1
|
Radziejewska I. Tumor-associated carbohydrate antigens of MUC1 - Implication in cancer development. Biomed Pharmacother 2024; 174:116619. [PMID: 38643541 DOI: 10.1016/j.biopha.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2, Białystok 15-222, Poland.
| |
Collapse
|
2
|
Soares J, Eiras M, Ferreira D, Santos DAR, Relvas-Santos M, Santos B, Gonçalves M, Ferreira E, Vieira R, Afonso LP, Santos LL, Dinis-Ribeiro M, Lima L, Ferreira JA. Stool Glycoproteomics Signatures of Pre-Cancerous Lesions and Colorectal Cancer. Int J Mol Sci 2024; 25:3722. [PMID: 38612533 PMCID: PMC11012158 DOI: 10.3390/ijms25073722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) screening relies primarily on stool analysis to identify occult blood. However, its sensitivity for detecting precancerous lesions is limited, requiring the development of new tools to improve CRC screening. Carcinogenesis involves significant alterations in mucosal epithelium glycocalyx that decisively contribute to disease progression. Building on this knowledge, we examined patient series comprehending premalignant lesions, colorectal tumors, and healthy controls for the T-antigen-a short-chain O-glycosylation of proteins considered a surrogate marker of malignancy in multiple solid cancers. We found the T-antigen in the secretions of dysplastic lesions as well as in cancer. In CRC, T-antigen expression was associated with the presence of distant metastases. In parallel, we analyzed a broad number of stools from individuals who underwent colonoscopy, which showed high T expressions in high-grade dysplasia and carcinomas. Employing mass spectrometry-based lectin-affinity enrichment, we identified a total of 262 proteins, 67% of which potentially exhibited altered glycosylation patterns associated with cancer and advanced pre-cancerous lesions. Also, we found that the stool (glyco)proteome of pre-cancerous lesions is enriched for protein species involved in key biological processes linked to humoral and innate immune responses. This study offers a thorough analysis of the stool glycoproteome, laying the groundwork for harnessing glycosylation alterations to improve non-invasive cancer detection.
Collapse
Affiliation(s)
- Janine Soares
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Eiras
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela A. R. Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Beatriz Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Martina Gonçalves
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Renata Vieira
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Luís Pedro Afonso
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- FF-I3ID, University Fernando Pessoa, 4249-004 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Mário Dinis-Ribeiro
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP), Rise@CI-IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| |
Collapse
|
3
|
Satala CB, Jung I, Gurzu S. Mucin-Phenotype and Expression of the Protein V-Set and Immunoglobulin Domain Containing 1 (VSIG1): New Insights into Gastric Carcinogenesis. Int J Mol Sci 2023; 24:ijms24108697. [PMID: 37240039 DOI: 10.3390/ijms24108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In gastric cancer (GC), intestinal metaplasia (IM) is a common precursor lesion, but its relationship to the MUC2/MUC5AC/CDX2 axis is not completely understood. Although V-set and immunoglobulin domain containing 1 (VSIG1) is supposed to be a specific marker for gastric mucosa and GC, respectively, no data about its relationship with IM or mucin phenotype have been published. The aim of our study was to explore the possible linkage between IM and these four molecules. The clinicopathological features of 60 randomly selected GCs were examined in association with VSIG1, MUC2, MUC5AC and CDX2. Two online database platforms were also used to establish the transcription factors (TFs) network involved in MUC2/MUC5AC/CDX2 cascade. IM was more frequently encountered in females (11/16 cases) and in patients below 60 years old (10/16 cases). Poorly differentiated (G3) carcinomas tended to show a loss of CDX2 (27/33 cases) but not of MUC2 and MUC5AC. MUC5AC and CDX2 were lost in parallel with the depth of invasion of the pT4 stage (28/35 and 29/35 cases), while an advanced Dukes-MAC-like stage was only correlated with CDX2 and VSIG1 loss (20/37 and 30/37 cases). VSIG1 was directly correlated with MUC5AC (p = 0.04) as an indicator of gastric phenotype. MUC2-negative cases showed a propensity towards lymphatic invasion (37/40 cases) and distant metastases, while CDX2-negative cases tended to associate with hematogenous dissemination (30/40 cases). Regarding the molecular network, only 3 of the 19 TFs involved in this carcinogenic cascade (SP1, RELA, NFKB1) interacted with all targeted genes. In GC, VSIG1 can be considered an indicator of gastric phenotype carcinomas, where carcinogenesis is mainly driven by MUC5AC. Although infrequently encountered in GC, CDX2 positivity might indicate a locally advanced stage and risk for vascular invasion, especially in tumors developed against the background of IM. The loss of VSIG1 indicates a risk for lymph node metastases.
Collapse
Affiliation(s)
- Catalin-Bogdan Satala
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| | - Ioan Jung
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540136 Targu Mures, Romania
| |
Collapse
|
4
|
von Gunten S, Schneider C, Imamovic L, Gorochov G. Antibody diversity in IVIG: Therapeutic opportunities for novel immunotherapeutic drugs. Front Immunol 2023; 14:1166821. [PMID: 37063852 PMCID: PMC10090664 DOI: 10.3389/fimmu.2023.1166821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Significant progress has been made in the elucidation of human antibody repertoires. Furthermore, non-canonical functions of antibodies have been identified that reach beyond classical functions linked to protection from pathogens. Polyclonal immunoglobulin preparations such as IVIG and SCIG represent the IgG repertoire of the donor population and will likely remain the cornerstone of antibody replacement therapy in immunodeficiencies. However, novel evidence suggests that pooled IgA might promote orthobiotic microbial colonization in gut dysbiosis linked to mucosal IgA immunodeficiency. Plasma-derived polyclonal IgG and IgA exhibit immunoregulatory effects by a diversity of different mechanisms, which have inspired the development of novel drugs. Here we highlight recent insights into IgG and IgA repertoires and discuss potential implications for polyclonal immunoglobulin therapy and inspired drugs.
Collapse
Affiliation(s)
- Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- *Correspondence: Stephan von Gunten,
| | | | - Lejla Imamovic
- Sorbonne Université, Inserm, Assistance Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm, Assistance Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
5
|
Wu J, Jin Z, Lin J, Fu Y, Wang J, Shen Y. Vessel state and immune infiltration of the angiogenesis subgroup and construction of a prediction model in osteosarcoma. Front Immunol 2022; 13:992266. [PMID: 36405691 PMCID: PMC9666676 DOI: 10.3389/fimmu.2022.992266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Angiogenesis has been recognized as a pivotal contributor to tumorigenesis and progression. However, the role of angiogenesis-related genes (ARGs) in vessel state, immune infiltration, and prognosis remains unknown in osteosarcoma (OS). Bulk RNA sequencing data of osteosarcoma patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, and patients were divided into two angiogenesis subgroups according to the expression of ARGs. We compared their vessel state and used two independent algorithms to evaluate the tumor microenvironment (TME) in the two subgroups. Furthermore, hub genes of differentially expressed genes (DEGs) in the two subgroups were selected to perform LASSO regression and multivariate Cox stepwise regression, and two prognostic hub genes were found. An ARG_score based on prognostic hub genes was calculated and proved to be reliable in the overall survival prediction in OS patients. Furthermore, the ARG_score was significantly associated with ARGs, immune infiltration, response to immunotherapy, and drug sensitivity. To make our prediction model perform well, clinical features were added and a highly accurate interactive nomogram was constructed. Immunohistochemistry and qRT-PCR were utilized to verify the expression of prognostic hub genes. GSE21257 from the Gene Expression Omnibus (GEO) database was used as a validation dataset to verify its robustness. In conclusion, our comprehensive analysis of angiogenesis subgroups in OS illustrated that angiogenesis may lead to different vessel states and further affect immune infiltration and prognosis of OS patients. Our findings may bring a novel perspective for the immunotherapy strategies for OS patients.
Collapse
Affiliation(s)
- Jintao Wu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijian Jin
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucheng Fu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Lema MA, Nava-Medina IB, Cerullo AR, Abdelaziz R, Jimenez SM, Geldner JB, Abdelhamid M, Kwan CS, Kharlamb L, Neary MC, Braunschweig AB. Scalable Preparation of Synthetic Mucins via Nucleophilic Ring-Opening Polymerization of Glycosylated N-Carboxyanhydrides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel A. Lema
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, City College of New York, 160 Convent Ave, New York, New York 10031, United States
| | - Ilse B. Nava-Medina
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Antonio R. Cerullo
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Radwa Abdelaziz
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Stephanie M. Jimenez
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Jacob B. Geldner
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Mohamed Abdelhamid
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Chak-Shing Kwan
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Lily Kharlamb
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Michelle C. Neary
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| |
Collapse
|
7
|
Szczykutowicz J, Tkaczuk-Włach J, Ferens-Sieczkowska M. Glycoproteins Presenting Galactose and N-Acetylgalactosamine in Human Seminal Plasma as Potential Players Involved in Immune Modulation in the Fertilization Process. Int J Mol Sci 2021; 22:ijms22147331. [PMID: 34298952 PMCID: PMC8303229 DOI: 10.3390/ijms22147331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
In light of recent research, there is increasing evidence showing that extracellular semen components have a significant impact on the immune reaction of the female partner, leading to the tolerogenic response enabling the embryo development and implantation as well as further progress of healthy pregnancy. Seminal plasma glycoproteins are rich in the unique immunomodulatory glycoepitopes that may serve as ligands for endogenous lectins that decorate the surface of immune cells. Such interaction may be involved in modulation of the maternal immune response. Among immunomodulatory glycans, Lewis type antigens have been of interest for at least two decades, while the importance of T/Tn antigens and related structures is still far from understanding. In the current work, we applied two plant lectins capable of distinguishing glycoepitopes with terminal GalNAc and Gal to identify glycoproteins that are their efficient carriers. By means of lectin blotting and lectin affinity chromatography followed by LC-MS, we identified lactotransferrin, prolactin inducible protein as well as fibronectin and semenogelins 1 and 2 as lectin-reactive. Net-O-glycosylation analysis results indicated that the latter three may actually carry T and/or Tn antigens, while in the case of prolactin inducible protein and lactotransferrin LacdiNAc and lactosamine glycoepitopes were more probable. STRING bioinformatics analysis linked the identified glycoproteins in the close network, indicating their involvement in immune (partially innate) processes. Overall, our research revealed potential seminal plasma ligands for endogenous Gal/GalNAc specific lectins with a possible role in modulation of maternal immune response during fertilization.
Collapse
Affiliation(s)
- Justyna Szczykutowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-369 Wrocław, Poland;
| | - Joanna Tkaczuk-Włach
- Laboratory of Diagnostic Techniques, Medical University of Lublin, 20-081 Lublin, Poland;
- Family Health Centre AB OVO, 20-819 Lublin, Poland
| | - Mirosława Ferens-Sieczkowska
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-369 Wrocław, Poland;
- Correspondence:
| |
Collapse
|
8
|
Preparation of glycan-oriented imprinted polymer coating Gd-doped silicon nanoparticles for targeting cancer Tn antigens and dual-modal cell imaging via boronate-affinity surface imprinting. Talanta 2021; 223:121706. [DOI: 10.1016/j.talanta.2020.121706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
|
9
|
Radziejewska I, Borzym-Kluczyk M, Leszczyńska K. Luteolin alters MUC1 extracellular domain, sT antigen, ADAM-17, IL-8, IL-10 and NF-κB expression in Helicobacter pylori-infected gastric cancer CRL-1739 cells: A preliminary study. Biomed Rep 2020; 14:19. [PMID: 33335725 PMCID: PMC7739866 DOI: 10.3892/br.2020.1395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Luteolin is a natural flavonoid possessing certain beneficial pharmacological properties, including anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer properties. The majority of types of gastric cancer with chronic gastritis are caused by infection with Helicobacter pylori (H. pylori). The present study evaluated the effect of luteolin on a number of selected factors that are potentially involved in gastric cancer development. The study was performed using gastric cancer CRL-1739 cells treated with 30 µM luteolin and H. pylori alone or combined. ELISA and reverse transcription PCR were used to assess the expression levels of MUC1, GalNAcα-R (Tn antigen) and NeuAcα2-3Galβ1-3GalNAc-R (sT antigen), ADAM-17, IL-8, IL-10 and NF-κB. H. pylori and luteolin independently and in combination significantly reduced the expression levels of the extracellular domain of MUC1 in gastric cancer cells compared with the untreated control cells. ADAM-17 expression was reduced by treatment with the pathogen and luteolin. Additionally, both factors reduced sT antigen expression. Treatment with 30 ≤M luteolin significantly induced IL-8 expression at the mRNA and protein level, and the mRNA expression levels of IL-10 and NF-κB compared with the control. Both H. pylori and luteolin induced IL-8 protein expression. The present preliminary results suggest that luteolin may be used to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Bialystok, Bialystok, 15-222 Podlaskie Voivodeship, Poland
| | - Małgorzata Borzym-Kluczyk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Bialystok, 15-222 Podlaskie Voivodeship, Poland
| | - Katarzyna Leszczyńska
- Department of Microbiology, Medical University of Bialystok, Bialystok, 15-222 Podlaskie Voivodeship, Poland
| |
Collapse
|
10
|
The architecture of the IgG anti-carbohydrate repertoire in primary antibody deficiencies. Blood 2020; 134:1941-1950. [PMID: 31537530 DOI: 10.1182/blood.2019001705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Immune system failure in primary antibody deficiencies (PADs) has been linked to recurrent infections, autoimmunity, and cancer, yet clinical judgment is often based on the reactivity to a restricted panel of antigens. Previously, we demonstrated that the human repertoire of carbohydrate-specific immunoglobulin G (IgG) exhibits modular organization related to glycan epitope structure. The current study compares the glycan-specific IgG repertoires between different PAD entities. Distinct repertoire profiles with extensive qualitative glycan-recognition defects were observed, which are characterized by the common loss of Galα and GalNAc reactivity and disease-specific recognition of microbial antigens, self-antigens, and tumor-associated carbohydrate antigens. Antibody repertoire analysis may provide a useful tool to elucidate the degree and the clinical implications of immune system failure in individual patients.
Collapse
|
11
|
Gupta R, Leon F, Rauth S, Batra SK, Ponnusamy MP. A Systematic Review on the Implications of O-linked Glycan Branching and Truncating Enzymes on Cancer Progression and Metastasis. Cells 2020; 9:E446. [PMID: 32075174 PMCID: PMC7072808 DOI: 10.3390/cells9020446] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is the most commonly occurring post-translational modifications, and is believed to modify over 50% of all proteins. The process of glycan modification is directed by different glycosyltransferases, depending on the cell in which it is expressed. These small carbohydrate molecules consist of multiple glycan families that facilitate cell-cell interactions, protein interactions, and downstream signaling. An alteration of several types of O-glycan core structures have been implicated in multiple cancers, largely due to differential glycosyltransferase expression or activity. Consequently, aberrant O-linked glycosylation has been extensively demonstrated to affect biological function and protein integrity that directly result in cancer growth and progression of several diseases. Herein, we provide a comprehensive review of several initiating enzymes involved in the synthesis of O-linked glycosylation that significantly contribute to a number of different cancers.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 681980-5900, USA
- Department of Pathology and Microbiology, UNMC, Omaha, NE 68198-5900, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 681980-5900, USA
| |
Collapse
|
12
|
Li F, Ding J. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell 2019; 10:550-565. [PMID: 30478534 PMCID: PMC6626595 DOI: 10.1007/s13238-018-0597-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
Sialylation, or the covalent addition of sialic acid to the terminal end of glycoproteins, is a biologically important modification that is involved in embryonic development, neurodevelopment, reprogramming, oncogenesis and immune responses. In this review, we have given a comprehensive overview of the current literature on the involvement of sialylation in cell fate decision during development, reprogramming and cancer progression. Sialylation is essential for early embryonic development and the deletion of UDP-GlcNAc 2-epimerase, a rate-limiting enzyme in sialic acid biosynthesis, is embryonically lethal. Furthermore, the sialyltransferase ST6GAL1 is required for somatic cell reprogramming, and its downregulation is associated with decreased reprogramming efficiency. In addition, sialylation levels and patterns are altered during cancer progression, indicating the potential of sialylated molecules as cancer biomarkers. Taken together, the current evidences demonstrate that sialylation is involved in crucial cell fate decision.
Collapse
Affiliation(s)
- Fenjie Li
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Junjun Ding
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
13
|
The Thomsen-Friedenreich Antigen: A Highly Sensitive and Specific Predictor of Microsatellite Instability in Gastric Cancer. J Clin Med 2018; 7:jcm7090256. [PMID: 30189652 PMCID: PMC6162870 DOI: 10.3390/jcm7090256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
Microsatellite instability (MSI) is a distinct molecular subtype of gastric cancer. In recent years, the clinical consequences of MSI and the therapeutic opportunities to target this peculiar cancer subtype became evident. However, despite the importance of MSI for the stratification of patients, the time and resources required for diagnosis still present an obstacle. In an attempt to identify a new marker for MSI in gastric cancer, we evaluated the expression of five cancer-associated glycan epitopes in a cohort of 13 MSI and 17 microsatellite stable (MSS) cases. Our analysis revealed a highly significant (p < 0.001) association between the expression of the Thomsen-Friedenreich (TF) antigen and MSI status. Hence, we present here the identification of the first single marker for MSI in gastric cancer, excelling with a specificity of 94% (16/17), sensitivity of 69.2% (9/13), negative predictive value of 80% (16/20), and positive predictive value of 90% (9/10). The TF antigen, detected by simple antibody-based assays, is highly specific for carcinoma being undetectable in gastric healthy and premalignant epithelia. This finding lays the basis for new studies and holds promise in improving the rapid identification of MSI in the clinical setting.
Collapse
|
14
|
Duarte HO, Freitas D, Gomes C, Gomes J, Magalhães A, Reis CA. Mucin-Type O-Glycosylation in Gastric Carcinogenesis. Biomolecules 2016; 6:E33. [PMID: 27409642 PMCID: PMC5039419 DOI: 10.3390/biom6030033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Mucin-type O-glycosylation plays a crucial role in several physiological and pathological processes of the gastric tissue. Modifications in enzymes responsible for key glycosylation steps and the consequent abnormal biosynthesis and expression of their glycan products constitute well-established molecular hallmarks of disease state. This review addresses the major role played by mucins and associated O-glycan structures in Helicobacter pylori adhesion to the gastric mucosa and the subsequent establishment of a chronic infection, with concomitant drastic alterations of the gastric epithelium glycophenotype. Furthermore, alterations of mucin expression pattern and glycan signatures occurring in preneoplastic lesions and in gastric carcinoma are also described, as well as their impact throughout the gastric carcinogenesis cascade and in cancer progression. Altogether, mucin-type O-glycosylation alterations may represent promising biomarkers with potential screening and prognostic applications, as well as predictors of cancer patients' response to therapy.
Collapse
Affiliation(s)
- Henrique O Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Daniela Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Catarina Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Joana Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Ana Magalhães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Celso A Reis
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
- Medical Faculty, University of Porto, Alameda Prof Hernâni Monteiro, Porto 4200-319, Portugal.
| |
Collapse
|
15
|
Aziz F, Yang X, Wang X, Yan Q. Anti-LeY antibody enhances therapeutic efficacy of celecoxib against gastric cancer by downregulation of MAPKs/COX-2 signaling pathway: correlation with clinical study. J Cancer Res Clin Oncol 2015; 141:1221-35. [PMID: 25527419 DOI: 10.1007/s00432-014-1892-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) is a major causative agent for the induction of chronic gastritis, gastric ulcer and gastric cancer. Celecoxib (COX-2 inhibitor) inhibits gastric cancer cell proliferation, but with low treatment efficacy, limiting its applications. It is important to develop a better strategy to improve the efficacy of celecoxib. Lewis Y (LeY) is a difucosylated oligosaccharide, highly expressed in 60-90% of human epithelial cancers, including gastric cancer. We previously found that H. pylori infection was associated with high level of LeY in gastric cancer. MATERIAL AND METHODS Herein, we analyzed the correlation between H. pylori and cyclo-oxygenase-2 (COX-2), LeY, gastric markers (CA724 and GRN) in gastric patient's tissue and serum samples by IHC and ELISA. Furthermore, we treated the primary gastric cancer cells with celecoxib, anti-LeY antibody or the combination, and analyzed their therapeutic efficacy on CA724, GRN and COX-2 expression by Western blot, flow cytometry and ELISA. RESULTS We found that gastric cancer had significantly high expression of H. pylori, COX-2, CA724, and GRN compared to gastric ulcers and chronic gastritis (P < 0.0001). H. pylori level showed significant correlation with COX-2 (R--0.552), LeY (R--0.861), CA724 (R--0.714) and GRN (R--0.664) (P < 0.0001). Additionally, the combination therapy led to impressive inhibition of gastric cancer cell proliferation, with decreased expression of COX-2, CA724 and GRN through downregulation of MAPKs/COX-2 pathway (P < 0.01). CONCLUSIONS Our findings suggest that anti-LeY antibody enhances the cancer cell proliferation inhibitory effects of celecoxib, which might be a new feasible way for gastric cancer therapy.
Collapse
Affiliation(s)
- Faisal Aziz
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Corfield AP. Mucins: A biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta Gen Subj 2015; 1850:236-52. [PMID: 24821013 DOI: 10.1016/j.bbagen.2014.05.003] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/05/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023]
|
17
|
Tanaka E, Nakahara Y, Kuroda Y, Takano Y, Kojima N, Hojo H, Nakahara Y. Chemoenzymatic Synthesis of a MUC1 Glycopeptide Carrying Non-Natural Sialyl TF-βO-Glycan. Biosci Biotechnol Biochem 2014; 70:2515-22. [PMID: 17031043 DOI: 10.1271/bbb.60244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A MUC1 type of glycopeptide was synthesized by the 9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis (SPPS) protocol using benzyl and benzylidene-protected beta-D-Gal-(1-->3)-beta-D-GalNAc-Ser/Thr (TF-beta: a stereoisomer of the Thomsen-Friedenreich antigen). The synthetic glycopeptide was released from the resin with reagent K, and the resulting benzylated glycopeptide was deprotected under conditions of low-acidity trifluoromethanesulfonic acid (TfOH). The glycopeptide carrying duplicate non-natural O-glycans was dominant in the products, but was accompanied by a considerable amount of the glycopeptide missing one of the O-glycans. In contrast, the native alpha-glycoside was relatively stable under the acidic debenzylation conditions as shown by a parallel experiment with the glycopeptide involving alpha-D-GalNAc-Ser/Thr linkage. Enzymatic glycosylation with CMP-NeuAc was successful with both natural and non-natural O-glycans of the synthetic glycopeptide.
Collapse
Affiliation(s)
- Eriko Tanaka
- Department of Applied Biochemistry, Institute of Glycotechnology, Tokai University, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
19
|
Balcells I, Castelló A, Mercadé A, Noguera JL, Fernández-Rodríguez A, Sànchez A, Tomàs A. Analysis of porcine MUC4 gene as a candidate gene for prolificacy QTL on SSC13 in an Iberian × Meishan F2 population. BMC Genet 2011; 12:93. [PMID: 22039891 PMCID: PMC3224777 DOI: 10.1186/1471-2156-12-93] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/31/2011] [Indexed: 02/04/2023] Open
Abstract
Background Reproductive traits, such as prolificacy, are of great interest to the pig industry. Better understanding of their genetic architecture should help to increase the efficiency of pig productivity through the implementation of marker assisted selection (MAS) programmes. Results The Mucin 4 (MUC4) gene has been evaluated as a candidate gene for a prolificacy QTL described in an Iberian × Meishan (Ib × Me) F2 intercross. For association analyses, two previously described SNPs (DQ124298:g.243A>G and DQ124298:g.344A>G) were genotyped in 347 pigs from the Ib × Me population. QTL for the number of piglets born alive (NBA) and for the total number of piglets born (TNB) were confirmed on SSC13 at positions 44 cM and 51 cM, respectively. The MUC4 gene was successfully located within the confidence intervals of both QTL. Only DQ124298:g.344A>G MUC4 polymorphism was significantly associated with both NBA and TNB (P-value < 0.05) with favourable effects coming from the Meishan origin. MUC4 expression level was determined in F2 sows displaying extreme phenotypes for the number of embryos (NE) at 30-32 days of gestation. Differences in the uterine expression of MUC4 were found between high (NE ≥ 13) and low (NE ≤ 11) prolificacy sows. Overall, MUC4 expression in high prolificacy sows was almost two-fold increased compared with low prolificacy sows. Conclusions Our data suggest that MUC4 could play an important role in the establishment of an optimal uterine environment that would increase embryonic survival during pig gestation.
Collapse
Affiliation(s)
- Ingrid Balcells
- Departament de Genètica Animal, Centre de Recerca en Agrigenòmica (CRAG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Chang CYY, Chang HW, Chen CM, Lin CY, Chen CP, Lai CH, Lin WY, Liu HP, Sheu JJC, Tsai FJ. MUC4 gene polymorphisms associate with endometriosis development and endometriosis-related infertility. BMC Med 2011; 9:19. [PMID: 21349170 PMCID: PMC3052195 DOI: 10.1186/1741-7015-9-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 02/24/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mucin 4 (MUC4) plays an important role in protecting and lubricating the epithelial surface of reproductive tracts, but its role in the pathogenesis of endometriosis is largely unknown. METHODS To correlate MUC4 polymorphism with the risk of endometriosis and endometriosis-related infertility, we performed a case-control study of 140 patients and 150 healthy women. Six unique single-nucleotide polymorphisms (SNPs) (rs882605, rs1104760, rs2688513, rs2246901, rs2258447 and rs2291652) were selected for this study. DNA fragments containing the target SNP sites were amplified by polymerase chain reaction using the TaqMan SNP Genotyping Assay System to evaluate allele frequency and distribution of genotype in MUC4 polymorphisms. RESULTS Both the T/G genotype of rs882605 and the frequency of haplotype T-T (rs882605 and rs1104760) were higher in patients than in controls and were statistically significant. The frequency of the C allele at rs1104760, the C allele at rs2688513, the G allele at rs2246901 and the A allele at rs2258447 were associated with advanced stage of endometriosis. Moreover, the G allele at rs882605 was verified as a key genetic factor for infertility in patients. Protein sequence analysis indicated that amino acid substitutions by genetic variations at rs882605, rs2688513 and rs2246901 occur in the putative functional loops and the type D von Willebrand factor (VWFD) domain in the MUC4 sequence. CONCLUSIONS MUC4 polymorphisms are associated with endometriosis development and endometriosis-related infertility in the Taiwanese population.
Collapse
|
22
|
Reis CA, Osorio H, Silva L, Gomes C, David L. Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol 2010; 63:322-9. [PMID: 20354203 DOI: 10.1136/jcp.2009.071035] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycoconjugates constitute a major class of biomolecules which include glycoproteins, glycosphingolipids and proteoglycans. Glycans are involved in several physiological and pathological conditions, such as host-pathogen interactions, cell differentiation, migration, tumour invasion and metastisation, cell trafficking and signalling. Cancer is associated with glycosylation alterations in glycoproteins and glycolipids. This review describes various aspects of protein glycosylation with the focus on alterations associated with human cancer. The application of these glycosylation modifications as biomarkers for cancer detection in tumour tissues and serological assays is summarised.
Collapse
Affiliation(s)
- Celso A Reis
- Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, Porto 4200-465, Portugal.
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Löfling J, Holgersson J. Core saccharide dependence of sialyl Lewis X biosynthesis. Glycoconj J 2008; 26:33-40. [PMID: 18607721 DOI: 10.1007/s10719-008-9159-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/03/2008] [Accepted: 06/09/2008] [Indexed: 12/29/2022]
Abstract
The sialyl-Lewis X (SLe(x)) determinant is important in leukocyte extravasation, metastasis and bacterial adhesion. The role of the protein, N-glycan and O-glycan core structures for the biosynthesis of SLe(x) in vivo by fucosyltransferases (FucTs) is not known. Immunoglobulin G (IgG) Fc fusion proteins of alpha(1)-acid glycoprotein (AGP), P-selectin glycoprotein ligand-1 (PSGL-1) or CD43 were used to probe the specificity of FucT-III-VII expressed alone in 293T and COS cells or together with O-glycan core enzymes in Chinese hamster ovary (CHO)-K1 cells. Western blotting with the monoclonal antibodies CSLEX and KM93 showed that FucT-III and V-VII produced SLe(x) on core 2 in CHO cells. Only FucT-V, -VI and, with low activity, -VII worked on core 3 on CD43/IgG, but no SLe(x) was detected with CSLEX on PSGL-1/IgG with core 3. KM93 stained SLe(x) on core 2, but was not reactive with SLe(x) on core 3. FucT-III, V-VII made SLe(x) on N-glycans of AGP/IgG in CHO, but not in COS and 293T cells, even though the same FucTs could make SLe(x) on CD43/IgG and PSGL-1/IgG in these cells. Our results define the specificities of FucT-III-VII in SLe(x) biosynthesis on O-glycans with different core structures and the fine specificity of the widely used anti-SLe(x) monoclonal antibody, KM93.
Collapse
Affiliation(s)
- Jonas Löfling
- Division of Clinical Immunology and Transfusion Medicine, F79, Karolinska Institute, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | | |
Collapse
|
25
|
Costa NR, Mendes N, Marcos NT, Reis CA, Caffrey T, Hollingsworth MA, Santos-Silva F. Relevance of MUC1 mucin variable number of tandem repeats polymorphism in H pylori adhesion to gastric epithelial cells. World J Gastroenterol 2008; 14:1411-4. [PMID: 18322957 PMCID: PMC2693691 DOI: 10.3748/wjg.14.1411] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the influence of MUC1 mucin variable number of tandem repeats (VNTR) variability on H pylori adhesion to gastric cells.
METHODS: Enzyme linked immunosorbent assay (ELISA)-based adhesion assays were performed to measure the adhesion of different H pylori strains (HP26695 and HPTx30a) to gastric carcinoma cell lines (GP202 and MKN45) and GP202 clones expressing recombinant MUC1 with different VNTR lengths.
RESULTS: Evaluation of adhesion results shows that H pylori pathogenic strain HP26695 has a significantly higher (P < 0.05) adhesion to all the cell lines and clones tested, when compared to the non-pathogenic strain HPTx30a. Bacteria showed a significantly higher (P < 0.05) adhesion to the GP202 cell line, when compared to the MKN45 cell line. Furthermore, both strains showed a significantly higher (P < 0.05) adhesion to GP202 clones with larger MUC1 VNTR domains.
CONCLUSION: This work shows that MUC1 mucin variability conditions H pylori binding to gastric cells. The extent of bacterial adhesion depends on the size of the MUC1 VNTR domain. The adhesion is further dependent on bacterial pathogenicity and the gastric cell line. MUC1 mucin variability may contribute to determine H pylori colonization of the gastric mucosa.
Collapse
|
26
|
Dentillo DB, Souza FRP, Meola J, Vieira GS, Yazlle MEHD, Goulart LR, Martelli L. No evidence of association of MUC-1 genetic polymorphism with embryo implantation failure. Braz J Med Biol Res 2008; 40:793-7. [PMID: 17581677 DOI: 10.1590/s0100-879x2007000600007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 04/18/2007] [Indexed: 11/22/2022] Open
Abstract
Pregnancy loss can be caused by several factors involved in human reproduction. Although up to 50% of cases remain unexplained, it has been postulated that the major cause of failed pregnancy is an error of embryo implantation. Transmembrane mucin-1 (MUC-1) is a glycoprotein expressed on the endometrial cell surface which acts as a barrier to implantation. The gene that codes for this molecule is composed of a polymorphic tandem repeat of 60 nucleotides. Our objective was to determine if MUC-1 genetic polymorphism is associated with implantation failure in patients with a history of recurrent abortion. The study was conducted on 10 women aged 25 to 35 years with no history of successful pregnancy and with a diagnosis of infertility. The control group consisted of 32 patients aged 25 to 35 years who had delivered at least two full-term live children and who had no history of abortions or fetal losses. MUC-1 amplicons were obtained by PCR and observed on agarose and polyacrylamide gel after electrophoresis. Statistical analysis showed no significant difference in the number of MUC-1 variable number of tandem repeats between these groups (P > 0.05). Our results suggest that there is no effect of the polymorphic MUC-1 sequence on the implantation failure. However, the data do not exclude MUC-1 relevance during embryo implantation. The process is related to several associated factors such as the mechanisms of gene expression in the uterus, specific MUC-1 post-translational modifications and appropriate interactions with other molecules during embryo implantation.
Collapse
Affiliation(s)
- D B Dentillo
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
27
|
Kurtenkov O, Klaamas K, Mensdorff-Pouilly S, Miljukhina L, Shljapnikova L, Chuzmarov V. Humoral immune response to MUC1 and to the Thomsen-Friedenreich (TF) glycotope in patients with gastric cancer: relation to survival. Acta Oncol 2007; 46:316-23. [PMID: 17450466 DOI: 10.1080/02841860601055441] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Humoral immune responses to the MUC1 peptide and to MUC1-related Thomsen-Friedenreich (TF) glycotope was investigated in patients with gastric cancer (n = 247), chronic gastroduodenal diseases (n = 199) and in healthy blood donors (n = 100). Data were correlated with disease type, stage of cancer, tumor morphology and survival. MUC1 IgG antibody levels were higher in patients with gastric cancer (p < 0.0001) than in healthy controls. Higher levels of anti-MUC1 IgG were also detected in patients with ulcer of the stomach (p = 0.015) and in atrophic gastritis (p = 0.027). Compared to blood donors, significantly lower levels of anti-TF IgG were found both in the cancer (p = 0.002) and in the benign group (p < 0.0001). At early stages of cancer a positive correlation (p < 0.0001) was found between MUC1 IgG and TF IgG antibody levels. High levels of TF IgG antibodies were significantly associated with a benefit in survival of gastric cancer patients (p = 0.003). A similar though weaker association was observed for patients with high levels of MUC1 IgG antibodies and locoregional disease (stage I-III) (p = 0.037). Thus IgG immune responses to MUC1 are increased in patients with gastric cancer. High levels of either TF IgG or MUC1 IgG antibodies may predict better outcome in surgically treated patients with gastric cancer.
Collapse
Affiliation(s)
- O Kurtenkov
- National Institute for Health Development, Hiiu 42, Tallinn 11619, Estonia.
| | | | | | | | | | | |
Collapse
|
28
|
Chandrasekaran EV, Xue J, Piskorz C, Locke RD, Tóth K, Slocum HK, Matta KL. Potential tumor markers for human gastric cancer: an elevation of glycan:sulfotransferases and a concomitant loss of alpha1,2-fucosyltransferase activities. J Cancer Res Clin Oncol 2007; 133:599-611. [PMID: 17492468 DOI: 10.1007/s00432-007-0206-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Several reports indicate a complexity in glycosyltransferase activities which lead to several tumor associated carbohydrate structures in gastric carcinoma. The present study was aimed to identify the carbohydrate associated transferases which exhibit the most marked and consistent change of activity in gastric tumorigenesis. METHODS We examined the levels of fucosyl, beta-galactosyl-, beta-N-acetylgalactosaminyl, sialyl- and glycan:sulfotransferase activities, which generate the outer ends of oligosaccharide chains in tumorous and adjacent normal gastric tissues of the same patient in ten gastric carcinoma cases by using well defined specific synthetic acceptors utilized in our several earlier published studies as referenced in the text (e.g. Chandrasekaran et al. in J Biol Chem 279:10032-10041, 2004; Biochemistry 44:15619-15635, 2005; Carbohydr Res 341:983-994, 2006). RESULTS Among glycosyltransferases only alpha1,2-fucosyltransferase (FT) was unique in showing a remarkable 40-90% decrease of activity in seven cases. Uniquely several fold elevation of Gal3Sulfo-T(2) (1.9 --> 156.7 fold) and Gal3Sulfo-T(4) (2.4 --> 149.0 fold) activities in all ten cases and moderate elevation of GlcNAc6Sulfo-T (1.3 --> 37.5 fold) activities in nine cases were identified. Poorly differentiated Signet ring cell carcinoma expresses mainly Gal3Sulfo-T(2) activity whereas poorly differentiated adenocarcinoma express predominantly Gal3Sulfo-T(4) activity and also GlcNAc6Sulfo-T activity. But, very low level of these sulfotransferase activities were identified in moderately differentiated gastric carcinomas as well as non-epithelial gastric stromal sarcoma. CONCLUSION Up regulation of glycan:sulfotransferase activities and down regulation of alpha1,2-fucosyltransferase activity are apparently associated with human gastric tumorigenesis.
Collapse
Affiliation(s)
- E V Chandrasekaran
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhuo D, Madden R, Elela SA, Chabot B. Modern origin of numerous alternatively spliced human introns from tandem arrays. Proc Natl Acad Sci U S A 2007; 104:882-6. [PMID: 17210920 PMCID: PMC1783408 DOI: 10.1073/pnas.0604777104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the widespread occurrence of spliceosomal introns in the genomes of higher eukaryotes, their origin remains controversial. One model proposes that the duplication of small genomic portions could have provided the boundaries for new introns. If this mechanism has occurred recently, the 5' and 3' boundaries of each resulting intron should display distinctive sequence similarity. Here, we report that the human genome contains an excess of introns with perfect matching sequences at boundaries. One-third of these introns interrupt the protein-coding sequences of known genes. Introns with the best-matching boundaries are invariably found in tandem arrays of direct repeats. Sequence analysis of the arrays indicates that many intron-breeding repeats have disseminated in several genes at different times during human evolution. A comparison with orthologous regions in mouse and chimpanzee suggests a young age for the human introns with the most-similar boundaries. Finally, we show that these human introns are alternatively spliced with exceptionally high frequency. Our study indicates that genomic duplication has been an important mode of intron gain in mammals. The alternative splicing of transcripts containing these intron-breeding repeats may provide the plasticity required for the rapid evolution of new human proteins.
Collapse
Affiliation(s)
- Degen Zhuo
- *Laboratoire de Génomique Fonctionnelle de Sherbrooke
| | | | - Sherif Abou Elela
- *Laboratoire de Génomique Fonctionnelle de Sherbrooke
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, PQ, Canada J1H 5N4
| | - Benoit Chabot
- *Laboratoire de Génomique Fonctionnelle de Sherbrooke
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, PQ, Canada J1H 5N4
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Lang T, Hansson GC, Samuelsson T. An inventory of mucin genes in the chicken genome shows that the mucin domain of Muc13 is encoded by multiple exons and that ovomucin is part of a locus of related gel-forming mucins. BMC Genomics 2006; 7:197. [PMID: 16887038 PMCID: PMC1552070 DOI: 10.1186/1471-2164-7-197] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 08/03/2006] [Indexed: 01/31/2023] Open
Abstract
Background Mucins are large glycoproteins that cover epithelial surfaces of the body. All mucins contain at least one PTS domain, a region rich in proline, threonine and serine. Mucins are also characterized by von Willebrand D (VWD) domains or SEA domains. We have developed computational methods to identify mucin genes and proteins based on these properties of the proteins. Using such methods we are able to characterize different organisms where genome sequence is available with respect to their mucin repertoire. Results We have here made a comprehensive analysis of potential mucins encoded by the chicken (Gallus gallus) genome. Three transmembrane mucins (Muc4, Muc13, and Muc16) and four gel-forming mucins (Muc6, Muc2, Muc5ac, and Muc5b) were identified. The gel-forming mucins are encoded within a locus similar to the corresponding human mucins. However, the chicken has an additional gene inserted between Muc2 and Muc5ac that encodes the the α-subunit of ovomucin, a protein similar to Muc2, but it is lacking a PTS domain. We also show that the β-subunit of ovomucin is the orthologue of human MUC6. The transmembrane Muc13 gene is in chicken as well as in mammals adjacent to the HEG (heart of glass) gene. HEG has PTS, EGF and transmembrane domains like Muc13, suggesting that these two proteins are evolutionary related. Unlike previously known mucins, the PTS domain of Muc13 is encoded by multiple exons, where each exon encodes a repeat unit of the PTS domain. Conclusion We report new mucin homologues in chicken and this information will aid in understanding the evolution of mucins in vertebrates. The fact that ovomucin, a protein not found in mammals, was located in the same locus as other gel-forming mucins provides strong support that these proteins are evolutionary related. Furthermore, a relationship of HEG and the transmembrane Muc13 is suggested on the basis of their biochemical properties and their presence in the same locus. Finally, our finding that the chicken Muc13 is distributed between multiple exons raises the interesting possibility that the length of the PTS domain could be controlled by alternative splicing.
Collapse
Affiliation(s)
- Tiange Lang
- Department of Medical Biochemistry, Goteborg University, Goteborg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, Goteborg University, Goteborg, Sweden
| | - Tore Samuelsson
- Department of Medical Biochemistry, Goteborg University, Goteborg, Sweden
| |
Collapse
|
31
|
Gold DV, Modrak DE, Ying Z, Cardillo TM, Sharkey RM, Goldenberg DM. New MUC1 serum immunoassay differentiates pancreatic cancer from pancreatitis. J Clin Oncol 2005; 24:252-8. [PMID: 16344318 DOI: 10.1200/jco.2005.02.8282] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To evaluate a new immunoassay for identification and quantitation of MUC1 in the sera of patients with pancreatic cancer or pancreatitis. The sensitivity and specificity of the assay are examined and compared to results from a CA19-9 immunoassay. METHODS An in vitro enzyme immunoassay was established with monoclonal antibody PAM4 as the capture reagent, and a polyclonal anti-MUC1 antibody as the probe. Patient sera were obtained from healthy, adult patients with acute and chronic pancreatitis, and those with pancreatic and other forms of cancer, and were measured for PAM4-reactive MUC1. RESULTS At a cutoff of 10.2 units/mL, 41 (77%) of 53 pancreatic cancer patients, none of the healthy individuals (n = 43), and only four (5%) of 87 patients with pancreatitis were positive above this value. Among nonpancreatic cancers investigated, colorectal cancers gave the highest percentage of positives (14%; five of 36). Overall, the sensitivity and specificity of the immunoassay for pancreatic cancer were 77% and 95%, respectively. Receiver operator characteristic analyses for discrimination of pancreatic cancer from pancreatitis provided an area under the curve of 0.89 (95% CI, 0.82 to 0.93), with a specificity of 95.4% and a positive likelihood ratio of 16.8. A direct pair-wise comparison of PAM4 and CA19-9 immunoassays for discrimination of pancreatic cancer and pancreatitis resulted in a significant difference (P < .003), with the PAM4 immunoassay demonstrating superior sensitivity and specificity. CONCLUSION The high sensitivity and specificity observed suggest that the PAM4-based immunoassay of circulating MUC1 may be useful in the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- David V Gold
- Garden State Cancer Center at the Center for Molecular Medicine and Immunology, Belleville, NJ 07109, USA.
| | | | | | | | | | | |
Collapse
|