overview of Paragonimus species and the disease they cause. This is followed by comments on several specific topics of current interest: taxonomy and distribution of members of the genus; details of the life cycle; global and regional prevalence of paragonimiasis; genomics of lung flukes and possible effects of global environmental change. Unresolved questions relating to these topics are discussed and gaps in knowledge identified.
Collapse
|
12
|
Fontenla S, Rinaldi G, Tort JF. Lost and Found: Piwi and Argonaute Pathways in Flatworms. Front Cell Infect Microbiol 2021; 11:653695. [PMID: 34123869 PMCID: PMC8191739 DOI: 10.3389/fcimb.2021.653695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Platyhelminthes comprise one of the major phyla of invertebrate animals, inhabiting a wide range of ecosystems, and one of the most successful in adapting to parasitic life. Small non-coding RNAs have been implicated in regulating complex developmental transitions in model parasitic species. Notably, parasitic flatworms have lost Piwi RNA pathways but gained a novel Argonaute gene. Herein, we analyzed, contrasted and compared the conservation of small RNA pathways among several free-living species (a paraphyletic group traditionally known as ‘turbellarians’) and parasitic species (organized in the monophyletic clade Neodermata) to disentangle possible adaptations during the transition to parasitism. Our findings showed that complete miRNA and RNAi pathways are present in all analyzed free-living flatworms. Remarkably, whilst all ‘turbellarians’ have Piwi proteins, these were lost in parasitic Neodermantans. Moreover, two clusters of Piwi class Argonaute genes are present in all ‘turbellarians’. Interestingly, we identified a divergent Piwi class Argonaute in free living flatworms exclusively, which we named ‘Fliwi’. In addition, other key proteins of the Piwi pathways were conserved in ‘turbellarians’, while none of them were detected in Neodermatans. Besides Piwi and the canonical Argonaute proteins, a flatworm-specific class of Argonautes (FL-Ago) was identified in the analyzed species confirming its ancestrallity to all Platyhelminthes. Remarkably, this clade was expanded in parasitic Neodermatans, but not in free-living species. These phyla-specific Argonautes showed lower sequence conservation compared to other Argonaute proteins, suggesting that they might have been subjected to high evolutionary rates. However, key residues involved in the interaction with the small RNA and mRNA cleavage in the canonical Argonautes were more conserved in the FL-Agos than in the Piwi Argonautes. Whether this is related to specialized functions and adaptations to parasitism in Neodermatans remains unclear. In conclusion, differences detected in gene conservation, sequence and structure of the Argonaute family suggest tentative biological and evolutionary diversifications that are unique to Platyhelminthes. The remarkable divergencies in the small RNA pathways between free-living and parasitic flatworms indicate that they may have been involved in the adaptation to parasitism of Neodermatans.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | | | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| |
Collapse
|
13
|
Zhang Y, Nie Y, Deng YP, Liu GH, Fu YT. The complete mitochondrial genome sequences of the cat flea Ctenocephalides felis felis (Siphonaptera: Pulicidae) support the hypothesis that C. felis isolates from China and USA were the same C. f. felis subspecies. Acta Trop 2021; 217:105880. [PMID: 33662336 DOI: 10.1016/j.actatropica.2021.105880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
The cat flea Ctenocephalides felis (Siphonaptera: Pulicidae) is the most important ectoparasite in cats and dogs worldwide. Over the years, there has been much dispute regarding the taxonomic and systematic status of C. felis. Mitochondrial (mt) genome sequences are useful genetic markers for the identification and differentiation of ectoparasites, but the mt genome of C. felis and its subspecies has not yet been entirely characterized. In the present study, the entire mt genome of C. f. felis from China was sequenced and compared with that of C. felis from the USA. Both contain 37 genes and a long non-coding region of >6 kbp. The molecular identity between the Chinese and American isolates was 99%, except for the non-coding region. The protein-coding genes showed differences at both the nucleotide (1.2%) and amino acid (1%) levels. Interestingly, the cox1 gene of the Chinese isolate had an unusual putative start codon (TTT). Taken together, our analyses strongly support the hypothesis that C. felis isolates from China and the USA were the same C. f. felis subspecies. The mt genome sequence of the C. f. felis China isolate presented in this study provides useful molecular markers to further address the taxonomy and systematics of C. felis.
Collapse
Affiliation(s)
- Yu Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Yu Nie
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Yuan-Ping Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan Province, 410128, China.
| | - Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| |
Collapse
|
14
|
Dynamic transcriptome landscape of Paragonimus proliferus developmental stages in the rat lungs. Parasitol Res 2021; 120:1627-1636. [PMID: 33792812 DOI: 10.1007/s00436-021-07111-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Paragonimus proliferus, a lung fluke of the genus Paragonimus, was first reported in Yunnan province, China. P. proliferus can infect Sprague-Dawley (SD) rats and cause lung damage, but there is still no direct evidence of human infection. Until now, there has been a lack of studies on P. proliferus parasitism and development in mammalian lung tissue. The aim of this study was to perform transcriptomic profiling of P. proliferus at different developmental stages. SD rats were infected with P. proliferus metacercariae obtained from crabs; worms isolated from the lungs at different time points as well as metacercariae were subjected to whole transcriptome sequencing. Overall, 34,403 transcripts with the total length of 33,223,828 bp, average length of 965 bp, and N50 of 1833 bp were assembled. Comparative analysis indicated that P. proliferus, similar to other Paragonimus spp., expressed genes related to catabolism, whereas P. proliferus-specific transcripts were related to the maintenance of cellular redox homeostasis, sensitivity to bacteria, and immune response. Transcriptional dynamics analysis revealed that genes involved in the regulation of catabolism and apoptosis had stable expression over the P. proliferus life cycle, whereas those involved in development and immune response showed time-dependent changes. High expression of genes associated with immune response corresponded to that of genes regulating the sensitivity to bacteria and immune protection. We constructed a P. proliferus developmental model, including the development of the body, suckers, blood cells, reproductive and tracheal systems, lymph, skin, cartilage, and other tissues and organs, and an immune response model, which mainly involved T cells and macrophages. Our study provides a foundation for further research into the molecular biology and infection mechanism of P. proliferus.
Collapse
|
15
|
Young ND, Stroehlein AJ, Kinkar L, Wang T, Sohn WM, Chang BCH, Kaur P, Weisz D, Dudchenko O, Aiden EL, Korhonen PK, Gasser RB. High-quality reference genome for Clonorchis sinensis. Genomics 2021; 113:1605-1615. [PMID: 33677057 DOI: 10.1016/j.ygeno.2021.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The Chinese liver fluke, Clonorchis sinensis, causes the disease clonorchiasis, affecting ~35 million people in regions of China, Vietnam, Korea and the Russian Far East. Chronic clonorchiasis causes cholangitis and can induce a malignant cancer, called cholangiocarcinoma, in the biliary system. Control in endemic regions is challenging, and often relies largely on chemotherapy with one anthelmintic, called praziquantel. Routine treatment carries a significant risk of inducing resistance to this anthelmintic in the fluke, such that the discovery of new interventions is considered important. It is hoped that the use of molecular technologies will assist this endeavour by enabling the identification of drug or vaccine targets involved in crucial biological processes and/or pathways in the parasite. Although draft genomes of C. sinensis have been published, their assemblies are fragmented. In the present study, we tackle this genome fragmentation issue by utilising, in an integrated way, advanced (second- and third-generation) DNA sequencing and informatic approaches to build a high-quality reference genome for C. sinensis, with chromosome-level contiguity and curated gene models. This substantially-enhanced genome provides a resource that could accelerate fundamental and applied molecular investigations of C. sinensis, clonorchiasis and/or cholangiocarcinoma, and assist in the discovery of new interventions against what is a highly significant, but neglected disease-complex.
Collapse
Affiliation(s)
- Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia, Perth, Western Australia 6009, Australia
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Erez Lieberman Aiden
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia, Perth, Western Australia 6009, Australia; The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Nanopore Sequencing Resolves Elusive Long Tandem-Repeat Regions in Mitochondrial Genomes. Int J Mol Sci 2021; 22:ijms22041811. [PMID: 33670420 PMCID: PMC7918261 DOI: 10.3390/ijms22041811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Long non-coding, tandem-repetitive regions in mitochondrial (mt) genomes of many metazoans have been notoriously difficult to characterise accurately using conventional sequencing methods. Here, we show how the use of a third-generation (long-read) sequencing and informatic approach can overcome this problem. We employed Oxford Nanopore technology to sequence genomic DNAs from a pool of adult worms of the carcinogenic parasite, Schistosoma haematobium, and used an informatic workflow to define the complete mt non-coding region(s). Using long-read data of high coverage, we defined six dominant mt genomes of 33.4 kb to 22.6 kb. Although no variation was detected in the order or lengths of the protein-coding genes, there was marked length (18.5 kb to 7.6 kb) and structural variation in the non-coding region, raising questions about the evolution and function of what might be a control region that regulates mt transcription and/or replication. The discovery here of the largest tandem-repetitive, non-coding region (18.5 kb) in a metazoan organism also raises a question about the completeness of some of the mt genomes of animals reported to date, and stimulates further explorations using a Nanopore-informatic workflow.
Collapse
|
17
|
Suleman, Muhammad N, Khan MS, Tkach VV, Ullah H, Ehsan M, Ma J, Zhu XQ. Mitochondrial genomes of two eucotylids as the first representatives from the superfamily Microphalloidea (Trematoda) and phylogenetic implications. Parasit Vectors 2021; 14:48. [PMID: 33446249 PMCID: PMC7807500 DOI: 10.1186/s13071-020-04547-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background The Eucotylidae Cohn, 1904 (Superfamily: Microphalloidea), is a family of digeneans parasitic in kidneys of birds as adults. The group is characterized by the high level of morphological similarities among genera and unclear systematic value of morphological characters traditionally used for their differentiation. In the present study, we sequenced the complete or nearly complete mitogenomes (mt genome) of two eucotylids representing the genera Tamerlania (T. zarudnyi) and Tanaisia (Tanaisia sp.). They represent the first sequenced mt genomes of any member of the superfamily Microphalloidea. Methods A comparative mitogenomic analysis of the two newly sequenced eucotylids was conducted for the investigation of mitochondrial gene arrangement, contents and genetic distance. Phylogenetic position of the family Eucotylidae within the order Plagiorchiida was examined using nucleotide sequences of mitochondrial protein-coding genes (PCGs) plus RNAs using maximum likelihood (ML) and Bayesian inference (BI) methods. BI phylogeny based on concatenated amino acids sequences of PCGs was also conducted to determine possible effects of silent mutations. Results The complete mt genome of T. zarudnyi was 16,188 bp and the nearly complete mt genome of Tanaisia sp. was 13,953 bp in length. A long string of additional amino acids (about 123 aa) at the 5′ end of the cox1 gene in both studied eucotylid mt genomes has resulted in the cox1 gene of eucotylids being longer than in all previously sequenced digeneans. The rrnL gene was also longer than previously reported in any digenean mitogenome sequenced so far. The TΨC and DHU loops of the tRNAs varied greatly between the two eucotylids while the anticodon loop was highly conserved. Phylogenetic analyses based on mtDNA nucleotide and amino acids sequences (as a separate set) positioned eucotylids as a sister group to all remaining members of the order Plagiorchiida. Both ML and BI phylogenies revealed the paraphyletic nature of the superfamily Gorgoderoidea and the suborder Xiphidiata. Conclusions The average sequence identity, combined nucleotide diversity and Kimura-2 parameter distances between the two eucotylid mitogenomes demonstrated that atp6, nad5, nad4L and nad6 genes are better markers than the traditionally used cox1 or nad1 for the species differentiation and population-level studies of eucotylids because of their higher variability. The position of the Dicrocoeliidae and Eucotylidae outside the clade uniting other xiphidiatan trematodes strengthened the argument for the need for re-evaluation of the taxonomic content of the Xiphidiata.![]()
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Shanghai, 20041, People's Republic of China
| | - Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
18
|
Kinkar L, Young ND, Sohn WM, Stroehlein AJ, Korhonen PK, Gasser RB. First record of a tandem-repeat region within the mitochondrial genome of Clonorchis sinensis using a long-read sequencing approach. PLoS Negl Trop Dis 2020; 14:e0008552. [PMID: 32845881 PMCID: PMC7449408 DOI: 10.1371/journal.pntd.0008552] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Mitochondrial genomes provide useful genetic markers for systematic and population genetic studies of parasitic helminths. Although many such genome sequences have been published and deposited in public databases, there is evidence that some of them are incomplete relating to an inability of conventional techniques to reliably sequence non-coding (repetitive) regions. In the present study, we characterise the complete mitochondrial genome—including the long, non-coding region—of the carcinogenic Chinese liver fluke, Clonorchis sinensis, using long-read sequencing. Methods The mitochondrial genome was sequenced from total high molecular-weight genomic DNA isolated from a pool of 100 adult worms of C. sinensis using the MinION sequencing platform (Oxford Nanopore Technologies), and assembled and annotated using an informatic approach. Results From > 93,500 long-reads, we assembled a 18,304 bp-mitochondrial genome for C. sinensis. Within this genome we identified a novel non-coding region of 4,549 bp containing six tandem-repetitive units of 719–809 bp each. Given that genomic DNA from pooled worms was used for sequencing, some variability in length/sequence in this tandem-repetitive region was detectable, reflecting population variation. Conclusions For C. sinensis, we report the complete mitochondrial genome, which includes a long (> 4.5 kb) tandem-repetitive region. The discovery of this non-coding region using a nanopore-sequencing/informatic approach now paves the way to investigating the nature and extent of length/sequence variation in this region within and among individual worms, both within and among C. sinensis populations, and to exploring whether this region has a functional role in the regulation of replication and transcription, akin to the mitochondrial control region in mammals. Although applied to C. sinensis, the technological approach established here should be broadly applicable to characterise complex tandem-repetitive or homo-polymeric regions in the mitochondrial genomes of a wide range of taxa. In the present study, we characterised the complete mitochondrial genome of Clonorchis sinensis—a carcinogenic liver fluke. To do this, we sequenced from total genomic DNA from multiple adult worms using a new method (Oxford Nanopore technology) to obtain data for long stretches of DNA, and then assembled these data to construct a mitochondrial genome of 18,304 bp, containing a > 4.5 kb-long tandem-repetitive region—not previously detected in this species. The results demonstrate that this method is effective at sequencing long and complex non-coding elements—not achievable using conventional techniques. The discovery of this long tandem-repetitive region in C. sinensis provides an opportunity to now explore its origin(s) and length/sequence diversity in populations of this species, and also to characterise its function(s). The technological approach employed here should have broad applicability to characterise previously-elusive non-coding mitochondrial genomic regions in a wide range of taxa.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Andreas J. Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| |
Collapse
|
19
|
Wu YA, Gao JW, Cheng XF, Xie M, Yuan XP, Liu D, Song R. Characterization and comparative analysis of the complete mitochondrial genome of Azygia hwangtsiyui Tsin, 1933 (Digenea), the first for a member of the family Azygiidae. Zookeys 2020; 945:1-16. [PMID: 32714004 PMCID: PMC7351859 DOI: 10.3897/zookeys.945.49681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Azygia hwangtsiyui (Trematoda, Azygiidae), a neglected parasite of predatory fishes, is little-known in terms of its molecular epidemiology, population ecology and phylogenetic study. In the present study, the complete mitochondrial genome of A. hwangtsiyui was sequenced and characterized: it is a 13,973 bp circular DNA molecule and encodes 36 genes (12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes) as well as two non-coding regions. The A+T content of the A. hwangtsiyui mitogenome is 59.6% and displays a remarkable bias in nucleotide composition with a negative AT skew (-0.437) and a positive GC skew (0.408). Phylogenetic analysis based on concatenated amino acid sequences of twelve protein-coding genes reveals that A. hwangtsiyui is placed in a separate clade, suggesting that it has no close relationship with any other trematode family. This is the first characterization of the A. hwangtsiyui mitogenome, and the first reported mitogenome of the family Azygiidae. These novel datasets of the A. hwangtsiyui mt genome represent a meaningful resource for the development of mitochondrial markers for the identification, diagnostics, taxonomy, homology and phylogenetic relationships of trematodes.
Collapse
Affiliation(s)
- Yuan-An Wu
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Jin-Wei Gao
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Xiao-Fei Cheng
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Xi-Ping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Dong Liu
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| |
Collapse
|
20
|
Rosa BA, Choi YJ, McNulty SN, Jung H, Martin J, Agatsuma T, Sugiyama H, Le TH, Doanh PN, Maleewong W, Blair D, Brindley PJ, Fischer PU, Mitreva M. Comparative genomics and transcriptomics of 4 Paragonimus species provide insights into lung fluke parasitism and pathogenesis. Gigascience 2020; 9:giaa073. [PMID: 32687148 PMCID: PMC7370270 DOI: 10.1093/gigascience/giaa073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/19/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paragonimus spp. (lung flukes) are among the most injurious foodborne helminths, infecting ∼23 million people and subjecting ∼292 million to infection risk. Paragonimiasis is acquired from infected undercooked crustaceans and primarily affects the lungs but often causes lesions elsewhere including the brain. The disease is easily mistaken for tuberculosis owing to similar pulmonary symptoms, and accordingly, diagnostics are in demand. RESULTS We assembled, annotated, and compared draft genomes of 4 prevalent and distinct Paragonimus species: Paragonimus miyazakii, Paragonimus westermani, Paragonimus kellicotti, and Paragonimus heterotremus. Genomes ranged from 697 to 923 Mb, included 12,072-12,853 genes, and were 71.6-90.1% complete according to BUSCO. Orthologous group analysis spanning 21 species (lung, liver, and blood flukes, additional platyhelminths, and hosts) provided insights into lung fluke biology. We identified 256 lung fluke-specific and conserved orthologous groups with consistent transcriptional adult-stage Paragonimus expression profiles and enriched for iron acquisition, immune modulation, and other parasite functions. Previously identified Paragonimus diagnostic antigens were matched to genes, providing an opportunity to optimize and ensure pan-Paragonimus reactivity for diagnostic assays. CONCLUSIONS This report provides advances in molecular understanding of Paragonimus and underpins future studies into the biology, evolution, and pathogenesis of Paragonimus and related foodborne flukes. We anticipate that these novel genomic and transcriptomic resources will be invaluable for future lung fluke research.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Young-Jun Choi
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Samantha N McNulty
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| | - Hyeim Jung
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - John Martin
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Takeshi Agatsuma
- Department of Environmental Health Sciences, Kochi Medical School, Kohasu, Oko-cho 185-1, Nankoku, Kochi, 783-8505, Japan
| | - Hiromu Sugiyama
- Laboratory of Helminthology, Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Pham Ngoc Doanh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Paul J Brindley
- Departments of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, and Pathology School of Medicine & Health Sciences, George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
| | - Peter U Fischer
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| |
Collapse
|
21
|
Mauer K, Hellmann SL, Groth M, Fröbius AC, Zischler H, Hankeln T, Herlyn H. The genome, transcriptome, and proteome of the fish parasite Pomphorhynchus laevis (Acanthocephala). PLoS One 2020; 15:e0232973. [PMID: 32574180 PMCID: PMC7310846 DOI: 10.1371/journal.pone.0232973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
Thorny-headed worms (Acanthocephala) are endoparasites exploiting Mandibulata (Arthropoda) and Gnathostomata (Vertebrata). Despite their world-wide occurrence and economic relevance as a pest, genome and transcriptome assemblies have not been published before. However, such data might hold clues for a sustainable control of acanthocephalans in animal production. For this reason, we present the first draft of an acanthocephalan nuclear genome, besides the mitochondrial one, using the fish parasite Pomphorhynchus laevis (Palaeacanthocephala) as a model. Additionally, we have assembled and annotated the transcriptome of this species and the proteins encoded. A hybrid assembly of long and short reads resulted in a near-complete P. laevis draft genome of ca. 260 Mb, comprising a large repetitive portion of ca. 63%. Numbers of transcripts and translated proteins (35,683) were within the range of other members of the Rotifera-Acanthocephala clade. Our data additionally demonstrate a significant reorganization of the acanthocephalan gene repertoire. Thus, more than 20% of the usually conserved metazoan genes were lacking in P. laevis. Ontology analysis of the retained genes revealed many connections to the incorporation of carotinoids. These are probably taken up via the surface together with lipids, thus accounting for the orange coloration of P. laevis. Furthermore, we found transcripts and protein sequences to be more derived in P. laevis than in rotifers from Monogononta and Bdelloidea. This was especially the case in genes involved in energy metabolism, which might reflect the acanthocephalan ability to use the scarce oxygen in the host intestine for respiration and simultaneously carry out fermentation. Increased plasticity of the gene repertoire through the integration of foreign DNA into the nuclear genome seems to be another underpinning factor of the evolutionary success of acanthocephalans. In any case, energy-related genes and their proteins may be considered as candidate targets for the acanthocephalan control.
Collapse
Affiliation(s)
- Katharina Mauer
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sören Lukas Hellmann
- Molecular Genetics and Genomic Analysis Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marco Groth
- CF DNA sequencing, Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
| | - Andreas C. Fröbius
- Molecular Andrology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Gießen, Gießen, Germany
| | - Hans Zischler
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Molecular Genetics and Genomic Analysis Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
22
|
Suleman, Khan MS, Tkach VV, Muhammad N, Zhang D, Zhu XQ, Ma J. Molecular phylogenetics and mitogenomics of three avian dicrocoeliids (Digenea: Dicrocoeliidae) and comparison with mammalian dicrocoeliids. Parasit Vectors 2020; 13:74. [PMID: 32054541 PMCID: PMC7020495 DOI: 10.1186/s13071-020-3940-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background The Dicrocoeliidae are digenetic trematodes mostly parasitic in the bile ducts and gall bladder of various avian and mammalian hosts. Until recently their systematics was based on morphological data only. Due to the high morphological uniformity across multiple dicrocoeliid taxa and insufficient knowledge of relative systematic value of traditionally used morphological characters, their taxonomy has always been unstable. Therefore, DNA sequence data provide a critical independent source of characters for phylogenetic inference and improvement of the system. Methods We examined the phylogenetic affinities of three avian dicrocoeliids representing the genera Brachylecithum, Brachydistomum and Lyperosomum, using partial sequences of the nuclear large ribosomal subunit (28S) RNA gene. We also sequenced the complete or nearly complete mitogenomes of these three isolates and conducted a comparative mitogenomic analysis with the previously available mitogenomes from three mammalian dicrocoeliids (from 2 different genera) and examined the phylogenetic position of the family Dicrocoeliidae within the order Plagiorchiida based on concatenated nucleotide sequences of all mitochondrial genes (except trnG and trnE). Results Combined nucleotide diversity, Kimura-2-parameter distance, non-synonymous/synonymous substitutions ratio and average sequence identity analyses consistently demonstrated that cox1, cytb, nad1 and two rRNAs were the most conserved and atp6, nad5, nad3 and nad2 were the most variable genes across dicrocoeliid mitogenomes. Phylogenetic analyses based on mtDNA sequences did not support the close relatedness of the Paragonimidae and Dicrocoeliidae and suggested non-monophyly of the Gorgoderoidea as currently recognized. Conclusions Our results show that fast-evolving mitochondrial genes atp6, nad5 and nad3 would be better markers than slow-evolving genes cox1 and nad1 for species discrimination and population level studies in the Dicrocoeliidae. Furthermore, the Dicrocoeliidae being outside of the clade containing other xiphidiatan trematodes suggests a need for the re-evaluation of the taxonomic content of the Xiphidiata.
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
23
|
Comparative mitogenomics of the zoonotic parasite Echinostoma revolutum resolves taxonomic relationships within the ' E. revolutum' species group and the Echinostomata (Platyhelminthes: Digenea). Parasitology 2020; 147:566-576. [PMID: 31992373 DOI: 10.1017/s0031182020000128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complete mitochondrial sequence of 17,030 bp was obtained from Echinostoma revolutum and characterized with those of previously reported members of the superfamily Echinostomatoidea, i.e. six echinostomatids, one echinochasmid, five fasciolids, one himasthlid, and two cyclocoelids. Relationship within suborders and between superfamilies, such as Echinostomata, Pronocephalata, Troglotremata, Opisthorchiata, and Xiphiditata, are also considered. It contained 12 protein-coding, two ribosomal RNA, 22 transfer RNA genes and a tandem repetitive consisting non-coding region (NCR). The gene order, one way-positive transcription, the absence of atp8 and the overlapped region by 40 bp between nad4L and nad4 genes were similar as in common trematodes. The NCR located between tRNAGlu (trnE) and cox3 contained 11 long (LRUs) and short repeat units (SRUs) (seven LRUs of 317 bp, four SRUs of 207 bp each), and an internal spacer sequence between LRU7 and SRU4 specifying high-level polymorphism. Special DHU-arm missing tRNAs for Serine were found for both tRNAS1(AGN) and tRNAS2(UCN). Echinostoma revolutum indicated the lowest divergence rate to E. miyagawai and the highest to Tracheophilus cymbius and Echinochasmus japonicus. The usage of ATG/GTG start and TAG/TAA stop codons, the AT composition bias, the negative AT-skewness, and the most for Phe/Leu/Val and the least for Arg/Asn/Asp codons were noted. Topology indicated the monophyletic position of E. revolutum to E. miyagawai. Monophyly of Echinostomatidae and Fasciolidae was clearly solved with respect to Echinochasmidae, Himasthlidae, and Cyclocoelidae which were rendered paraphyletic in the suborder Echinostomata.
Collapse
|
24
|
Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, Rollinson D, Brindley PJ, Gasser RB, Young ND. High-quality Schistosoma haematobium genome achieved by single-molecule and long-range sequencing. Gigascience 2019; 8:giz108. [PMID: 31494670 PMCID: PMC6736295 DOI: 10.1093/gigascience/giz108] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 08/10/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease affecting >100 million people worldwide. Chronic infection with this parasitic trematode can lead to urogenital conditions including female genital schistosomiasis and bladder cancer. At the molecular level, little is known about this blood fluke and the pathogenesis of the disease that it causes. To support molecular studies of this carcinogenic worm, we reported a draft genome for S. haematobium in 2012. Although a useful resource, its utility has been somewhat limited by its fragmentation. FINDINGS Here, we systematically enhanced the draft genome of S. haematobium using a single-molecule and long-range DNA-sequencing approach. We achieved a major improvement in the accuracy and contiguity of the genome assembly, making it superior or comparable to assemblies for other schistosome species. We transferred curated gene models to this assembly and, using enhanced gene annotation pipelines, inferred a gene set with as many or more complete gene models as those of other well-studied schistosomes. Using conserved, single-copy orthologs, we assessed the phylogenetic position of S. haematobium in relation to other parasitic flatworms for which draft genomes were available. CONCLUSIONS We report a substantially enhanced genomic resource that represents a solid foundation for molecular research on S. haematobium and is poised to better underpin population and functional genomic investigations and to accelerate the search for new disease interventions.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner Flemington Road and Park Drive, Parkville, VIC 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner Flemington Road and Park Drive, Parkville, VIC 3010, Australia
| | - Teik Min Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Yan Lue Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kok Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Bonnie Webster
- Parasites and Vectors Division, The Natural History Museum, Cromwell Rd, South Kensington, London SW7 5BD, UK
| | - David Rollinson
- Parasites and Vectors Division, The Natural History Museum, Cromwell Rd, South Kensington, London SW7 5BD, UK
| | - Paul J Brindley
- School of Medicine & Health Sciences, Department of Microbiology, Immunology & Tropical Medicine, George Washington University, 2300 Eye Street, NW, Suite 502, Washington, DC 20037, USA
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner Flemington Road and Park Drive, Parkville, VIC 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner Flemington Road and Park Drive, Parkville, VIC 3010, Australia
| |
Collapse
|
25
|
Luo F, Yin M, Mo X, Sun C, Wu Q, Zhu B, Xiang M, Wang J, Wang Y, Li J, Zhang T, Xu B, Zheng H, Feng Z, Hu W. An improved genome assembly of the fluke Schistosoma japonicum. PLoS Negl Trop Dis 2019; 13:e0007612. [PMID: 31390359 PMCID: PMC6685614 DOI: 10.1371/journal.pntd.0007612] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China and the Philippines. A single draft genome was available for S. japonicum, yet this assembly is very fragmented and only covers 90% of the genome, which make it difficult to be applied as a reference in functional genome analysis and genes discovery. FINDINGS In this study, we present a high-quality assembly of the fluke S. japonicum genome by combining 20 G (~53X) long single molecule real time sequencing reads with 80 G (~ 213X) Illumina paired-end reads. This improved genome assembly is approximately 370.5 Mb, with contig and scaffold N50 length of 871.9 kb and 1.09 Mb, representing 142.4-fold and 6.2-fold improvement over the released WGS-based assembly, respectively. Additionally, our assembly captured 85.2% complete and 4.6% partial eukaryotic Benchmarking Universal Single-Copy Orthologs. Repetitive elements account for 46.80% of the genome, and 10,089 of the protein-coding genes were predicted from the improved genome, of which 96.5% have been functionally annotated. Lastly, using the improved assembly, we identified 20 significantly expanded gene families in S. japonicum, and those genes were primarily enriched in functions of proteolysis and protein glycosylation. CONCLUSIONS Using the combination of PacBio and Illumina Sequencing technologies, we provided an improved high-quality genome of S. japonicum. This improved genome assembly, as well as the annotation, will be useful for the comparative genomics of the flukes and more importantly facilitate the molecular studies of this important parasite in the future.
Collapse
Affiliation(s)
- Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Mingbo Yin
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Chengsong Sun
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qunfeng Wu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Manyu Xiang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Li
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| |
Collapse
|
26
|
Le TH, Nguyen KT, Nguyen NTB, Doan HTT, Agatsuma T, Blair D. The complete mitochondrial genome of Paragonimus ohirai (Paragonimidae: Trematoda: Platyhelminthes) and its comparison with P. westermani congeners and other trematodes. PeerJ 2019; 7:e7031. [PMID: 31259095 PMCID: PMC6589331 DOI: 10.7717/peerj.7031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022] Open
Abstract
We present the complete mitochondrial genome of Paragonimus ohirai Miyazaki, 1939 and compare its features with those of previously reported mitochondrial genomes of the pathogenic lung-fluke, Paragonimus westermani, and other members of the genus. The circular mitochondrial DNA molecule of the single fully sequenced individual of P. ohirai was 14,818 bp in length, containing 12 protein-coding, two ribosomal RNA and 22 transfer RNA genes. As is common among trematodes, an atp8 gene was absent from the mitogenome of P. ohirai and the 5' end of nad4 overlapped with the 3' end of nad4L by 40 bp. Paragonimusohirai and four forms/strains of P. westermani from South Korea and India, exhibited remarkably different base compositions and hence codon usage in protein-coding genes. In the fully sequenced P. ohirai individual, the non-coding region started with two long identical repeats (292 bp each), separated by tRNAGlu . These were followed by an array of six short tandem repeats (STR), 117 bp each. Numbers of the short tandem repeats varied among P. ohirai individuals. A phylogenetic tree inferred from concatenated mitochondrial protein sequences of 50 strains encompassing 42 species of trematodes belonging to 14 families identified a monophyletic Paragonimidae in the class Trematoda. Characterization of additional mitogenomes in the genus Paragonimus will be useful for biomedical studies and development of molecular tools and mitochondrial markers for diagnostic, identification, hybridization and phylogenetic/epidemiological/evolutionary studies.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Khue Thi Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nga Thi Bich Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Huong Thi Thanh Doan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Takeshi Agatsuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko, Nankoku City, Kochi, Japan
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
27
|
Kinkar L, Korhonen PK, Cai H, Gauci CG, Lightowlers MW, Saarma U, Jenkins DJ, Li J, Li J, Young ND, Gasser RB. Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1. Parasit Vectors 2019; 12:238. [PMID: 31097022 PMCID: PMC6521400 DOI: 10.1186/s13071-019-3492-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Background Echinococcus tapeworms cause a severe helminthic zoonosis called echinococcosis. The genus comprises various species and genotypes, of which E. granulosus (sensu stricto) represents a significant global public health and socioeconomic burden. Mitochondrial (mt) genomes have provided useful genetic markers to explore the nature and extent of genetic diversity within Echinococcus and have underpinned phylogenetic and population structure analyses of this genus. Our recent work indicated a sequence gap (> 1 kb) in the mt genomes of E. granulosus genotype G1, which could not be determined by PCR-based Sanger sequencing. The aim of the present study was to define the complete mt genome, irrespective of structural complexities, using a long-read sequencing method. Methods We extracted high molecular weight genomic DNA from protoscoleces from a single cyst of E. granulosus genotype G1 from a sheep from Australia using a conventional method and sequenced it using PacBio Sequel (long-read) technology, complemented by BGISEQ-500 short-read sequencing. Sequence data obtained were assembled using a recently-developed workflow. Results We assembled a complete mt genome sequence of 17,675 bp, which is > 4 kb larger than the complete mt genomes known for E. granulosus genotype G1. This assembly includes a previously-elusive tandem repeat region, which is 4417 bp long and consists of ten near-identical 441–445 bp repeat units, each harbouring a 184 bp non-coding region and adjacent regions. We also identified a short non-coding region of 183 bp, which includes an inverted repeat. Conclusions We report what we consider to be the first complete mt genome of E. granulosus genotype G1 and characterise all repeat regions in this genome. The numbers, sizes, sequences and functions of tandem repeat regions remain to be studied in different isolates of genotype G1 and in other genotypes and species. The discovery of such ‘new’ repeat elements in the mt genome of genotype G1 by PacBio sequencing raises a question about the completeness of some published genomes of taeniid cestodes assembled from conventional or short-read sequence datasets. This study shows that long-read sequencing readily overcomes the challenges of assembling repeat elements to achieve improved genomes.
Collapse
Affiliation(s)
- Liina Kinkar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Huimin Cai
- BGI Research, Shenzhen, Guangdong, China
| | - Charles G Gauci
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Marshall W Lightowlers
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - David J Jenkins
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| | | | - Junhua Li
- BGI Research, Shenzhen, Guangdong, China
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
28
|
Oey H, Zakrzewski M, Narain K, Devi KR, Agatsuma T, Nawaratna S, Gobert GN, Jones MK, Ragan MA, McManus DP, Krause L. Whole-genome sequence of the oriental lung fluke Paragonimus westermani. Gigascience 2019; 8:5232231. [PMID: 30520948 PMCID: PMC6329441 DOI: 10.1093/gigascience/giy146] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Background Foodborne infections caused by lung flukes of the genus Paragonimus are a significant and widespread public health problem in tropical areas. Approximately 50 Paragonimus species have been reported to infect animals and humans, but Paragonimus westermani is responsible for the bulk of human disease. Despite their medical and economic importance, no genome sequence for any Paragonimus species is available. Results We sequenced and assembled the genome of P. westermani, which is among the largest of the known pathogen genomes with an estimated size of 1.1 Gb. A 922.8 Mb genome assembly was generated from Illumina and Pacific Biosciences (PacBio) sequence data, covering 84% of the estimated genome size. The genome has a high proportion (45%) of repeat-derived DNA, particularly of the long interspersed element and long terminal repeat subtypes, and the expansion of these elements may explain some of the large size. We predicted 12,852 protein coding genes, showing a high level of conservation with related trematode species. The majority of proteins (80%) had homologs in the human liver fluke Opisthorchis viverrini, with an average sequence identity of 64.1%. Assembly of the P. westermani mitochondrial genome from long PacBio reads resulted in a single high-quality circularized 20.6 kb contig. The contig harbored a 6.9 kb region of non-coding repetitive DNA comprised of three distinct repeat units. Our results suggest that the region is highly polymorphic in P. westermani, possibly even within single worm isolates. Conclusions The generated assembly represents the first Paragonimus genome sequence and will facilitate future molecular studies of this important, but neglected, parasite group.
Collapse
Affiliation(s)
- Harald Oey
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, 37 Kent St, Translational Research Institute (TRI), Wooloongabba, QLD 4102
- Correspondence address. Harald Oey, Address: The university of Queensland Diamantina Institute, 37 Kent St, Translational Research Institute (TRI), Wooloongabba, QLD 4102, Australia. E-mail:
| | - Martha Zakrzewski
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, QLD 4006, Australia
| | - Kanwar Narain
- ICMR-Regional Medical Research Centre, Dibrugarh - 786010, Assam, India
| | - K Rekha Devi
- ICMR-Regional Medical Research Centre, Dibrugarh - 786010, Assam, India
| | - Takeshi Agatsuma
- Department of Environmental Medicine, Kochi University, Kohasu, Oko, Nankoku City 783–8505, Japan
| | - Sujeevi Nawaratna
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, QLD 4006, Australia
- School of Medicine, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, QLD 4006, Australia
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Malcolm K Jones
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, QLD 4006, Australia
| | - Lutz Krause
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, 37 Kent St, Translational Research Institute (TRI), Wooloongabba, QLD 4102
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, QLD 4006, Australia
- Correspondence address. Lutz Krause, Address: The university of Queensland Diamantina Institute, 37 Kent St, Translational Research Institute (TRI), Wooloongabba, QLD 4102, Australia. E-mail:
| |
Collapse
|