1
|
Gonciarz W, Brzeziński M, Orłowska W, Wawrzyniak P, Lewandowski A, Narayanan VHB, Chmiela M. Spray-dried pH-sensitive chitosan microparticles loaded with Mycobacterium bovis BCG intended for supporting treatment of Helicobacter pylori infection. Sci Rep 2024; 14:4747. [PMID: 38413775 PMCID: PMC10899647 DOI: 10.1038/s41598-024-55353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Gram-negative spiral-shaped Helicobacter pylori (Hp) bacteria induce the development of different gastric disorders. The growing resistance of Hp to antibiotics prompts to search for new therapeutic formulations. A promising candidate is Mycobacterium bovis BCG (BCG) with immunomodulatory properties. Biodegradable mucoadhesive chitosan is a good carrier for delivering BCG mycobacteria to the gastric mucosal environment. This study aimed to show whether BCG bacilli are able to increase the phagocytic activity of Cavia porcellus-guinea pig macrophages derived from the bone marrow towards fluorescently labeled Escherichia coli. Furthermore, to encapsulate live BCG bacilli, in spray-dried chitosan microparticles (CHI-MPs), and assess the pH-dependent release of mycobacteria in pH conditions mimicking gastric (acidic) or gut (alkaline) milieu. Microparticles (MPs) were made of chitosan and coated with Pluronic F-127-(Plur) or N-Acetyl-D-Glucosamine-(GlcNAc) to increase the MPs resistance to low pH or to increase anti-Hp effect, respectively. Spray-drying method was used for microencapsulation of live BCG. The biosafety of tested CHI-MPs has been confirmed using cell models in vitro and the model of guinea pig in vivo. The CHI-MPs loaded with BCG released live mycobacteria at pH 3.0 (CHI-GlcNAc-MPs) or pH 8.0. (CHI-Plur-MPs). The CHI-MPs loaded with live BCG can be used for per os inoculation of Cavia porcellus to check the effectiveness of delivered mycobacteria in increasing anti-H. pylori host response.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland.
| | - Weronika Orłowska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Paweł Wawrzyniak
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Artur Lewandowski
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Laboratory, #214, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
2
|
Wanibuchi K, Hosoda K, Amgalanbaatar A, Ihara M, Takezawa M, Sakai Y, Masui H, Shoji M, Hayashi S, Shimomura H. Aspects for development of novel antibacterial medicines using a vitamin D 3 decomposition product in Helicobacter pylori infection. J Antibiot (Tokyo) 2023; 76:665-672. [PMID: 37658133 DOI: 10.1038/s41429-023-00651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 09/03/2023]
Abstract
A previous study by our group demonstrated that a vitamin D3 decomposition product (VDP1) acts as the selective bactericidal substance on Helicobacter pylori. VDP1 is an indene compound modified with a carbonyl and an alkyl. The alkyl of VDP1 turned out to be a mandatory structure to exert effective bactericidal action on H. pylori. Meanwhile, it still remains to be clarified as to how influence the alteration of the carbonyl in VDP1 has on the anti-H. pylori activity. In this study, we synthesized novel VDP1 derivatives that replaced the carbonyl of VDP1 by various functional groups and investigated the antibacterial action of the VDP1 derivatives on H. pylori. VDP1 derivatives retaining either a hydroxy (VD3-1) or an acetic ester (VD3-3) exhibited more effective bactericidal action to H. pylori than VDP1. The replacement of the carbonyl of VDP1 by either an allyl acetate (VD3-2) or an acrylic acid (VD3-5) provided almost no change to the anti-H. pylori activity. Apart from this, an isomer of VDP1 (VD3-4) slightly improved anti-H. pylori activity of VDP1. Meanwhile, the replacement of the carbonyl of VDP1 by a methyl acrylate (VD3-6) attenuated the anti-H. pylori activity. As with VDP1, its derivatives also were suggested to exert the anti-H. pylori action through the interaction with myristic acid side chains of dimyristoyl-phosphatidylethanolamine, a characteristic membrane lipid constituent of this pathogen. These results indicate that it is capable of developing specific antibacterial medicines for H. pylori targeting the biomembranal dimyristoyl-phosphatidylethanolamine using VDP1 as the fundamental structure.
Collapse
Affiliation(s)
- Kiyofumi Wanibuchi
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Kouichi Hosoda
- Nikon Cell Innovation Co., Ltd., 2-4-10, Shinsuna, Koto-ku, Tokyo, 136-0075, Japan
| | - Avarzed Amgalanbaatar
- Department of Graduate Education, Graduate School, Mongolian National University of Medical Sciences, 14210, Zoing street, Sukhbaatar District, Ulaanbaatar, 14210, Mongolia
| | - Masato Ihara
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Motoki Takezawa
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Yuki Sakai
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Mitsuru Shoji
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Shunji Hayashi
- Department of Microbiology, School of Medicine, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0374, Japan
| | - Hirofumi Shimomura
- Public Health Center of Uki, Kumamoto Prefecture Office, 400-1, Kugu, Matsubase-machi, Uki-shi, Kumamoto, 869-0532, Japan.
| |
Collapse
|
3
|
Hosoda K, Wanibuchi K, Amgalanbaatar A, Shoji M, Hayashi S, Shimomura H. A novel role of catalase in cholesterol uptake of Helicobacter pylori. Steroids 2023; 191:109158. [PMID: 36574870 DOI: 10.1016/j.steroids.2022.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori infection is known to be a significant risk factor for the development of gastric cancers in humans. This pathogen exhibits unique biological characteristics in membrane lipid composition. Specifically, H. pylori incorporates exogenous cholesterol into biomembranes and uses cholesterol as the membrane lipid constituents. A previous study by our group demonstrated that phosphatidylethanolamine of H. pylori functions as the cholesterol-binding lipid. It is, however, unclear whether H. pylori is equipped with protein molecules involved in the cholesterol uptake. We, therefore, examined H. pylori proteins that tightly bind to cholesterol. As a consequence, H. pylori catalase (KatA) turned out to be a candidate of the cholesterol uptake-associated protein. In addition, an H. pylori mutant strain that expresses KatA protein lacking catalase activity was significantly lower in total cholesterol contents than the wild-type H. pylori strain. The putative amino acid sequence of KatA found out to contain a number of the cholesterol recognition/interaction amino acid consensus sequence domains (CRAC and CARC domains). These results suggest that H. pylori KatA with normal folding conformation acts as the cholesterol-binding or -storage protein.
Collapse
Affiliation(s)
- Kouichi Hosoda
- Nikon Cell Innovation Co., Ltd., 2-4-10, Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Kiyofumi Wanibuchi
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa 245-0066, Japan
| | - Avarzed Amgalanbaatar
- Department of Graduate Education, Graduate School, Mongolian National University of Medical Sciences, 14210, Zoing Street, Sukhbaatar District, Ulaanbaatar 14210, Mongolia
| | - Mitsuru Shoji
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa 245-0066, Japan
| | - Shunji Hayashi
- Department of Microbiology, Kitasato University School of Medicine, 1-15-1, Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan
| | - Hirofumi Shimomura
- Public Health Center of Uki, Kumamoto Prefecture Office, 400-1, Kugu, Matsubase-machi, Uki-shi, Kumamoto 869-0532, Japan.
| |
Collapse
|
4
|
Hoffmann W. Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23105377. [PMID: 35628183 PMCID: PMC9141172 DOI: 10.3390/ijms23105377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
5
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
6
|
Cholestenone functions as an antibiotic against Helicobacter pylori by inhibiting biosynthesis of the cell wall component CGL. Proc Natl Acad Sci U S A 2021; 118:2016469118. [PMID: 33853940 DOI: 10.1073/pnas.2016469118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori, a pathogen responsible for gastric cancer, contains a unique glycolipid, cholesteryl-α-D-glucopyranoside (CGL), in its cell wall. Moreover, O-glycans having α1,4-linked N-acetylglucosamine residues (αGlcNAc) are secreted from gland mucous cells of gastric mucosa. Previously, we demonstrated that CGL is critical for H. pylori survival and that αGlcNAc serves as antibiotic against H. pylori by inhibiting CGL biosynthesis. In this study, we tested whether a cholesterol analog, cholest-4-en 3-one (cholestenone), exhibits antibacterial activity against H. pylori in vitro and in vivo. When the H. pylori standard strain ATCC 43504 was cultured in the presence of cholestenone, microbial growth was significantly suppressed dose-dependently relative to microbes cultured with cholesterol, and cholestenone inhibitory effects were not altered by the presence of cholesterol. Morphologically, cholestenone-treated H. pylori exhibited coccoid forms. We obtained comparable results when we examined the clarithromycin-resistant H. pylori strain "2460." We also show that biosynthesis of CGL and its derivatives cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside and cholesteryl-6-O-phosphatidyl-α-D-glucopyranoside in H. pylori is remarkably inhibited in cultures containing cholestenone. Lastly, we asked whether orally administered cholestenone eradicated H. pylori strain SS1 in C57BL/6 mice. Strikingly, mice fed a cholestenone-containing diet showed significant eradication of H. pylori from the gastric mucosa compared with mice fed a control diet. These results overall strongly suggest that cholestenone could serve as an oral medicine to treat patients infected with H. pylori, including antimicrobial-resistant strains.
Collapse
|
7
|
Qaria MA, Qumar S, Sepe LP, Ahmed N. Cholesterol glucosylation-based survival strategy in Helicobacter pylori. Helicobacter 2021; 26:e12777. [PMID: 33368895 DOI: 10.1111/hel.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori is a major chronic health problem, infecting more than half of the population worldwide. H. pylori infection is linked with various clinical complications ranging from gastritis to gastric cancer. The resolution of gastritis and peptic ulcer appears to be linked with the eradication of H. pylori. However, resistance to antibiotics and eradication failure rates are reaching alarmingly high levels. This calls for urgent action in finding alternate methods for H. pylori eradication. Here, we discuss the recently identified mechanism of H. pylori known as cholesterol glucosylation, mediated by the enzyme cholesterol-α-glucosyltransferase, encoded by the gene cgt. Cholesterol glucosylation serves several functions that include promoting immune evasion, enhancing antibiotic resistance, maintaining the native helical morphology, and supporting functions of prominent virulence factors such as CagA and VacA. Consequently, strategies aiming at inhibition of the cholesterol glucosylation process have the potential to attenuate the potency of H. pylori infection and abrogate H. pylori immune evasion capabilities. Knockout of H. pylori cgt results in unsuccessful colonization and elimination by the host immune responses. Moreover, blocking cholesterol glucosylation can reverse antibiotic susceptibility in H. pylori. In this work, we review the main roles of cholesterol glucosylation in H. pylori and evaluate whether this mechanism can be targeted for the development of alternate methods for eradication of H. pylori infection.
Collapse
Affiliation(s)
- Majjid A Qaria
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Shamsul Qumar
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Ludovico P Sepe
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Smith DGM, Ito E, Yamasaki S, Williams SJ. Cholesteryl 6- O-acyl-α-glucosides from diverse Helicobacter spp. signal through the C-type lectin receptor Mincle. Org Biomol Chem 2020; 18:7907-7915. [PMID: 32996960 DOI: 10.1039/d0ob01776k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Helicobacter spp. are Gram-negative bacteria that cause a spectrum of disease in the gut, biliary tree and liver. Many Helicobacter spp. produce a range of cholesteryl α-glucosides that have the potential to act as pathogen associated molecular patterns. We report a highly stereoselective α-glucosylation of cholesterol using 3,4,6-tri-O-acetyl-2-O-benzyl-d-glucopyranosyl N-phenyl-2,2,2-trifluoroacetimidate, which allowed the synthesis of cholesteryl α-glucoside (αCG) and representative Helicobacter spp. cholesteryl 6-O-acyl-α-glucosides (αCAGs; acyl = C12:0, 14:0, C16:0, C18:0, C18:1). All αCAGs, irrespective of the nature of their acyl chain composition, strongly agonised signalling through the C-type lectin receptor Mincle from human and mouse to similar degrees. By contrast, αCG only weakly signalled through human Mincle, and did not signal through mouse Mincle. These results provide a molecular basis for understanding of the immunobiology of non-pylori Helicobacter infections in humans and other animals.
Collapse
Affiliation(s)
- Dylan G M Smith
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
9
|
Pal S, Sarker N, Qaria M, Tandon K, Akhter Y, Ahmed N. Design of an inhibitor of Helicobacter pylori cholesteryl-α-glucoside transferase critical for bacterial colonization. Helicobacter 2020; 25:e12720. [PMID: 32668502 DOI: 10.1111/hel.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/23/2020] [Accepted: 06/08/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Fifty percent of the world's population surves as a host for Helicobacter pylori, gastric cancer causing bacteria, that colonizes the gastric region of digestive tract. It has a remarkable capacity to infect the host stomach for the entire lifetime despite an activated host immune response. METHODS In this study, we have performed the virtual screening analysis of protein-inhibitor binding between the glycosyl transferase enzymes of Helicobacter pylori (CapJ or HP0421) and a corresponding library of inhibitors in the known substrate-binding pockets. We have docked our library of ligands consisting of cholesterol backbone with CapJ protein and identified several ligands' interacting amino acid residues present in active site pocket(s) of the protein. RESULTS In most of the cases, the ligands showed an interaction with the residues of the same pocket of the enzyme. Top three (03) hits were filtered out from the whole data set, which might act as potent inhibitors of the enzyme-substrate reaction. CONCLUSIONS This study describes a new possibility by which colonization of H. pylori can be limited. The reported evidence suggests that comprehensive knowledge and wet laboratory validation of these inhibitors are needed in order to develop them as lead molecules.
Collapse
Affiliation(s)
- Soumiya Pal
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Nishat Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka
| | - Majjid Qaria
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Kshitij Tandon
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Niyaz Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka.,Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| |
Collapse
|
10
|
Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 2020; 17:597-617. [PMID: 32710014 PMCID: PMC8211394 DOI: 10.1038/s41575-020-0331-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) affects 6.8 million people globally. A variety of factors have been implicated in IBD pathogenesis, including host genetics, immune dysregulation and gut microbiota alterations. Emerging evidence implicates intestinal epithelial glycosylation as an underappreciated process that interfaces with these three factors. IBD is associated with increased expression of truncated O-glycans as well as altered expression of terminal glycan structures. IBD genes, glycosyltransferase mislocalization, altered glycosyltransferase and glycosidase expression and dysbiosis drive changes in the glycome. These glycan changes disrupt the mucus layer, glycan-lectin interactions, host-microorganism interactions and mucosal immunity, and ultimately contribute to IBD pathogenesis. Epithelial glycans are especially critical in regulating the gut microbiota through providing bacterial ligands and nutrients and ultimately determining the spatial organization of the gut microbiota. In this Review, we discuss the regulation of intestinal epithelial glycosylation, altered epithelial glycosylation in IBD and mechanisms for how these alterations contribute to disease pathobiology. We hope that this Review provides a foundation for future studies on IBD glycosylation and the emergence of glycan-inspired therapies for IBD.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
12
|
Unique responses of Helicobacter pylori to exogenous hydrophobic compounds. Chem Phys Lipids 2020; 229:104908. [PMID: 32259519 DOI: 10.1016/j.chemphyslip.2020.104908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori is a pathogen responsible for peptic ulcers and gastric cancers in human. One of the unique biological features of this bacterium is a membrane lipid composition significantly differed from that of typical Gram-negative bacteria. Due to its unique lipid composition, the responses of H. pylori to various exogenous lipophilic compounds significantly differ from the responses of typical Gram-negative bacteria to the same lipophilic compounds. For instance, some steroidal compounds are incorporated into the biomembranes of H. pylori through the intermediation of the myristoyl-phosphatidylethanolamine (PE). In addition, H. pylori shows high susceptibility to bacteriolytic action of lipids such as 3-carbonyl steroids, vitamin D, and indene compounds. These lipids are also considered to interact with myristoyl-PE of H. pylori membranes, and to ultimately confer the bactericidal action to this bacterium. In this study we summarize the lipids concerned with H. pylori and suggest the possibility of the development of chemotherapeutic medicines that act on the membrane lipid component of H. pylori.
Collapse
|
13
|
Heuer F, Stürmer R, Heuer J, Kalinski T, Lemke A, Meyer F, Hoffmann W. Different Forms of TFF2, A Lectin of the Human Gastric Mucus Barrier: In Vitro Binding Studies. Int J Mol Sci 2019; 20:ijms20235871. [PMID: 31771101 PMCID: PMC6928932 DOI: 10.3390/ijms20235871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Trefoil factor family 2 (TFF2) and the mucin MUC6 are co-secreted from human gastric and duodenal glands. TFF2 binds MUC6 as a lectin and is a constituent of the gastric mucus. Herein, we investigated human gastric extracts by FPLC and identified mainly high- but also low-molecular-mass forms of TFF2. From the high-molecular-mass forms, TFF2 can be completely released by boiling in SDS or by harsh denaturing extraction. The low-molecular-mass form representing monomeric TFF2 can be washed out in part from gastric mucosa specimens with buffer. Overlay assays with radioactively labeled TFF2 revealed binding to the mucin MUC6 and not MUC5AC. This binding is modulated by Ca2+ and can be blocked by the lectin GSA-II and the monoclonal antibody HIK1083. TFF2 binding was also inhibited by Me-β-Gal, but not the α anomer. Thus, both the α1,4GlcNAc as well as the juxtaperipheral β-galactoside residues of the characteristic GlcNAcα1→4Galβ1→R moiety of human MUC6 are essential for TFF2 binding. Furthermore, there are major differences in the TFF2 binding characteristics when human is compared with the porcine system. Taken together, TFF2 appears to fulfill an important role in stabilizing the inner insoluble gastric mucus barrier layer, particularly by its binding to the mucin MUC6.
Collapse
Affiliation(s)
- Franziska Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Thomas Kalinski
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Antje Lemke
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Frank Meyer
- Department of Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
14
|
Stowell CP, Stowell SR. Biologic roles of the ABH and Lewis histo-blood group antigens Part I: infection and immunity. Vox Sang 2019; 114:426-442. [PMID: 31070258 DOI: 10.1111/vox.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022]
Abstract
The ABH and Lewis antigens were among the first of the human red blood cell polymorphisms to be identified and, in the case of the former, play a dominant role in transfusion and transplantation. But these two therapies are largely twentieth century innovations, and the ABH and related carbohydrate antigens are not only expressed on a very wide range of human tissues, but were present in primates long before modern humans evolved. Although we have learned a great deal about the biochemistry and genetics of these structures, the biological roles that they play in human health and disease are incompletely understood. This review and its companion, to appear in a later issue of Vox Sanguinis, will focus on a few of the biologic and pathologic processes which appear to be affected by histo-blood group phenotype. The first of the two reviews will explore the interactions of two bacteria with the ABH and Lewis glycoconjugates of their human host cells, and describe the possible connections between the immune response of the human host to infection and the development of the AB-isoagglutinins. The second review will describe the relationship between ABO phenotype and thromboembolic disease, cardio-vascular disease states, and general metabolism.
Collapse
Affiliation(s)
- Christopher P Stowell
- Blood Transfusion Service, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Center for Apheresis, Center for Transfusion and Cellular Therapies, Emory Hospital, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Yamanoi T, Oda Y, Koizumi A, Kawaguchi T, Yagihara S, Yoshida A. α-Glucoside Formation from 2-Deoxy-2-(2,2,2-trichloroethoxycarboxamido)-α-D-glucopyranosyl Acetate Using an Activating System That Used a Combination of Ytterbium(III) Triflate and a Catalytic Boron Trifluoride Diethyl Etherate Complex. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Binding of Helicobacter pylori to Human Gastric Mucins Correlates with Binding of TFF1. Microorganisms 2018; 6:microorganisms6020044. [PMID: 29783620 PMCID: PMC6027488 DOI: 10.3390/microorganisms6020044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori binds to the gastric mucin, MUC5AC, and to trefoil factor, TFF1, which has been shown to interact with gastric mucin. We examined the interactions of TFF1 and H. pylori with purified gastrointestinal mucins from different animal species and from humans printed on a microarray platform to investigate whether TFF1 may play a role in locating H. pylori in gastric mucus. TFF1 bound almost exclusively to human gastric mucins and did not interact with human colonic mucins. There was a strong correlation between binding of TFF1 and H. pylori to human gastric mucins, and between binding of both TFF1 and H. pylori to gastric mucins with that of Griffonia simplicifolia lectin-II, which is specific for terminal non-reducing α- or β-linked N-acetyl-d-glucosamine. These results suggest that TFF1 may help to locate H. pylori in a discrete layer of gastric mucus and hence restrain their interactions with epithelial cells.
Collapse
|
17
|
Radziejewska I, Borzym-Kluczyk M, Leszczyńska K, Wosek J, Bielawska A. Lotus tetragonolobus and Maackia amurensis lectins influence phospho-IκBα, IL-8, Lewis b and H type 1 glycoforms levels in H. pylori infected CRL-1739 gastric cancer cells. Adv Med Sci 2018; 63:205-211. [PMID: 29197783 DOI: 10.1016/j.advms.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Attachment of Helicobacter pylori to the mucous epithelial cells and the mucous layer is said to be a crucial step for infection development. Sugar antigens of gastric mucins (MUC5AC, MUC1) can act as receptors for bacterial adhesins. The aim of the study was to investigate if Lotus tetragonolobus and Maackia amurensis lectins influence the level of MUC1, MUC5AC, Lewis b, H type 1, sialyl Lewis x, phospho-IκBα and interleukin 8 in Helicobacter pylori infected gastric cancer cells. MATERIALS AND METHODS The study was performed with one clinical H. pylori strain and CRL-1739 gastric cancer cells. To assess the levels of mentioned factors immunosorbent ELISA assays were used. RESULTS Coculture of cells with bacteria had no clear effect on almost all examined structures. After coculture with H. pylori and lectins, a decrease of the level of both mucins, Lewis b and H type 1 antigens was observed. Lectins addition had no effect on sialyl Lewis x. Maackia amurensis caused slight increase of phospho-IκBα while interleukin 8 level was decreased. CONCLUSIONS Lotus tetragonolobus and Maackia amurensis lectins can mediate in binding of Helicobacter pylori to gastric epithelium.
Collapse
|
18
|
Kawakubo M, Horiuchi K, Matsumoto T, Nakayama J, Akamatsu T, Katsuyama T, Ota H, Sagara J. Cholesterol-α-glucosyltransferase gene is present in most Helicobacter species including gastric non-Helicobacter pylori helicobacters obtained from Japanese patients. Helicobacter 2018; 23. [PMID: 29110387 DOI: 10.1111/hel.12449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Non-Helicobacter pylori helicobacters (NHPHs) besides H. pylori infect human stomachs and cause chronic gastritis and mucosa-associated lymphoid tissue lymphoma. Cholesteryl-α-glucosides have been identified as unique glycolipids present in H. pylori and some Helicobacter species. Cholesterol-α-glucosyltransferase (αCgT), a key enzyme for the biosynthesis of cholesteryl-α-glucosides, plays crucial roles in the pathogenicity of H. pylori. Therefore, it is important to examine αCgTs of NHPHs. MATERIALS AND METHODS Six gastric NHPHs were isolated from Japanese patients and maintained in mouse stomachs. The αCgT genes were amplified by PCR and inverse PCR. We retrieved the αCgT genes of other Helicobacter species by BLAST searches in GenBank. RESULTS αCgT genes were present in most Helicobacter species and in all Japanese isolates examined. However, we could find no candidate gene for αCgT in the whole genome of Helicobacter cinaedi and several enterohepatic species. Phylogenic analysis demonstrated that the αCgT genes of all Japanese isolates show high similarities to that of a zoonotic group of gastric NHPHs including Helicobacter suis, Helicobacter heilmannii, and Helicobacter ailurogastricus. Of 6 Japanese isolates, the αCgT genes of 4 isolates were identical to that of H. suis, and that of another 2 isolates were similar to that of H. heilmannii and H. ailurogastricus. CONCLUSIONS All gastric NHPHs examined showed presence of αCgT genes, indicating that αCgT may be beneficial for these helicobacters to infect human and possibly animal stomachs. Our study indicated that NHPHs could be classified into 2 groups, NHPHs with αCgT genes and NHPHs without αCgT genes.
Collapse
Affiliation(s)
- Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Kazuki Horiuchi
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takehisa Matsumoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Taiji Akamatsu
- Endoscopy Center, Suzaka Hospital, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan
| | | | - Hiroyoshi Ota
- Department of Biomedical Laboratory Science, School of Health Sciences, Shinshu University, Matsumoto, Japan
| | - Junji Sagara
- Department of Biomedical Laboratory Science, School of Health Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|
19
|
Kawakubo M, Horiuchi K, Komura H, Sato Y, Kato M, Ikeyama M, Fukushima M, Yamada S, Ishizone S, Matsumoto T, Ota H, Sagara J, Nakayama J. Cloning of Helicobacter suis cholesterol α-glucosyltransferase and production of an antibody capable of detecting it in formalin-fixed, paraffin-embedded gastric tissue sections. Histochem Cell Biol 2017; 148:463-471. [DOI: 10.1007/s00418-017-1582-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
|
20
|
Jin C, Kenny DT, Skoog EC, Padra M, Adamczyk B, Vitizeva V, Thorell A, Venkatakrishnan V, Lindén SK, Karlsson NG. Structural Diversity of Human Gastric Mucin Glycans. Mol Cell Proteomics 2017; 16:743-758. [PMID: 28461410 DOI: 10.1074/mcp.m116.067983] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 01/16/2023] Open
Abstract
The mucin O-glycosylation of 10 individuals with and without gastric disease was examined in depth in order to generate a structural map of human gastric glycosylation. In the stomach, these mucins and their O-glycosylation protect the epithelial surface from the acidic gastric juice and provide the first point of interaction for pathogens such as Helicobacter pylori, reported to cause gastritis, gastric and duodenal ulcers and gastric cancer. The rational of the present study was to map the O-glycosylation that the pathogen may come in contact with. An enormous diversity in glycosylation was found, which varied both between individuals and within mucins from a single individual: mucin glycan chain length ranged from 2-13 residues, each individual carried 34-103 O-glycan structures and in total over 258 structures were identified. The majority of gastric O-glycans were neutral and fucosylated. Blood group I antigens, as well as terminal α1,4-GlcNAc-like and GalNAcβ1-4GlcNAc-like (LacdiNAc-like), were common modifications of human gastric O-glycans. Furthemore, each individual carried 1-14 glycan structures that were unique for that individual. The diversity and alterations in gastric O-glycosylation broaden our understanding of the human gastric O-glycome and its implications for gastric cancer research and emphasize that the high individual variation makes it difficult to identify gastric cancer specific structures. However, despite the low number of individuals, we could verify a higher level of sialylation and sulfation on gastric O-glycans from cancerous tissue than from healthy stomachs.
Collapse
Affiliation(s)
- Chunsheng Jin
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Diarmuid T Kenny
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Emma C Skoog
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Médea Padra
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Barbara Adamczyk
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Varvara Vitizeva
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Anders Thorell
- §Karolinska Institute, Department for Clinical Science and Department of Surgery, Ersta Hospital, Stockholm, Sweden
| | - Vignesh Venkatakrishnan
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Sara K Lindén
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Niclas G Karlsson
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden;
| |
Collapse
|
21
|
Jin C, Kenny DT, Skoog EC, Padra M, Adamczyk B, Vitizeva V, Thorell A, Venkatakrishnan V, Lindén SK, Karlsson NG. Structural diversity of human gastric mucin glycans. Mol Cell Proteomics 2017; 16:mcp.M117.067983. [PMID: 28289177 PMCID: PMC5417818 DOI: 10.1074/mcp.m117.067983] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/13/2017] [Indexed: 01/14/2023] Open
Abstract
The mucin O-glycosylation of 10 individuals with and without gastric disease was examined in depth in order to generate a structural map of human gastric glycosylation. In the stomach, these mucins and their O-glycosylation protect the epithelial surface from the acidic gastric juice and provide the first point of interaction for pathogens such as Helicobacter pylori, reported to cause gastritis, gastric and duodenal ulcers and gastric cancer. The rational of the present study was to map the O-glycosylation that the pathogen may come in contact with. An enormous diversity in glycosylation was found, which varied both between individuals and within mucins from a single individual: mucin glycan chain length ranged from 2-13 residues, each individual carried 34-103 O-glycan structures and in total over 258 structures were identified. The majority of gastric O-glycans were neutral and fucosylated. Blood group I antigens, as well as terminal α1,4-GlcNAc-like and GalNAcβ1-4GlcNAc-like (LacdiNAc-like), were common modifications of human gastric O-glycans. Furthemore, each individual carried 1-14 glycan structures that were unique for that individual. The diversity and alterations in gastric O-glycosylation broaden our understanding of the human gastric O-glycome and its implications for gastric cancer research and emphasize that the high individual variation makes it difficult to identify gastric cancer specific structures. However, despite the low number of individuals, we could verify a higher level of sialylation and sulfation on gastric O-glycans from cancerous tissue than from healthy stomachs.
Collapse
Affiliation(s)
- Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy,, Sweden
| | - Diarmuid T Kenny
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy,, Sweden
| | - Emma C Skoog
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy,, Sweden
| | - Medéa Padra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy,, Sweden
| | - Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy,, Sweden
| | - Varvara Vitizeva
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy,, Sweden
| | - Anders Thorell
- Karolinska Institute, Department for Clinical Science and Department of Surgery, Ersta Hospital, Sweden
| | - Vignesh Venkatakrishnan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy,, Sweden
| | | | | |
Collapse
|
22
|
Protein glycosylation in gastric and colorectal cancers: Toward cancer detection and targeted therapeutics. Cancer Lett 2017; 387:32-45. [DOI: 10.1016/j.canlet.2016.01.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/25/2022]
|
23
|
Yamanoi T, Oda Y, Fujita K, Koizumi A. 1,2-cis-α-Glucoside Formation from a 2-Benzyloxycarbonylamino-2-deoxy-α-D-glucopyranosyl Acetate Derivative by an Activating System That Used a Combination of Ytterbium(Ill) Triflate and a Catalytic Boron Trifluoride Diethyl Etherate Complex. HETEROCYCLES 2017. [DOI: 10.3987/com-17-13811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Noh HJ, Koh HB, Kim HK, Cho HH, Lee J. Anti-bacterial effects of enzymatically-isolated sialic acid from glycomacropeptide in a Helicobacter pylori-infected murine model. Nutr Res Pract 2016; 11:11-16. [PMID: 28194260 PMCID: PMC5300941 DOI: 10.4162/nrp.2017.11.1.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/20/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND/OBJECTIVES Helicobacter pylori (H. pylori) colonization of the stomach mucosa and duodenum is the major cause of acute and chronic gastroduodenal pathology in humans. Efforts to find effective anti-bacterial strategies against H. pylori for the non-antibiotic control of H. pylori infection are urgently required. In this study, we used whey to prepare glycomacropeptide (GMP), from which sialic acid (G-SA) was enzymatically isolated. We investigated the anti-bacterial effects of G-SA against H. pylori in vitro and in an H. pylori-infected murine model. MATERIALS/METHODS The anti-bacterial activity of G-SA was measured in vitro using the macrodilution method, and interleukin-8 (IL-8) production was measured in H. pylori and AGS cell co-cultures by ELISA. For in vivo study, G-SA 5 g/kg body weight (bw)/day and H. pylori were administered to mice three times over one week. After one week, G-SA 5 g/kg bw/day alone was administered every day for one week. Tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-10 levels were measured by ELISA to determine the anti-inflammatory effects of G-SA. In addition, real-time PCR was performed to measure the genetic expression of cytotoxin-associated gene A (cagA). RESULTS G-SA inhibited the growth of H. pylori and suppressed IL-8 production in H. pylori and in AGS cell co-cultures in vitro. In the in vivo assay, administration of G-SA reduced levels of IL-1β and IL-6 pro-inflammatory cytokines whereas IL-10 level increased. Also, G-SA suppressed the expression of cagA in the stomach of H. pylori-infected mice. CONCLUSION G-SA possesses anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect in an experimental H. pylori-infected murine model. G-SA has potential as an alternative to antibiotics for the prevention of H. pylori infection and H. pylori-induced gastric disease prevention.
Collapse
Affiliation(s)
- Hye-Ji Noh
- Department of Medical Nutrition, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi 17104, Korea
| | - Hong Bum Koh
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | | | | | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi 17104, Korea
| |
Collapse
|
25
|
Duarte HO, Freitas D, Gomes C, Gomes J, Magalhães A, Reis CA. Mucin-Type O-Glycosylation in Gastric Carcinogenesis. Biomolecules 2016; 6:E33. [PMID: 27409642 PMCID: PMC5039419 DOI: 10.3390/biom6030033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Mucin-type O-glycosylation plays a crucial role in several physiological and pathological processes of the gastric tissue. Modifications in enzymes responsible for key glycosylation steps and the consequent abnormal biosynthesis and expression of their glycan products constitute well-established molecular hallmarks of disease state. This review addresses the major role played by mucins and associated O-glycan structures in Helicobacter pylori adhesion to the gastric mucosa and the subsequent establishment of a chronic infection, with concomitant drastic alterations of the gastric epithelium glycophenotype. Furthermore, alterations of mucin expression pattern and glycan signatures occurring in preneoplastic lesions and in gastric carcinoma are also described, as well as their impact throughout the gastric carcinogenesis cascade and in cancer progression. Altogether, mucin-type O-glycosylation alterations may represent promising biomarkers with potential screening and prognostic applications, as well as predictors of cancer patients' response to therapy.
Collapse
Affiliation(s)
- Henrique O Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Daniela Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Catarina Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Joana Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Ana Magalhães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Celso A Reis
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
- Medical Faculty, University of Porto, Alameda Prof Hernâni Monteiro, Porto 4200-319, Portugal.
| |
Collapse
|
26
|
Jan HM, Chen YC, Shih YY, Huang YC, Tu Z, Ingle AB, Liu SW, Wu MS, Gervay-Hague J, Mong KKT, Chen YR, Lin CH. Metabolic labelling of cholesteryl glucosides in Helicobacter pylori reveals how the uptake of human lipids enhances bacterial virulence. Chem Sci 2016; 7:6208-6216. [PMID: 30034762 PMCID: PMC6024656 DOI: 10.1039/c6sc00889e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/28/2016] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori infects approximately half of the human population and is the main cause of various gastric diseases. This pathogen is auxotrophic for cholesterol, which it converts upon uptake to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl and 6'-phosphatidyl α-glucosides (CAGs and CPGs). Owing to a lack of sensitive analytical methods, it is not known if CAGs and CPGs play distinct physiological roles or how the acyl chain component affects function. Herein we established a metabolite-labelling method for characterising these derivatives qualitatively and quantitatively with a femtomolar detection limit. The development generated an MS/MS database of CGds, allowing for profiling of all the cholesterol-derived metabolites. The subsequent analysis led to the unprecedented information that these bacteria acquire phospholipids from the membrane of epithelial cells for CAG biosynthesis. The resulting increase in longer or/and unsaturated CAG acyl chains helps to promote lipid raft formation and thus delivery of the virulence factor CagA into the host cell, supporting the idea that the host/pathogen interplay enhances bacterial virulence. These findings demonstrate an important connection between the chain length of CAGs and the bacterial pathogenicity.
Collapse
Affiliation(s)
- Hau-Ming Jan
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan . .,Institute of Biochemical Sciences and Department of Chemistry , National Taiwan University , Taipei , 10617 , Taiwan
| | - Yi-Chi Chen
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan . .,Institute of Biochemical Sciences and Department of Chemistry , National Taiwan University , Taipei , 10617 , Taiwan
| | - Yu-Yin Shih
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan .
| | - Yu-Chen Huang
- Agriculture Biotechnology Research Center , Academia Sinica , Taipei , 11529 , Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan .
| | - Arun B Ingle
- Department of Applied Chemistry , National Chiao-Tung University , Hsin-Chu 300 , Taiwan
| | - Sheng-Wen Liu
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan .
| | - Ming-Shiang Wu
- Division of Gastroenterology , Department of Internal Medicine , National Taiwan University Hospital , Taipei , 10002 , Taiwan
| | | | - Kwok-Kong Tony Mong
- Department of Applied Chemistry , National Chiao-Tung University , Hsin-Chu 300 , Taiwan
| | - Yet-Ran Chen
- Agriculture Biotechnology Research Center , Academia Sinica , Taipei , 11529 , Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan . .,Institute of Biochemical Sciences and Department of Chemistry , National Taiwan University , Taipei , 10617 , Taiwan
| |
Collapse
|
27
|
Tandem glycosyl iodide glycosylation and regioselective enzymatic acylation affords 6-O-tetradecanoyl-α-d-cholesterylglycosides. J Org Chem 2014; 79:8447-52. [PMID: 25093454 PMCID: PMC4156253 DOI: 10.1021/jo501371h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
A generalized synthesis of α-d-cholesterylglycosides
has been achieved using one-pot per-O-trimethylsilyl
glycosyl iodide glycosidation. Both cholesteryl α-d-glucopyranoside (αCG) and cholesteryl α-d-galactopyranoside
were prepared in high yield. These compounds were further esterified
using regioselective enzymatic acylation with tetradecanoyl vinyl
ester to afford 6-O-tetradecanoyl-α-d-cholesteryl glucopyranoside (αCAG) of Helicobacter
pylori and the corresponding galactose analogue in 66–78%
overall yields from free sugars. The tandem step-economy sequence
provides novel analogues to facilitate glycolipidomic profiling.
Collapse
|
28
|
Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid. Int J Med Microbiol 2014; 304:314-20. [DOI: 10.1016/j.ijmm.2013.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 11/06/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022] Open
|
29
|
Nakayama J. Dual Roles of Gastric Gland Mucin-specific O-glycans in Prevention of Gastric Cancer. Acta Histochem Cytochem 2014; 47:1-9. [PMID: 24761044 PMCID: PMC3972424 DOI: 10.1267/ahc.13034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/24/2013] [Indexed: 11/22/2022] Open
Abstract
Gastric gland mucin is secreted from gland mucous cells, including pyloric gland cells and mucous neck cells located in the lower layer of the gastric mucosa. These mucins typically contain O-glycans carrying terminal α1,4-linked N-acetylglucosamine residues (αGlcNAc) attached to the scaffold protein MUC6, and biosynthesis of the O-glycans is catalyzed by the glycosyltransferase, α1,4-N-acetylglucosaminyltransferase (α4GnT). We previously used expression cloning to isolate cDNA encoding α4GnT, and then demonstrated that αGlcNAc functions as natural antibiotic against Helicobacter pylori, a microbe causing various gastric diseases including gastric cancer. More recently, it was shown that αGlcNAc serves as a tumor suppressor for differentiated-type adenocarcinoma. This review summarizes these findings and identifies dual roles for αGlcNAc in gastric cancer.
Collapse
Affiliation(s)
- Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine
| |
Collapse
|
30
|
Ito Y, Vela JL, Matsumura F, Hoshino H, Tyznik A, Lee H, Girardi E, Zajonc DM, Liddington R, Kobayashi M, Bao X, Bugaytsova J, Borén T, Jin R, Zong Y, Seeberger PH, Nakayama J, Kronenberg M, Fukuda M. Helicobacter pylori cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells. PLoS One 2013; 8:e78191. [PMID: 24312443 PMCID: PMC3846475 DOI: 10.1371/journal.pone.0078191] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Approximately 10–15% of individuals infected with Helicobacter pylori will develop ulcer disease (gastric or duodenal ulcer), while most people infected with H. pylori will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in H. pylori cell wall by α1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT), which forms cholesteryl α-glucosides, functions in the pathogenesis of H. pylori infection. Here, we show that the activity of αCgT from H. pylori clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type H. pylori or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT) cells, eliciting an immune response in vitro and in vivo. Following inoculation of H. pylori harboring highly active αCgT into iNKT cell-deficient (Jα18−/−) or wild-type mice, bacterial recovery significantly increased in Jα18−/− compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18−/− compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in H. pylori-mediated gastric inflammation and precancerous atrophic gastritis.
Collapse
Affiliation(s)
- Yuki Ito
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jose Luis Vela
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Fumiko Matsumura
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Hitomi Hoshino
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Aaron Tyznik
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Heeseob Lee
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Enrico Girardi
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Dirk M. Zajonc
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Robert Liddington
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Xingfeng Bao
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jeanna Bugaytsova
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Rongsheng Jin
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Yinong Zong
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Peter H. Seeberger
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Minoru Fukuda
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Cheng PF, Snovida S, Ho MY, Cheng CW, Wu AM, Khoo KH. Increasing the depth of mass spectrometry-based glycomic coverage by additional dimensions of sulfoglycomics and target analysis of permethylated glycans. Anal Bioanal Chem 2013; 405:6683-95. [PMID: 23797909 DOI: 10.1007/s00216-013-7128-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
Abstract
Hog or porcine gastric mucin resembles the human source in carrying not only blood group antigens but also the rather rare α4-GlcNAc-capped terminal epitope functionally implicated in protection against Helicobacter pylori infection. Being more readily available and reasonably well characterized, it serves as a good reagent for immunobiological studies, as well as a standard for analytical methodology developments. Current approaches in mass spectrometry (MS)-based glycomic mapping remain vastly inadequate in revealing the full complexity of glycosylation, particularly for cases such as the extremely heterogeneous O-glycosylation of mucosal mucins that can be further sulfated. We demonstrate here a novel concerted workflow that extends the conventional matrix-assisted laser desorption/ionization–mass spectrometry (MALDI-MS) mapping of permethylated glycans in positive ion mode to include a further step of sulfoglycomic analysis in negative ion mode. This was facilitated by introducing a mixed-mode solid-phase extraction step, which allows direct cleanup and simultaneous fractionation of the permethylated glycans into separate non-sulfated and sulfated pools in one single step. By distinct MALDI-MS/MS fragmentation patterns, all previously known structural features of porcine gastric mucin including the terminal epitopes and location of sulfates could be readily defined. We additionally showed that both arms of the core 2 structures could be extended via 6-O-sulfated GlcNAc to yield a series of disulfated O-glycans not previously reported, thus expanding its current glycomic coverage. However, a targeted LC-MSn analysis was required and best suited to dig even deeper into validating the occurrence of very minor structural isomers carrying the Lewis Y epitope implicated by positive antibody binding.
Collapse
Affiliation(s)
- Ping-Fu Cheng
- Institute of Biochemical Sciences, National Taiwan University, Roosevelt Road, PO Box 23-106, Taipei, 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Lan Y, Kriete A, Rosen GL. Selecting age-related functional characteristics in the human gut microbiome. MICROBIOME 2013; 1:2. [PMID: 24467949 PMCID: PMC3869192 DOI: 10.1186/2049-2618-1-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/23/2012] [Indexed: 05/12/2023]
Abstract
BACKGROUND Human gut microbial functions are often associated with various diseases and host physiologies. Aging, a less explored factor, is also suspected to affect or be affected by microbiome alterations. By combining functional feature selection with supervised classification, we aim to facilitate identification of age-related functional characteristics in metagenomes from several human gut microbiome studies (MetaHIT, MicroAge, MicroObes, Kurokawa et al.'s and Gill et al.'s dataset). RESULTS We apply two feature selection methods, term frequency-inverse document frequency (TF-iDF) and minimum-redundancy maximum-relevancy (mRMR), to identify functional signatures that differentiate metagenomes by age. After features are reduced, we use a support vector machine (SVM) to predict host age of new metagenomes. Functional features are from protein families (Pfams), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, KEGG ontologies and the Gene Ontology (GO) database. Initial investigations demonstrate that ordination of the functional principal components shows great overlap between different age groups. However, when feature selection is applied, mRMR tightens the ordination cluster for each age group, and TF-iDF offers better linear separation. Both TF-iDF and mRMR were used in conjunction with a SVM classifier and achieved areas under receiver operating characteristic curves (AUCs) 10 to 15% above chance to classify individuals above/below mid-ages (about 38 to 43 years old) using Pfams. Better performance around mid-ages is also observed when using other functional categories and age-balanced dataset. We also identified some age-related Pfams that improved age discrimination at age 65 with another feature selection method called LEfSe, on an age-balanced dataset. The selected functional characteristics identify a broad range of age-relevant metabolisms, such as reduced vitamin B12 synthesis, reduced activity of reductases, increased DNA damage, occurrences of stress responses and immune system compromise, and upregulated glycosyltransferases in the aging population. CONCLUSIONS Feature selection can yield biologically meaningful results when used in conjunction with classification, and makes age classification of new human gut metagenomes feasible. While we demonstrate the promise of this approach, the data-dependent prediction performance could be further improved. We hypothesize that while the Qin et al. dataset is the most comprehensive to date, even deeper sampling is needed to better characterize and predict the microbiomes' functional content.
Collapse
Affiliation(s)
- Yemin Lan
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Andres Kriete
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Gail L Rosen
- Department of Electrical and Computer Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Davis RA, Lin CH, Gervay-Hague J. Chemoenzymatic synthesis of cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside: a product of host cholesterol efflux promoted by Helicobacter pylori. Chem Commun (Camb) 2012; 48:9083-5. [PMID: 22854787 DOI: 10.1039/c2cc33948j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In a three-step protocol involving regioselective enzymatic acylation, per-O-trimethylsilylation, and a one-pot α-glycosidation-deprotection sequence, cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside (α-CAG) of Helicobacter pylori is afforded starting from glucose in an overall yield of 45%. The production of CAG can be scaled to make purified quantities available to the biological community for the first time.
Collapse
Affiliation(s)
- Ryan A Davis
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
34
|
Synthesis of bivalent glycoclusters containing GlcNAc as hexasaccharide mimetics. Bactericidal activity against Helicobacter pylori. Carbohydr Res 2012; 360:1-7. [PMID: 22975273 DOI: 10.1016/j.carres.2012.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 11/23/2022]
Abstract
The Cu(I) catalysed cycloaddition reaction of azides and alkynes has been used to generate a series of divalent GlcNAc clusters with both α and β configurations. These glycoclusters can be considered as potential mimetics of an anti Helicobacter pylori hexasaccharide as they present two GlcNAc residues grafted onto a core scaffold. Two bivalent compounds based on α-O-GlcNAc were identified that selectively reduced the viability of H. pylori. These compounds showed activity towards different strains of H. pylori (Pu4 vs P12). The activity of the oligosaccharide mimetics is speculated to be due to the GlcNAc residues being able to adopt spatial arrangements accessible to the anti H. pylori hexasaccharide which may be important for activity.
Collapse
|
35
|
Rossez Y, Maes E, Lefebvre Darroman T, Gosset P, Ecobichon C, Joncquel Chevalier Curt M, Boneca IG, Michalski JC, Robbe-Masselot C. Almost all human gastric mucin O-glycans harbor blood group A, B or H antigens and are potential binding sites for Helicobacter pylori. Glycobiology 2012; 22:1193-206. [DOI: 10.1093/glycob/cws072] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
36
|
Lee SJ, Lee BI, Suh SW. Crystal structure of the catalytic domain of cholesterol-α-glucosyltransferase from Helicobacter pylori. Proteins 2011; 79:2321-6. [PMID: 21557320 DOI: 10.1002/prot.23038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Sang Jae Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
37
|
Hoshino H, Tsuchida A, Kametani K, Mori M, Nishizawa T, Suzuki T, Nakamura H, Lee H, Ito Y, Kobayashi M, Masumoto J, Fujita M, Fukuda M, Nakayama J. Membrane-associated activation of cholesterol α-glucosyltransferase, an enzyme responsible for biosynthesis of cholesteryl-α-D-glucopyranoside in Helicobacter pylori critical for its survival. J Histochem Cytochem 2011; 59:98-105. [PMID: 20876522 DOI: 10.1369/jhc.2010.957092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Helicobacter pylori (H. pylori) is the causative pathogen underlying gastric diseases such as chronic gastritis and gastric cancer. Previously, the authors revealed that α1,4-linked N-acetylglucosamine-capped O-glycan (αGlcNAc) found in gland mucin suppresses H. pylori growth and motility by inhibiting catalytic activity of cholesterol α-glucosyltransferase (CHLαGcT), the enzyme responsible for biosynthesis of the major cell wall component cholesteryl-α-D-glucopyranoside (CGL). Here, the authors developed a polyclonal antibody specific for CHLαGcT and then undertook quantitative ultrastructural analysis of the enzyme's localization in H. pylori. They show that 66.3% of CHLαGcT is detected in the cytoplasm beneath the H. pylori inner membrane, whereas 24.7% is present on the inner membrane. In addition, 2.6%, 5.0%, and 1.4% of the protein were detected in the periplasm, on the outer membrane, and outside microbes, respectively. By using an in vitro CHLαGcT assay with fractionated H. pylori proteins, which were used as an enzyme source for CHLαGcT, the authors demonstrated that the membrane fraction formed CGL, whereas other fractions did not. These data combined together indicate that CHLαGcT is originally synthesized in the cytoplasm of H. pylori as an inactive form and then activated when it is associated with the cell membrane. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Hitomi Hoshino
- Department of Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cholesterol enhances Helicobacter pylori resistance to antibiotics and LL-37. Antimicrob Agents Chemother 2011; 55:2897-904. [PMID: 21464244 DOI: 10.1128/aac.00016-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human gastric pathogen Helicobacter pylori steals host cholesterol, modifies it by glycosylation, and incorporates the glycosylated cholesterol onto its surface via a cholesterol glucosyltransferase, encoded by cgt. The impact of cholesterol on H. pylori antimicrobial resistance is unknown. H. pylori strain 26695 was cultured in Ham's F12 chemically defined medium in the presence or absence of cholesterol. The two cultures were subjected to overnight incubations with serial 2-fold dilutions of 12 antibiotics, six antifungals, and seven antimicrobial peptides (including LL-37 cathelicidin and human alpha and beta defensins). Of 25 agents tested, cholesterol-grown H. pylori cells were substantially more resistant (over 100-fold) to nine agents than were H. pylori cells grown without cholesterol. These nine agents included eight antibiotics and LL-37. H. pylori was susceptible to the antifungal drug pimaricin regardless of cholesterol presence in the culture medium. A cgt mutant retained cholesterol-dependent resistance to most antimicrobials but displayed increased susceptibility to colistin, suggesting an involvement of lipid A. Mutation of lpxE, encoding lipid A1-phosphatase, led to loss of cholesterol-dependent resistance to polymyxin B and colistin but not other antimicrobials tested. The cgt mutant was severely attenuated in gerbils, indicating that glycosylation is essential in vivo. These findings suggest that cholesterol plays a vital role in virulence and contributes to the intrinsic antibiotic resistance of H. pylori.
Collapse
|
39
|
Fujita M, Tsuchida A, Hirata A, Kobayashi N, Goto K, Osumi K, Hirose Y, Nakayama J, Yamanoi T, Ashida H, Mizuno M. Glycoside hydrolase family 89 alpha-N-acetylglucosaminidase from Clostridium perfringens specifically acts on GlcNAc alpha1,4Gal beta1R at the non-reducing terminus of O-glycans in gastric mucin. J Biol Chem 2010; 286:6479-89. [PMID: 21177247 DOI: 10.1074/jbc.m110.206722] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, α-linked GlcNAc is primarily found in heparan sulfate/heparin and gastric gland mucous cell type mucin. α-N-acetylglucosaminidases (αGNases) belonging to glycoside hydrolase family 89 are widely distributed from bacteria to higher eukaryotes. Human lysosomal αGNase is well known to degrade heparin and heparan sulfate. Here, we reveal the substrate specificity of αGNase (AgnC) from Clostridium perfringens strain 13, a bacterial homolog of human αGNase, by chemically synthesizing a series of disaccharide substrates containing α-linked GlcNAc. AgnC was found to release GlcNAc from GlcNAcα1,4Galβ1pMP and GlcNAcα1pNP substrates (where pMP and pNP represent p-methoxyphenyl and p-nitrophenyl, respectively). AgnC also released GlcNAc from porcine gastric mucin and cell surface mucin. Because AgnC showed no activity against any of the GlcNAcα1,2Galβ1pMP, GlcNAcα1,3Galβ1pMP, GlcNAcα1,6Galβ1pMP, and GlcNAcα1,4GlcAβ1pMP substrates, this enzyme may represent a specific glycosidase required for degrading α-GlcNAc-capped O-glycans of the class III mucin secreted from the stomach and duodenum. Deletion of the C-terminal region containing several carbohydrate-binding module 32 (CBM32) domains significantly reduced the activity for porcine gastric mucin; however, activity against GlcNAcα1,4Galβ1pMP was markedly enhanced. Dot blot and ELISA analyses revealed that the deletion construct containing the C-terminal CBM-C2 to CBM-C6 domains binds strongly to porcine gastric mucin. Consequently, tandem CBM32 domains located near the C terminus of AgnC should function by increasing the affinity for branched or clustered α-GlcNAc-containing glycans. The agnC gene-disrupted strain showed significantly reduced growth on the class III mucin-containing medium compared with the wild type strain, suggesting that AgnC might have an important role in dominant growth in intestines.
Collapse
Affiliation(s)
- Masaya Fujita
- Noguchi Institute, 1-8-1 Kaga, Itabashi, Tokyo 173-0003, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Role of the HefC efflux pump in Helicobacter pylori cholesterol-dependent resistance to ceragenins and bile salts. Infect Immun 2010; 79:88-97. [PMID: 20974830 DOI: 10.1128/iai.00974-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human gastric pathogen Helicobacter pylori modifies host cholesterol via glycosylation and incorporates the glycosylated cholesterol into its membrane; however, the benefits of cholesterol to H. pylori are largely unknown. We speculated that cholesterol in the H. pylori membrane might alter the susceptibility of these organisms to membrane-disrupting antibacterial compounds. To test this hypothesis, H. pylori strains were cultured in Ham's F-12 chemically defined medium in the presence or absence of cholesterol. The two cultures were subjected to overnight incubations with serial 2-fold dilutions of 10 bile salts and four ceragenins, which are novel bile salt derivatives that mimic membrane-disrupting activity of antimicrobial peptides. H. pylori cultured with cholesterol was substantially more resistant to seven of the bile salts and three ceragenins than H. pylori cultured without cholesterol. In most cases, these cholesterol-dependent differences ranged from 2 to 7 orders of magnitude; this magnitude depended on concentration of the agent. Cholesterol is modified by glycosylation using Cgt, a cholesteryl glycosyltransferase. Surprisingly, a cgt knockout strain still maintained cholesterol-dependent resistance to bile salts and ceragenins, indicating that cholesterol modification was not involved in resistance. We then tested whether three putative, paralogous inner membrane efflux pumps, HefC, HefF, or HefI, played a role. While HefF and HefI appeared unimportant, HefC was shown to play a critical role in the resistance to bile salts and ceragenins by multiple methods in multiple strain backgrounds. Thus, both cholesterol and the putative bile salt efflux pump HefC play important roles in H. pylori resistance to bile salts and ceragenins.
Collapse
|
41
|
Ismail MN, Stone EL, Panico M, Lee SH, Luu Y, Ramirez K, Ho SB, Fukuda M, Marth JD, Haslam SM, Dell A. High-sensitivity O-glycomic analysis of mice deficient in core 2 {beta}1,6-N-acetylglucosaminyltransferases. Glycobiology 2010; 21:82-98. [PMID: 20855471 DOI: 10.1093/glycob/cwq134] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT), which exists in three isoforms, C2GnT1, C2GnT2 and C2GnT3, is one of the key enzymes in the O-glycan biosynthetic pathway. These isoenzymes produce core 2 O-glycans and have been correlated with the biosynthesis of core 4 O-glycans and I-branches. Previously, we have reported mice with single and multiple deficiencies of C2GnT isoenzyme(s) and have evaluated the biological and structural consequences of the loss of core 2 function. We now present more comprehensive O-glycomic analyses of neutral and sialylated glycans expressed in the colon, small intestine, stomach, kidney, thyroid/trachea and thymus of wild-type, C2GnT2 and C2GnT3 single knockouts and the C2GnT1-3 triple knockout mice. Very high-quality data have emerged from our mass spectrometry techniques with the capability of detecting O-glycans up to at least 3500 Da. We were able to unambiguously elucidate the types of O-glycan core, branching location and residue linkages, which allowed us to exhaustively characterize structural changes in the knockout tissues. The C2GnT2 knockout mice suffered a major loss of core 2 O-glycans as well as glycans with I-branches on core 1 antennae especially in the stomach and the colon. In contrast, core 2 O-glycans still dominated the O-glycomic profile of most tissues in the C2GnT3 knockout mice. Analysis of the C2GnT triple knockout mice revealed a complete loss of both core 2 O-glycans and branched core 1 antennae, confirming that the three known isoenzymes are entirely responsible for producing these structures. Unexpectedly, O-linked mannosyl glycans are upregulated in the triple deficient stomach. In addition, our studies have revealed an interesting terminal structure detected on O-glycans of the colon tissues that is similar to the RM2 antigen from glycolipids.
Collapse
Affiliation(s)
- Mohd Nazri Ismail
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Magalhães A, Ismail MN, Reis CA. Sweet receptors mediate the adhesion of the gastric pathogen Helicobacter pylori: glycoproteomic strategies. Expert Rev Proteomics 2010; 7:307-10. [PMID: 20536299 DOI: 10.1586/epr.10.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Gunasekara S, Vrielink A, Stubbs KA. Preliminary studies into the inhibition of the cholesterol α-glucosyltransferase from Helicobacter pylori using azasugars. Carbohydr Res 2010; 345:960-4. [PMID: 20307874 DOI: 10.1016/j.carres.2010.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/17/2010] [Accepted: 03/01/2010] [Indexed: 11/26/2022]
|
44
|
Abstract
Mucins (MUCs), the main components of the gastric mucus gel, are a family of high-molecular-weight glycoproteins expressed by specialized epithelial cells lining the luminal surface of different organs. Numerous studies have indicated that Helicobacter pylori (H. pylori) colonizes the gastric mucosa by utilizing adhesins or non-adhesins that bind the MUCs expressed on gastric epithelial cells. During the infection process, H. pylori causes alterations of mucin expression. On the other hand, MUCs can exert protective effects against H. pylori infection owning to its unique structure. In this review, we give an overview of the protective role of MUCs against H. pylori infection.
Collapse
|
45
|
Manabe S. The Synthesis of 1,2-cis-Amino Containing Oligosaccharides Toward Biological Investigation. Methods Enzymol 2010; 478:413-35. [DOI: 10.1016/s0076-6879(10)78020-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
46
|
Zheng Z, Jia Y, Hou L, Persson C, Yeager M, Lissowska J, Chanock SJ, Blaser M, Chow WH, Ye W. Genetic variation in a4GnT in relation to Helicobacter pylori serology and gastric cancer risk. Helicobacter 2009; 14:120-5. [PMID: 19751437 PMCID: PMC3008782 DOI: 10.1111/j.1523-5378.2009.00708.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori, a known risk factor of gastric cancer, rarely colonize the deeper portion of normal gastric glands, where the mucus is rich in alpha-1,4-linked N-acetylglucosamine capped O-glycans, that strongly inhibit H. pylori growth in vitro. MATERIALS AND METHODS We investigated the association between genetic variation in the O-glycan transferase encoding gene (a4GnT) and H. pylori infection and gastric cancer risk using a Polish population-based case-control study (273 gastric cancer patients and 377 controls). RESULTS A haplotype at the rs2622694-rs397266 locus was associated with H. pylori infection, with the A-A haplotype associated with a higher risk compared with the most frequent G-G haplotype (odds ratio 2.30; 95% confidence interval 1.35-3.92). The association remained significant after correction for multiple tests (global p value: nominal 0.002, empirical 0.045). Neither this haplotype nor the tagSNPs were associated with overall gastric cancer risk. CONCLUSION a4GnT genetic variation may be relevant to H. pylori infection, but not to gastric cancer risk.
Collapse
Affiliation(s)
- Zongli Zheng
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yanbin Jia
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, Department of Basic Medicine, Baotou Medical College, Baotou, China
| | - Lifang Hou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Christina Persson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Meredith Yeager
- Core Genotyping Facility, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, The M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Stephen J. Chanock
- Core Genotyping Facility, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD
| | - Martin Blaser
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Wong-Ho Chow
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Correspondence to: Weimin Ye Department of Medical Epidemiology and Biostatistics Karolinska Institutet Box 281 SE-17177 Stockholm Sweden
| |
Collapse
|
47
|
Li RW, Li C, Elsasser TH, Liu G, Garrett WM, Gasbarre LC. Mucin biosynthesis in the bovine goblet cell induced by Cooperia oncophora infection. Vet Parasitol 2009; 165:281-9. [PMID: 19647371 DOI: 10.1016/j.vetpar.2009.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Mucin hypersecretion is considered to be one of the most common components of the immune response to gastrointestinal nematode infection. However, investigations have not been conducted in the Cattle-Cooperia oncophora system to verify the findings largely derived from murine models. In this study, we examined the expression of seven mucins and seven enzymes in the mucin biosynthesis pathway involved in O-linked glycosylation in the bovine small intestine including goblet cells enriched using laser capture microdissection during a primary C. oncophora infection. At the mRNA level, MUC2 expression was significantly higher in both lamina propria and goblet cells at 28 days post-infection compared to the naive control. MUC5B expression at the mRNA level was also higher in lamina propria at 28dpi. Expression of MUC1, MUC4, MUC5AC, and MUC6 was extremely low or not detectable in goblet cells, columnar epithelial cells, and lamina propria from both naive control and infected animals. Among the seven enzymes involved in post-translational O-linked glycosylation of mucins, GCNT3, which may represent one of the key rate-limiting steps in mucin biosynthesis, was up-regulated in goblet cells, columnar epithelial cells, lamina propria, and gross small intestine tissue during the course of infection. Western blot analysis revealed that MUC2 glycoprotein was strongly induced by infection in both gross small intestine tissue and its mucosal layer. In contrast, the higher MUC5B protein expression was observed only in the mucosal layer. Immunohistochemistry provided further evidence of the mucin glycoprotein production and localization. Our results provided insight into regulation of mucin biosynthesis in various cell types in the bovine small intestine during gastrointestinal nematode infection and will facilitate our understanding of mucins and their role in immune response against parasitic nematodes.
Collapse
Affiliation(s)
- Robert W Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, USDA-ARS, Beltsville, MD 20705, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Hosoda K, Shimomura H, Hayashi S, Yokota K, Oguma K, Hirai Y. Anabolic utilization of steroid hormones in Helicobacter pylori. FEMS Microbiol Lett 2009; 297:173-9. [PMID: 19566683 DOI: 10.1111/j.1574-6968.2009.01685.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study, we have demonstrated that Helicobacter pylori absorbs a steroid prehormone (pregnenolone) and two androgens (dehydroepiandrosterone and epiandrosterone), glucosylates these steroids, and utilizes glucosyl-steroid hormone compounds as the membrane lipid components. The only common structure among the steroid prehormone and the two androgens is a 3beta-OH in the steroid framework. Our results indicate that the 3beta-OH in the steroid hormones is a crucial conformation required for steroid glucosylation by H. pylori. In addition, we found that H. pylori absorbs and holds estrogens possessing 3-OH (estrone and estradiol) into the membrane. The effective absorption of estrogen into the membrane appeared to be controlled by the number of hydroxyl groups modifying the steroid framework. In contrast, H. pylori induced neither membrane absorption nor glucosylation of the other steroid hormones possessing 3=O (progesterone, androstenedione and testosterone) or 3alpha-OH (androsterone). These results indicate that H. pylori selectively absorbs 3beta-OH and 3-OH steroid hormones, and utilizes only 3beta-OH steroid hormones as the materials for glucosylation.
Collapse
|
49
|
Kobayashi M, Lee H, Nakayama J, Fukuda M. Roles of gastric mucin-type O-glycans in the pathogenesis of Helicobacter pylori infection. Glycobiology 2009; 19:453-61. [PMID: 19150806 DOI: 10.1093/glycob/cwp004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects over 50% of the world's population. This organism causes various gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer. H. pylori possesses lipopolysaccharides that share structural similarity to Lewis blood group antigens in gastric mucosa. Such antigenic mimicry could result in immune tolerance against antigens of this pathogen. On the other hand, H. pylori colonizes gastric mucosa by utilizing adhesins that bind Lewis blood group antigen-related carbohydrates expressed on gastric epithelial cells. After colonization, H. pylori induces acute inflammatory responses mainly by neutrophils. This acute phase is gradually replaced by a chronic inflammatory response. In chronic gastritis, lymphocytes infiltrate the lamina propria, and such infiltration is facilitated by the interaction between L-selectin on lymphocytes and peripheral lymph node addressin (PNAd), which contains 6-sulfo sialyl Lewis X-capped O-glycans, on high endothelial venule (HEV)-like vessels. H. pylori barely colonizes gland mucous cell-derived mucin where alpha1,4-GlcNAc-capped O-glycans exist. In vitro experiments show that alpha1,4-GlcNAc-capped O-glycans function as a natural antibiotic to inhibit H. pylori growth. These findings show that distinct sets of carbohydrates expressed in the stomach are closely associated with pathogenesis and prevention of H. pylori-related diseases, providing therapeutic potentialities based on specific carbohydrate modulation.
Collapse
Affiliation(s)
- Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | |
Collapse
|
50
|
Kobayashi M, Lee H, Nakayama J, Fukuda M. Carbohydrate-dependent defense mechanisms against Helicobacter pylori infection. Curr Drug Metab 2009; 10:29-40. [PMID: 19149511 PMCID: PMC2666621 DOI: 10.2174/138920009787048428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects over 50% of the world's population. This organism causes various gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer. H. pylori possesses lipopolysaccharide, which shares structural similarity to Lewis blood group antigens in gastric mucosa. Such antigenic mimicry could result in immune tolerance against antigens of this pathogen. On the other hand, H. pylori colonize gastric mucosa by utilizing adhesins, which bind Lewis blood group antigen-related carbohydrates expressed on gastric epithelial cells. In chronic gastritis, lymphocytes infiltrate the lamina propria, and such infiltration is facilitated by 6-sulfo sialyl Lewis X-capped O-glycans, peripheral lymph node addressin (PNAd), on high endothelial venule (HEV)-like vessels. The number of HEV-like vessels increases as chronic inflammation progresses. Furthermore, PNAd formed on HEV-like vessels disappear once H. pylori is eradicated. These results indicate that PNAd plays an important role in H. pylori-associated inflammation. H. pylori barely colonizes gland mucous cell-derived mucin where alpha1,4-GlcNAc-capped O-glycans exist. In vitro experiments show that alpha1,4-GlcNAc-capped O-glycans function as a natural antibiotic to inhibit H. pylori growth. We recently identified cholesterol alpha-glucosyltransferase (CHLalphaGcT) using an expression cloning strategy and showed that this enzyme is specifically inhibited by mucin-type O-glycans like those present in deeper portions of the gastric mucosa. These findings show that a battery of carbohydrates expressed in the stomach is closely associated with pathogenesis and also prevention of H. pylori-related diseases.
Collapse
Affiliation(s)
- Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| | | | | | | |
Collapse
|