1
|
Liu P, Li W, Peng Y, Han S, Liang Z, Cen Y, Li X, Wang P, Lv H, Zhang Q, Chen H, Lin J. Molecular cloning, expression, and functional analysis of a putative lectin from the pearl oyster (Pinctada fucata, Gould 1850). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109215. [PMID: 37951320 DOI: 10.1016/j.fsi.2023.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 μg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 μg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 μg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 μg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 μg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.
Collapse
Affiliation(s)
- Peng Liu
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China.
| | - Wenyue Li
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yue Peng
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Siyin Han
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongxiu Liang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanhui Cen
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinrong Li
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyan Wang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiying Lv
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Qingying Zhang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Honglin Chen
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiang Lin
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
2
|
Application of plasma membrane proteomics to identify cancer biomarkers. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
3
|
Tran PMH, Dong F, Kim E, Richardson KP, Tran LKH, Waugh K, Hopkins D, Cummings RD, Wang PG, Rewers MJ, She JX, Purohit S. Use of a glycomics array to establish the anti-carbohydrate antibody repertoire in type 1 diabetes. Nat Commun 2022; 13:6527. [PMID: 36316364 PMCID: PMC9622713 DOI: 10.1038/s41467-022-34341-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease, characterized by the presence of autoantibodies to protein and non-protein antigens. Here we report the identification of specific anti-carbohydrate antibodies (ACAs) that are associated with pathogenesis and progression to T1D. We compare circulatory levels of ACAs against 202 glycans in a cross-sectional cohort of T1D patients (n = 278) and healthy controls (n = 298), as well as in a longitudinal cohort (n = 112). We identify 11 clusters of ACAs associated with glycan function class. Clusters enriched for aminoglycosides, blood group A and B antigens, glycolipids, ganglio-series, and O-linked glycans are associated with progression to T1D. ACAs against gentamicin and its related structures, G418 and sisomicin, are also associated with islet autoimmunity. ACAs improve discrimination of T1D status of individuals over a model with only clinical variables and are potential biomarkers for T1D.
Collapse
Affiliation(s)
- Paul M H Tran
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, CT06510, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Eileen Kim
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Katherine P Richardson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lynn K H Tran
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Diane Hopkins
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Undergraduate Health Professionals, College of Allied Health Sciences Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Purohit S, She JX. Multiplex Glycan Bead Array (MGBA ) for High Throughput and High Content Analyses of Glycan-Binding Proteins Including Natural Anti-Glycan Antibodies. Methods Mol Biol 2022; 2460:33-44. [PMID: 34972929 PMCID: PMC9284344 DOI: 10.1007/978-1-0716-2148-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present here detailed protocols for the newly developed multiplex glycan bead array (MGBA) for the high throughput and high content analyses of various glycan-binding proteins including anti-glycan antibodies. This platform takes advantage of the commercially available Luminex beads to construct glycan arrays that are easily customizable at will and anytime by researchers. The platform allows the simultaneous analyses of up to 500 glycans and 384 samples at a time. By using multiple arrays, a researcher can analyze thousands of glycans and tens of thousands of samples within a short period. The assay is highly sensitive, specific, reproducible, economic, and fast. Furthermore, the bead array platform is approved for use in clinical settings, speeding up the translation of laboratory discoveries into patient care.
Collapse
Affiliation(s)
- Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Undergraduate Health Professionals, College of Allied Health Sciences Augusta University, Augusta, GA, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
5
|
Antiproliferative and Antimicrobial Potentials of a Lectin from Aplysia kurodai (Sea Hare) Eggs. Mar Drugs 2021; 19:md19070394. [PMID: 34356819 PMCID: PMC8306185 DOI: 10.3390/md19070394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, there has been considerable interest in lectins from marine invertebrates. In this study, the biological activities of a lectin protein isolated from the eggs of Sea hare (Aplysia kurodai) were evaluated. The 40 kDa Aplysia kurodai egg lectin (or AKL-40) binds to D-galacturonic acid and D-galactose sugars similar to previously purified isotypes with various molecular weights (32/30 and 16 kDa). The N-terminal sequence of AKL-40 was similar to other sea hare egg lectins. The lectin was shown to be moderately toxic to brine shrimp nauplii, with an LC50 value of 63.63 µg/mL. It agglutinated Ehrlich ascites carcinoma cells and reduced their growth, up to 58.3% in vivo when injected into Swiss albino mice at a rate of 2 mg/kg/day. The morphology of these cells apparently changed due to AKL-40, while the expression of apoptosis-related genes (p53, Bax, and Bcl-XL) suggested a possible apoptotic pathway of cell death. AKL-40 also inhibited the growth of human erythroleukemia cells, probably via activating the MAPK/ERK pathway, but did not affect human B-lymphoma cells (Raji) or rat basophilic leukemia cells (RBL-1). In vitro, lectin suppressed the growth of Ehrlich ascites carcinoma and U937 cells by 37.9% and 31.8%, respectively. Along with strong antifungal activity against Talaromyces verruculosus, AKL showed antibacterial activity against Staphylococcus aureus, Shigella sonnei, and Bacillus cereus whereas the growth of Escherichia coli was not affected by the lectin. This study explores the antiproliferative and antimicrobial potentials of AKL as well as its involvement in embryo defense of sea hare.
Collapse
|
6
|
Jeong S, Kim U, Oh M, Nam J, Park S, Choi Y, Lee D, Kim J, An H. Detection of Aberrant Glycosylation of Serum Haptoglobin for Gastric Cancer Diagnosis Using a Middle-Up-Down Glycoproteome Platform. J Pers Med 2021; 11:575. [PMID: 34207451 PMCID: PMC8235735 DOI: 10.3390/jpm11060575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is a frequently occurring cancer and is the leading cause of cancer-related deaths. Recent studies have shown that aberrant glycosylation of serum haptoglobin is closely related to gastric cancer and has enormous potential for use in diagnosis. However, there is no platform with high reliability and high reproducibility to comprehensively analyze haptoglobin glycosylation covering microheterogeneity to macroheterogeneity for clinical applications. In this study, we developed a middle-up-down glycoproteome platform for fast and accurate monitoring of haptoglobin glycosylation. This platform utilizes an online purification of LC for sample desalting, and an in silico haptoglobin glycopeptide library constructed by combining peptides and N-glycans to readily identify glycopeptides. In addition, site-specific glycosylation with glycan heterogeneity can be obtained through only a single MS analysis. Haptoglobin glycosylation in clinical samples consisting of healthy controls (n = 47) and gastric cancer patients (n = 43) was extensively investigated using three groups of tryptic glycopeptides: GP1 (including Asn184), GP2 (including Asn207 and Asn211), and GP3 (including Asn241). A total of 23 individual glycopeptides were determined as potential biomarkers (p < 0.00001). In addition, to improve diagnostic efficacy, we derived representative group biomarkers with high AUC values (0.929 to 0.977) through logistic regression analysis for each GP group. It has been found that glycosylation of haptoglobin is highly associated with gastric cancer, especially the glycosite Asn241. Our assay not only allows to quickly and easily obtain information on glycosylation heterogeneity of a target glycoprotein but also makes it an efficient tool for biomarker discovery and clinical diagnosis.
Collapse
Affiliation(s)
- Seunghyup Jeong
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | | | - Myungjin Oh
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jihyeon Nam
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Sehoon Park
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Yoonjin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Dongho Lee
- Department of Internal Medicine for Gastroenterology, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea;
| | - Hyunjoo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
7
|
Comparison of the sensitivity of Western blotting between PVDF and NC membranes. Sci Rep 2021; 11:12022. [PMID: 34103620 PMCID: PMC8187435 DOI: 10.1038/s41598-021-91521-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
Western blotting (WB) is one of the most widely used techniques to identify proteins as well as post translational modifications of proteins. The selection of electroblotted membrane is one of the key factors affecting the detection sensitivity of the protein which is transferred from gel to membrane in WB. The most common used membranes are polyvinylidene fluoride (PVDF) and nitrocellulose (NC) membranes. Which membrane of these two is more suitable for WB has not been reported so far. Here, by incubating proteins which were transferred to PVDF or NC membranes with a series of antibodies and different types of lectins, we investigated the relationship between the binding ability of these two membranes to proteins or glycoproteins and the molecular weight of the target protein. The antibody re-probed ability of the two membranes was also explored. Moreover, we verified the above results by directly incubating proteins having different molecular weights onto PVDF or NC membranes. Bound proteins were stained with direct blue-71, and the staining intensity was quantitated by scanning and densitometry.
Collapse
|
8
|
Song H, Canup BSB, Ngo VL, Denning TL, Garg P, Laroui H. Internalization of Garlic-Derived Nanovesicles on Liver Cells is Triggered by Interaction With CD98. ACS OMEGA 2020; 5:23118-23128. [PMID: 32954162 PMCID: PMC7495725 DOI: 10.1021/acsomega.0c02893] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 05/20/2023]
Abstract
The mechanism of how plant-derived nanovesicles are uptaken by cells remains unknown. In this study, the garlic-derived nanovesicles (GDVs) were isolated and digested with trypsin to remove all surface proteins. Digested GDVs showed less uptake compared to undigested GDVs, confirming that the surface proteins played a role in the endocytosis. On the cell side (HepG2), interestingly, blocking the CD98 receptors significantly reduced the uptake of GDVs. During the cellular internalization of GDVs, we observed that some surface proteins of GDVs were co-localized with CD98. A total lysate of the GDV surface showed a high presence of a mannose-specific binding protein, II lectin. Blocking GDV II lectin (using mannose preincubation) highly reduced the GDV internalization, which supports that direct interaction between II lectin and CD98 plays an important role in internalization. The GDVs also exhibited in vitro anti-inflammatory effect by downregulating proinflammatory factors on the HepG2 cells. This work contributes to understanding a part of the GDV internalization process and the cellular anti-inflammatory effects of garlic.
Collapse
Affiliation(s)
- Heliang Song
- Department
of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30302, United States
| | - Brandon S. B. Canup
- Department
of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30302, United States
| | - Vu L. Ngo
- Department
of Biology, Institute for Biomedical Sciences (IBMS), Georgia State University, Atlanta, Georgia 30302, United States
| | - Timothy L. Denning
- Department
of Biology, Institute for Biomedical Sciences (IBMS), Georgia State University, Atlanta, Georgia 30302, United States
| | - Pallavi Garg
- Department
of Biology, Institute for Biomedical Sciences (IBMS), Georgia State University, Atlanta, Georgia 30302, United States
| | - Hamed Laroui
- Department
of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
9
|
Kleski KA, Trabbic KR, Shi M, Bourgault JP, Andreana PR. Enhanced Immune Response Against the Thomsen-Friedenreich Tumor Antigen Using a Bivalent Entirely Carbohydrate Conjugate. Molecules 2020; 25:E1319. [PMID: 32183149 PMCID: PMC7144725 DOI: 10.3390/molecules25061319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
The Thomsen-Friedenreich (TF) antigen is a key target for the development of anticancer vaccines, and this ongoing challenge remains relevant due to the poor immunogenicity of the TF antigen. To overcome this challenge, we adopted a bivalent conjugate design which introduced both the TF antigen and the Thomsen-nouveau (Tn) antigen onto the immunologically relevant polysaccharide A1 (PS A1). The immunological results in C57BL/6 mice revealed that the bivalent, Tn-TF-PS A1 conjugate increased the immune response towards the TF antigen as compared to the monovalent TF-PS A1. This phenomenon was first observed with enzyme-linked immunosorbent assay (ELISA) where the bivalent conjugate generated high titers of IgG antibodies where the monovalent conjugate generated an exclusive IgM response. Fluorescence-activated cell sorting (FACS) analysis also revealed increased binding events to the tumor cell lines MCF-7 and OVCAR-5, which are consistent with the enhanced tumor cell lysis observed in a complement dependent cytotoxicity (CDC) assay. The cytokine profile generated by the bivalent construct revealed increased pro-inflammatory cytokines IL-17 and IFN-γ. This increase in cytokine concentration was matched with an increase in cytokine producing cells as observed by ELISpot. We hypothesized the mechanisms for this phenomenon to involve the macrophage galactose N-acetylgalactosamine specific lectin 2 (MGL2). This hypothesis was supported by using biotinylated probes and recombinant MGL2 to measure carbohydrate-protein interactions.
Collapse
Affiliation(s)
| | | | | | | | - Peter R. Andreana
- 2801 West Bancroft Street, Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA; (K.A.K.); (K.R.T.); (M.S.); (J.-P.B.)
| |
Collapse
|
10
|
Deuschle F, Schiefner A, Skerra A. Structural differences between the ectodomains of murine and human CD98hc. Proteins 2019; 87:693-698. [DOI: 10.1002/prot.25686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - André Schiefner
- Lehrstuhl für Biologische ChemieTechnische Universität München Freising Germany
| | - Arne Skerra
- Lehrstuhl für Biologische ChemieTechnische Universität München Freising Germany
| |
Collapse
|
11
|
Elumalai P, Rubeena AS, Arockiaraj J, Wongpanya R, Cammarata M, Ringø E, Vaseeharan B. The Role of Lectins in Finfish: A Review. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2019; 27:152-169. [DOI: 10.1080/23308249.2018.1520191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Preetham Elumalai
- School of Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Abdul Salam Rubeena
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology (Formerly known as SRM University), Kattankulathur, Chennai, Tamil Nadu, India
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Marine Science, University of Palermo, Palermo, Italy
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
12
|
Kim JW, Budzak J, Liu Y, Jégouzo SAF, Drickamer K, Taylor ME. Identification of serum glycoprotein ligands for the immunomodulatory receptor blood dendritic cell antigen 2. Glycobiology 2018; 28:592-600. [PMID: 29796630 PMCID: PMC6054153 DOI: 10.1093/glycob/cwy050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 05/19/2018] [Indexed: 12/26/2022] Open
Abstract
Blood dendritic cell antigen 2 (BDCA-2) is a C-type lectin found on the surface of plasmacytoid dendritic cells. It functions as a glycan-binding receptor that downregulates the production of type I interferons and thus plays a role in oligosaccharide-mediated immunomodulation. The carbohydrate recognition domain in BDCA-2 binds selectively to galactose-terminated bi-antennary glycans. Because the plasmacytoid dendritic cells function in a plasma environment rich in glycoproteins, experiments have been undertaken to identify endogenous ligands for blood dendritic cell antigen 2. A combination of blotting, affinity chromatography and proteomic analysis reveals that serum glycoprotein ligands for BDCA-2 include IgG, IgA and IgM. Compared to binding of IgG, which was previously described, IgA and IgM bind with higher affinity. The association constants for the different subclasses of immunoglobulins are below and roughly proportional to the serum concentrations of these glycoprotein ligands. Binding to the other main serum glycoprotein ligand, α2-macroglobulin, is independent of whether this protease inhibitor is activated. Binding to all of these glycoprotein ligands is mediated predominantly by bi-antennary glycans in which each branch bears a terminal galactose residue. The different affinities of the glycoprotein ligands reflect the different numbers of these galactose-terminated glycans and their degree of exposure on the native glycoproteins. The results suggest that normal serum levels of immunoglobulins could downmodulate interferon stimulation of further antibody production.
Collapse
Affiliation(s)
- Jong-Won Kim
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - James Budzak
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - Yu Liu
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - Sabine A F Jégouzo
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - Kurt Drickamer
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - Maureen E Taylor
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| |
Collapse
|
13
|
Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int J Biol Macromol 2018; 114:64-76. [DOI: 10.1016/j.ijbiomac.2018.03.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
|
14
|
Zheng YJ, Traspas RM, Ortiz-Urda S. LncRNAs as Biomarkers for Melanoma. HUMAN SKIN CANCERS - PATHWAYS, MECHANISMS, TARGETS AND TREATMENTS 2018. [DOI: 10.5772/intechopen.70499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
|
15
|
Pearce OMT. Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 2018; 28:670-696. [DOI: 10.1093/glycob/cwy023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oliver M T Pearce
- Centre for Cancer & Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
16
|
Purohit S, Li T, Guan W, Song X, Song J, Tian Y, Li L, Sharma A, Dun B, Mysona D, Ghamande S, Rungruang B, Cummings RD, Wang PG, She JX. Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun 2018; 9:258. [PMID: 29343722 PMCID: PMC5772357 DOI: 10.1038/s41467-017-02747-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
Glycan-binding proteins (GBPs) play critical roles in diverse cellular functions such as cell adhesion, signal transduction and immune response. Studies of the interaction between GBPs and glycans have been hampered by the availability of high throughput and high-content technologies. Here we report multiplex glycan bead array (MGBA) that allows simultaneous analyses of 384 samples and up to 500 glycans in a single assay. The specificity, sensitivity and reproducibility of MGBA are evaluated using 39 plant lectins, 13 recombinant anti-glycan antibodies, and mammalian GBPs. We demonstrate the utility of this platform by the analyses of natural anti-glycan IgM and IgG antibodies in 961 human serum samples and the discovery of anti-glycan antibody biomarkers for ovarian cancer. Our data indicate that the MGBA platform is particularly suited for large population-based studies that require the analyses of large numbers of samples and glycans.
Collapse
Affiliation(s)
- Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health Sciences Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Tiehai Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Wanyi Guan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jing Song
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yanna Tian
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Boying Dun
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - David Mysona
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Sharad Ghamande
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Bunja Rungruang
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
17
|
Della Giovampaola C, Capone A, Ermini L, Lupetti P, Vannuccini E, Finetti F, Donnini S, Ziche M, Magnani A, Leone G, Rossi C, Rosati F, Bonechi C. Formulation of liposomes functionalized with Lotus lectin and effective in targeting highly proliferative cells. Biochim Biophys Acta Gen Subj 2017; 1861:860-870. [DOI: 10.1016/j.bbagen.2017.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/21/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022]
|
18
|
Ashline DJ, Zhang H, Reinhold VN. Isomeric complexity of glycosylation documented by MS n. Anal Bioanal Chem 2016; 409:439-451. [PMID: 27826629 DOI: 10.1007/s00216-016-0018-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Re-analysis of two breast cancer cell lines, MCF-7 and MDA-MB-231, has shown multiple isomeric structures exposed by sequential mass spectrometry, MS n . Several released glycan compositions were re-evaluated, which indicated variations in polylactosamine and fucosylation structures. Probable isomer numbers, when considering both stereo and structural entities, are significant and the varying types are mentioned. The structural isomers of linkage position are most frequently considered, while stereo isomers are usually assumed from biosynthetic data. Evaluation of any new sample should be cautious and merits careful attention to empirical data. While isomers are usually considered a chromatographic problem (e.g., LCMS, IMMS) and most frequently considered a separations problem, such results will always be challenged by identification and documentation. MSn data provide a direct spatial solution that includes spectral data for characterization (mass and abundance) supported by a universal library match feature.
Collapse
Affiliation(s)
- David J Ashline
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Hailong Zhang
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Vernon N Reinhold
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA.
| |
Collapse
|
19
|
Bragazzi Cunha J, Wobus CE. Select membrane proteins modulate MNV-1 infection of macrophages and dendritic cells in a cell type-specific manner. Virus Res 2016; 222:64-70. [PMID: 27264433 DOI: 10.1016/j.virusres.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Noroviruses cause gastroenteritis in humans and other animals, are shed in the feces, and spread through the fecal-oral route. Host cellular expression of attachment and entry receptors for noroviruses is thought to be a key determinant of cell tropism and the strict species-specificity. However, to date, only carbohydrates have been identified as attachment receptors for noroviruses. Thus, we investigated whether host cellular proteins play a role during the early steps of norovirus infection. We used murine norovirus (MNV) as a representative norovirus, since MNV grows well in tissue culture and is a frequently used model to study basic aspects of norovirus biology. Virus overlay protein binding assay followed by tandem mass spectrometry analysis was performed in two permissive cell lines, RAW264.7 (murine macrophages) and SRDC (murine dendritic cells) to identify four cellular membrane proteins as candidates. Loss-of-function studies revealed that CD36 and CD44 promoted MNV-1 binding to primary dendritic cells, while CD98 heavy chain (CD98) and transferrin receptor 1 (TfRc) facilitated MNV-1 binding to RAW 264.7 cells. Furthermore, the VP1 protruding domain of MNV-1 interacted directly with the extracellular domains of recombinant murine CD36, CD98 and TfRc by ELISA. Additionally, MNV-1 infection of RAW 264.7 cells was enhanced by soluble rCD98 extracellular domain. These studies demonstrate that multiple membrane proteins can promote efficient MNV-1 infection in a cell type-specific manner. Future studies are needed to determine the molecular mechanisms by which each of these proteins affect the MNV-1 infectious cycle.
Collapse
Affiliation(s)
- Juliana Bragazzi Cunha
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| |
Collapse
|
20
|
Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016; 37:1407-19. [PMID: 26872045 PMCID: PMC4889498 DOI: 10.1002/elps.201500552] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Membrane proteins mediate cell-cell interactions and adhesion, the transfer of ions and metabolites, and the transmission of signals from the extracellular environment to the cell interior. The extracellular domains of most cell membrane proteins are glycosylated, often at multiple sites. There is a growing awareness that glycosylation impacts the structure, interaction, and function of membrane proteins. The application of glycoproteomics and glycomics methods to membrane proteins has great potential. However, challenges also arise from the unique physical properties of membrane proteins. Successful analytical workflows must be developed and disseminated to advance functional glycoproteomics and glycomics studies of membrane proteins. This review explores the opportunities and challenges related to glycomic and glycoproteomic analysis of membrane proteins, including discussion of sample preparation, enrichment, and MS/MS analyses, with a focus on recent successful workflows for analysis of N- and O-linked glycosylation of mammalian membrane proteins.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Dag A, Callari M, Lu H, Stenzel MH. Modulating the cellular uptake of platinum drugs with glycopolymers. Polym Chem 2016. [DOI: 10.1039/c5py01579k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The therapeutic potency of platinum-based anticancer drugs can be substantially improved through the use of fructose-coated nanocarrier systems to target cancer cells efficiently.
Collapse
Affiliation(s)
- Aydan Dag
- Centre for Advanced Macromolecular Design
- School of Chemistry
- The University of New South Wales
- Sydney
- Australia
| | - Manuela Callari
- Centre for Advanced Macromolecular Design
- School of Chemistry
- The University of New South Wales
- Sydney
- Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design
- School of Chemistry
- The University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
22
|
Sartim MA, Sampaio SV. Snake venom galactoside-binding lectins: a structural and functional overview. J Venom Anim Toxins Incl Trop Dis 2015; 21:35. [PMID: 26413085 PMCID: PMC4583214 DOI: 10.1186/s40409-015-0038-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 09/16/2015] [Indexed: 12/13/2022] Open
Abstract
Snake venom galactoside-binding lectins (SVgalLs) comprise a class of toxins capable of recognizing and interacting with terminal galactoside residues of glycans. In the past 35 years, since the first report on the purification of thrombolectin from Bothrops atrox snake venom, several SVgalLs from Viperidae and Elapidae snake families have been described, as has progressive improvement in the investigation of structural/functional aspects of these lectins. Moreover, the advances of techniques applied in protein-carbohydrate recognition have provided important approaches in order to screen for possible biological targets. The present review describes the efforts over the past 35 years to elucidate SVgalLs, highlighting their structure and carbohydrate recognition function involved in envenomation pathophysiology and potential biomedical applications.
Collapse
Affiliation(s)
- Marco A. Sartim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Suely V. Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| |
Collapse
|
23
|
Šunderić M, Šedivá A, Robajac D, Miljuš G, Gemeiner P, Nedić O, Katrlík J. Lectin-based protein microarray analysis of differences in serum alpha-2-macroglobulin glycosylation between patients with colorectal cancer and persons without cancer. Biotechnol Appl Biochem 2015; 63:457-64. [PMID: 26075587 DOI: 10.1002/bab.1407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/10/2015] [Indexed: 11/11/2022]
Abstract
Glycosylation is co- and posttranslational modifications affecting proteins. The glycopattern changes are associated with changes in biological function and are involved in many diseases including cancer. We present the lectin-based protein microarray method enabling determination of differences in protein glycosylation. The method involves isolation of targeted protein from samples by immunoprecipitation, spotting of protein from multiple samples into arrays on a microarray slide, incubation with set of biotinylated lectins, the reaction with fluorescent conjugate of streptavidin, and detection of fluorescent intensities by microarray scanner. Lectin-based protein microarray was applied in investigation of differences in alpha-2-macroglobulin (α2M) glycosylation isolated from sera samples of healthy persons and patients with colorectal cancer (CC). From 14 lectins used in analysis, statistically significant differences (Student's t-test, P < 0.05) between two groups of samples (persons without cancer and CC patients) were found for 5 of them. α2M molecules isolated from sera of CC patients have higher content of α2,6 sialic acid, N-acetylglucosamine and mannose residues, and tri-/tetraantennary complex type high-mannose N-glycans. A novel lectin-based protein microarray developed and described can serve as a suitable analytical technique for sensitive, simple, fast, and high-throughput determination of differences in protein glycosylation isolated from serum or other samples.
Collapse
Affiliation(s)
- Miloš Šunderić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Alena Šedivá
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dragana Robajac
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Goran Miljuš
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Peter Gemeiner
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
24
|
Huang C, Zhan T, Liu Y, Li Q, Wu H, Ji D, Li Y. Glycomic profiling of carcinoembryonic antigen isolated from human tumor tissue. Clin Proteomics 2015; 12:17. [PMID: 26157355 PMCID: PMC4495800 DOI: 10.1186/s12014-015-9088-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/12/2015] [Indexed: 01/25/2023] Open
Abstract
Background Carcinoembryonic antigen (CEA) is a protein commonly found in human serum, with elevated CEA levels being linked to the progression of a wide range of tumors. It is currently used as a biomarker for malign tumors such as lung cancer and colorectal cancer [Urol Oncol: Semin Orig Invest 352: 644–648, 2013 and Lung Cancer 80: 45-49, 2013]. However, due to its low specificity in clinical applications, CEA can be used for monitoring only, rather than tumor diagnosis. The function of many glycoproteins is critically dependent on their glycosylation pattern, which in turn has the potential to serve in tumor detection. However, little is known about the detailed glycan patterns of CEA. Methods To determine these patterns, we isolated and purified CEA proteins from human tumor tissues using immunoaffinity chromatography. The glycan patterns of CEA were then analyzed using a Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry3 (MALDI-TOF-MS3) approach. Results We identified 61 glycoforms in tumor tissue, where CEA is upregulated. These glycosylation entities were identified as bi-antennary, tri-antennary and tetra-antennary structures carrying sialic acid and fucose residues, and include a multitude of glycans previously not reported for CEA. Conclusion Our findings should facilitate a more precise tumor prediction than currently possible, ultimately resulting in improved tumor diagnosis and treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9088-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 P. R. China
| | - Tiancheng Zhan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Colorectal Surgery, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142 P. R. China
| | - Yaming Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 P. R. China
| | - Qianqian Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 P. R. China
| | - Hongmei Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 P. R. China
| | - Dengbo Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Colorectal Surgery, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142 P. R. China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 P. R. China
| |
Collapse
|
25
|
Amin A, Bashir A, Zaki N, McCarthy D, Ahmed S, Lotfy M. Insights into glycan biosynthesis in chemically-induced hepatocellular carcinoma in rats: A glycomic analysis. World J Gastroenterol 2015; 21:6167-6179. [PMID: 26034352 PMCID: PMC4445094 DOI: 10.3748/wjg.v21.i20.6167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/19/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the qualitative and quantitative changes in N-linked glycosylation, which occurred in association with diethyl nitrosamine-induced hepatocellular carcinoma (HCC) in rodents.
METHODS: Liver tissues of (1) normal (non-tumor-bearing) rats; and (2) tumor-bearing rats; were collected and were used for histological and GlycanMap® analyses. Briefly, GlycanMap® analysis is a high-throughput assay that provides a structural and quantitative readout of protein-associated glycans using a unique, automated 96-well assay technology coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and custom bioinformatics. Histopathological studies were carried out to ensure the development of HCC in the tested animals.
RESULTS: The N-glycomic analysis revealed 5 glycans; Glc1Man9GlcNAc2, Gal2Man3GlcNac4Fuc1Neu1, Man4GlcNac2, Gal2Man3GlcNac4Neu3OAc3, and Man3GlcNac5Fuc1, which showed significant changes in rat HCC tissues when compared with normal liver tissues. Four glycans were increased (P < 0.05) and Glc1Man9GlcNAc2 was decreased (5.89 ± 0.45 vs 3.54 ± 0.21, P < 0.01) in HCC tissues compared to normal liver tissues. An increase (66.5 ± 1.05 vs 62.7 ± 1.1, P < 0.05) in high-mannose structures in HCC rats was observed compared to normal rats. Importantly, HCC rats showed an increase (P < 0.05) in both tumor-associated carbohydrates and in branched glycans. The changes in glycans correlated well with glycan flow changes reported in the glycan biosynthetic pathway, which indicates the importance of enzyme activities involved in glycan synthesis at different subcellular localizations.
CONCLUSION: The reported HCC-associated changes in glycan flow and subcellular localization explain the increase in high mannose glycans and siayl Lewis glycans common in HCC liver tissues.
Collapse
|
26
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
27
|
Cheung RCF, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB. Marine lectins and their medicinal applications. Appl Microbiol Biotechnol 2015. [PMID: 25794876 DOI: 10.1007/s00253-015-6518-0/tables/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Marine organisms have been extensively explored for the last several decades as potential sources of novel biologically active compounds, and extensive research has been conducted on lectins. Lectins derived from marine organisms are structurally diverse and also differ from those identified from terrestrial organisms. Marine lectins appear to be particularly useful in some biological applications. They seem to induce negligible immunogenicity because they have a relatively small size, are more stable due to extensive disulfide bridge formation, and have high specificity for complex glyco-conjugates and carbohydrates instead of simple sugars. It is clear that many of them have not yet been extensively studied when compared with their terrestrial counterparts. Marine lectins can be used to design and develop new potentially useful therapeutic agents. This review encompasses recent research on the isolation and identification of marine lectins with potential value in medicinal applications.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Mannose-recognition mutant of the galactose/N-acetylgalactosamine-specific C-type lectin CEL-I engineered by site-directed mutagenesis. Biochim Biophys Acta Gen Subj 2015; 1850:1457-65. [PMID: 25869490 DOI: 10.1016/j.bbagen.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/27/2015] [Accepted: 04/06/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND CEL-I is a galactose/N-acetylgalactosamine-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. Its carbohydrate-binding site contains a QPD (Gln-Pro-Asp) motif, which is generally recognized as the galactose specificity-determining motif in the C-type lectins. In our previous study, replacement of the QPD motif by an EPN (Glu-Pro-Asn) motif led to a weak binding affinity for mannose. Therefore, we examined the effects of an additional mutation in the carbohydrate-binding site on the specificity of the lectin. METHODS Trp105 of EPN-CEL-I was replaced by a histidine residue using site-directed mutagenesis, and the binding affinity of the resulting mutant, EPNH-CEL-I, was examined by sugar-polyamidoamine dendrimer assay, isothermal titration calorimetry, and glycoconjugate microarray analysis. Tertiary structure of the EPNH-CEL-I/mannose complex was determined by X-ray crystallographic analysis. RESULTS Sugar-polyamidoamine dendrimer assay and glycoconjugate microarray analysis revealed a drastic change in the specificity of EPNH-CEL-I from galactose/N-acetylgalactosamine to mannose. The association constant of EPNH-CEL-I for mannose was determined to be 3.17×10(3) M(-1) at 25°C. Mannose specificity of EPNH-CEL-I was achieved by stabilization of the binding of mannose in a correct orientation, in which the EPN motif can form proper hydrogen bonds with 3- and 4-hydroxy groups of the bound mannose. CONCLUSIONS Specificity of CEL-I can be engineered by mutating a limited number of amino acid residues in addition to the QPD/EPN motifs. GENERAL SIGNIFICANCE Versatility of the C-type carbohydrate-recognition domain structure in the recognition of various carbohydrate chains could become a promising platform to develop novel molecular recognition proteins.
Collapse
|
29
|
Su PY, Wang YF, Huang SW, Lo YC, Wang YH, Wu SR, Shieh DB, Chen SH, Wang JR, Lai MD, Chang CF. Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol 2015; 89:4527-38. [PMID: 25673703 PMCID: PMC4442404 DOI: 10.1128/jvi.03498-14] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/28/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Because the pathogenesis of enterovirus 71 (EV71) remains mostly ambiguous, identifying the factors that mediate viral binding and entry to host cells is indispensable to ultimately uncover the mechanisms that underlie virus infection and pathogenesis. Despite the identification of several receptors/attachment molecules for EV71, the binding, entry, and infection mechanisms of EV71 remain unclear. Herein, we employed glycoproteomic approaches to identify human nucleolin as a novel binding receptor for EV71. Glycoproteins purified by lectin chromatography from the membrane extraction of human cells were treated with sialidase, followed by immunoprecipitation with EV71 particles. Among the 16 proteins identified by tandem mass spectrometry analysis, cell surface nucleolin attracted our attention. We found that EV71 interacted directly with nucleolin via the VP1 capsid protein and that an antinucleolin antibody reduced the binding of EV71 to human cells. In addition, the knockdown of cell surface nucleolin decreased EV71 binding, infection, and production in human cells. Furthermore, the expression of human nucleolin on the cell surface of a mouse cell line increased EV71 binding and conferred EV71 infection and production in the cells. These results strongly indicate that human nucleolin can mediate EV71 binding to and infection of cells. Our findings also demonstrate that the use of glycoproteomic approaches is a reliable methodology to discover novel receptors for pathogens. IMPORTANCE Outbreaks of EV71 have been reported in Asia-Pacific countries and have caused thousands of deaths in young children during the last 2 decades. The discovery of new EV71-interacting molecules to understand the infection mechanism has become an emergent issue. Hence, this study uses glycoproteomic approaches to comprehensively investigate the EV71-interacting glycoproteins. Several EV71-interacting glycoproteins are identified, and the role of cell surface nucleolin in mediating the attachment and entry of EV71 is characterized and validated. Our findings not only indicate a novel target for uncovering the EV71 infection mechanism and anti-EV71 drug discovery but also provide a new strategy for virus receptor identification.
Collapse
Affiliation(s)
- Pei-Yi Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan, Republic of China Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Taiwan, Republic of China
| | - Ya-Fang Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Taiwan, Republic of China
| | - Sheng-Wen Huang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Taiwan, Republic of China
| | - Yu-Chih Lo
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Taiwan, Republic of China Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Taiwan, Republic of China
| | - Ya-Hui Wang
- Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan, Republic of China
| | - Shang-Rung Wu
- Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan, Republic of China
| | - Dar-Bin Shieh
- Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan, Republic of China Advanced Optoelectronic Technology Center and Center for Micro/Nano Science and Technology, National Cheng Kung University, Taiwan, Republic of China
| | - Shun-Hua Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan, Republic of China Center of Infectious Disease and Signaling Research, National Cheng Kung University, Taiwan, Republic of China Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Taiwan, Republic of China
| | - Jen-Ren Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan, Republic of China Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Taiwan, Republic of China Center of Infectious Disease and Signaling Research, National Cheng Kung University, Taiwan, Republic of China
| | - Ming-Der Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan, Republic of China Center of Infectious Disease and Signaling Research, National Cheng Kung University, Taiwan, Republic of China Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Taiwan, Republic of China
| | - Chuan-Fa Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan, Republic of China Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Taiwan, Republic of China Center of Infectious Disease and Signaling Research, National Cheng Kung University, Taiwan, Republic of China
| |
Collapse
|
30
|
Cheung RCF, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB. Marine lectins and their medicinal applications. Appl Microbiol Biotechnol 2015; 99:3755-73. [PMID: 25794876 PMCID: PMC7080081 DOI: 10.1007/s00253-015-6518-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/16/2022]
Abstract
Marine organisms have been extensively explored for the last several decades as potential sources of novel biologically active compounds, and extensive research has been conducted on lectins. Lectins derived from marine organisms are structurally diverse and also differ from those identified from terrestrial organisms. Marine lectins appear to be particularly useful in some biological applications. They seem to induce negligible immunogenicity because they have a relatively small size, are more stable due to extensive disulfide bridge formation, and have high specificity for complex glyco-conjugates and carbohydrates instead of simple sugars. It is clear that many of them have not yet been extensively studied when compared with their terrestrial counterparts. Marine lectins can be used to design and develop new potentially useful therapeutic agents. This review encompasses recent research on the isolation and identification of marine lectins with potential value in medicinal applications.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Li QK, Gabrielson E, Askin F, Chan DW, Zhang H. Glycoproteomics using fluid-based specimens in the discovery of lung cancer protein biomarkers: promise and challenge. Proteomics Clin Appl 2014; 7:55-69. [PMID: 23112109 DOI: 10.1002/prca.201200105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cancer in the United States and worldwide. In spite of the rapid progression in personalized treatments, the overall survival rate of lung cancer patients is still suboptimal. Over the past decade, tremendous efforts have been focused on the discovery of protein biomarkers to facilitate the early detection and monitoring of lung cancer progression during treatment. In addition to tumor tissues and cancer cell lines, a variety of biological material has been studied. Particularly in recent years, studies using fluid-based specimen or so-called "fluid-biopsy" specimens have progressed rapidly. Fluid specimens are relatively easier to collect than tumor tissue, and they can be repeatedly sampled during the disease progression. Glycoproteins are the major content of fluid specimens and have long been recognized to play fundamental roles in many physiological and pathological processes. In this review, we focus the discussion on recent advances of glycoproteomics, particularly in the identification of potential glyco protein biomarkers using fluid-based specimens in lung cancer. The purpose of this review is to summarize current strategies, achievements, and perspectives in the field. This insight will highlight the discovery of tumor-associated glycoprotein biomarkers in lung cancer and their potential clinical applications.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
32
|
Glycophenotype evaluation in cutaneous tumors using lectins labeled with acridinium ester. DISEASE MARKERS 2013; 35:149-54. [PMID: 24167360 PMCID: PMC3774981 DOI: 10.1155/2013/787130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 12/31/2022]
Abstract
Background. Tumor cells show alterations in their glycosylation patterns when compared to normal cells. Lectins can be used to evaluate these glycocode changes. Chemiluminescence assay is an effective technique for quantitative analysis of proteins, nucleic acids, and carbohydrates due to its high sensitivity, specificity, and rapid testing. Objective. To use histochemiluminescence based on lectin conjugated to acridinium ester (AE) for the investigation of glycophenotype changes in cutaneous tumors. Methods. Concanavalin A (Con A), Peanut agglutinin (PNA), Ulex europaeus agglutinin-I (UEA-I), and Maackia amurensis agglutinin (MAA) were conjugated to acridinium ester. Biopsies of cutaneous tumors and normal skin were incubated with the lectins-AE, and chemiluminescence was quantified and expressed as Relative Light Units (RLU). Results. Actinic keratosis (AK), keratoacanthoma (KA), squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) showed lower expression of α-D-glucose/mannose and α-L-fucose residues compared to normal tissue. Cutaneous tumors displayed higher expression of Gal-β(1-3)-GalNAc residues than normal tissue. AK and SCC exhibited higher expression of Neu5Ac-α(2,3)Gal residues than normal epidermis. KA and BCC showed equivalent RLU values compared to normal tissue. Conclusions. Lectin histochemiluminescence allowed quantitative assessment of the carbohydrate expression in cutaneous tissues, contributing to eliminate the subjectivity of conventional techniques used in the histopathological diagnosis.
Collapse
|
33
|
Mantareva V, Kril A, Dimitrov R, Wöhrle D, Angelov I. Selective photodynamic therapy induced by preirradiation of galactopyranosyl Zn(II) phthalocyanines with UV and red lights. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The challenging task in the photodynamic therapy is the optimization of the procedure in a way to reach maximal selectivity of the phototoxic effect to tumor vs. non-neoplastic cells. The present study explores the impact of the light exposure with harmless UV 365 nm and low intensity visible red 637 nm light during incubation period on the uptake, primary localization, re-localization and photocytotoxic effect of tetra-galactopyranosyl substituted Zn ( II ) phthalocyanines. The studies were carried out on cancer cells (MDA-MB-231) and on non-tumorigenic cells (Balb/c 3T3, clone 31). The experimentals suggested that in addition to the favorable chemical structure of the applied amphiphilic protected galactose Zn ( II ) phthalocyanines, the pretreatment with UV 365 nm and visible red 637 nm light applied prior therapeutic light, lead to selective phototoxic effects on tumor cells.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, str. Bl. 9, 1113 Sofia, Bulgaria
| | - Anton Kril
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 25, 1113 Sofia, Bulgaria
| | - Rumen Dimitrov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dieter Wöhrle
- Institute of Organic and Macromolecular Chemistry, Bremen University, D-28 334 Bremen, Germany
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, str. Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
34
|
Luo M, Velikovsky CA, Yang X, Siddiqui MA, Hong X, Barchi JJ, Gildersleeve JC, Pancer Z, Mariuzza RA. Recognition of the Thomsen-Friedenreich pancarcinoma carbohydrate antigen by a lamprey variable lymphocyte receptor. J Biol Chem 2013; 288:23597-606. [PMID: 23782692 DOI: 10.1074/jbc.m113.480467] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins that mediate adaptive immunity in jawless vertebrates. VLRs were recently shown to recognize glycans, such as the tumor-associated Thomsen-Friedenreich antigen (TFα; Galβ1-3GalNAcα), with a selectivity rivaling or exceeding that of lectins and antibodies. To understand the basis for TFα recognition by one such VLR (VLRB.aGPA.23), we measured thermodynamic parameters for the binding interaction and determined the structure of the VLRB.aGPA.23-TFα complex to 2.2 Å resolution. In the structure, four tryptophan residues form a tight hydrophobic cage encasing the TFα disaccharide that completely excludes buried water molecules. This cage together with hydrogen bonding of sugar hydroxyls to polar side chains explains the exquisite selectivity of VLRB.aGPA.23. The topology of the glycan-binding site of VLRB.aGPA.23 differs markedly from those of lectins or antibodies, which typically consist of long, convex grooves for accommodating the oligosaccharide. Instead, the TFα disaccharide is sandwiched between a variable loop and the concave surface of the VLR formed by the β-strands of the leucine-rich repeat modules. Longer oligosaccharides are predicted to extend perpendicularly across the β-strands, requiring them to bend to match the concavity of the VLR solenoid.
Collapse
Affiliation(s)
- Ming Luo
- University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rêgo MJBDM, Vieira de Mello GS, da Silva Santos CA, Chammas R, Beltrão EIC. Implications on glycobiological aspects of tumor hypoxia in breast ductal carcinoma in situ. Med Mol Morphol 2013; 46:92-6. [PMID: 23381603 DOI: 10.1007/s00795-013-0013-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/14/2012] [Indexed: 01/28/2023]
Abstract
Breast carcinoma is one of the most common neoplasia and the first cause of women cancer related deaths worldwide. In the past few years with diagnostic increment, the number of patients diagnosed with ductal carcinoma in situ (DCIS) increased considerably and opened up new ways in research and new dilemmas in diagnostic and clinical practice. This work aimed to evaluate differences in Galectin-1 and Galectin-3 expression and lectins ligands profile on DCIS cells in hypoxic microenvironment. Lectin histochemistry and immunohistochemistry were performed with Concanavalin A, Wheat Germ Agglutinin, Peanut Agglutinin and Ulex europaeus Agglutinin lectins and with anti-Galectin-1 and anti-Galectin-3 antibodies. Lectin ligands were more recognized in hypoxic lesions by Concanavalin A (p = 0.0019), Wheat Germ Agglutinin (p < 0.001) and Ulex europaeus Agglutinin (p = 0.0014), but not by Peanut Agglutinin (p = 0.5779) when compared to non-hypoxic. Galectin-1 was not observed in all cases analyzed on both groups, differing from Galectin-3 that was overexpressed on cytoplasm of DCIS hypoxic group in relation to control group (p = 0.031). As far as we are concerned, this is the first paper that describes glycobiological alterations in breast cancer hypoxic environment in vivo that could be used to validate in vitro models on this aspect. Moreover, comedogenic/necrotic carcinomas were usually associated with poor-prognostic than others, and our results show that glycosylation may play an important role in this event.
Collapse
|
36
|
Wang SH, Tsai CM, Lin KI, Khoo KH. Advanced mass spectrometry and chemical analyses reveal the presence of terminal disialyl motif on mouse B-cell glycoproteins. Glycobiology 2013; 23:677-89. [PMID: 23363740 DOI: 10.1093/glycob/cwt008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The occurrence of a terminal disialyl motif on mammalian O-glycans is increasingly being identified through recent mass spectrometry (MS)-based glycomic profiling. In most cases, it is carried on simple core 1 structures in which both the galactose and N-acetyl galactosamine can be disialylated. In contrast, a disialyl motif on N-glycans is less readily revealed by MS mapping, since additional MS/MS analysis is required to determine the distribution of the various sialic acids on typically multisialylated complex type N-glycans. In our MS-based glycomic screening, we found that a mouse B lymphoma cell line, BCL1, ranks among those that have the highest amount of disialyl motif on its O-glycans, including those carried on CD45. More intriguingly, detailed chemical and MS/MS analyses unambiguously showed that the Neu5Gcα2-8Neu5Gc disialyl motif is also present on the N-glycans and that it can be carried on the termini of polylactosaminoglycan chains, which can be further sulfated on the proximal GlcNAc, occurring alongside other monosialylated sulfated LacNAc termini. Upon silencing the expression of mouse α2,8-sialyltransferase VI (ST8Sia VI), the overall disialyl content decreases significantly, but more so for that on the N-glycans than the O-glycans. ST8Sia VI was further shown to be the most significantly upregulated ST8Sia during plasma cell differentiation, which coincides with increasing content of the disialyl motif. Increasing terminal disialylation without leading to polysialylation may thus have important biological consequences awaiting further investigation. Likewise, the expression of mono- and disialylated sulfated LacNAc may constitute novel recognition codes modulating B-cell activation and differentiation.
Collapse
Affiliation(s)
- Shui-Hua Wang
- Institute of Biochemical Sciences, National Taiwan University
| | | | | | | |
Collapse
|
37
|
Hong X, Ma MZ, Gildersleeve JC, Chowdhury S, Barchi JJ, Mariuzza RA, Murphy MB, Mao L, Pancer Z. Sugar-binding proteins from fish: selection of high affinity "lambodies" that recognize biomedically relevant glycans. ACS Chem Biol 2013; 8:152-60. [PMID: 23030719 PMCID: PMC3756686 DOI: 10.1021/cb300399s] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycan-binding proteins are important for a wide variety of basic research and clinical applications, but proteins with high affinity and selectivity for carbohydrates are difficult to obtain. Here we describe a facile and cost-effective strategy to generate monoclonal lamprey antibodies, called lambodies, that target glycan determinants. We screened a library of yeast surface-displayed (YSD) lamprey variable lymphocyte receptors (VLR) for clones that can selectively bind various biomedically important glycotopes. These glycoconjugates included tumor-associated carbohydrate antigens (Tn and TFα), Lewis antigens (LeA and LeX), N-glycolylneuraminic acid, targets of broadly neutralizing HIV antibodies (poly-Man9 and the HIV gp120), and the glycoproteins asialo-ovine submaxillary mucin (aOSM) and asialo-human glycophorin A (aGPA). We isolated clones that bind each of these targets in a glycan-dependent manner and with very strong binding constants, for example, 6.2 nM for Man9 and 44.7 nM for gp120, determined by surface plasmon resonance (SPR). One particular lambody, VLRB.aGPA.23, was shown by glycan array analysis to be selective for the blood group H type 3 trisaccharide (BG-H3, Fucα1-2Galβ1-3GalNAcα), aGPA, and TFα (Galβ1-3GalNAcα), with affinity constants of 0.2, 1, and 8 nM, respectively. In human tissue microarrays this lambody selectively detected cancer-associated carbohydrate antigens in 14 different types of cancers. It stained 27% of non-small cell lung cancer (NSCLC) samples in a pattern that correlated with poor patient survival. Lambodies with exquisite affinity and selectivity for glycans may find myriad uses in glycobiology and biomedical research.
Collapse
Affiliation(s)
- Xia Hong
- Institute of Marine and Environmental Technology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Columbus Center Suite 236, 701 East Pratt St., Baltimore, Maryland 21202, United States
| | - Mark Z. Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 West Baltimore St., Baltimore, Maryland 21201, United States
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Sudipa Chowdhury
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Roy A. Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr., Rockville, Maryland 20850, United States
| | - Michael B. Murphy
- GE Healthcare Life Sciences, 800 Centennial Ave., Piscataway, New Jersey 08854, United States
| | - Li Mao
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 West Baltimore St., Baltimore, Maryland 21201, United States
| | - Zeev Pancer
- Institute of Marine and Environmental Technology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Columbus Center Suite 236, 701 East Pratt St., Baltimore, Maryland 21202, United States
| |
Collapse
|
38
|
Pinto R, Carvalho AS, Conze T, Magalhães A, Picco G, Burchell JM, Taylor-Papadimitriou J, Reis CA, Almeida R, Mandel U, Clausen H, Söderberg O, David L. Identification of new cancer biomarkers based on aberrant mucin glycoforms by in situ proximity ligation. J Cell Mol Med 2012; 16:1474-84. [PMID: 21883895 PMCID: PMC3823216 DOI: 10.1111/j.1582-4934.2011.01436.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these biomarkers has been based on the detection of either the protein or the O-glycan modifications. We therefore aimed to identify the combined mucin and O-glycan features, that is, specific glycoforms, in an attempt to increase specificity of these cancer biomarkers. Using in situ proximity ligation assays (PLA) based on existing monoclonal antibodies directed to MUC1, MUC2, MUC5AC and MUC6 mucins and to cancer-associated carbohydrate antigens Tn, Sialyl-Tn (STn), T, Sialyl-Le(a) (SLe(a)) and Sialyl-Le(x) (SLe(x)) we screened a series of 28 mucinous adenocarcinomas from different locations (stomach, ampulla of Vater, colon, lung, breast and ovary) to detect specific mucin glycoforms. We detected Tn/STn/SLe(a)/SLe(x)-MUC1 and STn/SLe(a)/SLe(x)-MUC2 glycoforms in ≥50% of the cases, with a variable distribution among organs. Some new glycoforms-T/SLe(a)-MUC2, STn/T/SLe(a) SLe(x)-MUC5AC and STn/T/SLe(a)/SLe(x)-MUC6-were identified for the first time in the present study in a variable percentage of cases from different organs. In conclusion, application of the PLA technique allowed sensitive detection of specific aberrant mucin glycoforms in cancer, increasing specificity to the use of antibodies either to the mucin protein backbone or to the O-glycan haptens alone.
Collapse
Affiliation(s)
- Rita Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tumor-associated glycans and their role in gynecological cancers: accelerating translational research by novel high-throughput approaches. Metabolites 2012; 2:913-39. [PMID: 24957768 PMCID: PMC3901231 DOI: 10.3390/metabo2040913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 02/06/2023] Open
Abstract
Glycans are important partners in many biological processes, including carcinogenesis. The rapidly developing field of functional glycomics becomes one of the frontiers of biology and biomedicine. Aberrant glycosylation of proteins and lipids occurs commonly during malignant transformation and leads to the expression of specific tumor-associated glycans. The appearance of aberrant glycans on carcinoma cells is typically associated with grade, invasion, metastasis and overall poor prognosis. Cancer-associated carbohydrates are mostly located on the surface of cancer cells and are therefore potential diagnostic biomarkers. Currently, there is increasing interest in cancer-associated aberrant glycosylation, with growing numbers of characteristic cancer targets being detected every day. Breast and ovarian cancer are the most common and lethal malignancies in women, respectively, and potential glycan biomarkers hold promise for early detection and targeted therapies. However, the acceleration of research and comprehensive multi-target investigation of cancer-specific glycans could only be successfully achieved with the help of a combination of novel high-throughput glycomic approaches.
Collapse
|
40
|
Li QK, Gabrielson E, Zhang H. Application of glycoproteomics for the discovery of biomarkers in lung cancer. Proteomics Clin Appl 2012; 6:244-56. [PMID: 22641610 DOI: 10.1002/prca.201100042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States. Approximately 40-60% of lung cancer patients present with locally advanced or metastatic disease at the time of diagnosis. Lung cancer development and progression are a multistep process that is characterized by abnormal gene and protein expressions ultimately leading to phenotypic change. Glycoproteins have long been recognized to play fundamental roles in many physiological and pathological processes, particularly in cancer genesis and progression. In order to improve the survival rate of lung cancer patients, the discovery of early diagnostic and prognostic biomarkers is urgently needed. Herein, we reviewed the recent technological developments of glycoproteomics and published data in the field of glycoprotein biomarkers in lung cancer, and discussed their utility and limitations for the discovery of potential biomarkers in lung cancer. Although numerous papers have already acknowledged the importance of the discovery of cancer biomarkers, the systemic study of glycoproteins in lung cancer using glycoproteomic approaches is still suboptimal. Recent development in the glycoproteomics will provide new platforms for identification of potential protein biomarkers in lung cancers.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
41
|
Jeong HH, Kim YG, Jang SC, Yi H, Lee CS. Profiling surface glycans on live cells and tissues using quantum dot-lectin nanoconjugates. LAB ON A CHIP 2012; 12:3290-3295. [PMID: 22782470 DOI: 10.1039/c2lc40248c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The surface of mammalian cells is densely coated with complex glycans, which are directly involved in cell-cell or cell-protein interactions that trigger various biological responses. Here, we present a novel glycomics approach that uses quantum dot (Qdot)-lectin nanoconjugates to interrogate the surface glycans of tissues and patterned cells. Our approach allows highly sensitive in situ monitoring of specific lectin-glycan interactions and quantitative information on surface glycans for each examined cell line and tissue. The results clearly show significant changes in glycosylation for each cell line and tissue sample. We expect that these results will be applicable in cancer diagnostics and promote the development of new analytical tools for glycomics.
Collapse
Affiliation(s)
- Heon-Ho Jeong
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Deajeon 305-764, South Korea
| | | | | | | | | |
Collapse
|
42
|
Tan HT, Lee YH, Chung MCM. Cancer proteomics. MASS SPECTROMETRY REVIEWS 2012; 31:583-605. [PMID: 22422534 DOI: 10.1002/mas.20356] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/16/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Cancer presents high mortality and morbidity globally, largely due to its complex and heterogenous nature, and lack of biomarkers for early diagnosis. A proteomics study of cancer aims to identify and characterize functional proteins that drive the transformation of malignancy, and to discover biomarkers to detect early-stage cancer, predict prognosis, determine therapy efficacy, identify novel drug targets, and ultimately develop personalized medicine. The various sources of human samples such as cell lines, tissues, and plasma/serum are probed by a plethora of proteomics tools to discover novel biomarkers and elucidate mechanisms of tumorigenesis. Innovative proteomics technologies and strategies have been designed for protein identification, quantitation, fractionation, and enrichment to delve deeper into the oncoproteome. In addition, there is the need for high-throughput methods for biomarker validation, and integration of the various platforms of oncoproteome data to fully comprehend cancer biology.
Collapse
Affiliation(s)
- Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
43
|
Su PY, Liu YT, Chang HY, Huang SW, Wang YF, Yu CK, Wang JR, Chang CF. Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells. BMC Microbiol 2012; 12:162. [PMID: 22853823 PMCID: PMC3478995 DOI: 10.1186/1471-2180-12-162] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/24/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is a major causative agent of hand-foot-and-mouth disease (HFMD), and infection of EV71 to central nerve system (CNS) may result in a high mortality in children less than 2 years old. Although there are two highly glycosylated membrane proteins, SCARB2 and PSGL-1, which have been identified as the cellular and functional receptors of EV71, the role of glycosylation in EV71 infection is still unclear. RESULTS We demonstrated that the attachment of EV71 to RD and SK-N-SH cells was diminished after the removal of cell surface sialic acids by neuraminidase. Sialic acid specific lectins, Maackia amurensis (MAA) and Sambucus Nigra (SNA), could compete with EV71 and restrained the binding of EV71 significantly. Preincubation of RD cells with fetuin also reduced the binding of EV71. In addition, we found that SCARB2 was a sialylated glycoprotein and interaction between SCARB2 and EV71 was retarded after desialylation. CONCLUSIONS In this study, we demonstrated that cell surface sialic acids assist in the attachment of EV71 to host cells. Cell surface sialylation should be a key regulator that facilitates the binding and infection of EV71 to RD and SK-N-SH cells.
Collapse
Affiliation(s)
- Pei-Yi Su
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Yueh-Tung Liu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Blood Bank, Kaohsiung Veterans General Hospital, No. 386, Ta-Chung 1st Road, Kaohsiung 81362, Taiwan
| | - Hsin-Yueh Chang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Sheng-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Ya-Fang Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Chun-Keung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- National Applied Research Laboratories, National Laboratory Animal Center, No. 128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| |
Collapse
|
44
|
Cantor JM, Ginsberg MH. CD98 at the crossroads of adaptive immunity and cancer. J Cell Sci 2012; 125:1373-82. [PMID: 22499670 DOI: 10.1242/jcs.096040] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer.
Collapse
Affiliation(s)
- Joseph M Cantor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
45
|
Zeng X, Andrade CAS, Oliveira MDL, Sun XL. Carbohydrate–protein interactions and their biosensing applications. Anal Bioanal Chem 2011; 402:3161-76. [DOI: 10.1007/s00216-011-5594-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/02/2011] [Accepted: 11/20/2011] [Indexed: 01/16/2023]
|
46
|
Listinsky JJ, Siegal GP, Listinsky CM. The emerging importance of α-L-fucose in human breast cancer: a review. Am J Transl Res 2011; 3:292-322. [PMID: 21904652 PMCID: PMC3158734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
Breast cancer cells incorporate the simple sugar alpha-L-fucose (fucose) into glycoproteins and glycolipids which, in turn, are expressed as part of the malignant phenotype. We have noted that fucose is not simply a bystander molecule, but, in fact, contributes to many of the fundamental oncologic properties of breast cancer cells. Here, we summarize the evidence from us and others that fucose is necessary for key functions of neoplastic progression including hematogenous metastasis, tumor invasion through extracellular matrices including basement membranes and up-regulation of the Notch signaling system, with implications for epithelial-to-mesenchymal transition and activation of breast cancer stem cells. Additionally, certain breast cancer biomarkers are fucose-rich while a well-known marker of breast cancer progression, soluble E-selectin, is a known counter-receptor of fucosylated selectin ligands. We provide illustrative examples and supportive evidence drawn from work with human breast cancer cell lines in vitro as well as clinical studies with human pathologic material. And finally, we discuss evidence that fucose (or its absence) is central to the mechanisms of action of several experimental targeted therapies which may prove useful in breast cancer treatment. We propose that alpha-L-fucose is essential in order to construct first, the malignant and then the metastatic phenotype of many human breast cancers. This knowledge may inform the search for novel treatment approaches in breast cancer.
Collapse
|
47
|
Matsumoto-Takasaki A, Yuasa N, Katagiri D, Koyama T, Sakai K, Zamri N, Phung S, Chen S, Nakada H, Nakata M, Fujita-Yamaguchi Y. Characterization of three different single chain antibodies recognizing non-reducing terminal mannose residues expressed in Escherichia coli by an inducible T7 expression system. J Biochem 2011; 150:439-50. [PMID: 21693545 DOI: 10.1093/jb/mvr078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously isolated phage antibodies from a phage library displaying human single chain antibodies (scFvs) by screening with a mannotriose (Man3)-bearing lipid. Of four independent scFv genes originally characterized, 5A3 gene products were purified as fusion proteins such as a scFv-human IgG1 Fc form, but stable clones secreting 1A4 and 1G4 scFv-Fc proteins had never been established. Thus, bacterial expression systems were used to purify 1A4 and 1G4 scFv gene products as soluble forms. Purification of 1A4 and 1G4 scFv proteins from inclusion bodies was also carried out together with purification of 5A3 scFv protein in order to compare their Man3-binding abilities. The present studies demonstrated that 1A4 and 1G4 scFv proteins have a higher affinity for Man3 than 5A3 scFv protein, which may determine whether scFv-Fc proteins expressed in mammalian cells are retained in the ER or secreted. Furthermore, the inhibitory effects of anti-Man3 1G4 scFv and anti-Tn antigen scFv proteins on MCF-7 cell growth were evaluated. Despite the fact that no obvious difference was detected in cell growth, microscopic observations revealed inhibition of foci formation in cells grown in the presence of the anti-carbohydrate scFv proteins. This finding provides a basis for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Ayano Matsumoto-Takasaki
- Department of Applied Biochemistry, Tokai University School of Engineering, Kanagawa 259-1292, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
State of the art in tumor antigen and biomarker discovery. Cancers (Basel) 2011; 3:2554-96. [PMID: 24212823 PMCID: PMC3757432 DOI: 10.3390/cancers3022554] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/24/2011] [Accepted: 05/27/2011] [Indexed: 12/22/2022] Open
Abstract
Our knowledge of tumor immunology has resulted in multiple approaches for the treatment of cancer. However, a gap between research of new tumors markers and development of immunotherapy has been established and very few markers exist that can be used for treatment. The challenge is now to discover new targets for active and passive immunotherapy. This review aims at describing recent advances in biomarkers and tumor antigen discovery in terms of antigen nature and localization, and is highlighting the most recent approaches used for their discovery including “omics” technology.
Collapse
|
49
|
Graham SA, Antonopoulos A, Hitchen PG, Haslam SM, Dell A, Drickamer K, Taylor ME. Identification of neutrophil granule glycoproteins as Lewis(x)-containing ligands cleared by the scavenger receptor C-type lectin. J Biol Chem 2011; 286:24336-49. [PMID: 21561871 PMCID: PMC3129213 DOI: 10.1074/jbc.m111.244772] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scavenger receptor C-type lectin (SRCL) is a glycan-binding receptor that has the capacity to mediate endocytosis of glycoproteins carrying terminal Lewis(x) groups (Galβ1-4(Fucα1-3)GlcNAc). A screen for glycoprotein ligands for SRCL using affinity chromatography on immobilized SRCL followed by mass spectrometry-based proteomic analysis revealed that soluble glycoproteins from secondary granules of neutrophils, including lactoferrin and matrix metalloproteinases 8 and 9, are major ligands. Binding competition and surface plasmon resonance analysis showed affinities in the low micromolar range. Comparison of SRCL binding to neutrophil and milk lactoferrin indicates that the binding is dependent on cell-specific glycosylation in the neutrophils, as the milk form of the glycoprotein is a much poorer ligand. Binding to neutrophil glycoproteins is fucose-dependent, and mass spectrometry-based glycomic analysis of neutrophil and milk lactoferrin was used to establish a correlation between high affinity binding to SRCL and the presence of multiple clustered terminal Lewis(x) groups on a heterogeneous mixture of branched glycans, some with poly N-acetyllactosamine extensions. The ability of SRCL to mediate uptake of neutrophil lactoferrin was confirmed using fibroblasts transfected with SRCL. The common presence of Lewis(x) groups in granule protein glycans can thus target granule proteins for clearance by SRCL. PCR and immunohistochemical analysis confirm that SRCL is widely expressed on endothelial cells and thus represents a distributed system that could scavenge released neutrophil glycoproteins both locally at sites of inflammation or systemically when they are released in the circulation.
Collapse
Affiliation(s)
- Sarah A Graham
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
50
|
A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 2011; 113:236-47. [PMID: 20199800 DOI: 10.1016/j.acthis.2010.02.004] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/14/2010] [Accepted: 02/16/2010] [Indexed: 12/18/2022]
Abstract
This review is intended for general readers who would like a basic foundation in carbohydrate structure and function, lectin biology, and the implications of glycobiology in human health and disease, particularly in cancer therapeutics. These topics are among the hundreds included in the field of glycobiology and are treated here because they form the cornerstone of glycobiology or the focus of many advances in this rapidly expanding field.
Collapse
|