1
|
Guindolet D, Woodward AM, Gabison EE, Argüeso P. Glycogene Expression Profile of Human Limbal Epithelial Cells with Distinct Clonogenic Potential. Cells 2022; 11:cells11091575. [PMID: 35563881 PMCID: PMC9102009 DOI: 10.3390/cells11091575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Glycans function as valuable markers of stem cells but also regulate the ability of these cells to self-renew and differentiate. Approximately 2% of the human genome encodes for proteins that are involved in the biosynthesis and recognition of glycans. In the present study, we evaluated the expression of a small subset of glycogenes in human limbal epithelial cells with distinct clonogenic potential. Individual clones were classified as abortive or clonogenic, based on the fraction of the terminal colonies produced; clones leading exclusively to terminal colonies were referred to as abortive while those with half or fewer terminal colonies were referred to as clonogenic. An analysis of glycogene expression in clonogenic cultures revealed a high content of transcripts regulating the galactose and mannose metabolic pathways. Abortive clones were characterized by increased levels of GCNT4 and FUCA2, genes that are responsible for the branching of mucin-type O-glycans and the hydrolysis of fucose residues on N-glycans, respectively. The expansion of primary cultures of human limbal epithelial cells for 10 days resulted in stratification and a concomitant increase in MUC16, GCNT4 and FUCA2 expression. These data indicate that the clonogenic potential of human limbal epithelial cells is associated with specific glycosylation pathways. Mucin-type O-glycan branching and increased fucose metabolism are linked to limbal epithelial cell differentiation.
Collapse
Affiliation(s)
- Damien Guindolet
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (D.G.); (A.M.W.)
- Hôpital Fondation A. de Rothschild, Department of Ophthalmology, 25 rue Manin, 75019 Paris, France
| | - Ashley M. Woodward
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (D.G.); (A.M.W.)
| | - Eric E. Gabison
- Hôpital Fondation A. de Rothschild, Department of Ophthalmology, 25 rue Manin, 75019 Paris, France
- Correspondence: (E.E.G.); (P.A.)
| | - Pablo Argüeso
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (D.G.); (A.M.W.)
- Correspondence: (E.E.G.); (P.A.)
| |
Collapse
|
2
|
Fan X, Song Q, Sun DE, Hao Y, Wang J, Wang C, Chen X. Cell-type-specific labeling and profiling of glycans in living mice. Nat Chem Biol 2022; 18:625-633. [PMID: 35513511 DOI: 10.1038/s41589-022-01016-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Metabolic labeling of glycans with clickable unnatural sugars has enabled glycan analysis in multicellular systems. However, cell-type-specific labeling of glycans in vivo remains challenging. Here we develop genetically encoded metabolic glycan labeling (GeMGL), a cell-type-specific strategy based on a bump-and-hole pair of an unnatural sugar and its matching engineered enzyme. N-pentynylacetylglucosamine (GlcNAl) serves as a bumped analog of N-acetylglucosamine (GlcNAc) that is specifically incorporated into glycans of cells expressing a UDP-GlcNAc pyrophosphorylase mutant, AGX2F383G. GeMGL with the 1,3-di-O-propionylated GlcNAl (1,3-Pr2GlcNAl) and AGX2F383G pair was demonstrated in cell cocultures, and used for specific labeling of glycans in mouse xenograft tumors. By generating a transgenic mouse line with AGX2F383G expressed under a cardiomyocyte-specific promoter, we performed specific imaging of cardiomyocyte glycans in the heart and identified 582 cardiomyocyte O-GlcNAcylated proteins with no interference from other cardiac cell types. GeMGL will facilitate cell-type-specific glycan imaging and glycoproteomics in various tissues and disease models.
Collapse
Affiliation(s)
- Xinqi Fan
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Qitao Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - De-En Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Jingyang Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Chunting Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China. .,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. .,Synthetic and Functional Biomolecules Center, Peking University, Beijing, China. .,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
3
|
Overlapping and unique substrate specificities of ST3GAL1 and 2 during hematopoietic and megakaryocytic differentiation. Blood Adv 2022; 6:3945-3955. [PMID: 35507766 PMCID: PMC9278294 DOI: 10.1182/bloodadvances.2022007001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
ST3GAL1 and ST3GAL2 have both overlapping and unique substrate specificities in O-glycan sialylation during megakaryopoiesis. O-glycan sialylation is dispensable for MK production but indispensable for MK proplatelet formation.
Although the sialyltransferases ST3GAL1 and ST3GAL2 are known to transfer sialic acid to the galactose residue of type III disaccharides (Galβ1,3GalNAc) in vitro, sialylation of O-linked glycosylated proteins in living cells has been largely attributed to ST3GAL1. To examine the role of ST3GAL2 in O-sialylation, we examined its expression during differentiation of human-induced pluripotent stem cells (iPSCs) into hematopoietic progenitor cells (HPCs) and megakaryocytes (MKs). ST3GAL1 and ST3GAL2 each became highly expressed during the differentiation of iPSCs to HPCs but decreased markedly in their expression upon differentiation into MKs, suggesting coordination of expression during megakaryopoiesis. To further delineate their role in these processes, we generated ST3GAL1-, ST3GAL2-, and doubly deficient human iPSC lines. Binding of the peanut agglutinin lectin, which reports the presence of unsialylated Galβ1,3GalNAc glycan chains, was strongly increased in HPCs and MKs derived from double-knockout iPSCs and remained moderately increased in cells lacking either one of these sialyltransferases, demonstrating that both can serve as functional cellular O-glycan sialyltransferases. Interestingly, the HPC markers CD34 and CD43, as well as MK membrane glycoprotein (GP) GPIbα, were identified as major GP substrates for ST3GAL1 and ST3GAL2. In contrast, O-sialylation of GPIIb relied predominantly on the expression of ST3GAL2. Finally, although disruption of ST3GAL1 and ST3GAL2 had little impact on MK production, their absence resulted in dramatically impaired MK proplatelet formation. Taken together, these data establish heretofore unknown physiological roles for ST3GAL1 and ST3GAL2 in O-linked glycan sialylation in hemato- and megakaryocytopoiesis.
Collapse
|
4
|
Gómez-Henao W, Tenorio EP, Sanchez FRC, Mendoza MC, Ledezma RL, Zenteno E. Relevance of glycans in the interaction between T lymphocyte and the antigen presenting cell. Int Rev Immunol 2020; 40:274-288. [PMID: 33205679 DOI: 10.1080/08830185.2020.1845331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The immunological synapse promotes receptors and ligands interaction in the contact interface between the T lymphocyte and the antigen presenting cell; glycosylation of the proteins involved in this biological process favors regulation of molecular interactions and development of the T lymphocyte effector response. Glycans in the immunological synapse influence cellular and molecular processes such as folding, expression, and structural stability of proteins, they also mediate ligand-receptor interaction and propagation of the intracellular signaling or inhibition of uncontrolled cellular activation that could lead to the development of autoimmunity, among others. It has been suggested that altered glycosylation of proteins that participate in the immunological synapse affects the signaling processes and cell proliferation, as well as exacerbation of the effector mechanisms of T cells that trigger systemic damage and autoimmunity. Understanding the role of glycans in the immune response has allowed for advances in the development of immunotherapies in different fields through the controlled and specific activation of the immune response. This review describes the structural and biological aspects of glycans associated with some molecules present in the immunological synapse, providing information that allows understanding the function of glycosylation in the interaction between the T lymphocyte and the antigen-presenting cell, as well as its impact on signaling and development regulation of T lymphocytes effector response.
Collapse
Affiliation(s)
- Wilton Gómez-Henao
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico.,Cell Growth, Tissue Repair and Regeneration (CRRET), CNRS ERL 9215, Université Paris Est Créteil (UPEC), Créteil, France
| | - Eda Patricia Tenorio
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | | | - Miguel Cuéllar Mendoza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Ricardo Lascurain Ledezma
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| |
Collapse
|
5
|
Scherbinina SI, Toukach PV. Three-Dimensional Structures of Carbohydrates and Where to Find Them. Int J Mol Sci 2020; 21:E7702. [PMID: 33081008 PMCID: PMC7593929 DOI: 10.3390/ijms21207702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.
Collapse
Affiliation(s)
- Sofya I. Scherbinina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Philip V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
6
|
Drake RR, McDowell C, West C, David F, Powers TW, Nowling T, Bruner E, Mehta AS, Angel PM, Marlow LA, Tun HW, Copland JA. Defining the human kidney N-glycome in normal and cancer tissues using MALDI imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4490. [PMID: 31860772 PMCID: PMC7187388 DOI: 10.1002/jms.4490] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 05/03/2023]
Abstract
Clear-cell renal cell carcinoma (ccRCC) presents challenges to clinical management because of late-stage detection, treatment resistance, and frequent disease recurrence. Metabolically, ccRCC has a well-described Warburg effect utilization of glucose, but how this affects complex carbohydrate synthesis and alterations to protein and cell surface glycosylation is poorly defined. Using an imaging mass spectrometry approach, N-glycosylation patterns and compositional differences were assessed between tumor and nontumor regions of formalin-fixed clinical ccRCC specimens and tissue microarrays. Regions of normal kidney tissue samples were also evaluated for N-linked glycan-based distinctions between cortex, medullar, glomeruli, and proximal tubule features. Most notable was the proximal tubule localized detection of abundant multiantennary N-glycans with bisecting N-acetylglucosamine and multziple fucose residues. These glycans are absent in ccRCC tissues, while multiple tumor-specific N-glycans were detected with tri- and tetra-antennary structures and varying levels of fucosylation and sialylation. A polycystic kidney disease tissue was also characterized for N-glycan composition, with specific nonfucosylated glycans detected in the cyst fluid regions. Complementary to the imaging mass spectrometry analyses was an assessment of transcriptomic gene array data focused on the fucosyltransferase gene family and other glycosyltransferase genes. The transcript levels of the FUT3 and FUT6 genes responsible for the enzymes that add fucose to N-glycan antennae were significantly decreased in all ccRCC tissues relative to matching nontumor tissues. These striking differences in glycosylation associated with ccRCC could lead to new mechanistic insight into the glycobiology underpinning kidney malignancies and suggest the potential for new therapeutic interventions and diagnostic markers.
Collapse
Affiliation(s)
- Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Colin McDowell
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Connor West
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Fred David
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Thomas W. Powers
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Tamara Nowling
- Department of Medicine, Division of Rheumatology and ImmunologyMedical University of South CarolinaCharlestonSC29425USA
| | - Evelyn Bruner
- Department of Pathology and Laboratory MedicineMedical University of South CarolinaCharlestonSC29425USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Laura A. Marlow
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
| | - Han W. Tun
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
- Division of Hematology/Oncology, Internal Medicine DepartmentMayo ClinicJacksonvilleFL32224USA
| | - John A. Copland
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
| |
Collapse
|
7
|
Szabó E, Hornung Á, Monostori É, Bocskai M, Czibula Á, Kovács L. Altered Cell Surface N-Glycosylation of Resting and Activated T Cells in Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:ijms20184455. [PMID: 31509989 PMCID: PMC6770513 DOI: 10.3390/ijms20184455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/18/2023] Open
Abstract
Altered cell surface glycosylation in congenital and acquired diseases has been shown to affect cell differentiation and cellular responses to external signals. Hence, it may have an important role in immune regulation; however, T cell surface glycosylation has not been studied in systemic lupus erythematosus (SLE), a prototype of autoimmune diseases. Analysis of the glycosylation of T cells from patients suffering from SLE was performed by lectin-binding assay, flow cytometry, and quantitative real-time PCR. The results showed that resting SLE T cells presented an activated-like phenotype in terms of their glycosylation pattern. Additionally, activated SLE T cells bound significantly less galectin-1 (Gal-1), an important immunoregulatory lectin, while other lectins bound similarly to the controls. Differential lectin binding, specifically Gal-1, to SLE T cells was explained by the increased gene expression ratio of sialyltransferases and neuraminidase 1 (NEU1), particularly by elevated ST6 beta-galactosamide alpha-2,6-sialyltranferase 1 (ST6GAL1)/NEU1 and ST3 beta-galactoside alpha-2,3-sialyltransferase 6 (ST3GAL6)/NEU1 ratios. These findings indicated an increased terminal sialylation. Indeed, neuraminidase treatment of cells resulted in the increase of Gal-1 binding. Altered T cell surface glycosylation may predispose the cells to resistance to the immunoregulatory effects of Gal-1, and may thus contribute to the pathomechanism of SLE.
Collapse
Affiliation(s)
- Enikő Szabó
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences 6726 Szeged, Hungary.
| | - Ákos Hornung
- Department of Rheumatology and Immunology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Éva Monostori
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences 6726 Szeged, Hungary.
| | - Márta Bocskai
- Department of Rheumatology and Immunology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary.
| | - Ágnes Czibula
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences 6726 Szeged, Hungary.
| | - László Kovács
- Department of Rheumatology and Immunology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary.
| |
Collapse
|
8
|
Steentoft C, Yang Z, Wang S, Ju T, Vester-Christensen MB, Festari MF, King SL, Moremen K, Larsen ISB, Goth CK, Schjoldager KT, Hansen L, Bennett EP, Mandel U, Narimatsu Y. A validated collection of mouse monoclonal antibodies to human glycosyltransferases functioning in mucin-type O-glycosylation. Glycobiology 2019; 29:645-656. [PMID: 31172184 PMCID: PMC6704369 DOI: 10.1093/glycob/cwz041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023] Open
Abstract
Complex carbohydrates serve a wide range of biological functions in cells and tissues, and their biosynthesis involves more than 200 distinct glycosyltransferases (GTfs) in human cells. The kinetic properties, cellular expression patterns and subcellular topology of the GTfs direct the glycosylation capacity of a cell. Most GTfs are ER or Golgi resident enzymes, and their specific subcellular localization is believed to be distributed in the secretory pathway according to their sequential role in the glycosylation process, although detailed knowledge for individual enzymes is still highly fragmented. Progress in quantitative transcriptome and proteome analyses has greatly advanced our understanding of the cellular expression of this class of enzymes, but availability of appropriate antibodies for in situ monitoring of expression and subcellular topology have generally been limited. We have previously used catalytically active GTfs produced as recombinant truncated secreted proteins in insect cells for generation of mouse monoclonal antibodies (mAbs) to human enzymes primarily involved in mucin-type O-glycosylation. These mAbs can be used to probe subcellular topology of active GTfs in cells and tissues as well as their presence in body fluids. Here, we present several new mAbs to human GTfs and provide a summary of our entire collection of mAbs, available to the community. Moreover, we present validation of specificity for many of our mAbs using human cell lines with CRISPR/Cas9 or zinc finger nuclease (ZFN) knockout and knockin of relevant GTfs.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Shengjun Wang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Malene B Vester-Christensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Mammalian Expression, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - María F Festari
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Sarah L King
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kelley Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Bldg., Athens, GA, 30602, USA
| | - Ida S B Larsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
9
|
Effector and Regulatory T Cells Roll at High Shear Stress by Inducible Tether and Sling Formation. Cell Rep 2019; 21:3885-3899. [PMID: 29281835 DOI: 10.1016/j.celrep.2017.11.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/04/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
The adaptive immune response involves T cell differentiation and migration to sites of inflammation. T cell trafficking is initiated by rolling on inflamed endothelium. Tethers and slings, discovered in neutrophils, facilitate cell rolling at high shear stress. Here, we demonstrate that the ability to form tethers and slings during rolling is highly inducible in T helper 1 (Th1), Th17, and regulatory T (Treg) cells but less in Th2 cells. In vivo, endogenous Treg cells rolled stably in cremaster venules at physiological shear stress. Quantitative dynamic footprinting nanoscopy of Th1, Th17, and Treg cells uncovered the formation of multiple tethers per cell. Human Th1 cells also showed tethers and slings. RNA sequencing (RNA-seq) revealed the induction of cell migration and cytoskeletal genes in sling-forming cells. We conclude that differentiated CD4 T cells stabilize rolling by inducible tether and sling formation. These phenotypic changes approximate the adhesion phenotype of neutrophils and support CD4 T cell access to sites of inflammation.
Collapse
|
10
|
Gourdine JPF, Brush MH, Vasilevsky NA, Shefchek K, Köhler S, Matentzoglu N, Munoz-Torres MC, McMurry JA, Zhang XA, Robinson PN, Haendel MA. Representing glycophenotypes: semantic unification of glycobiology resources for disease discovery. Database (Oxford) 2019; 2019:baz114. [PMID: 31735951 PMCID: PMC6859258 DOI: 10.1093/database/baz114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
While abnormalities related to carbohydrates (glycans) are frequent for patients with rare and undiagnosed diseases as well as in many common diseases, these glycan-related phenotypes (glycophenotypes) are not well represented in knowledge bases (KBs). If glycan-related diseases were more robustly represented and curated with glycophenotypes, these could be used for molecular phenotyping to help to realize the goals of precision medicine. Diagnosis of rare diseases by computational cross-species comparison of genotype-phenotype data has been facilitated by leveraging ontological representations of clinical phenotypes, using Human Phenotype Ontology (HPO), and model organism ontologies such as Mammalian Phenotype Ontology (MP) in the context of the Monarch Initiative. In this article, we discuss the importance and complexity of glycobiology and review the structure of glycan-related content from existing KBs and biological ontologies. We show how semantically structuring knowledge about the annotation of glycophenotypes could enhance disease diagnosis, and propose a solution to integrate glycophenotypes and related diseases into the Unified Phenotype Ontology (uPheno), HPO, Monarch and other KBs. We encourage the community to practice good identifier hygiene for glycans in support of semantic analysis, and clinicians to add glycomics to their diagnostic analyses of rare diseases.
Collapse
Affiliation(s)
- Jean-Philippe F Gourdine
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
- OHSU Library, Oregon Health & Science University Library, Portland, OR 97239, USA
- Monarch Initiative, monarchinitiative.org
| | - Matthew H Brush
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Monarch Initiative, monarchinitiative.org
| | - Nicole A Vasilevsky
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Monarch Initiative, monarchinitiative.org
| | - Kent Shefchek
- Monarch Initiative, monarchinitiative.org
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Sebastian Köhler
- Monarch Initiative, monarchinitiative.org
- Charité Centrum für Therapieforschung, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| | - Nicolas Matentzoglu
- Monarch Initiative, monarchinitiative.org
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Monica C Munoz-Torres
- Monarch Initiative, monarchinitiative.org
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Julie A McMurry
- Monarch Initiative, monarchinitiative.org
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Xingmin Aaron Zhang
- Monarch Initiative, monarchinitiative.org
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter N Robinson
- Monarch Initiative, monarchinitiative.org
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Melissa A Haendel
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Monarch Initiative, monarchinitiative.org
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
11
|
Wong MY, Chen K, Antonopoulos A, Kasper BT, Dewal MB, Taylor RJ, Whittaker CA, Hein PP, Dell A, Genereux JC, Haslam SM, Mahal LK, Shoulders MD. XBP1s activation can globally remodel N-glycan structure distribution patterns. Proc Natl Acad Sci U S A 2018; 115:E10089-E10098. [PMID: 30305426 PMCID: PMC6205500 DOI: 10.1073/pnas.1805425115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Classically, the unfolded protein response (UPR) safeguards secretory pathway proteostasis. The most ancient arm of the UPR, the IRE1-activated spliced X-box binding protein 1 (XBP1s)-mediated response, has roles in secretory pathway maturation beyond resolving proteostatic stress. Understanding the consequences of XBP1s activation for cellular processes is critical for elucidating mechanistic connections between XBP1s and development, immunity, and disease. Here, we show that a key functional output of XBP1s activation is a cell type-dependent shift in the distribution of N-glycan structures on endogenous membrane and secreted proteomes. For example, XBP1s activity decreased levels of sialylation and bisecting GlcNAc in the HEK293 membrane proteome and secretome, while substantially increasing the population of oligomannose N-glycans only in the secretome. In HeLa cell membranes, stress-independent XBP1s activation increased the population of high-mannose and tetraantennary N-glycans, and also enhanced core fucosylation. mRNA profiling experiments suggest that XBP1s-mediated remodeling of the N-glycome is, at least in part, a consequence of coordinated transcriptional resculpting of N-glycan maturation pathways by XBP1s. The discovery of XBP1s-induced N-glycan structural remodeling on a glycome-wide scale suggests that XBP1s can act as a master regulator of N-glycan maturation. Moreover, because the sugars on cell-surface proteins or on proteins secreted from an XBP1s-activated cell can be molecularly distinct from those of an unactivated cell, these findings reveal a potential new mechanism for translating intracellular stress signaling into altered interactions with the extracellular environment.
Collapse
Affiliation(s)
- Madeline Y Wong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Brian T Kasper
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003
| | - Mahender B Dewal
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rebecca J Taylor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Charles A Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Pyae P Hein
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003;
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
12
|
Abstract
Hypoxia, a common condition of the tumor microenvironment, induces changes in the proteome of cancer cells, mainly via HIF-1, a transcription factor conformed by a constitutively expressed β-subunit and an oxygen-regulated α-subunit. In hypoxia, HIF-1α stabilizes, forms the heterodimeric complex with HIF-1β, and binds to Hypoxia Response Elements (HRE), activating gene expression to promote metabolic adaptation, cell invasion and metastasis. Furthermore, the focal adhesion kinase, FAK, is activated in hypoxia, promoting cell migration by mechanisms that remain unclear. In this context, integrins, which are glycoproteins required for cell migration, are possibly involved in hypoxia-induced FAK activation. Evidence suggests that cancer cells have an altered glycosylation metabolism, mostly by the expression of glycosyltransferases, however the relevance of glycosylation is poorly explored in the context of hypoxia. Here, we discuss the role of hypoxia in cancer, and its effects on protein glycosylation, with emphasis on integrins and cell migration.
Collapse
Affiliation(s)
- Cecilia Arriagada
- a Institute for Research in Dental Sciences, Faculty of Dentistry , Universidad de Chile , Santiago , Chile.,b School of Pedagogy in Physical Education, Sports and Recreation , Universidad Bernardo O'Higgins , Santiago , Chile
| | - Patricio Silva
- a Institute for Research in Dental Sciences, Faculty of Dentistry , Universidad de Chile , Santiago , Chile.,c Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile , Santiago , Chile.,d Faculty of Health Sciences , Universidad Central de Chile , Santiago , Chile
| | - Vicente A Torres
- a Institute for Research in Dental Sciences, Faculty of Dentistry , Universidad de Chile , Santiago , Chile.,c Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile , Santiago , Chile.,d Faculty of Health Sciences , Universidad Central de Chile , Santiago , Chile
| |
Collapse
|
13
|
Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018; 6:microorganisms6030078. [PMID: 30072673 PMCID: PMC6163557 DOI: 10.3390/microorganisms6030078] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Glycoproteins are major players in the mucus protective barrier in the gastrointestinal and other mucosal surfaces. In particular the mucus glycoproteins, or mucins, are responsible for the protective gel barrier. They are characterized by their high carbohydrate content, present in their variable number, tandem repeat domains. Throughout evolution the mucins have been maintained as integral components of the mucosal barrier, emphasizing their essential biological status. The glycosylation of the mucins is achieved through a series of biosynthetic pathways processes, which generate the wide range of glycans found in these molecules. Thus mucins are decorated with molecules having information in the form of a glycocode. The enteric microbiota interacts with the mucosal mucus barrier in a variety of ways in order to fulfill its many normal processes. How bacteria read the glycocode and link to normal and pathological processes is outlined in the review.
Collapse
Affiliation(s)
- Anthony P Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, Level 7, Marlborough Street, Bristol BS2 8HW, UK.
| |
Collapse
|
14
|
Boeck C, Pfister S, Bürkle A, Vanhooren V, Libert C, Salinas-Manrique J, Dietrich DE, Kolassa IT, Karabatsiakis A. Alterations of the serum N-glycan profile in female patients with Major Depressive Disorder. J Affect Disord 2018. [PMID: 29529546 DOI: 10.1016/j.jad.2018.02.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Glycans are short chains of saccharides linked to glycoproteins that are known to be involved in a wide range of inflammatory processes. As depression has been consistently associated with chronic low-grade inflammation, we asked whether patients with Major Depressive Disorder show alterations in the N-glycosylation pattern of serum proteins that might be linked to associated changes in inflammatory processes. METHODS In a study cohort of 21 female patients with an acute depressive episode and 21 non-depressed female control subjects aged between 50 and 69 years, we analyzed the serum N-glycan profile by DNA Sequencer Adapted-Fluorophore Assisted Carbohydrate Electrophoresis (DSA-FACE) and assessed the serum levels of interleukin (IL)- 6, tumor necrosis factor (TNF)-α and C-reactive protein (CRP) by chemiluminescence immunoassays and nephelometry. RESULTS Compared to controls, MDD patients showed significant differences in the serum levels of several N-glycan structures. Alterations in the serum N-glycan profile were associated with depressive symptom severity and exploratory analyses revealed that they were most pronounced in MDD patients with a history of childhood sexual abuse. Furthermore, MDD patients showed higher levels of IL-6 and a trend for higher CRP levels, which were also associated with similar alterations in the serum N-glycan profile as those characteristic for MDD patients. LIMITATIONS The relatively small sample size and the presence of potential confounders (e.g., BMI, smoking, medication). CONCLUSION The results offer the first evidence that specific differences in the N-glycosylation pattern of serum proteins constitute a so far unrecognized level of biological alterations that might be involved in the immune changes associated with MDD.
Collapse
Affiliation(s)
- Christina Boeck
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Sophia Pfister
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, Box 628, Germany
| | - Valerie Vanhooren
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Belgium
| | | | - Detlef E Dietrich
- Burghof-Klinik, Rinteln, Germany; Department of Mental Health, Hannover Medical School, Hannover, Germany
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Atsukawa M, Tsubota A, Okubo T, Arai T, Nakagawa A, Itokawa N, Kondo C, Kato K, Hatori T, Hano H, Oikawa T, Emoto N, Abe M, Kage M, Iwakiri K. Serum Wisteria floribunda agglutinin-positive Mac-2 binding protein more reliably distinguishes liver fibrosis stages in non-alcoholic fatty liver disease than serum Mac-2 binding protein. Hepatol Res 2018; 48:424-432. [PMID: 29274190 DOI: 10.1111/hepr.13046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/01/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
AIM Serum Mac-2 binding protein (M2BP) and Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA+ -M2BP) are used to estimate the liver fibrosis stage in chronic liver diseases. However, few head-to-head studies have been carried out to compare the two biomarkers in non-alcoholic fatty liver disease (NAFLD). METHODS Serum M2BP and WFA+ -M2BP levels were compared against clinical characteristics and liver histological manifestations in the same samples collected from 213 biopsy-proven NAFLD patients. RESULTS Median levels (range) of M2BP and WFA+ -M2BP were 1.58 (0.70-7.75) pg/mL and 0.85 (0.22-11.32) cut-off index (COI), respectively. Fibrosis stages 1, 2, 3, and 4 were determined in 136, 37, 17, and 23 patients, respectively. Median levels of both biomarkers increased stepwise with fibrosis progression. The M2BP and WFA+ -M2BP levels showed a significant positive correlation (r = 0.643, P = 2.91 × 10-26 ), but a marked discrepancy between both biomarkers was noted in five stage 4 and three stage 1 patients, who had high WFA+ -M2BP but relatively low M2BP levels. Most of these outliers had findings suggestive of more advanced fibrosis. For diagnosing any fibrosis severity, WFA+ -M2BP had greater area under the receiver operating characteristic curve (AUC) and predictive accuracy than M2BP. Among eight fibrosis markers/indices, WFA+ -M2BP yielded the second highest AUC (0.832) and the highest predictive accuracy (82.2%) to diagnose cirrhosis. In addition, WFA+ -M2BP showed the second highest predictive accuracy to diagnose severe fibrosis (78.4%) and significant fibrosis (76.1%). CONCLUSION This head-to-head comparison suggests that WFA+ -M2BP is superior to M2BP for distinguishing liver fibrosis stages in NAFLD patients. A marked discrepancy between the two biomarkers may be indicative of advanced NAFLD (UMIN000023286).
Collapse
Affiliation(s)
- Masanori Atsukawa
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Nippon Medical School, Tokyo, Japan
| | - Akihito Tsubota
- Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomomi Okubo
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Taeang Arai
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Ai Nakagawa
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Norio Itokawa
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Chisa Kondo
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Keizo Kato
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Chiba, Japan
| | - Tsutomu Hatori
- Department of Pathology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Hiroshi Hano
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoya Emoto
- Department of Internal Medicine, Division of Endocrinology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masayoshi Kage
- Molecular Targeting Therapeutics Division, Research Center for Innovative Cancer Therapy, Kurume University, Fukuoka, Japan
| | - Katsuhiko Iwakiri
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
16
|
Khaustova NA, Maltseva DV, Oliveira-Ferrer L, Stürken C, Milde-Langosch K, Makarova JA, Rodin S, Schumacher U, Tonevitsky AG. Selectin-independent adhesion during ovarian cancer metastasis. Biochimie 2017; 142:197-206. [PMID: 28919578 DOI: 10.1016/j.biochi.2017.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Ovarian cancer (OvCa) progression mainly takes place by intraperitoneal spread. Adhesion of tumor cells to the mesothelial cells which form the inner surface of the peritoneum is a crucial step in this process. Cancer cells use in principle different molecules of the leukocyte adhesion cascade to facilitate adhesion. This cascade is initiated by selectin-ligand interactions followed by integrin - extracellular matrix protein interactions. Here we address the question whether all tumor cells predominantly employ selectin-dependent leukocyte-like adhesion cascade (SDAC) or whether they use integrin mediated adhesion for OvCa progression as well. METHODS A comparative transcriptomic analysis of the human OvCa cell lines OVCAR8 and SKOV3 was performed. Intraperitoneal xenograft model of OVCAR8 cells was used to determine whether there is a correlation between SDAC gene expression and the metastatic potential of the control cells and the cells overexpressing c-Fos. Transcriptomic analysis of OVCAR8 and SKOV3 samples was performed using microarrays. RESULTS One-third of the protein-coding genes involved in SDAC exhibited lower expression levels in OVCAR8 than in SKOV3 cells. In contrast to SKOV3 cells, c-Fos overexpression in OVCAR8 cells did not significantly influence the expression of SDAC genes. Intraperitoneal xenograft model of OVCAR8 cells unexpectedly demonstrated that the aggressiveness of OVCAR8 tumors was not depended on the c-Fos expression level and was comparable to that of SKOV3 control tumors. Gene expression analysis of tumors suggests that SKOV3-derived tumor progression was mainly depended on SDAC. Progression of OVCAR8 tumors relied on other cell adhesion molecules that do not interact with selectins. CONCLUSIONS High expression of c-Fos in ovarian cancer cells is not always associated with reduced metastatic potential. Low expression level of SDAC genes may not ensure low OvCa metastatic potential hence alternative adhesion mechanisms involving laminin-integrin interactions exist as well.
Collapse
Affiliation(s)
| | | | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | - Christine Stürken
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | - Julia A Makarova
- P. Herzen Moscow Oncology Research Institute, Moscow, 125284, Russia.
| | - Sergey Rodin
- SRC Bioclinicum, Moscow, 115088, Russia; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | | |
Collapse
|
17
|
Hobbs SJ, Nolz JC. Regulation of T Cell Trafficking by Enzymatic Synthesis of O-Glycans. Front Immunol 2017; 8:600. [PMID: 28596771 PMCID: PMC5442166 DOI: 10.3389/fimmu.2017.00600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Selectins constitute a family of oligosaccharide binding proteins that play critical roles in regulating the trafficking of leukocytes. In T cells, L-selectin (CD62L) controls the capacity for naive and memory T cells to actively survey peripheral lymph nodes, whereas P- and E-selectin capture activated T cells on inflamed vascular endothelium to initiate extravasation into non-lymphoid tissues. The capacity for T cells to interact with all of these selectins is dependent on the enzymatic synthesis of complex O-glycans, and thus, this protein modification plays an indispensable role in regulating the distribution and homing of both naive and previously activated T cells in vivo. In contrast to neutrophils, O-glycan synthesis is highly dynamic in T cell populations and is largely controlled by extracellular stimuli such as antigen recognition or signaling though cytokine receptors. Herein, we review the basic principles of enzymatic synthesis of complex O-glycans, discuss tools and reagents for studying this type of protein modification and highlight our current understanding of how O-glycan synthesis is regulated and subsequently impacts the trafficking potential of diverse T cell populations.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States.,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
18
|
Zou X, Yoshida M, Nagai-Okatani C, Iwaki J, Matsuda A, Tan B, Hagiwara K, Sato T, Itakura Y, Noro E, Kaji H, Toyoda M, Zhang Y, Narimatsu H, Kuno A. A standardized method for lectin microarray-based tissue glycome mapping. Sci Rep 2017; 7:43560. [PMID: 28262709 PMCID: PMC5337905 DOI: 10.1038/srep43560] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/25/2017] [Indexed: 01/12/2023] Open
Abstract
The significance of glycomic profiling has been highlighted by recent findings that structural changes of glycans are observed in many diseases, including cancer. Therefore, glycomic profiling of the whole body (glycome mapping) under different physiopathological states may contribute to the discovery of reliable biomarkers with disease-specific alterations. To achieve this, standardization of high-throughput and in-depth analysis of tissue glycome mapping is needed. However, this is a great challenge due to the lack of analytical methodology for glycans on small amounts of endogenous glycoproteins. Here, we established a standardized method of lectin-assisted tissue glycome mapping. Formalin-fixed, paraffin-embedded tissue sections were prepared from brain, liver, kidney, spleen, and testis of two C57BL/6J mice. In total, 190 size-adjusted fragments with different morphology were serially collected from each tissue by laser microdissection and subjected to lectin microarray analysis. The results and subsequent histochemical analysis with selected lectins were highly consistent with previous reports of mass spectrometry-based N- and/or O-glycome analyses and histochemistry. This is the first report to look at both N- and O-glycome profiles of various regions within tissue sections of five different organs. This simple and reproducible mapping approach is also applicable to various disease model mice to facilitate disease-related biomarker discovery.
Collapse
Affiliation(s)
- Xia Zou
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan.,Ministry of Education, Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maki Yoshida
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Jun Iwaki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Atsushi Matsuda
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Binbin Tan
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan.,Ministry of Education, Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kozue Hagiwara
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Erika Noro
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hiroyuki Kaji
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yan Zhang
- Ministry of Education, Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Atsushi Kuno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| |
Collapse
|
19
|
Lee J, Katzenmaier EM, Kopitz J, Gebert J. Reconstitution of TGFBR2 in HCT116 colorectal cancer cells causes increased LFNG expression and enhanced N-acetyl-d-glucosamine incorporation into Notch1. Cell Signal 2016; 28:1105-13. [DOI: 10.1016/j.cellsig.2016.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
|
20
|
Bennun SV, Hizal DB, Heffner K, Can O, Zhang H, Betenbaugh MJ. Systems Glycobiology: Integrating Glycogenomics, Glycoproteomics, Glycomics, and Other ‘Omics Data Sets to Characterize Cellular Glycosylation Processes. J Mol Biol 2016; 428:3337-3352. [PMID: 27423401 DOI: 10.1016/j.jmb.2016.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
|
21
|
Ghosh S, Das PJ, McQueen CM, Gerber V, Swiderski CE, Lavoie JP, Chowdhary BP, Raudsepp T. Analysis of genomic copy number variation in equine recurrent airway obstruction (heaves). Anim Genet 2016; 47:334-44. [PMID: 26932307 DOI: 10.1111/age.12426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 12/18/2022]
Abstract
We explored the involvement of genomic copy number variants (CNVs) in susceptibility to recurrent airway obstruction (RAO), or heaves-an asthmalike inflammatory disease in horses. Analysis of 16 RAO-susceptible (cases) and six RAO-resistant (control) horses on a custom-made whole-genome 400K equine tiling array identified 245 CNV regions (CNVRs), 197 previously known and 48 new, distributed on all horse autosomes and the X chromosome. Among the new CNVRs, 30 were exclusively found in RAO cases and were further analyzed by quantitative PCR, including additional cases and controls. Suggestive association (P = 0.03; corrected P = 0.06) was found between RAO and a loss on chromosome 5 involving NME7, a gene necessary for ciliary functions in lungs and involved in primary ciliary dyskinesia in humans. The CNVR could be a potential marker for RAO susceptibility but needs further study in additional RAO cohorts. Other CNVRs were not associated with RAO, although several involved genes of interest, such as SPI2/SERPINA1 from the serpin gene family, which are associated with chronic obstructive pulmonary disease and asthma in humans. The SPI2/SERPINA1 CNVR showed striking variation among horses, but it was not significantly different between RAO cases and controls. The findings provide baseline information on the relationship between CNVs and RAO susceptibility. Discovery of new CNVs and the use of a larger population of RAO-affected and control horses are needed to shed more light on their significance in modulating this complex and heterogeneous disease.
Collapse
Affiliation(s)
- S Ghosh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - P J Das
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.,National Research Centre on Yak (ICAR), Dirang, Arunachal Pradesh, 790101, India
| | - C M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - V Gerber
- Department of Veterinary Medicine, University of Bern, Bern, Switzerland
| | - C E Swiderski
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - J-P Lavoie
- Department of Clinical Sciences, University of Montreal, Montreal, QC, J2S 7C6, Canada
| | - B P Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.,New Research Complex, Qatar University, Doha, 2713, Qatar
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
22
|
Takahashi S, Sugiyama T, Shimomura M, Kamada Y, Fujita K, Nonomura N, Miyoshi E, Nakano M. Site-specific and linkage analyses of fucosylated N-glycans on haptoglobin in sera of patients with various types of cancer: possible implication for the differential diagnosis of cancer. Glycoconj J 2016; 33:471-82. [PMID: 26869352 DOI: 10.1007/s10719-016-9653-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/28/2023]
Abstract
Fucosylation is an important type of glycosylation involved in cancer, and fucosylated proteins could be employed as cancer biomarkers. Previously, we reported that fucosylated N-glycans on haptoglobin in the sera of patients with pancreatic cancer were increased by lectin-ELISA and mass spectrometry analyses. However, an increase in fucosylated haptoglobin has been reported in various types of cancer. To ascertain if characteristic fucosylation is observed in each cancer type, we undertook site-specific analyses of N-glycans on haptoglobin in the sera of patients with five types of operable gastroenterological cancer (esophageal, gastric, colon, gallbladder, pancreatic), a non-gastroenterological cancer (prostate cancer) and normal controls using ODS column LC-ESI MS. Haptoglobin has four potential glycosylation sites (Asn184, Asn207, Asn211, Asn241). In all cancer samples, monofucosylated N-glycans were significantly increased at all glycosylation sites. Moreover, difucosylated N-glycans were detected at Asn 184, Asn207 and Asn241 only in cancer samples. Remarkable differences in N-glycan structure among cancer types were not observed. We next analyzed N-glycan alditols released from haptoglobin using graphitized carbon column LC-ESI MS to identify the linkage of fucosylation. Lewis-type and core-type fucosylated N-glycans were increased in gastroenterological cancer samples, but only core-type fucosylated N-glycan was relatively increased in prostate cancer samples. In metastatic prostate cancer, Lewis-type fucosylated N-glycan was also increased. These data suggest that the original tissue/cell producing fucosylated haptoglobin is different in each cancer type and linkage of fucosylation might be a clue of primary lesion, thereby enabling a differential diagnosis between gastroenterological cancers and non-gastroenterological cancers.
Collapse
Affiliation(s)
- Shiro Takahashi
- Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, 739-8530, Japan
| | - Taiki Sugiyama
- Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, 739-8530, Japan
| | - Mayuka Shimomura
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, 739-8530, Japan.
| |
Collapse
|
23
|
Noro E, Togayachi A, Sato T, Tomioka A, Fujita M, Sukegawa M, Suzuki N, Kaji H, Narimatsu H. Large-Scale Identification of N-Glycan Glycoproteins Carrying Lewis x and Site-Specific N-Glycan Alterations in Fut9 Knockout Mice. J Proteome Res 2015; 14:3823-34. [PMID: 26244810 DOI: 10.1021/acs.jproteome.5b00178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Lewis x (Le(x)) structure (Galβ1-4(Fucα1-3)GlcNAc-R) is a carbohydrate epitope comprising the stage-specific embryonic antigen-1 (SSEA-1) and CD15, and it is synthesized by α1,3-fucosyltransferase 9 (Fut9). Fut9 is expressed specifically in the stomach, kidney, brain, and in leukocytes, suggesting a specific function in these tissues. In this study, the N-linked glycan mass spectrometry profile of wild-type mouse kidney glycoproteins revealed the presence of abundant terminal fucoses, which were lost following knockout of the Fut9 gene; the terminal fucose was therefore concluded to be Le(x). These results suggested that Le(x) presence is widespread rather than being limited to specific proteins. We endeavored to comprehensively identify the Le(x) carriers in the mouse kidney. Glycopeptides carrying fucosylated glycans were collected by Aleuria aurantia lectin (AAL) affinity chromatography from kidney homogenates of wild-type and Fut9 knockout mice. The site-specific N-glycomes on the glycopeptides were subsequently analyzed by adopting a new glycoproteomic technology composed of dissociation-independent assignment of glycopeptide signals and accurate mass-based prediction of the N-glycome on the glycopeptides. Our analyses demonstrated that 24/32 glycoproteins contained the Le(x) N-glycan structure in wild-type kidney; of these, Le(x) was lost from 21 in the knockout mice. This is the first report of large-scale identification of Le(x)-carrying glycoproteins from a native sample based on the site-specific glycome analysis.
Collapse
Affiliation(s)
- Erika Noro
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568, Japan.,Department of Biomolecular Function, Doctoral Program in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
| | - Akira Togayachi
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568, Japan
| | - Takashi Sato
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568, Japan
| | - Azusa Tomioka
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568, Japan
| | - Mika Fujita
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568, Japan
| | - Masako Sukegawa
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568, Japan
| | - Nami Suzuki
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568, Japan
| | - Hiroyuki Kaji
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568, Japan.,Department of Biomolecular Function, Doctoral Program in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
| |
Collapse
|
24
|
Petit D, Teppa E, Mir AM, Vicogne D, Thisse C, Thisse B, Filloux C, Harduin-Lepers A. Integrative view of α2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses. Mol Biol Evol 2014; 32:906-27. [PMID: 25534026 PMCID: PMC4379398 DOI: 10.1093/molbev/msu395] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions.
Collapse
Affiliation(s)
- Daniel Petit
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Elin Teppa
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Anne-Marie Mir
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Dorothée Vicogne
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Christine Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Bernard Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Cyril Filloux
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Anne Harduin-Lepers
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| |
Collapse
|
25
|
Macauley MS, Arlian BM, Rillahan CD, Pang PC, Bortell N, Marcondes MCG, Haslam SM, Dell A, Paulson JC. Systemic blockade of sialylation in mice with a global inhibitor of sialyltransferases. J Biol Chem 2014; 289:35149-58. [PMID: 25368325 DOI: 10.1074/jbc.m114.606517] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sialic acid terminates glycans of glycoproteins and glycolipids that play numerous biological roles in health and disease. Although genetic tools are available for interrogating the effects of decreased or abolished sialoside expression in mice, pharmacological inhibition of the sialyltransferase family has, to date, not been possible. We have recently shown that a sialic acid analog, 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-NeuAc), added to the media of cultured cells shuts down sialylation by a mechanism involving its intracellular conversion to CMP-3F-NeuAc, a competitive inhibitor of all sialyltransferases. Here we show that administering 3F-NeuAc to mice dramatically decreases sialylated glycans in cells of all tissues tested, including blood, spleen, liver, brain, lung, heart, kidney, and testes. A single dose results in greatly decreased sialoside expression for over 7 weeks in some tissues. Although blockade of sialylation with 3F-NeuAc does not affect viability of cultured cells, its use in vivo has a deleterious "on target" effect on liver and kidney function. After administration of 3F-NeuAc, liver enzymes in the blood are dramatically altered, and mice develop proteinuria concomitant with dramatic loss of sialic acid in the glomeruli within 4 days, leading to irreversible kidney dysfunction and failure to thrive. These results confirm a critical role for sialosides in liver and kidney function and document the feasibility of pharmacological inhibition of sialyltransferases for in vivo modulation of sialoside expression.
Collapse
Affiliation(s)
- Matthew S Macauley
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| | - Britni M Arlian
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| | - Cory D Rillahan
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and the Division of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, and
| | - Poh-Choo Pang
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nikki Bortell
- the Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La, Jolla, California 92037
| | - Maria Cecilia G Marcondes
- the Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La, Jolla, California 92037
| | - Stuart M Haslam
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James C Paulson
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| |
Collapse
|
26
|
Rong J, Han J, Dong L, Tan Y, Yang H, Feng L, Wang QW, Meng R, Zhao J, Wang SQ, Chen X. Glycan Imaging in Intact Rat Hearts and Glycoproteomic Analysis Reveal the Upregulation of Sialylation during Cardiac Hypertrophy. J Am Chem Soc 2014; 136:17468-76. [DOI: 10.1021/ja508484c] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Rong
- School
of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | | | | | | | | | - Lianshun Feng
- School
of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | | | | | - Jing Zhao
- School
of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- State
Key
Laboratory of Pharmaceutical Biotechnology, School of Life Sciences,
Institute of Chemistry and Biomedical Sciences, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
27
|
Abstract
Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus-glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus-glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus-glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications.
Collapse
|
28
|
Woodward AM, Argüeso P. Expression analysis of the transmembrane mucin MUC20 in human corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 2014; 55:6132-8. [PMID: 25168902 DOI: 10.1167/iovs.14-15269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Cell surface mucins are a group of highly O-glycosylated transmembrane glycoproteins responsible for the protection of epithelial cells on mucosal surfaces. The aim of this study was to investigate the localization and regulation of mucin 20 (MUC20) at the ocular surface. METHODS Localization of MUC20 in human corneal and conjunctival epithelia was evaluated by immunofluorescence microscopy. Immortalized corneal (HCLE) and conjunctival (HCjE) cell lines were grown at different stages of differentiation and subjected to quantitative PCR and Western blot analyses. Cell surface proteins on apical cell membranes were biotinylated and isolated by neutravidin chromatography. RESULTS The MUC20 was detected throughout the entire human ocular surface epithelia, predominantly in cell membranes within intermediate cell layers. In conjunctiva, MUC20 also was observed in the cytoplasm of apical cells within the stratified squamous epithelium, but not in goblet cells. Quantitative PCR and immunoblotting demonstrated expression of MUC20 in HCLE and HCjE cells. Induction of differentiation with serum-containing medium resulted in upregulation of MUC20 mRNA and protein. Biotin labeling of the surface of stratified cultures revealed low levels of MUC20 protein on apical glycocalyces. Further, MUC20 was not detected in the cell culture media or in human tears, suggesting that the extracellular domain of MUC20 is not released from the ocular surface as described previously for other cell surface mucins. CONCLUSIONS Our results indicate that MUC20 is a novel transmembrane mucin expressed by the human corneal and conjunctival epithelia, and suggest that differential expression of MUC20 during differentiation has a role in maintaining ocular surface homeostasis.
Collapse
Affiliation(s)
- Ashley M Woodward
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Pablo Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
29
|
Bubka M, Link-Lenczowski P, Janik M, Pocheć E, Lityńska A. Overexpression of N-acetylglucosaminyltransferases III and V in human melanoma cells. Implications for MCAM N-glycosylation. Biochimie 2014; 103:37-49. [DOI: 10.1016/j.biochi.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/01/2014] [Indexed: 01/25/2023]
|
30
|
Baycin Hizal D, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS, Betenbaugh MJ, Zhang H. Glycoproteomic and glycomic databases. Clin Proteomics 2014; 11:15. [PMID: 24725457 PMCID: PMC3996109 DOI: 10.1186/1559-0275-11-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/20/2014] [Indexed: 11/17/2022] Open
Abstract
Protein glycosylation serves critical roles in the cellular and biological processes of many organisms. Aberrant glycosylation has been associated with many illnesses such as hereditary and chronic diseases like cancer, cardiovascular diseases, neurological disorders, and immunological disorders. Emerging mass spectrometry (MS) technologies that enable the high-throughput identification of glycoproteins and glycans have accelerated the analysis and made possible the creation of dynamic and expanding databases. Although glycosylation-related databases have been established by many laboratories and institutions, they are not yet widely known in the community. Our study reviews 15 different publicly available databases and identifies their key elements so that users can identify the most applicable platform for their analytical needs. These databases include biological information on the experimentally identified glycans and glycopeptides from various cells and organisms such as human, rat, mouse, fly and zebrafish. The features of these databases - 7 for glycoproteomic data, 6 for glycomic data, and 2 for glycan binding proteins are summarized including the enrichment techniques that are used for glycoproteome and glycan identification. Furthermore databases such as Unipep, GlycoFly, GlycoFish recently established by our group are introduced. The unique features of each database, such as the analytical methods used and bioinformatical tools available are summarized. This information will be a valuable resource for the glycobiology community as it presents the analytical methods and glycosylation related databases together in one compendium. It will also represent a step towards the desired long term goal of integrating the different databases of glycosylation in order to characterize and categorize glycoproteins and glycans better for biomedical research.
Collapse
Affiliation(s)
- Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Wolozny
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Colao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Elena Jacobson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon S Krag
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
31
|
Kober OI, Ahl D, Pin C, Holm L, Carding SR, Juge N. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer. Am J Physiol Gastrointest Liver Physiol 2014; 306:G582-93. [PMID: 24503767 PMCID: PMC3962592 DOI: 10.1152/ajpgi.00218.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ(-/-)) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ(-/-) mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ(-/-) mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ(-/-) mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ(-/-) and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine.
Collapse
Affiliation(s)
- Olivia I. Kober
- 1Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich, United Kingdom;
| | - David Ahl
- 2Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Carmen Pin
- 1Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich, United Kingdom;
| | - Lena Holm
- 2Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Simon R. Carding
- 1Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich, United Kingdom; ,3Faculty of Medical and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Nathalie Juge
- 1Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich, United Kingdom;
| |
Collapse
|
32
|
Tanaka K, Fukase K. Chemical Approach to a Whole Body Imaging of Sialo-N-Linked Glycans. Top Curr Chem (Cham) 2014; 367:201-30. [PMID: 25971916 DOI: 10.1007/128_2014_603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PET and noninvasive fluorescence imaging of the sialo-N-linked glycan derivatives are described. To establish the efficient labeling protocol for N-glycans and/or glycoconjugates, new labeling probes of fluorescence and ⁶⁸Ga-DOTA, as the positron emission nucleus for PET, through rapid 6π-azaelectrocyclization were designed and synthesized, (E)-ester aldehydes. The high reactivity of these probes enabled the labeling of lysine residues in peptides, proteins, and even amino groups on the cell surfaces at very low concentrations of the target molecules (~10⁻⁸ M) within a short reaction time (~5 min) to result in "selective" and "non-destructive" labeling of the more accessible amines. The first MicroPET of glycoproteins, ⁶⁸Ga-DOTA-orosomucoid and asialoorosomucoid, successfully visualized the differences in the circulatory residence of glycoproteins, in the presence or absence of sialic acids. In vivo dynamics of the new N-glycoclusters, prepared by the "self-activating" Huisgen cycloaddition reaction, could also be affected significantly by their partial structures at the non-reducing end, i.e., the presence or absence of sialic acids, and/or sialoside linkages to galactose. Azaelectrocyclization chemistry is also applicable to the engineering of the proteins and/or the cell surfaces by the oligosaccharides; lymphocytes chemically engineered by sialo-N-glycan successfully target the tumor implanted in BALB/C nude mice, detected by noninvasive fluorescence imaging.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan,
| | | |
Collapse
|
33
|
RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. Mol Syst Biol 2013; 8:629. [PMID: 23212246 PMCID: PMC3542528 DOI: 10.1038/msb.2012.59] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022] Open
Abstract
RNAi screening and automated image analysis reveal 180 kinases and phosphatases regulating the organization of the Golgi apparatus. Most of these genes also control the expression of specific glycans, pointing to a web of interactions between signaling cascades and glycosylation at the Golgi. ![]()
Golgi organization was probed with three markers of different Golgi compartments and quantitative morphological analysis. Knockdowns of ∼20% of all known kinases and phosphatases affected the Golgi globally or in a compartment-specific manner, and were comparable in degree to the depletion of known membrane traffic regulators such as SNAREs. Several cell surface receptors, their cognate ligands and downstream effectors regulate Golgi organization, suggesting a large regulatory network. Most signaling genes affected both Golgi morphology and the expression of specific glycans.
The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.
Collapse
|
34
|
Abstract
BACKGROUND The glycomics field has made great advancements in the last decade due to technologies for their synthesis and analysis including carbohydrate microarrays. Accordingly, databases for glycomics research have also emerged and been made publicly available by many major institutions worldwide. OBJECTIVE This review introduces these and other useful databases on which new methods for drug discovery can be developed. METHODS The scope of this review covers current documented and accessible databases and resources pertaining to glycomics. These were selected with the expectation that they may be useful for drug discovery research. RESULTS/CONCLUSION There is a plethora of glycomics databases that have much potential for drug discovery. This may seem daunting at first but this review helps to put some of these resources into perspective. Additionally, some thoughts on how to integrate these resources to allow more efficient research are presented.
Collapse
Affiliation(s)
- Kiyoko F Aoki-Kinoshita
- Associate Professor, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo, 192-8577, Japan +81 42 691 4116 ; +81 42 691 4116 ;
| |
Collapse
|
35
|
Argüeso P. Glycobiology of the ocular surface: mucins and lectins. Jpn J Ophthalmol 2013; 57:150-5. [PMID: 23325272 DOI: 10.1007/s10384-012-0228-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/02/2012] [Indexed: 11/28/2022]
Abstract
Glycosylation is an important and common form of posttranscriptional modification of proteins in cells. During the last decade, a vast array of biological functions has been ascribed to glycans because of a rapid evolution in glycomic technologies. Glycogenes that are highly expressed at the human ocular surface include families of glycosyltransferases, proteoglycans, and glycan degradation proteins, as well as mucins and carbohydrate-binding proteins, such as the galectins. On the apical glycocalyx, mucin O-glycans promote boundary lubrication, prevent bacterial adhesion and endocytic activity, and maintain epithelial barrier function through interactions with galectins. The emerging roles attributed to glycans are contributing to the appreciation of their biological capabilities at the ocular surface.
Collapse
Affiliation(s)
- Pablo Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Aoki-Kinoshita KF. Using databases and web resources for glycomics research. Mol Cell Proteomics 2013; 12:1036-45. [PMID: 23325765 DOI: 10.1074/mcp.r112.026252] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many databases of carbohydrate structures and related information can be found on the World Wide Web. This review covers the major carbohydrate databases that have potential utility for glycoscientists and researchers entering the glycosciences. The first half provides a brief overview of carbohydrate databases and web resources (including a history of carbohydrate databases and carbohydrate notations used in these databases), and the second half provides a guide that can be used as an index to determine which resources provide the data of most interest to the user.
Collapse
Affiliation(s)
- Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, Japan.
| |
Collapse
|
37
|
Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2012; 2:307-24. [PMID: 23741608 PMCID: PMC3363024 DOI: 10.1098/rsfs.2012.0009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/24/2012] [Indexed: 01/01/2023] Open
Abstract
Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure-function relationship of ligand-dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Warren D. Gray
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
| | - Michael E. Davis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- National Engineering Laboratory for Regenerative and Implantable Medical Devices, Room 408, Building D, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, People's Republic of China
| |
Collapse
|
38
|
Abstract
Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthesis and the resulting heterogeneity. The goal of this collection of expert reviews is to highlight what is known about how carbohydrates and their binding partners-the microbial (non-self), tumor (altered-self), and host (self)-cooperate within the immune system, while also identifying areas of opportunity to those willing to take up the challenge of understanding more about how carbohydrates influence immune responses. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as are proteins, nucleic acids, and lipids. Here, we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs, and galectins) and their contributions to the biology of immune responses in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Argentina
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
39
|
Robinson LN, Artpradit C, Raman R, Shriver ZH, Ruchirawat M, Sasisekharan R. Harnessing glycomics technologies: integrating structure with function for glycan characterization. Electrophoresis 2012; 33:797-814. [PMID: 22522536 PMCID: PMC3743516 DOI: 10.1002/elps.201100231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycans, or complex carbohydrates, are a ubiquitous class of biological molecule which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships.
Collapse
Affiliation(s)
- Luke N. Robinson
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Charlermchai Artpradit
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Rahul Raman
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Zachary H. Shriver
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Mathuros Ruchirawat
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Ram Sasisekharan
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
40
|
Angata T, Fujinawa R, Kurimoto A, Nakajima K, Kato M, Takamatsu S, Korekane H, Gao CX, Ohtsubo K, Kitazume S, Taniguchi N. Integrated approach toward the discovery of glyco-biomarkers of inflammation-related diseases. Ann N Y Acad Sci 2012; 1253:159-69. [PMID: 22380786 DOI: 10.1111/j.1749-6632.2012.06469.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycobiology has contributed tremendously to the discovery and characterization of cancer-related biomarkers containing glycans (i.e., glyco-biomarkers) and a more detailed understanding of cancer biology. It is now recognized that most chronic diseases involve some elements of chronic inflammation; these include cancer, Alzheimer's disease, and metabolic syndrome (including consequential diabetes mellitus and cardiovascular diseases). By extending the knowledge and experience of the glycobiology community regarding cancer biomarker discovery, we should be able to contribute to the discovery of diagnostic/prognostic glyco-biomarkers of other chronic diseases that involve chronic inflammation. Future integration of large-scale "omics"-type data (e.g., genomics, epigenomics, transcriptomics, proteomics, and glycomics) with computational model building, or a systems glycobiology approach, will facilitate such efforts.
Collapse
Affiliation(s)
- Takashi Angata
- Systems Glycobiology Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kang X, Wang N, Pei C, Sun L, Sun R, Chen J, Liu Y. Glycan-related gene expression signatures in human metastatic hepatocellular carcinoma cells. Exp Ther Med 2011; 3:415-422. [PMID: 22969905 DOI: 10.3892/etm.2011.430] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/14/2011] [Indexed: 01/12/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) ranks second in cancer mortality in China; recurrence and metastasis have been the cause of the high mortality. Glycans on the cell surface play a pivotal role in tumor metastasis. The global alteration in the structure and composition of N-glycans during HCC metastasis remains unknown. To understand glycan alterations of glycoproteins by correlating the glycosyltransferase expression profile with glycan structure, we systematically used glycan profiling tools: glycogene microarray analyses of 115 genes, including glycotransferases, glycosidases and nuclear sugar transporters and lectin chips to investigate the glycan-related gene expression signatures in the high metastatic potential HCC cell line, HCCLM3, in comparison to the HCC cell line, Hep3B, with low metastatic potential. Of the 115 genes, 18 genes were up-regulated in high metastatic potential HCCLM3 cells in comparison to Hep3B cells, while 11 genes were down-regulated. The differentially expressed genes, such as ST3GalI, FUT8, β3GalT5, MGAT3 and MGAT5, were mainly involved in the synthesis of N-glycan and glycolipids, particularly the sialyl Lewis antigen. The results of the glycogene microarray analysis were further validated by quantitative real-time PCR analysis and lectin-based analysis. The differentially expressed glycogenes identified in this study may provide new insights and represent novel factors for investigating the functional role of cell surface carbohydrate-mediated HCC metastasis.
Collapse
Affiliation(s)
- Xiaonan Kang
- Liver Cancer Institute of Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai
| | | | | | | | | | | | | |
Collapse
|
42
|
Mariño K, Saldova R, Adamczyk B, Rudd PM. Changes in Serum N-Glycosylation Profiles: Functional Significance and Potential for Diagnostics. CARBOHYDRATE CHEMISTRY 2011:57-93. [DOI: 10.1039/9781849732765-00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Parrinello N, Bianchet MA, Amzel LM. Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1388-99. [PMID: 21896283 PMCID: PMC3429948 DOI: 10.1016/j.dci.2011.08.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 07/28/2011] [Accepted: 08/23/2011] [Indexed: 05/11/2023]
Abstract
Protein-carbohydrate interactions mediated by lectins have been recognized as key components of innate immunity in vertebrates and invertebrates, not only for recognition of potential pathogens, but also for participating in downstream effector functions, such as their agglutination, immobilization, and complement-mediated opsonization and killing. More recently, lectins have been identified as critical regulators of mammalian adaptive immune responses. Fish are endowed with virtually all components of the mammalian adaptive immunity, and are equipped with a complex lectin repertoire. In this review, we discuss evidence suggesting that: (a) lectin repertoires in teleost fish are highly diversified, and include not only representatives of the lectin families described in mammals, but also members of lectin families described for the first time in fish species; (b) the tissue-specific expression and localization of the diverse lectin repertoires and their molecular partners is consistent with their distinct biological roles in innate and adaptive immunity; (c) although some lectins may bind endogenous ligands, others bind sugars on the surface of potential pathogens; (d) in addition to pathogen recognition and opsonization, some lectins display additional effector roles, such as complement activation and regulation of immune functions; (e) some lectins that recognize exogenous ligands mediate processes unrelated to immunity: they may act as anti-freeze proteins or prevent polyspermia during fertilization.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Program in the Biology of Model Systems, Baltimore, MD 21202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
| | - Adam D. Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15232;
| |
Collapse
|
45
|
Ding N, Nie H, Sun X, Sun W, Qu Y, Liu X, Yao Y, Liang X, Chen CC, Li Y. Human serum N-glycan profiles are age and sex dependent. Age Ageing 2011; 40:568-75. [PMID: 21807702 DOI: 10.1093/ageing/afr084] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND protein glycosylation varies with the physiological and pathological status of the cell. Consequently, analysis of protein-linked glycans has growing importance both in basic glycobiological research and as a potential tool for monitoring the physiological state in humans. DESIGN, SETTING AND PARTICIPANTS a total of 265 healthy northern Chinese men and women were grouped by age and gender. The mean age in males and females was similar. OBJECTIVE the study is aimed to evaluate the effects of the age and gender on the human serum N-glycans profiles in the clinical diagnose of ageing and disease. METHODS the 265 human serum N-glycan profiles were obtained by DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis. Comparison of N-glycan profiles was carried out among the different genders and age groups and the data were analysed with the GeneMapper software. RESULTS age-related changes in the three N-glycan structures (NGA2F, NGA2FB and NA2F) were observed. Interestingly, fucosylation of N-glycans was significantly different (P < 0.0001) between men and women: more core-α-1,6-fucosylated glycans were detected in women, whereas more branching-α-1,3-fucosylated N-glycans were seen in men. CONCLUSIONS the N-glycome profile in serum is gender and age dependent. This should be taken into consideration in the development of serum glycome markers.
Collapse
Affiliation(s)
- Ning Ding
- Department of Life Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, Heilongjiang, China
| | - Huan Nie
- Department of Life Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, Heilongjiang, China
- Instrument Science and Technology, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, Heilongjiang, China
| | - Xuemei Sun
- Affiliated Hospital of Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Wei Sun
- Affiliated Hospital of Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Youpeng Qu
- Department of Life Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, Heilongjiang, China
| | - Xia Liu
- Department of Life Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, Heilongjiang, China
| | - Yuanfei Yao
- Department of Life Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, Heilongjiang, China
| | - Xue Liang
- Department of Life Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, Heilongjiang, China
| | - Cuiying Chitty Chen
- Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | - Yu Li
- Department of Life Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, Heilongjiang, China
| |
Collapse
|
46
|
Graham SA, Antonopoulos A, Hitchen PG, Haslam SM, Dell A, Drickamer K, Taylor ME. Identification of neutrophil granule glycoproteins as Lewis(x)-containing ligands cleared by the scavenger receptor C-type lectin. J Biol Chem 2011; 286:24336-49. [PMID: 21561871 PMCID: PMC3129213 DOI: 10.1074/jbc.m111.244772] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scavenger receptor C-type lectin (SRCL) is a glycan-binding receptor that has the capacity to mediate endocytosis of glycoproteins carrying terminal Lewis(x) groups (Galβ1-4(Fucα1-3)GlcNAc). A screen for glycoprotein ligands for SRCL using affinity chromatography on immobilized SRCL followed by mass spectrometry-based proteomic analysis revealed that soluble glycoproteins from secondary granules of neutrophils, including lactoferrin and matrix metalloproteinases 8 and 9, are major ligands. Binding competition and surface plasmon resonance analysis showed affinities in the low micromolar range. Comparison of SRCL binding to neutrophil and milk lactoferrin indicates that the binding is dependent on cell-specific glycosylation in the neutrophils, as the milk form of the glycoprotein is a much poorer ligand. Binding to neutrophil glycoproteins is fucose-dependent, and mass spectrometry-based glycomic analysis of neutrophil and milk lactoferrin was used to establish a correlation between high affinity binding to SRCL and the presence of multiple clustered terminal Lewis(x) groups on a heterogeneous mixture of branched glycans, some with poly N-acetyllactosamine extensions. The ability of SRCL to mediate uptake of neutrophil lactoferrin was confirmed using fibroblasts transfected with SRCL. The common presence of Lewis(x) groups in granule protein glycans can thus target granule proteins for clearance by SRCL. PCR and immunohistochemical analysis confirm that SRCL is widely expressed on endothelial cells and thus represents a distributed system that could scavenge released neutrophil glycoproteins both locally at sites of inflammation or systemically when they are released in the circulation.
Collapse
Affiliation(s)
- Sarah A Graham
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Identifying targets for preventing epilepsy using systems biology. Neurosci Lett 2011; 497:205-12. [PMID: 21382442 DOI: 10.1016/j.neulet.2011.02.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 01/15/2011] [Accepted: 02/15/2011] [Indexed: 11/20/2022]
Abstract
While there are a plethora of medications that block seizures, these same drugs have little effect on preventing or curing epilepsy. This suggests that the molecular pathways for epileptogenesis are distinct from those that produce acute seizures and therefore will require the identification of novel truly 'antiepileptic' therapeutics. Identification and testing of potential antiepileptic drug targets first in animal models and then in humans is thus becoming an important next step in the battle against epilepsy. In focal forms of human epilepsy the battle, however, is complicated by the large and varied types of brain abnormalities capable of producing a state of chronic, recurrent seizures. Unfortunately, once the epileptic state develops, it often persists to produce a life-long seizure disorder that can only be suppressed by anticonvulsant medications, and cured only in some through surgical resection of the seizure focus. While deductive approaches to drug target identification use our current state of knowledge, based mostly on animal models of epileptogenesis, a growing reductionist approach often referred to as systems biology takes advantage of newer high-throughput technologies to profile large numbers and types of molecules simultaneously. Some of these approaches, such as functional genomics, proteomics, and metabolomics have been undertaken in both human and animal epileptic brain tissues and are beginning to hone in on new therapeutic targets. While these methods are highly sensitive, this same sensitivity also produces a high rate of false positives due to variables other than those of interest. The experimental design, therefore, needs to be tightly controlled to reduce these unintended results that can be misleading. Most importantly, epileptogenic targets need to be validated in animal models of epileptogenesis, so that, if successful, these new methods have the potential to identify unbiased, important new therapeutics.
Collapse
|
48
|
Tanaka K, Siwu ERO, Minami K, Hasegawa K, Nozaki S, Kanayama Y, Koyama K, Chen WC, Paulson JC, Watanabe Y, Fukase K. Noninvasive imaging of dendrimer-type N-glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed Engl 2011; 49:8195-200. [PMID: 20857462 DOI: 10.1002/anie.201000892] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chang LM, Maheshwari P, Werth S, Schaffer L, Head SR, Kovarik C, Werth VP. Identification and molecular analysis of glycosaminoglycans in cutaneous lupus erythematosus and dermatomyositis. J Histochem Cytochem 2011; 59:336-45. [PMID: 21378287 DOI: 10.1369/0022155410398000] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs), also known histologically as dermal mucin, accumulate in several inflammatory skin conditions. Because different GAG species have distinct immunologic effects, the authors examined two GAGs, hyaluronan (HA) and chondroitin sulfate (CS), using specific stains in cutaneous lupus erythematosus (CLE) and dermatomyositis (DM). In the dermis of one CLE subtype, tumid LE (TLE), they found only increased HA, but both HA and CS were significantly elevated in another CLE subtype, discoid LE (DLE). DM lesional dermis accumulated mainly CS but not HA. The authors then used glycomic gene expression microarrays to assess the expression of HA- and CS-related genes in CLE skin. Real-time quantitative PCR confirmed significantly increased expression of HAS2, CHSY1, and C4ST1 in the combined groups of CLE lesions (n = 8) compared to healthy controls (n = 4). Thus, the increase in HA in CLE presumably results from upregulation of HAS2, whereas CHSY1 and C4ST1 appear to contribute to increased CS. Based on their known immunomodulatory effects in other systems, HA and CS may thus participate in the pathophysiology of these inflammatory skin conditions.
Collapse
Affiliation(s)
- Laura M Chang
- Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|