1
|
Huang J, Wang K, Wu S, Zhang J, Chen X, Lei S, Wu J, Men K, Duan X. Tumor Cell Lysate-Based Multifunctional Nanoparticles Facilitate Enhanced mRNA Delivery and Immune Stimulation for Melanoma Gene Therapy. Mol Pharm 2024; 21:267-282. [PMID: 38079527 DOI: 10.1021/acs.molpharmaceut.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Messenger ribonucleic acid (mRNA)-based gene therapy has great potential for cancer gene therapy. However, the effectiveness of mRNA in cancer therapy needs to be further improved, and the delivery efficiency and instability of mRNA limit the application of mRNA-based products. Both the delivery efficiency can be elevated by cell-penetrating peptide modification, and the immune response can be enhanced by tumor cell lysate stimulation, representing an advantageous strategy to expand the effectiveness of mRNA gene therapy. Therefore, it is vital to exploit a vector that can deliver high-efficiency mRNA with codelivery of tumor cell lysate to induce specific immune responses. We previously reported that DMP cationic nanoparticles, formed by the self-assembly of DOTAP and mPEG-PCL, can deliver different types of nucleic acids. DMP has been successfully applied in gene therapy research for various tumor types. Here, we encapsulated tumor cell lysates with DMP nanoparticles and then modified them with a fused cell-penetrating peptide (TAT-iRGD) to form an MLSV system. The MLSV system was loaded with encoded Bim mRNA, forming the MLSV/Bim complex. The average size of the synthesized MLSV was 191.4 nm, with a potential of 47.8 mV. The MLSV/mRNA complex promotes mRNA absorption through caveolin-mediated endocytosis, with a transfection rate of up to 68.6% in B16 cells. The MLSV system could also induce the maturation and activation of dendritic cells, obviously promoting the expression of CD80, CD86, and MHC-II both in vitro and in vivo. By loading the encoding Bim mRNA, the MLSV/Bim complex can inhibit cell proliferation and tumor growth, with inhibition rates of up to 87.3% in vitro. Similarly, the MLSV/Bim complex can inhibit tumor growth in vivo, with inhibition rates of up to 78.7% in the B16 subcutaneous tumor model and 63.3% in the B16 pulmonary metastatic tumor model. Our results suggest that the MLSV system is an advanced candidate for mRNA-based immunogene therapy.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shan Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiayu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
2
|
Huang J, Wang K, Fu X, Zhu M, Chen X, Gao Y, Ma P, Duan X, Men K. Efficient Colon Cancer Immunogene Therapy Through Co-Delivery of IL-22BP mRNA and Tumor Cell Lysate by CLSV Nanoparticles. Int J Nanomedicine 2023; 18:8059-8075. [PMID: 38164262 PMCID: PMC10758165 DOI: 10.2147/ijn.s439381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Messenger ribonucleic acid (mRNA)-based gene therapy has great potential in cancer treatment. However, the application of mRNA-based cancer treatment could be further developed. Elevated delivery ability and enhanced immune response are advantages for expanding the application of mRNA-based cancer therapy. It is crucial that the prepared carrier can cause an immune reaction based on the efficient delivery of mRNA. Methods We reported DMP nanoparticle previously, which was obtained by the self-assembly of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and (ethylene glycol)-b-poly (ε-caprolactone) (mPEG-PCL). Research demonstrated that DMP can deliver mRNA, siRNA, and plasmid. And it is applied to various tumor types. In our work, the tumor cell lysate was introduced to the internal DMP chain, fusing cell-penetrating peptides (CPPs) modification on the surface forming the CLSV system. And then mixed encoded IL-22BP (interleukin-22 binding protein) mRNA and CLSV to form CLSV/IL-22BP complex. Results The size of the CLSV system was 213.2 nm, and the potential was 45.7 mV. The transfection efficiency of the CLSV system is up to 76.45% in C26 cells via the micropinocytosis pathway. The CLSV system also could induce an immune response and significantly elevate the expression of CD80, CD86, and MHC-II in vivo. Then, by binding with IL-22BP (Interleukin-22 binding protein) mRNA, the CLSV/IL-22BP complex inhibited tumor cell growth, with an inhibition rate of up to 82.3% in vitro. The CLSV/IL-22BP complex also inhibited tumor growth in vivo, the tumor cell growth inhibition up to 75.0% in the subcutaneous tumor model, and 84.9% in the abdominal cavity metastasis tumor model. Conclusion Our work demonstrates that the CLSV system represents a potent potential for mRNA delivery.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xizi Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xiaohua Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Pingchuan Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
3
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
4
|
da Costa V, Mariño KV, Rodríguez-Zraquia SA, Festari MF, Lores P, Costa M, Landeira M, Rabinovich GA, van Vliet SJ, Freire T. Lung Tumor Cells with Different Tn Antigen Expression Present Distinctive Immunomodulatory Properties. Int J Mol Sci 2022; 23:ijms231912047. [PMID: 36233358 PMCID: PMC9570357 DOI: 10.3390/ijms231912047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the first leading cause of cancer-related deaths in the world. Aberrant glycosylation in lung tumors leads to the expression of tumor-associated carbohydrate structures, such as the Tn antigen, consisting of N-acetyl-galactosamine (GalNAc) linked to a serine or threonine residue in proteins (α-GalNAc-O-Ser/Thr). The Tn antigen can be recognized by the Macrophage Galactose/GalNAc lectin (MGL), which mediates various immune regulatory and tolerogenic functions, mainly by reprogramming the maturation of function of dendritic cells (DCs). In this work, we generated two different Tn-expressing variants from the Lewis-type lung murine cancer cell line LL/2, which showed different alterations in the O-glycosylation pathways that influenced the interaction with mouse MGL2 and the immunomodulatory properties of DCs. Thus, the identification of the biological programs triggered by Tn+ cancer cells might contribute to an improved understanding of the molecular mechanisms elicited by MGL-dependent immune regulatory circuits.
Collapse
Affiliation(s)
- Valeria da Costa
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo 11800, Uruguay
| | - Karina V. Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1428, Argentina
| | - Santiago A. Rodríguez-Zraquia
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo 11800, Uruguay
| | - María Florencia Festari
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo 11800, Uruguay
| | - Pablo Lores
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo 11800, Uruguay
| | - Monique Costa
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo 11800, Uruguay
| | - Mercedes Landeira
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo 11800, Uruguay
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1428, Argentina
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo 11800, Uruguay
- Correspondence:
| |
Collapse
|
5
|
Advances in the Immunomodulatory Properties of Glycoantigens in Cancer. Cancers (Basel) 2022; 14:cancers14081854. [PMID: 35454762 PMCID: PMC9032556 DOI: 10.3390/cancers14081854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This work reviews the role of aberrant glycosylation in cancer cells during tumour growth and spreading, as well as in immune evasion. The interaction of tumour-associated glycans with the immune system through C-type lectin receptors can favour immune escape but can also provide opportunities to develop novel tumour immunotherapy strategies. This work highlights the main findings in this area and spotlights the challenges that remain to be investigated. Abstract Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.
Collapse
|
6
|
Bunte MJM, Schots A, Kammenga JE, Wilbers RHP. Helminth Glycans at the Host-Parasite Interface and Their Potential for Developing Novel Therapeutics. Front Mol Biosci 2022; 8:807821. [PMID: 35083280 PMCID: PMC8784694 DOI: 10.3389/fmolb.2021.807821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Helminths are parasitic worms that have successfully co-evolved with their host immune system to sustain long-term infections. Their successful parasitism is mainly facilitated by modulation of the host immune system via the release of excretory-secretory (ES) products covered with glycan motifs such as Lewis X, fucosylated LDN, phosphorylcholine and tyvelose. Evidence is accumulating that these glycans play key roles in different aspects of helminth infection including interactions with immune cells for recognition and evasion of host defences. Moreover, antigenic properties of glycans can be exploited for improving the efficacy of anti-helminthic vaccines. Here, we illustrate that glycans have the potential to open new avenues for the development of novel biopharmaceuticals and effective vaccines based on helminth glycoproteins.
Collapse
|
7
|
Brooks PJ, Wang Y, Magalhaes MA, Glogauer M, McCulloch CA. CD301 mediates fusion in IL-4-driven multinucleated giant cell formation. J Cell Sci 2020; 133:133/24/jcs248864. [PMID: 33571108 DOI: 10.1242/jcs.248864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
Multinucleated giant cells (MGCs) are prominent in foreign body granulomas, infectious and inflammatory processes, and auto-immune, neoplastic and genetic disorders, but the molecular determinants that specify the formation and function of these cells are not defined. Here, using tandem mass tag-mass spectrometry, we identified a differentially upregulated protein, C-type lectin domain family 10 member (herein denoted CD301, also known as CLEC10A), that was strongly upregulated in mouse RAW264.7 macrophages and primary murine macrophages undergoing interleukin (IL-4)-induced MGC formation. CD301+ MGCs were identified in biopsy specimens of human inflammatory lesions. Function-inhibiting CD301 antibodies or CRISPR/Cas9 deletion of the two mouse CD301 genes (Mgl1 and Mgl2) inhibited IL-4-induced binding of N-acetylgalactosamine-coated beads by 4-fold and reduced MGC formation by 2.3-fold (P<0.05). IL-4-driven fusion and MGC formation were restored by re-expression of CD301 in the knockout cells. We conclude that in monocytes, IL-4 increases CD301 expression, which mediates intercellular adhesion and fusion processes that are required for the formation of MGCs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Patricia J Brooks
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Department of Dental Oncology & Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Marco A Magalhaes
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Department of Dental Oncology & Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada
| | | |
Collapse
|
8
|
Sekiguchi K, Kurohane K, Tsutsumi M, Mochizuki N, Orii A, Nose M, Imai Y. Enhancement of mouse contact hypersensitivity appears with a short chain triacylglycerol but not with a long chain one. Toxicology 2018; 412:48-54. [PMID: 30503584 DOI: 10.1016/j.tox.2018.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
The prevalence of skin allergies could be partly due to the increased exposure to chemicals from consumer products. Chemicals that can enhance hypersensitivity caused by other chemicals are the focus of this study. We have demonstrated that phthalate esters with short chain alcohols enhance fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) in a mouse model. We have also found that tributyrin, a triacylglycerol (TAG) with three butyric acids, enhances sensitization to FITC. To elucidate such an enhanced skin sensitization might be based on a general feature of TAG, we compared tributyrin and triolein, a natural TAG, as to an adjuvant effect on FITC-CHS. Triolein is the dominant TAG in olive oil and contains long chain mono-unsaturated fatty acids. Unlike tributyrin and dibutyl phthalate (DBP), triolein did not exhibit an adjuvant effect. With triolein, enhancement of FITC-presenting CD11c+ dendritic cell trafficking to draining lymph nodes was weak, and the activation status of DC, as revealed as CD86 expression, was low. We found a difference in the pattern of skin cytokine production, i.e., that thymic stromal lymphopoietin was produced with DBP and interleukin-1β with tributyrin. Triolein did not induce either of these cytokines. This illustrates that the adjuvant effect of tributyrin on FITC-CHS is not a general phenomenon for TAGs. Although beneficial effects may be expected through oral administration of tributyrin, the effect on skin immune systems should be considered.
Collapse
Affiliation(s)
- Kota Sekiguchi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Masato Tsutsumi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Narumi Mochizuki
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Akimasa Orii
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Mutsumi Nose
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan.
| |
Collapse
|
9
|
Kim TG, Kim SH, Park J, Choi W, Sohn M, Na HY, Lee M, Lee JW, Kim SM, Kim DY, Kim HP, Choi JH, Park CG, Lee MG. Skin-Specific CD301b + Dermal Dendritic Cells Drive IL-17-Mediated Psoriasis-Like Immune Response in Mice. J Invest Dermatol 2017; 138:844-853. [PMID: 29138056 DOI: 10.1016/j.jid.2017.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023]
Abstract
Conventional dendritic cells (cDCs) are composed of heterogeneous subsets commonly arising from dendritic cell (DC)-committed progenitors. A population of CD301b-expressing DCs has recently been identified in non-lymphoid barrier tissues such as skin. However, whether CD301b+ DCs in the skin represent an ontogenetically unique subpopulation of migratory cDCs has not been fully addressed. Here, we demonstrated that CD301b+ dermal DCs were distinct subpopulation of FMS-like tyrosine kinase 3 ligand (FLT3L)-dependent CD11b+ cDC2 lineage, which required an additional GM-CSF cue for the adequate development. Although the majority of lymphoid-resident cDC2 lacked CD301b expression, dermal migratory cDC2 contained a substantial fraction of CD301b+ subset. Similar to CD301b- population, CD301b+ dermal DC development was closely regulated by FLT3 signaling, suggesting their common origin from FLT3L-responsive cDC progenitors. However, FLT3L-driven cDC progenitor culture was not sufficient, but additional GM-CSF treatment was required to produce CD301b+ cDC2. In vivo development of CD301b+ cDC2 was significantly augmented by exogenous GM-CSF, while the repopulation of CD301b+ dermal cDC2 was abrogated by GM-CSF neutralization. Functionally, CD301b+ cDC2 was capable of producing a high level of IL-23, and the depletion of CD301b+ cDC2 effectively prevented IL-17-mediated psoriasiform dermatitis. Therefore, our findings highlight the differentiation program of a distinct CD301b+ dermal cDC2 subset in the skin and its involvement in psoriatic inflammation.
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hee Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeyun Park
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wanho Choi
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Moah Sohn
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Young Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Minseok Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Won Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Min Kim
- Department of Dermatology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Do-Young Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyoung-Pyo Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Chae Gyu Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Min-Geol Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Kurohane K, Kimura A, Terasawa R, Sahara Y, Kobayashi K, Suzuki W, Matsuoka T, Watanabe T, Imai Y. Adjuvant Effect of an Alternative Plasticizer, Diisopropyl Adipate, on a Contact Hypersensitivity Mouse Model: Link with Sensory Ion Channel TRPA1 Activation. Biol Pharm Bull 2015; 38:1054-62. [PMID: 25959058 DOI: 10.1248/bpb.b15-00199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to health concerns about phthalate esters, the use of alternative plasticizers is being considered. Phthalate esters enhance skin sensitization to fluorescein isothiocyanate (FITC) in mouse models. We have demonstrated that phthalate esters stimulate transient receptor potential ankyrin 1 (TRPA1) cation channels expressed on sensory neurons. We also found a correlation between TRPA1 activation and the enhancing effect on FITC-induced contact hypersensitivity (CHS) when testing various types of phthalate esters. Here we investigated the effects of an alternative plasticizer, diisopropyl adipate (DIA). Activation of TRPA1 by DIA was demonstrated by calcium mobilization using Chinese hamster ovary cells expressing TRPA1 in vitro. The effect of DIA was inhibited by a TRPA1-specific antagonist, HC-030031. The presence of DIA or dibutyl phthalate (DBP; positive control) during skin sensitization of BALB/c mice to FITC augmented the CHS response, as revealed by the level of ear-swelling. The enhancing effect of DIA was inhibited by in vivo pretreatment with HC-030031. FITC-presenting CD11c(+) dendritic cell (DC)-trafficking to draining lymph nodes was facilitated both by DIA and by DBP. DBP and DIA were similarly active in the enhancement of interferon-γ production by draining lymph nodes, but the effect on interleukin-4 production was weaker with DIA. Overall, DIA activated TRPA1 and enhanced FITC-induced CHS, as DBP did. The adjuvant effects of adipate esters may need to be considered because they are used as ingredients in cosmetics and drug formulations topically applied to the skin.
Collapse
Affiliation(s)
- Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
André S, O'Sullivan S, Koller C, Murphy PV, Gabius HJ. Bi- to tetravalent glycoclusters presenting GlcNAc/GalNAc as inhibitors: from plant agglutinins to human macrophage galactose-type lectin (CD301) and galectins. Org Biomol Chem 2015; 13:4190-203. [PMID: 25721929 DOI: 10.1039/c5ob00048c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging insights into the functional spectrum of tissue lectins leads to identification of new targets for the custom-made design of potent inhibitors, providing a challenge for synthetic chemistry. The affinity and selectivity of a carbohydrate ligand for a lectin may immensely be increased by a number of approaches, which includes varying geometrical or topological features. This perspective leads to the design and synthesis of glycoclusters and their testing using assays of physiological relevance. Herein, hydroquinone, resorcinol, benzene-1,3,5-triol and tetra(4-hydroxyphenyl)ethene have been employed as scaffolds and propargyl derivatives obtained. The triazole-containing linker to the α/β-O/S-glycosides of GlcNAc/GalNAc presented on these scaffolds was generated by copper-catalysed azide-alkyne cycloaddition. This strategy was used to give a panel of nine glycoclusters with bi-, tri- and tetravalency. Maintained activity for lectin binding after conjugation was ascertained for both sugars in solid-phase assays with the plant agglutinins WGA (GlcNAc) and DBA (GalNAc). Absence of cross-reactivity excluded any carbohydrate-independent reactivity of the bivalent compounds, allowing us to proceed to further testing with a biomedically relevant lectin specific for GalNAc. Macrophage galactose(-binding C)-type lectin, involved in immune defence by dendritic cells and in virus uptake, was produced as a soluble protein without/with its α-helical coiled-coil stalk region. Binding to ligands presented on a matrix and on cell surfaces was highly susceptible to the presence of the tetravalent inhibitor derived from the tetraphenylethene-containing scaffold, and presentation of GalNAc with an α-thioglycosidic linkage proved favorable. Cross-reactivity of this glycocluster to human galectins-3 and -4, which interact with Tn-antigen-presenting mucins, was rather small. Evidently, the valency and spatial display of α-GalNAc residues is a key factor to design potent and selective inhibitors for this lectin.
Collapse
Affiliation(s)
- Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | | | | | | | | |
Collapse
|
12
|
Jiang PL, Lin HJ, Wang HW, Tsai WY, Lin SF, Chien MY, Liang PH, Huang YY, Liu DZ. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater 2015; 11:356-67. [PMID: 25242652 DOI: 10.1016/j.actbio.2014.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023]
Abstract
Mucosal surfaces contain specialized dendritic cells (DCs) that are able to recognize foreign pathogens and mount protective immunity. We previously demonstrated that intranasal administration of targeted galactosylated liposomes can elicit mucosal and systemic antibody responses. In the present study, we assessed whether galactosylated liposomes could act as an effective DC-targeted mucosal vaccine that would be capable of inducing systemic anti-tumor immunity as well as antibody responses. We show that targeted galactosylated liposomes effectively facilitated antigen uptake by DCs beyond that mediated by unmodified liposomes both in vitro and in vivo. Targeted galactosylated liposomes induced higher levels of pro-inflammatory cytokines than unmodified liposomes in vitro. C57BL/6 mice thrice immunized intranasally with ovalbumin (OVA)-encapsulated galactosylated liposomes produced high levels of OVA-specific IgG antibodies in their serum. Spleen cells from mice receiving galactosylated liposomes were restimulated with OVA and showed significantly augmented levels of IFN-γ, IL-4, IL-5 and IL-6. In addition, intranasal administration of OVA-encapsulated beta-galactosylated liposomes resulted in complete protection against EG7 tumor challenge in C57BL/6 mice. Taken together, these results indicate that nasal administration of a galactosylated liposome vaccine mediates the development of an effective immunity against tumors and might be useful for further clinical anti-tumoral applications.
Collapse
|
13
|
Dey D, Han L, Bauer M, Sanada F, Oikonomopoulos A, Hosoda T, Unno K, De Almeida P, Leri A, Wu JC. Dissecting the molecular relationship among various cardiogenic progenitor cells. Circ Res 2013; 112:1253-62. [PMID: 23463815 DOI: 10.1161/circresaha.112.300779] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Multiple progenitors derived from the heart and bone marrow (BM) have been used for cardiac repair. Despite this, not much is known about the molecular identity and relationship among these progenitors. To develop a robust stem cell therapy for the heart, it is critical to understand the molecular identity of the multiple cardiogenic progenitor cells. OBJECTIVE This study is the first report of high-throughput transcriptional profiling of cardiogenic progenitor cells carried out on an identical platform. METHOD AND RESULTS Microarray-based transcriptional profiling was carried out for 3 cardiac (ckit(+), Sca1(+), and side population) and 2 BM (ckit(+) and mesenchymal stem cell) progenitors, obtained from age- and sex-matched wild-type C57BL/6 mice. Analysis indicated that cardiac-derived ckit(+) population was very distinct from Sca1(+) and side population cells in the downregulation of genes encoding for cell-cell and cell-matrix adhesion proteins, and in the upregulation of developmental genes. Significant enrichment of transcripts involved in DNA replication and repair was observed in BM-derived progenitors. The BM ckit(+) cells seemed to have the least correlation with the other progenitors, with enrichment of immature neutrophil-specific molecules. CONCLUSIONS Our study indicates that cardiac ckit(+) cells represent the most primitive population in the rodent heart. Primitive cells of cardiac versus BM origin differ significantly with respect to stemness and cardiac lineage-specific genes, and molecules involved in DNA replication and repair. The detailed molecular profile of progenitors reported here will serve as a useful reference to determine the molecular identity of progenitors used in future preclinical and clinical studies.
Collapse
Affiliation(s)
- Devaveena Dey
- Division of Cardiology, Department of Medicine, Stanford Cardiovascular Institute, Institute of Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kurohane K, Sahara Y, Kimura A, Narukawa M, Watanabe T, Daimon T, Imai Y. Lack of transient receptor potential melastatin 8 activation by phthalate esters that enhance contact hypersensitivity in mice. Toxicol Lett 2013; 217:192-6. [PMID: 23296101 DOI: 10.1016/j.toxlet.2012.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
We studied the involvement of sensory neurons in skin sensitization to allergens using a mouse model in which the T-helper type 2 response is essential. Skin sensitization to fluorescein isothiocyanate (FITC) has been shown to be enhanced by several phthalate esters, including dibutyl phthalate (DBP). For different types of phthalate esters, we found a correlation between the ability of transient receptor potential (TRP) A1 activation and that of enhancing skin sensitization. A TRPA1-specific antagonist, HC-030031, was shown to suppress skin sensitization in the presence of DBP. However, since phthalate esters also activate TRPV1, phthalate esters could activate other types of TRP channels non-selectively. Furthermore, sensitization to FITC is also enhanced by menthol, which activates TRPA1 and TRPM8. Here we established an in vitro system for measuring TRPM8 activation. The selectivity for TRPM8 was established by the fact that two TRPM8 agonists (menthol and icilin) induced calcium mobilization, whereas agonists of TRPA1 and TRPV1 did not. We demonstrated that phthalate esters do not activate TRPM8. TRPA1-antagonist HC-030031 did not inhibit TRPM8 activation induced by menthol or icilin. These results show that phthalate esters activate TRPA1 and TRPV1 with selectivity. TRPM8 activation is not likely to be involved in the sensitization to FITC.
Collapse
Affiliation(s)
- Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Sugiura D, Denda-Nagai K, Takashima M, Murakami R, Nagai S, Takeda K, Irimura T. Local effects of regulatory T cells in MUC1 transgenic mice potentiate growth of MUC1 expressing tumor cells in vivo. PLoS One 2012; 7:e44770. [PMID: 23028615 PMCID: PMC3444443 DOI: 10.1371/journal.pone.0044770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/07/2012] [Indexed: 11/18/2022] Open
Abstract
MUC1 transgenic (MUC1.Tg) mice have widely been used as model recipients of cancer immunotherapy with MUC1. Although MUC1.Tg mice have previously been shown to be immunologically tolerant to MUC1, the involvement of regulatory T (Treg) cells in this phenotype remains unclear. Here, we showed that numbers of Treg cells in MUC1-expressing tumors were greater in MUC1.Tg mice than in control C57BL/6 (B6) mice, and that the growth of tumor cells expressing MUC1, but not that of control cells, in MUC1. Tg mice was faster than in B6 mice. The MUC1.Tg mice appeared to develop MUC1-specific peripheral tolerance, as transferred MUC1-specific T cells were unable to function in MUC1.Tg mice but were functional in control B6 mice. The suppressive function of CD4+CD25high cells from MUC1.Tg mice was more potent than that of cells from control B6 mice when Treg cell activity against MUC1-specific T cells was compared in vitro. Therefore, the enhanced growth of MUC1-expressing tumor cells in MUC1.Tg mice is likely due to the presence of MUC1-specific Treg cells.
Collapse
Affiliation(s)
- Daisuke Sugiura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Kaori Denda-Nagai
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
- * E-mail: (KDN); (TI)
| | - Mitsuyo Takashima
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Ryuichi Murakami
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Shigenori Nagai
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
- * E-mail: (KDN); (TI)
| |
Collapse
|
16
|
Sørensen ALT, Clausen H, Wandall HH. Carbohydrate clearance receptors in transfusion medicine. Biochim Biophys Acta Gen Subj 2012; 1820:1797-808. [PMID: 22846227 DOI: 10.1016/j.bbagen.2012.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Complex carbohydrates play important functions for circulation of proteins and cells. They provide protective shields and refraction from non-specific interactions with negative charges from sialic acids to enhance circulatory half-life. For recombinant protein therapeutics carbohydrates are especially important to enhance size and reduce glomerular filtration loss. Carbohydrates are, however, also ligands for a large number of carbohydrate-binding lectins exposed to the circulatory system that serve as scavenger receptors for the innate immune system, or have more specific roles in targeting of glycoproteins and cells. SCOPE OF REVIEW Here we provide an overview of the common lectin receptors that play roles for circulating glycoproteins and cells, and present a discussion of ways to engineer glycosylation of recombinant biologics and cells to improve therapeutic effects. MAJOR CONCLUSIONS While the pharmaceutical industry has learned how to exploit carbohydrates to improve pharmacokinetic properties of recombinant therapeutics, our understanding of how to improve cell-based therapies by manipulation of complex carbohydrates is still at its infancy. Progress with the latter has recently been achieved with cold-stored platelets, where exposure of uncapped glycans lead to rapid clearance from circulation by several lectin-mediated pathways. GENERAL SIGNIFICANCE Understanding lectin-mediated clearance pathways is essential for progress in development of biological pharmaceuticals.
Collapse
|
17
|
Smorodin EP, Kurtenkov OA, Sergeyev BL, Branovets JS, Izotova JG, Formanovsky AA. Specificity of serum anti-A(di) IgG antibodies from patients with gastrointestinal cancer. J Immunoassay Immunochem 2012; 32:170-90. [PMID: 21574090 DOI: 10.1080/15321819.2011.552584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in the glycosylation in cancer may lead to an aberrant expression of A, B incompatible or xenogeneic blood group related antigens. To characterize the specificity of IgG antibodies to A, B, and related glycans in sera of gastrointestinal cancer patients, serum probes and affinity-isolated antibodies were analyzed in the indirect and competitive ELISA using a set of homogenous polyacrylamide (PAA) glycoconjugates. Monoreactive antibodies recognizing A(di) (I) and cross-reactive antibodies to A(di)/B(di)/B(tri) (II) or A(di)/A(tri)/Fs(di)/Core5 (III) were affinity-isolated on A(di)-PAA-Sepharose. The population I showed a higher affinity to A(di)-PAA than cross-reactive antibodies. The antibodies II were more specific to B(di) and may belong to the core alpha-Gal reactive antibodies but are also capable of recognizing A(di). The antibodies III were more specific to A(tri); they agglutinated A-erythrocytes and belong to anti-A isoantibodies reactive to xenogeneic oligosaccharides. The purified antibody samples were non- or faintly reactive to Tn. The IC(50) values of PAA glycoconjugates ranged from 6 × 10(-8) to 7 × 10(-6) M. No or weak binding of antibodies to the unrelated antigens used in the detection of polyreactivity (ferritin, casein, and DNA) was observed.
Collapse
Affiliation(s)
- Eugeniy P Smorodin
- Department of Oncology and Immunology, National Institute for Health Development, Tallinn, Estonia.
| | | | | | | | | | | |
Collapse
|
18
|
Londrigan SL, Tate MD, Brooks AG, Reading PC. Cell-surface receptors on macrophages and dendritic cells for attachment and entry of influenza virus. J Leukoc Biol 2011; 92:97-106. [PMID: 22124137 PMCID: PMC7166464 DOI: 10.1189/jlb.1011492] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Review of interactions between influenza A virus and C‐type lectin receptors on macrophages and dendritic cells that may result in virus entry and infection. Airway MΦ and DCs are important components of innate host defense and can play a critical role in limiting the severity of influenza virus infection. Although it has been well established that cell‐surface SA acts as a primary attachment receptor for IAV, the particular receptor(s) or coreceptor(s) that mediate IAV entry into any cell, including MΦ and DC, have not been clearly defined. Identifying which receptors are involved in attachment and entry of IAV into immune cells may have important implications in regard to understanding IAV tropism and pathogenesis. Recent evidence suggests that specialized receptors on MΦ and DCs, namely CLRs, can act as capture and/or entry receptors for many viral pathogens, including IAV. Herein, we review the early stages of infection of MΦ and DC by IAV. Specifically, we examine the potential role of CLRs expressed on MΦ and DC to act as attachment and/or entry receptors for IAV.
Collapse
Affiliation(s)
- Sarah L Londrigan
- The Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
19
|
Schlegel MK, Hütter J, Eriksson M, Lepenies B, Seeberger PH. Defined presentation of carbohydrates on a duplex DNA scaffold. Chembiochem 2011; 12:2791-800. [PMID: 22052782 DOI: 10.1002/cbic.201100511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Indexed: 01/15/2023]
Abstract
A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors.
Collapse
Affiliation(s)
- Mark K Schlegel
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Singh SK, Streng-Ouwehand I, Litjens M, Kalay H, Saeland E, van Kooyk Y. Tumour-associated glycan modifications of antigen enhance MGL2 dependent uptake and MHC class I restricted CD8 T cell responses. Int J Cancer 2011; 128:1371-83. [PMID: 20473945 DOI: 10.1002/ijc.25458] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We recently showed that MGL2 specifically binds tumour-associated glycan N-acetylgalactosamine (GalNAc). We here demonstrate that modification of an antigen with tumour-associated glycan GalNAc, targets antigen specifically to the MGL2 on bone marrow derived (BM)-DCs and splenic DCs. Glycan-modification of antigen with GalNAc that mimics tumour-associated glycosylation, promoted antigen internalisation in DCs and presentation to CD4 T cells, as well as differentiation of IFN-γ producing CD4 T cells. Furthermore, GalNAc modified antigen enhanced cross-presentation of both BM-DCs and primary splenic DCs resulting in enhanced antigen specific CD8 T cell responses. Using MyD88-TRIFF(-/-) BM-DCs we demonstrate that the enhanced cross-presentation of the GalNAc modified antigen is TLR independent. Our data strongly suggest that tumour-associated GalNAc modification of antigen targets MGL on DCs and greatly enhances both MHC class II and class I presentation in a TLR independent manner.
Collapse
Affiliation(s)
- Satwinder Kaur Singh
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Okazaki T, Okazaki IM, Wang J, Sugiura D, Nakaki F, Yoshida T, Kato Y, Fagarasan S, Muramatsu M, Eto T, Hioki K, Honjo T. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. ACTA ACUST UNITED AC 2011; 208:395-407. [PMID: 21300912 PMCID: PMC3039848 DOI: 10.1084/jem.20100466] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new mouse model of spontaneous autoimmune disease reveals an important role for the inhibitory co-receptor LAG-3 in suppressing autoimmunity. Stimulatory and inhibitory co-receptors play fundamental roles in the regulation of the immune system. We describe a new mouse model of spontaneous autoimmune disease. Activation-induced cytidine deaminase–linked autoimmunity (aida) mice harbor a loss-of-function mutation in the gene encoding lymphocyte activation gene 3 (LAG-3), an inhibitory co-receptor. Although LAG-3 deficiency alone did not induce autoimmunity in nonautoimmune-prone mouse strains, it induced lethal myocarditis in BALB/c mice deficient for the gene encoding the inhibitory co-receptor programmed cell death 1 (PD-1). In addition, LAG-3 deficiency alone accelerated type 1 diabetes mellitus in nonobese diabetic mice. These results demonstrate that LAG-3 acts synergistically with PD-1 and/or other immunoregulatory genes to prevent autoimmunity in mice.
Collapse
Affiliation(s)
- Taku Okazaki
- Division of Immune Regulation, Institute for Genome Research, University of Tokushima, Kuramoto, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I, Mandel U, Poulsen SS, Pedersen AE, Rasmussen S, Jess P, Clausen H, Wandall HH. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer 2011; 128:1860-71. [PMID: 21344374 DOI: 10.1002/ijc.25778] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/22/2010] [Indexed: 11/05/2022]
Abstract
Cancer-associated autoantibodies hold promise as sensitive biomarkers for early detection of cancer. Aberrant post-translational variants of proteins are likely to induce autoantibodies, and changes in O-linked glycosylation represent one of the most important cancer-associated post-translational modifications (PTMs). Short aberrant O-glycans on proteins may introduce novel glycopeptide epitopes that can elicit autoantibodies because of lack of tolerance. Technical barriers, however, have hampered detection of such glycopeptide-specific autoantibodies. Here, we have constructed an expanded glycopeptide array displaying a comprehensive library of glycopeptides and glycoproteins derived from a panel of human mucins (MUC1, MUC2, MUC4, MUC5AC, MUC6 and MUC7) known to have altered glycosylation and expression in cancer. Seromic profiling of patients with colorectal cancer identified cancer-associated autoantibodies to a set of aberrant glycopeptides derived from MUC1 and MUC4. The cumulative sensitivity of the array analysis was 79% with a specificity of 92%. The most prevalent of the identified autoantibody targets were validated as authentic cancer immunogens by showing expression of the epitopes in cancer using novel monoclonal antibodies. Our study provides evidence for the value of glycopeptides and other PTM-peptide arrays in diagnostic measures.
Collapse
Affiliation(s)
- Johannes W Pedersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Glycosidic Tn-based vaccines targeting dermal dendritic cells favor germinal center B-cell development and potent antibody response in the absence of adjuvant. Blood 2010; 116:3526-36. [DOI: 10.1182/blood-2010-04-279133] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn vivo targeting of C-type lectin receptors is an effective strategy for increasing antigen uptake and presentation by dendritic cells (DCs). To induce efficient immune response, glycosylated tumor-associated Tn antigens were used to target DCs through binding to macrophage galactose-type lectin (MGL). The capacity of Tn-glycosylated antigens—and the multiple antigenic glycopeptide Tn3 therapeutic candidate vaccine—to target mouse and human MGL+ DCs are demonstrated, especially regarding dermal DCs. In mice, MGL+ CD103− dermal DCs efficiently captured and processed glycosylated Tn antigen in vivo, inducing a potent major histocompatibility complex (MHC) class II–restricted T-cell response. Intradermal immunization with Tn-glycopeptides induced high levels of Th2 cytokines—even in the presence of unmethylated cytosine-phosphate-guanosine—and was associated with increased expansion of the germinal center B-cell population. Therefore, MGL acts as an efficient endocytic antigen receptor on dermal DCs in vivo, able to prime Tn-specific T- and B-cell responses. Moreover, even in the absence of adjuvant, immunization with this glycosidic Tn-based vaccine induced high levels of anti-Tn antibody responses, recognizing human tumor cells. In vivo DC-targeting strategies, based on Tn-MGL interactions, constitute a promising strategy for enhancing antigen presentation and inducing potent antibody response.
Collapse
|
25
|
Characterization of an immunodominant cancer-specific O-glycopeptide epitope in murine podoplanin (OTS8). Glycoconj J 2010; 27:571-82. [DOI: 10.1007/s10719-010-9301-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 12/12/2022]
|
26
|
Denda-Nagai K, Aida S, Saba K, Suzuki K, Moriyama S, Oo-Puthinan S, Tsuiji M, Morikawa A, Kumamoto Y, Sugiura D, Kudo A, Akimoto Y, Kawakami H, Bovin NV, Irimura T. Distribution and function of macrophage galactose-type C-type lectin 2 (MGL2/CD301b): efficient uptake and presentation of glycosylated antigens by dendritic cells. J Biol Chem 2010; 285:19193-204. [PMID: 20304916 DOI: 10.1074/jbc.m110.113613] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) express cell surface lectins that are potentially involved in the recognition, uptake, and presentation of glycosylated foreign substances. A unique calcium-type (C-type) lectin, the macrophage galactose (Gal)-type C-type lectin (MGL/CD301) expressed on DCs, is thought to participate in the recognition of molecules from both altered self and pathogens due to its monosaccharide specificity for Gal and N-acetylgalactosamine (GalNAc). Although mice have two MGL genes, Mgl1 and Mgl2, their distinct roles have not been previously explored. The present report characterizes the properties of MGL2 by examining its distribution and its role in antigen presentation by DCs. We generated an MGL2-specific monoclonal antibody and examined MGL2 expression in tissues by immunohistochemistry and in isolated cells by flow cytometry. The cells reactive with this antibody were shown to be a portion of MGL1-expressing cells, mostly conventional DCs. Internalization of soluble polyacrylamide polymers (PAA) with alpha-GalNAc residues (GalNAc-PAA) by bone marrow-derived DCs (BM-DCs) was mediated by MGL2, as revealed by a comparison of Mgl1(-/-) and Mgl2(-/-) BM-DCs with wild-type BM-DCs. Biotinylated GalNAc-PAA conjugated to streptavidin (SAv) was more efficiently presented to SAv-primed T cells by BM-DCs than beta-N-acetylglucosamine-PAA conjugated to SAv or SAv alone as shown by thymidine uptake and cytokine production. This is the first report that demonstrates the involvement of GalNAc residues in antigen uptake and presentation by DCs that lead to CD4(+) T cell activation.
Collapse
Affiliation(s)
- Kaori Denda-Nagai
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
MGL2 Dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo. PLoS One 2009; 4:e5619. [PMID: 19440334 PMCID: PMC2680031 DOI: 10.1371/journal.pone.0005619] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/14/2009] [Indexed: 11/19/2022] Open
Abstract
Background Dendritic cells (DCs) are the most potent antigen-presenting cells in the mammalian immune system. In the skin, epidermal Langerhans cells (LCs) and dermal dendritic cells (DDCs) survey for invasive pathogens and present antigens to T cells after migration to the cutaneous lymph nodes (LNs). So far, functional and phenotypic differences between these two DC subsets remain unclear due to lack of markers to identify DDCs. Methodology/Principal Findings In the present report, we demonstrated that macrophage galactose-type C-type lectin (MGL) 2 was exclusively expressed in the DDC subset in the skin-to-LN immune system. In the skin, MGL2 was expressed on the majority (about 88%) of MHCII+CD11c+ cells in the dermis. In the cutaneous LN, MGL2 expression was restricted to B220−CD8αloCD11b+CD11c+MHCIIhi tissue-derived DC. MGL2+DDC migrated from the dermis into the draining LNs within 24 h after skin sensitization with FITC. Distinct from LCs, MGL2+DDCs localized near the high endothelial venules in the outer T cell cortex. In FITC-induced contact hypersensitivity (CHS), adoptive transfer of FITC+MGL2+DDCs, but not FITC+MGL2−DCs into naive mice resulted in the induction of FITC-specific ear swelling, indicating that DDCs played a key role in initiation of immune responses in the skin. Conclusions/Significance These results demonstrated the availability of MGL2 as a novel marker for DDCs and suggested the contribution of MGL2+ DDCs for initiating CHS.
Collapse
|
28
|
Saba K, Denda-Nagai K, Irimura T. A C-type lectin MGL1/CD301a plays an anti-inflammatory role in murine experimental colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:144-52. [PMID: 19095961 DOI: 10.2353/ajpath.2009.080235] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease is caused by abnormal inflammatory and immune responses to harmless substances, such as commensal bacteria, in the large bowel. Such responses appear to be suppressed under healthy conditions, although the mechanism of such suppression is currently unclear. The present study aimed to reveal whether the recognition of bacterial surface carbohydrates by the macrophage galactose-type C-type lectin-1, MGL1/CD301a, induces both the production and secretion of interleukin (IL)-10. Dextran sulfate sodium salt (DSS) was orally administrated to mice that lacked MGL1/CD301a (Mgl1(-/-) mice) and their wild-type littermates. Mgl1(-/-) mice showed significantly more severe inflammation than wild-type mice after administration of DSS. MGL1-positive cells in the colonic lamina propria corresponded to macrophage-like cells with F4/80-high, CD11b-positive, and CD11c-intermediate expression. These cells in Mgl1(-/-) mice produced a lower level of IL-10 mRNA compared with wild-type mice after the administration of DSS for 2 days. Recombinant MGL1 was found to bind both Streptococcus sp. and Lactobacillus sp. among commensal bacteria isolated from mesenteric lymph nodes of DSS-treated mice. Heat-killed Streptococcus sp. induced an increase in IL-10 secretion by MGL1-positive colonic lamina propria macrophages, but not the macrophage population from Mgl1(-/-) mice. These results strongly suggest that MGL1/CD301a plays a protective role against colitis by effectively inducing IL-10 production by colonic lamina propria macrophages in response to invading commensal bacteria.
Collapse
Affiliation(s)
- Kengo Saba
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Sakakura M, Oo-Puthinan S, Moriyama C, Kimura T, Moriya J, Irimura T, Shimada I. Carbohydrate binding mechanism of the macrophage galactose-type C-type lectin 1 revealed by saturation transfer experiments. J Biol Chem 2008; 283:33665-73. [PMID: 18790731 DOI: 10.1074/jbc.m804067200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macrophage galactose-type C-type lectins 1 and 2 (MGL1/2) are expressed on the surfaces of macrophages and immature dendritic cells. Despite the high similarity between the primary sequences of MGL1 and MGL2, they display different ligand specificities. MGL1 shows high affinity for the LewisX trisaccharide, whereas MGL2 shows affinity for N-acetylgalactosamine. To elucidate the structural basis for the ligand specificities of the MGLs, we performed NMR analyses of the MGL1-LewisX complex. To identify the LewisX binding site on MGL1, a saturation transfer experiment for the MGL1-LewisX complex where sugar-CH/CH2-selective saturation was applied was carried out. To obtain sugar moiety-specific information on the interface between MGL1 and the LewisX trisaccharide, saturation transfer experiments where each of galactose-H5-, fucose-CH3-, and N-acetylglucosamine-CH3-selective saturations was applied to the MGL1-LewisX complex were performed. Based on these results, we present a LewisX binding mode on MGL1 where the galactose moiety is bound to the primary sugar binding site, including Asp-94, Trp-96, and Asp-118, and the fucose moiety interacts with the secondary sugar binding site, including Ala-89 and Thr-111. Ala-89 and Thr-111 in MGL1 are replaced with arginine and serine in MGL2, respectively. The hydrophobic environment formed by a small side chain of Ala-89 and a methyl group of Thr-111 is a requisite for the accommodation of the fucose moiety of the LewisX trisaccharide within the sugar binding site of MGL1.
Collapse
Affiliation(s)
- Masayoshi Sakakura
- Laboratories of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Oo-puthinan S, Maenuma K, Sakakura M, Denda-Nagai K, Tsuiji M, Shimada I, Nakamura-Tsuruta S, Hirabayashi J, Bovin NV, Irimura T. The amino acids involved in the distinct carbohydrate specificities between macrophage galactose-type C-type lectins 1 and 2 (CD301a and b) of mice. Biochim Biophys Acta Gen Subj 2008; 1780:89-100. [DOI: 10.1016/j.bbagen.2007.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 10/16/2007] [Accepted: 10/24/2007] [Indexed: 11/15/2022]
|
31
|
van Vliet SJ, Saeland E, van Kooyk Y. Sweet preferences of MGL: carbohydrate specificity and function. Trends Immunol 2008; 29:83-90. [PMID: 18249034 DOI: 10.1016/j.it.2007.10.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 01/11/2023]
Abstract
C-type lectins play important roles in both innate and adaptive immune responses. In contrast to the mannose- or fucose-specific C-type lectins DC-SIGN and mannose receptor, the galactose-type lectins, of which only macrophage galactose-type lectin (MGL) is found within the immune system, are less well known. MGL is selectively expressed by immature dendritic cells and macrophages with elevated levels on tolerogenic or alternatively activated subsets. Human MGL has an exclusive specificity for rare terminal GalNAc structures, which are revealed on the tumor-associated mucin MUC1 and CD45 on effector T cells. These findings implicate MGL in the homeostatic control of adaptive immunity. We discuss here the functional similarities and differences between MGL orthologs and compare MGL to its closest homolog, the liver-specific asialoglycoprotein receptor (ASGP-R).
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Napoletano C, Rughetti A, Agervig Tarp MP, Coleman J, Bennett EP, Picco G, Sale P, Denda-Nagai K, Irimura T, Mandel U, Clausen H, Frati L, Taylor-Papadimitriou J, Burchell J, Nuti M. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Res 2007; 67:8358-67. [PMID: 17804752 DOI: 10.1158/0008-5472.can-07-1035] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The type of interaction between tumor-associated antigens and specialized antigen-presenting cells such as dendritic cells (DCs) is critical for the type of immunity that will be generated. MUC1, a highly O-glycosylated mucin, is overexpressed and aberrantly glycosylated in several tumor histotypes. This results in the expression of tumor-associated glycoforms and in MUC1 carrying the tumor-specific glycan Tn (GalNAcalpha1-O-Ser/Thr). Glycopeptides corresponding to three tandem repeats of MUC1, enzymatically glycosylated with 9 or 15 mol of GalNAc, were shown to specifically bind and to be internalized by immature monocyte-derived DCs (iDCs). Binding required calcium and the GalNAc residue and was competed out by GalNAc polymer and Tn-MUC1 or Tn-MUC2 glycopeptides. The macrophage galactose-type C-type lectin (MGL) receptor expressed on iDCs was shown to be responsible for the binding. Confocal analysis and ELISA done on subcellular fractions of iDCs showed that the Tn-MUC1 glycopeptides colocalized with HLA class I and II compartments after internalization. Importantly, although Tn-MUC1 recombinant protein was bound and internalized by MGL, the glycoprotein entered the HLA class II compartment, but not the HLA class I pathway. These data indicate that MGL expressed on iDCs is an optimal receptor for the internalization of short GalNAcs carrying immunogens to be delivered into HLA class I and II compartments. Such glycopeptides therefore represent a new way of targeting the HLA class I and II pathways of DCs. These results have possible implications in designing cancer vaccines.
Collapse
Affiliation(s)
- Chiara Napoletano
- Department of Experimental Medicine, University of Rome Sapienza, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
van Vliet SJ, van Liempt E, Geijtenbeek TBH, van Kooyk Y. Differential regulation of C-type lectin expression on tolerogenic dendritic cell subsets. Immunobiology 2006; 211:577-85. [PMID: 16920496 DOI: 10.1016/j.imbio.2006.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antigen presenting cells (APC) express high levels of C-type lectins, which play a major role in cellular interactions as well as pathogen recognition and antigen presentation. The C-type lectin macrophage galactose-type lectin (MGL), expressed by dendritic cells (DC) and macrophages, mediates binding to glycoproteins and lipids that contain terminal GalNAc moieties. To investigate MGL expression patterns in more detail, we generated two new monoclonal antibodies and set up a quantitative real-time PCR analysis to determine MGL mRNA levels. MGL is not expressed by blood-resident plasmacytoid DC and thus represents an exclusive marker for myeloid-type APC. Dexamethasone treatment upregulated MGL expression on DC both at the protein and mRNA level in a time- and dose-dependent manner. In contrast, DC generated in the presence of IL-10 did not display enhanced MGL levels. Furthermore, dexamethasone and IL-10 also differentially regulated expression of other C-type lectins, such as DC-SIGN and Mannose Receptor. Our results demonstrate that depending on the local microenvironment, DC can adopt different C-type lectin profiles, which could have major influences on cell-cell interactions, antigen uptake and presentation.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
34
|
Dupasquier M, Stoitzner P, Wan H, Cerqueira D, van Oudenaren A, Voerman JSA, Denda-Nagai K, Irimura T, Raes G, Romani N, Leenen PJM. The dermal microenvironment induces the expression of the alternative activation marker CD301/mMGL in mononuclear phagocytes, independent of IL-4/IL-13 signaling. J Leukoc Biol 2006; 80:838-49. [PMID: 16849611 DOI: 10.1189/jlb.1005564] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recently, we have shown that mononuclear phagocytes comprise the majority of interstitial cells in the mouse dermis, as indicated by their phenotypic and functional characteristics. In particular, these cells express the mouse macrophage galactose-/N-acetylgalactosamine-specific-lectin (mMGL)/CD301, identified by the monoclonal antibody ER-MP23, as well as other macrophage markers. As expression of mMGL is induced by IL-4 or IL-13 and is therefore a marker of alternatively activated macrophages, we asked whether dermal mononuclear phagocytes are genuinely alternatively activated. We observed that these cells expressed, next to mMGL, two other alternative activation markers, namely, the mannose receptor/CD206 and Dectin-1. Yet, as this expression profile was similar in IL-4 receptor alpha knockout mice, neither IL-4 nor IL-13 signaling appeared to be required for this phenotype. We also found that Langerhans cells (LC), which showed only a low level of mMGL in the epidermis, up-regulated mMGL expression upon migration through the dermis, allowing these cells to internalize limited amounts of mMGL ligands. LC isolated from epidermal preparations did not show this up-regulation when cultured in standard medium, but whole skin-conditioned medium did stimulate mMGL expression by LC. The vast majority of mMGL molecules was present in the cytoplasm, however. LC, which arrived in skin-draining lymph nodes, quickly down-regulated mMGL expression, and dermally derived cells retained significant mMGL levels. Taken together, these data suggest that the dermal microenvironment induces mononuclear phagocyte subpopulations to express mMGL and possibly other markers of alternatively activated macrophages, independent of IL-4/IL-13 signaling.
Collapse
Affiliation(s)
- Marcel Dupasquier
- Department of Immunology, Erasmus MC, NL-3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aarnoudse CA, Garcia Vallejo JJ, Saeland E, van Kooyk Y. Recognition of tumor glycans by antigen-presenting cells. Curr Opin Immunol 2005; 18:105-11. [PMID: 16303292 DOI: 10.1016/j.coi.2005.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/07/2005] [Indexed: 11/28/2022]
Abstract
C-type lectin receptors on antigen-presenting cells are potent antigen-uptake receptors with specificity for glycan structures. Glycosylation changes during malignant transformation create tumor-specific carbohydrate structures that interact with C-type lectins on dendritic cells. Recent findings revealed that tumor glycoproteins, such as carcinoembryonic antigen and MUC-1, indeed interact with the C-type lectins DC-SIGN and macrophage galactose-type lectin on antigen-presenting cells. The consequences for anti-cancer immunity or tolerance induction can be extrapolated from the function of C-type lectins in pathogen recognition and antigen presentation. In addition, in vivo studies in mice recently demonstrated the potency of targeting antigens to C-type lectins on antigen-presenting cells for anti-tumor vaccination strategies.
Collapse
Affiliation(s)
- Corlien A Aarnoudse
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center Amsterdam, PO Box 7057, 1081 BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Sørensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, Taylor-Papadimitriou J, Hollingsworth MA, Burchell J, Clausen H. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 2005; 16:96-107. [PMID: 16207894 DOI: 10.1093/glycob/cwj044] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The MUC1 mucin represents a prime target antigen for cancer immunotherapy because it is abundantly expressed and aberrantly glycosylated in carcinomas. Attempts to generate strong humoral immunity to MUC1 by immunization with peptides have generally failed partly because of tolerance. In this study, we have developed chemoenzymatic synthesis of extended MUC1 TR glycopeptides with cancer-associated O-glycosylation using a panel of recombinant human glycosyltransferases. MUC1 glycopeptides with different densities of Tn and STn glycoforms conjugated to KLH were used as immunogens to evaluate an optimal vaccine design. Glycopeptides with complete O-glycan occupancy (five sites per repeat) elicited the strongest antibody response reacting with MUC1 expressed in breast cancer cell lines in both Balb/c and MUC1.Tg mice. The elicited humoral immune response showed remarkable specificity for cancer cells suggesting that the glycopeptide design holds promise as a cancer vaccine. The elicited immune responses were directed to combined glycopeptide epitopes, and both peptide sequence and carbohydrate structures were important for the antigen. A MAb (5E5) with similar specificity as the elicited immune response was generated and shown to have the same remarkable cancer specificity. This antibody may hold promise in diagnostic and immunopreventive measures.
Collapse
Affiliation(s)
- Anne Louise Sørensen
- Department of Medical Biochemistry and Genetics, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yuita H, Tsuiji M, Tajika Y, Matsumoto Y, Hirano K, Suzuki N, Irimura T. Retardation of removal of radiation-induced apoptotic cells in developing neural tubes in macrophage galactose-type C-type lectin-1-deficient mouse embryos. Glycobiology 2005; 15:1368-75. [PMID: 16096344 DOI: 10.1093/glycob/cwj028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MGL1/CD301a is a C-type lectin that recognizes galactose and N-acetylgalactosamine as monosaccharides and is expressed on limited populations of macrophages and dendritic cells at least in adult mice. In this study, pregnant mice with Mgl1+/- genotype were mated with Mgl1+/- or Mgl1-/- genotype males, and the embryos were used to assess a hypothesis that this molecule plays an important role in the clearance of apoptotic cells. After X-ray irradiation at 1 Gy of developing embryos at 10.5 days post coitus (d.p.c.), the number of Mgl1-/- pups was significantly reduced as compared with Mgl1+/+ pups. Distributions of MGL1-positive cells, MGL2-positive cells, and apoptotic cells were histologically examined in irradiated Mgl1+/+ embryos. MGL1-positive cells were detected in the neural tube in which many cells undergo apoptosis, whereas MGL2-positive cells were not observed. Biotinylated recombinant MGL1 bound a significant portion of the apoptotic cells. When Mgl1+/+ and Mgl1-/- embryos were examined for the presence of apoptotic cells, similar numbers of apoptotic cells gave rise, but the clearance of these cells was slower in Mgl1-/- embryos than in Mgl1+/+ embryos. These results strongly suggest that MGL1/CD301a is involved in the clearance of apoptotic cells. This process should be essential in the repair and normal development of X-ray-irradiated embryos.
Collapse
Affiliation(s)
- Hiroshi Yuita
- Department of Radiation Oncology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Toyama-Sorimachi N, Omatsu Y, Onoda A, Tsujimura Y, Iyoda T, Kikuchi-Maki A, Sorimachi H, Dohi T, Taki S, Inaba K, Karasuyama H. Inhibitory NK receptor Ly49Q is expressed on subsets of dendritic cells in a cellular maturation- and cytokine stimulation-dependent manner. THE JOURNAL OF IMMUNOLOGY 2005; 174:4621-9. [PMID: 15814685 DOI: 10.4049/jimmunol.174.8.4621] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ly49Q is a member of the Ly49 family that is expressed on Gr-1+ cells but not on NK and NKT cells. Ly49Q appears to be involved in regulating cytoskeletal architectures through ITIM-mediated signaling. We provide evidence that dendritic cells (DCs) of certain maturational states expressed Ly49Q, and that IFN-alpha plays an important role in its regulation. Freshly prepared murine plasmacytoid pre-DCs as well as Flt3L-induced plasmacytoid pre-DCs expressed Ly49Q, whereas freshly prepared myeloid DCs did not. However, GM-CSF-induced myeloid DCs showed low levels of Ly49Q expression, and this was significantly enhanced by IFN-alpha. In contrast, other cytokines and ligands for TLRs such as TNF-alpha, IL-6, LPS, and CpG-ODN had little or no effect on Ly49Q expression. Plasmacytoid pre-DCs in all mouse strains examined expressed Ly49Q. Constitutive expression of Ly49Q on myeloid DCs was observed in three restricted mouse strains including 129, NZB, and NZW. As can be seen in other Ly49 family members, Ly49Q expression was affected by MHC class I expression. At the same time, Ly49Q possessed polymorphisms, including at least three alleles. The polymorphic residues lay within the stalk and carbohydrate recognition domain, and two of them, in loop 3 and loop 6 of the carbohydrate recognition domain, are located in the region implicated in the interaction of Ly49A with H-2D(d). Therefore, depending on IFN-alpha, our results imply that Ly49Q serves a role for the biological functions of certain DC subsets through recognition of MHC class I or related molecules.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Ly/genetics
- Base Sequence
- Cell Differentiation
- Cytokines/pharmacology
- DNA/genetics
- Dendritic Cells/classification
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Gene Expression Regulation/drug effects
- Histocompatibility Antigens Class I/metabolism
- In Vitro Techniques
- Interferon Type I/pharmacology
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily A
- Polymorphism, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/genetics
- Receptors, NK Cell Lectin-Like
- Recombinant Proteins
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- Noriko Toyama-Sorimachi
- Department of Gastroenterology, Research Institute, International Medical Center of Japan, Toyama, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sato K, Komatsu N, Higashi N, Imai Y, Irimura T. Granulation tissue formation by nonspecific inflammatory agent occurs independently of macrophage galactose-type C-type lectin-1. Clin Immunol 2005; 115:47-50. [PMID: 15870020 DOI: 10.1016/j.clim.2005.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 02/14/2005] [Indexed: 11/21/2022]
Abstract
The role of a macrophage galactose-type calcium-type lectin-1 (MGL1) in antigen-independent granulation tissue formation was investigated. Granulation tissue was induced by injection of carrageenan in an air pouch and distribution of macrophages expressing MGL1/2 was histologically examined. MGL1/2-positive cells were not observed in the granulation tissue induced by carrageenan though these cells were present in dermis. This was distinct from the fact that MGL1/2-positive cells were abundant in granulation tissue induced by antigenic stimulation. CD11b-positive cells were in dermis and carrageenan-induced granulation tissue. Because antigen-induced granulation tissue formation was previously shown to decrease in MGL1-deficient mice or after treatment with anti-MGL1 antibody, we investigated the effects of MGL1-deficient status on carrageenan-induced granulation tissue formation. The thickness of granulation tissue was almost identical between wild-type and MGL1-deficient mice. It is highly likely that MGL1-positive cells are not involved in tissue remodeling when inflammation is driven by nonspecific stimuli.
Collapse
Affiliation(s)
- Kayoko Sato
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
40
|
Sato K, Imai Y, Higashi N, Kumamoto Y, Mukaida N, Irimura T. Redistributions of macrophages expressing the macrophage galactose-type C-type lectin (MGL) during antigen-induced chronic granulation tissue formation. Int Immunol 2005; 17:559-68. [PMID: 15802308 DOI: 10.1093/intimm/dxh235] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cell surface lectins are known to regulate trafficking of cells in the immune system, yet the role of macrophage galactose-type C-type lectin 1 and 2 (MGL1/2) is poorly understood. In this study, antigen-specific chronic inflammation was induced in a subcutaneous air pouch model in mice, and distribution of cells expressing MGL1/2 was investigated. Azobenzenearsonate-conjugated acetylated BSA, used as an antigen, was introduced into an air pouch of immunized mice, and tissue formation and distribution of MGL1/2-positive cells in the sub-dermal regions was examined. Thickness of the inflammatory tissue and number of MGL1/2-positive cells simultaneously reached the maximum at day 4 and returned to the control level at day 6 or 8. When additional antigenic challenges were given, a chronic granulation tissue, which had two distinct layers, was generated. In the chronic tissue, CD11b-positive/MGL1/2-negative cells were abundant in the area close to the antigenic stimulus, while the area far from the antigenic stimulus was dominated by MGL1/2-positive/CD11b-negative or -low cells. Flow cytometric analyses of isolated cells from the granulation tissue revealed that MGL1/2-positive cells expressed MHC class II at high levels, CD11b at low levels but no CD11c. MGL1/2-positive and -negative fractions were separated from cells in the granulation tissue and a higher level of IL-1alpha messenger RNA than negative populations was detected in the MGL1/2-positive fraction by the semi-quantitative reverse transcription-PCR method. IL-1alpha production by MGL1/2-positive cells was also immunohistochemically detected. Results suggest that MGL1/2-positive cells represent a distinct sub-population of macrophages, having unique functions in the generation and maintenance of granulation tissue induced by antigenic stimuli.
Collapse
Affiliation(s)
- Kayoko Sato
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
41
|
van Vliet SJ, van Liempt E, Saeland E, Aarnoudse CA, Appelmelk B, Irimura T, Geijtenbeek TBH, Blixt O, Alvarez R, van Die I, van Kooyk Y. Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int Immunol 2005; 17:661-9. [PMID: 15802303 DOI: 10.1093/intimm/dxh246] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) are key to the maintenance of peripheral tolerance to self-antigens and the orchestration of an immune reaction to foreign antigens. C-type lectins, expressed by DCs, recognize carbohydrate moieties on antigens that can be internalized for processing and presentation. Little is known about the exact glycan structures on self-antigens and pathogens that are specifically recognized by the different C-type lectins and how this interaction influences DC function. We have analyzed the carbohydrate specificity of the human C-type lectin macrophage galactose-type lectin (MGL) using glycan microarray profiling and identified an exclusive specificity for terminal alpha- and beta-linked GalNAc residues that naturally occur as parts of glycoproteins or glycosphingolipids. Specific glycan structures containing terminal GalNAc moieties, expressed by the human helminth parasite Schistosoma mansoni as well as tumor antigens and a subset of gangliosides, were identified as ligands for MGL. Our results indicate an endogenous function for DC-expressed MGL in the clearance and tolerance to self-gangliosides, and in the pattern recognition of tumor antigens and foreign glycoproteins derived from helminth parasites.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology & Immunology, VU Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sato K, Imai Y, Higashi N, Kumamoto Y, Onami TM, Hedrick SM, Irimura T. Lack of antigen-specific tissue remodeling in mice deficient in the macrophage galactose-type calcium-type lectin 1/CD301a. Blood 2005; 106:207-15. [PMID: 15784728 DOI: 10.1182/blood-2004-12-4943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macrophage galactose-type C-type lectins (MGLs), which were recently named CD301, have 2 homologues in mice: MGL1 and MGL2. MGLs are expressed on macrophages and immature dendritic cells. The persistent presence of granulation tissue induced by a protein antigen was observed in wild-type mice but not in mice lacking an endogenous, macrophage-specific, galactose-type calcium-type lectin 1 (MGL1) in an air pouch model. The anti-MGL1 antibody suppressed the granulation tissue formation in wild-type mice. A large number of cells, present only in the pouch of MGL1-deficient mice, were not myeloid or lymphoid lineage cells and the number significantly declined after administration of interleukin 1 alpha (IL-1alpha) into the pouch of MGL1-deficient mice. Furthermore, granulation tissue was restored by this treatment and the cells obtained from the pouch of MGL1-deficient mice were incorporated into the granulation tissue when injected with IL-1alpha. Taken together, MGL1 expressed on a specific subpopulation of macrophages that secrete IL-1alpha was proposed to regulate specific cellular interactions crucial to granulation tissue formation.
Collapse
Affiliation(s)
- Kayoko Sato
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Sato K, Higashi N, Kumamoto Y, Irimura T. Distribution of MGL1 Binding Sites and MGL1/2-positive Cells in Lymph Nodes during the Sensitization Phase of Contact Hypersensitivity. Acta Histochem Cytochem 2005. [DOI: 10.1267/ahc.38.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Koji Sato
- Department of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Nobuaki Higashi
- Department of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yosuke Kumamoto
- Department of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Tatsuro Irimura
- Department of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
44
|
Raes G, Brys L, Dahal BK, Brandt J, Grooten J, Brombacher F, Vanham G, Noël W, Bogaert P, Boonefaes T, Kindt A, Van den Bergh R, Leenen PJM, De Baetselier P, Ghassabeh GH. Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J Leukoc Biol 2004; 77:321-7. [PMID: 15591125 DOI: 10.1189/jlb.0304212] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Molecular markers, especially surface markers associated with type II, cytokine-dependent, alternatively activated macrophages (aaMF), remain scarce. Besides the earlier documented markers, macrophage mannose receptor and arginase 1, we demonstrated recently that murine aaMF are characterized by increased expression of found in inflammatory zone 1 (FIZZ1) and the secretory lectin Ym. We now document that expression of the two members of the mouse macrophage galactose-type C-type lectin gene family (mMGL1 and mMGL2) is induced in diverse populations of aaMF, including peritoneal macrophages elicited during infection with the protozoan Trypanosoma brucei brucei or the Helminth Taenia crassiceps and alveolar macrophages elicited in a mouse model of allergic asthma. In addition, we demonstrate that in vitro, interleukin-4 (IL-4) and IL-13 up-regulate mMGL1 and mMGL2 expression and that in vivo, induction of mMGL1 and mMGL2 is dependent on IL-4 receptor signaling. Moreover, we show that expression of MGL on human monocytes is also up-regulated by IL-4. Hence, macrophage galactose-type C-type lectins represent novel surface markers for murine and human aaMF.
Collapse
Affiliation(s)
- Geert Raes
- Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Building E, Level 8, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kumamoto Y, Higashi N, Denda-Nagai K, Tsuiji M, Sato K, Crocker PR, Irimura T. Identification of Sialoadhesin as a Dominant Lymph Node Counter-receptor for Mouse Macrophage Galactose-type C-type Lectin 1. J Biol Chem 2004; 279:49274-80. [PMID: 15364954 DOI: 10.1074/jbc.m409300200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the sensitization phase of contact hypersensitivity in mice, dermal macrophages (MOs) expressing MO galactose-type C-type lectin1 (MGL1) are known to migrate from the dermis to lymph nodes (LNs) where they accumulate in the subcapsular sinus, interfollicular regions, and areas surrounding high endothelial venules. We hypothesize that the interactions between MGL1 and its ligands determine the localizations of MGL1-positive cells within the LNs. In the present study, our major aim was to isolate MGL1 counter-receptor(s) from lysates of LNs using affinity chromatography with immobilized recombinant MGL1. Fractions bound and eluted with EDTA were analyzed by SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. One of the predominant components was sialoadhesin (Sn, Siglec-1). Sn from lysates of LNs was immobilized on microtiter plates precoated with anti-Sn monoclonal antibody, and binding of recombinant MGL1 and adhesion of cells expressing MGL1 were tested. The binding of recombinant MGL1 to Sn was shown to be dependent on Ca2+ and N-glycans on Sn. MGL1-transfected Chinese hamster ovary cells adhered to the Sn-coated plates, whereas mock transfectants did not. Immunohistochemical localization of anti-Sn monoclonal antibody in LN coincided with the subcapsular sinus area to which recombinant MGL1 was bound. Furthermore, the distribution of MGL1+ cells after sensitization with FITC was demonstrated to overlap with that of Sn within the subcapsular sinus of draining LNs. These results suggest that Sn acts as an endogenous counter-receptor for MGL1.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Asialoglycoproteins
- Binding Sites
- Blotting, Western
- CHO Cells
- Calcium/chemistry
- Carbohydrates/chemistry
- Cell Adhesion
- Cell Movement
- Chromatography, Affinity
- Cricetinae
- DNA, Complementary/metabolism
- Edetic Acid
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Immunohistochemistry
- Lectins/chemistry
- Lectins, C-Type/metabolism
- Ligands
- Lymph Nodes/metabolism
- Macrophages/metabolism
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/physiology
- Membrane Proteins/metabolism
- Mice
- Polysaccharides/chemistry
- Protein Binding
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/physiology
- Recombinant Proteins/chemistry
- Sialic Acid Binding Ig-like Lectin 1
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Yosuke Kumamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Gwendalyn J Randolph
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
47
|
Tsuiji M, Fujimori M, Ohashi Y, Higashi N, Onami TM, Hedrick SM, Irimura T. Molecular cloning and characterization of a novel mouse macrophage C-type lectin, mMGL2, which has a distinct carbohydrate specificity from mMGL1. J Biol Chem 2002; 277:28892-901. [PMID: 12016228 DOI: 10.1074/jbc.m203774200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel mouse macrophage galactose-type C-type lectin 2 (mMGL2) was identified by BLAST analysis of expressed sequence tags. The sequence of mMGL2 is highly homologous to the mMGL, which should now be called mMGL1. The open reading frame of mMGL2 contains a sequence corresponding to a type II transmembrane protein with 332 amino acids having a single extracellular C-type lectin domain. The 3'-untranslated region included long terminal repeats of mouse early transposon. The Mgl2 gene was cloned from a 129/SvJ mouse genomic library and sequenced. The gene spans 7,136 base pairs and consists of 10 exons, which is similar to the genomic organization of mMGL1. The reverse transcriptase-PCR analysis indicates that mMGL2 is expressed in cell lines and normal mouse tissues in a macrophage-restricted manner, also very similar to that of mMGL1. The mMGL2 mRNA was also detected in mMGL1-positive cells, which were sorted from thioglycollate-induced peritoneal cells with a mMGL1-specific monoclonal antibody, LOM-8.7. The soluble recombinant proteins of mMGL2 exhibited carbohydrate specificity for alpha- and beta-GalNAc-conjugated soluble polyacrylamides, whereas mMGL1 preferentially bound Lewis X-conjugated soluble polyacrylamides in solid phase assays. These two lectins may function cooperatively as recognition and endocytic molecules on macrophages and related cells.
Collapse
Affiliation(s)
- Makoto Tsuiji
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Higashi N, Morikawa A, Fujioka K, Fujita Y, Sano Y, Miyata-Takeuchi M, Suzuki N, Irimura T. Human macrophage lectin specific for galactose/N-acetylgalactosamine is a marker for cells at an intermediate stage in their differentiation from monocytes into macrophages. Int Immunol 2002; 14:545-54. [PMID: 12039906 DOI: 10.1093/intimm/dxf021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We studied the expression of a human macrophage lectin specific for galactose/N-acetylgalactosamine (hMGL) during macrophage differentiation. The expression of hMGL during the in vitro differentiation induced by human serum was examined by immunostaining and Western blotting with a specific mAb, MLD-1, as well as with RT-PCR analysis. hMGL was detected on cells at an intermediate stage of differentiation. These cells were round, slightly larger in size (12.7 +/- 0.2 microm) than monocytes (9.8 +/- 0.1 microm) and expressed the macrophage marker CD14, but lacked the dendritic cell marker CD1a. The highest levels of expression occurred after 2-4 days of culture. At this time point, MLD-1 prominently stained 20-40% of the cells. Monocytes cultured for 16 h or fully differentiated monocyte-derived macrophages were negative or weak for hMGL expression. Similar transient expression was also observed during granulocyte macrophage colony stimulating factor- or macrophage colony stimulating factor-dependent macrophage differentiation. The lectin was characterized as a functional endocytic receptor for glycosylated macromolecules, since the uptake of carbohydrate polymers was partially inhibited by the addition of MLD-1. The distribution of hMGL(+) cells in normal human skin was found by immunostaining to be mainly in the upper dermis distant from vascular structures. More than 90% of the hMGL(+) cells were double stained with anti-CD68 mAb and constituted approximately 20% of the CD68(+) cells. We suggest that the dermal hMGL(+) cells are a subset of differentiated cells derived from monocytes and that hMGL is a unique marker for cells at an intermediate stage of macrophage differentiation.
Collapse
Affiliation(s)
- Nobuaki Higashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|