1
|
Ilyaskina D, Nakadera Y, Lamoree MH, Koene JM, Leonards PEG. Impact of fluoxetine exposure on Lymnaea stagnalis and its developing eggs: integrating untargeted lipidomics, targeted metabolomics, and classical risk assessment. Front Pharmacol 2025; 16:1536438. [PMID: 39968180 PMCID: PMC11832466 DOI: 10.3389/fphar.2025.1536438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Pharmaceuticals such as selective serotonin reuptake inhibitors (SSRIs), are increasingly detected in aquatic environments, posing potential risks to non-target organisms, because many of those substances are widely shared neuromodulator. In this study, we investigated the effects of SSRI antidepressant, namely, fluoxetine, exposure on the freshwater snail L. stagnalis, focusing on egg development, neurochemical pathways, and lipid metabolism. Snails were exposed to a range of 51-434 µg fluoxetine L⁻1 for 7 days, followed by analysis of survival, feeding behaviour, reproduction, and metabolomic changes in the central nervous system (CNS), albumen gland, and eggs. Although no significant effects were observed on survival or fecundity, fluoxetine exposure significantly impaired egg development in a dose-dependent manner, reducing hatching rates with an EC50 of 126 µg fluoxetine L⁻1. Removal of eggs from the contaminated environment partially reversed these developmental effects, suggesting potential recovery if fluoxetine levels decrease. Molecular analysis revealed several neurochemical and lipidomic alterations. In the CNS, elevated levels of catecholamines, phosphatidylcholines (PC), and ceramides were linked to disruptions in neurotransmission, membrane integrity, and impaired embryo development. In the albumen gland, we detected a decrease of key lipid classes, including sphingomyelins and fatty acids, which can be linked with impaired egg quality. Additionally, a decrease in histamine in both the albumen gland and eggs suggested further disruption of egg development, potentially affecting metamorphosis success. Moreover, the dose-dependent increase in choline, along with PC and oxidized PC, indicated oxidative stress and lipid peroxidation in the CNS and exposed eggs of Lymnaea stagnalis. Our findings highlight the benefits of combining behavioral assessments with metabolomic profiling to better understand the mechanistic pathways underlying fluoxetine's adverse effects.
Collapse
Affiliation(s)
- Diana Ilyaskina
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yumi Nakadera
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Senckenberg Ocean Species Alliance, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Marja H. Lamoree
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joris M. Koene
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pim E. G. Leonards
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Luo H, Zhao X, Wang ZD, Wu G, Xia Y, Dong MQ, Ma Y. Sphingolipid profiling reveals differential functions of sphingolipid biosynthesis isozymes of Caenorhabditis elegans. J Lipid Res 2024; 65:100553. [PMID: 38704027 PMCID: PMC11153919 DOI: 10.1016/j.jlr.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.
Collapse
Affiliation(s)
- Hui Luo
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Zi-Dan Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Gang Wu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Meng-Qiu Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Yan Ma
- National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Xatse MA, Olsen CP. Defining the glucosylceramide population of C. elegans. Front Physiol 2023; 14:1244158. [PMID: 37772059 PMCID: PMC10524606 DOI: 10.3389/fphys.2023.1244158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Glucosylceramides (GlcCer) are lipids that impact signaling pathways, serve as critical components of cellular membranes, and act as precursors for hundreds of other complex glycolipid species. Abnormal GlcCer metabolism is linked to many diseases, including cancers, diabetes, Gaucher disease, neurological disorders, and skin disorders. A key hurdle to fully understanding the role of GlcCer in disease is the development of methods to accurately detect and quantify these lipid species in a model organism. This will allow for the dissection of the role of this pool in vivo with a focus on all the individual types of GlcCer. In this review, we will discuss the analysis of the GlcCer population specifically in the nematode Caenorhabditis elegans, focusing on the mass spectrometry-based methods available for GlcCer quantification. We will also consider the combination of these approaches with genetic interrogation of GlcCer metabolic genes to define the biological role of these unique lipids. Furthermore, we will explore the implications and obstacles for future research.
Collapse
Affiliation(s)
| | - Carissa Perez Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
4
|
Xatse MA, Vieira AFC, Byrne C, Olsen CP. Targeted Lipidomics Reveals a Novel Role for Glucosylceramides in Glucose Response. J Lipid Res 2023:100394. [PMID: 37245562 PMCID: PMC10320606 DOI: 10.1016/j.jlr.2023.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023] Open
Abstract
The addition of excess glucose to the diet drives a coordinated response of lipid metabolism pathways to tune the membrane composition to the altered diet. Here, we have employed targeted lipidomic approaches to quantify the specific changes in the phospholipid and sphingolipid populations that occur in elevated glucose conditions. The lipids within wildtype Caenorhabditis elegans are strikingly stable with no significant changes identified in our global mass spectrometry-based analysis. Previous work has identified ELO-5, an elongase that is critical for the synthesis of monomethyl-branched chain fatty acids (mmBCFAs), as essential for surviving elevated glucose conditions. Therefore, we performed targeted lipidomics on elo-5 RNAi-fed animals and identified several significant changes in these animals in lipid species that contain mmBCFAs as well as in species that do not contain mmBCFAs. Of particular note, we identified a specific glucosylceramide (GlcCer 17:1;O2/22:0;O) that is also significantly upregulated with glucose in wildtype animals. Furthermore, compromising the production of the glucosylceramide pool with elo-3 or cgt-3 RNAi leads to premature death in glucose-fed animals. Taken together, our lipid analysis has expanded the mechanistic understanding of metabolic rewiring with glucose feeding and has identified a new role for the GlcCer 17:1;O2/22:0;O.
Collapse
Affiliation(s)
- Mark A Xatse
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre F C Vieira
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Chloe Byrne
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Carissa Perez Olsen
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| |
Collapse
|
5
|
Luan CX, Xie WD, Liu D, Li W, Yuan ZW. Candidate Circulating Biomarkers of Spontaneous Miscarriage After IVF-ET Identified via Coupling Machine Learning and Serum Lipidomics Profiling. Reprod Sci 2022; 29:750-760. [PMID: 35075613 DOI: 10.1007/s43032-021-00830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022]
Abstract
Spontaneous miscarriage is a common pregnancy complication. Multiple etiologies have been proposed such as genetic aberrations, endocrinology disorder, and immunologic derangement; however, the relevance of circulating lipidomes to the specific condition remains unclear. In the present study, lipidomics profiling was examined on serum of women with spontaneous miscarriage after in vitro fertilization and embryo transfer (IVF-ET). Screening and analysis of differential lipid levels were conducted using a machine learning approach to verify the stability and validity of potential serum biomarkers. Seven lipid species presented significant differences between the abortion and term birth patients, including three types of sphingomyelins (SMs), two types of diglycerides (DGs), one phosphatidylcholine (PC), and one lysophosphatidylethanolamine (LPE). All the SMs presented with a fold change of > 1, while both the PC and LPE had a fold change of < 1. The DG containing two saturated fatty acyl chains was decreased, but that containing two unsaturated fatty acyl chains was increased in the miscarriage group compared to the control group. This study reveals the relevance of lipid profiles to spontaneous abortion after IVF-ET, providing potential biomarkers and therapeutic targets for the specific clinical scenario.
Collapse
Affiliation(s)
- Cai-Xia Luan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
- Reproductive Medicine Center, Shenyang 204 Hospital, Shenyang, People's Republic of China
| | | | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Wei Li
- Key Laboratory of Intelligent Computing in Medical Image (MIIC), Northeastern University, Ministry of Education, Shenyang, China.
| | - Zheng-Wei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
6
|
Saturated very long chain fatty acid configures glycosphingolipid for lysosome homeostasis in long-lived C. elegans. Nat Commun 2021; 12:5073. [PMID: 34417467 PMCID: PMC8379269 DOI: 10.1038/s41467-021-25398-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
The contents of numerous membrane lipids change upon ageing. However, it is unknown whether and how any of these changes are causally linked to lifespan regulation. Acyl chains contribute to the functional specificity of membrane lipids. In this study, working with C. elegans, we identified an acyl chain-specific sphingolipid, C22 glucosylceramide, as a longevity metabolite. Germline deficiency, a conserved lifespan-extending paradigm, induces somatic expression of the fatty acid elongase ELO-3, and behenic acid (22:0) generated by ELO-3 is incorporated into glucosylceramide for lifespan regulation. Mechanistically, C22 glucosylceramide is required for the membrane localization of clathrin, a protein that regulates membrane budding. The reduction in C22 glucosylceramide impairs the clathrin-dependent autophagic lysosome reformation, which subsequently leads to TOR activation and longevity suppression. These findings reveal a mechanistic link between membrane lipids and ageing and suggest a model of lifespan regulation by fatty acid-mediated membrane configuration. The membrane lipids change with ageing and function as regulatory molecules, but the underlying mechanisms are incompletely understood. Here, the authors identify C22 glucosylceramide as a regulator of the longevity transcription factor SKN-1, and show that C22 glucosylceramide regulates lifespan by controlling lysosome homeostasis and subsequent TOR activation.
Collapse
|
7
|
Identification of a Novel Link between the Intermediate Filament Organizer IFO-1 and Cholesterol Metabolism in the Caenorhabditis elegans Intestine. Int J Mol Sci 2020; 21:ijms21218219. [PMID: 33153048 PMCID: PMC7672635 DOI: 10.3390/ijms21218219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 01/16/2023] Open
Abstract
The intestine is an organ essential to organismal nutrient absorption, metabolic control, barrier function and immunoprotection. The Caenorhabditis elegans intestine consists of 20 cells harboring a dense intermediate filament network positioned below the apical plasma membrane that forms a junction-anchored sheath around the intestinal lumen. This evolutionarily conserved arrangement provides mechanical and overall stress-protection, and it serves as an important model for deciphering the role of intestinal architecture in metazoan biology. We recently reported that the loss-of-function mutation of the intestinal intermediate filament organizer IFO-1 perturbs this architecture, leading to reduced body size and reproduction. Here, we demonstrate that the IFO-1 mutation dramatically affects cholesterol metabolism. Mutants showed an increased sensitivity to cholesterol depletion, reduced cholesterol uptake, and cholesterol transfer to the gonads, which is also observed in worms completely lacking an intermediate filament network. Accordingly, we found striking similarities to transcriptome and lipidome profiles of a nuclear hormone receptor (NHR)-8 mutant. NHR-8 is homologous to mammalian LXR (liver X receptor) that serves as a sterol sensor and transcriptional regulator of lipid metabolism. Remarkably, increasing exogenous cholesterol partially rescues the developmental retardation in IFO-1 mutants. Our results uncover a novel link of the intestinal intermediate filament cytoskeleton to cholesterol metabolism that contributes to compromised growth and reproduction.
Collapse
|
8
|
Abstract
Outbreaks of trichinellosis caused by Trichinella papuae have been reported in South-East Asia. Mebendazole and thiabendazole are the treatments of choice for trichinellosis; however, both drugs result in significant side effects and are less effective for muscle-stage larvae (L1). An alternative therapeutic agent is needed to improve treatment. Information on lipid composition and metabolic pathways may bridge gaps in our knowledge and lead to new antiparasitics. The T. papuae L1 lipidome was analysed using a mass spectrometry-based approach, and 403 lipid components were identified. Eight lipid classes were found and glycerophospholipids were dominant, corresponding to 63% of total lipids, of which the glycerolipid DG (20:1[11Z]/22:4[7Z,10Z,13Z,16Z]/0:0) (iso2) was the most abundant. Overall, 57% of T. papuae lipids were absent in humans; therefore, lipid metabolism may be dissimilar in the two species. Proteins involved T. papuae lipid metabolism were explored using bioinformatics. We found that 4-hydroxybutyrate coenzyme A transferase, uncharacterized protein (A0A0V1MCB5) and ML-domain-containing protein are not present in humans. T. papuae glycerophospholipid metabolic and phosphatidylinositol dephosphorylation processes contain several proteins that are dissimilar to those in humans. These findings provide insights into T. papuae lipid composition and metabolism, which may facilitate the development of novel trichinellosis treatments.
Collapse
|
9
|
Metabolomics reveals novel insight on dormancy of aquatic invertebrate encysted embryos. Sci Rep 2019; 9:8878. [PMID: 31222034 PMCID: PMC6586685 DOI: 10.1038/s41598-019-45061-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/28/2019] [Indexed: 11/08/2022] Open
Abstract
Numerous aquatic invertebrates survive harsh environments by displaying dormancy as encysted embryos. This study aimed at determining whether metabolomics could provide molecular insight to explain the "dormancy syndrome" by highlighting functional pathways and metabolites, hence offering a novel comprehensive molecular view of dormancy. We compared the metabolome of morphologically distinct dormant encysted embryos (resting eggs) and non-dormant embryos (amictic eggs) of a rotifer (Brachionus plicatilis). Metabolome profiling revealed ~5,000 features, 1,079 of which were annotated. Most of the features were represented at significantly higher levels in non-dormant than dormant embryos. A large number of features was assigned to putative functional pathways indicating novel differences between dormant and non-dormant states. These include features associated with glycolysis, the TCA and urea cycles, amino acid, purine and pyrimidine metabolism. Interestingly, ATP, nucleobases, cyclic nucleotides, thymidine and uracil, were not detected in dormant resting eggs, suggesting an impairment of response to environmental and internal cues, cessation of DNA synthesis, transcription and plausibly translation in the dormant embryos. The levels of trehalose or its analogues, with a role in survival under desiccation conditions, were higher in resting eggs. In conclusion, the current study highlights metabolomics as a major analytical tool to functionally compare dormancy across species.
Collapse
|
10
|
A Model of Hereditary Sensory and Autonomic Neuropathy Type 1 Reveals a Role of Glycosphingolipids in Neuronal Polarity. J Neurosci 2019; 39:5816-5834. [PMID: 31138658 DOI: 10.1523/jneurosci.2541-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy Type 1 (HSAN1) is a rare autosomal dominantly inherited neuropathy, clinically characterized by a loss of distal peripheral sensory and motoneuronal function. Mutations in subunits of serine palmitoyltransferase (SPT) have been linked to the majority of HSAN1 cases. SPTs catalyze the condensation of l-serine with palmitoyl-CoA, the first committed and rate-limiting step in de novo sphingolipid biosynthesis. Despite extensive investigation, the molecular pathogenesis of HSAN1 remains controversial. Here, we established a Caenorhabditis elegans (C. elegans) model of HSAN1 by generating a sptl-1(c363g) mutation, encoding SPTL-1(C121W) and equivalent to human SPTLC1C133W, at the C. elegans genomic locus through CRISPR. The sptl-1(c363g) homozygous mutants exhibited the same larval lethality and epithelial polarity defect as observed in sptl-1(RNAi) animals, suggesting a loss-of-function effect of the SPTL-1(C121W) mutation. sptl-1(c363g)/+ heterozygous mutants displayed sensory dysfunction with concomitant neuronal morphology and axon-dendrite polarity defects, demonstrating that the C. elegans model recapitulates characteristics of the human disease. sptl-1(c363g)-derived neuronal defects were copied in animals with defective sphingolipid biosynthetic enzymes downstream of SPTL-1, including ceramide glucosyltransferases, suggesting that SPTLC1C133W contributes to the HSAN1 pathogenesis by limiting the production of complex sphingolipids, including glucosylceramide. Overexpression of SPTL-1(C121W) led to similar epithelial and neuronal defects and to reduced levels of complex sphingolipids, specifically glucosylceramide, consistent with a dominant-negative effect of SPTL-1(C121W) that is mediated by loss of this downstream product. Genetic interactions between SPTL-1(C121W) and components of directional trafficking in neurons suggest that the neuronal polarity phenotype could be caused by glycosphingolipid-dependent defects in polarized vesicular trafficking.SIGNIFICANCE STATEMENT The symptoms of inherited metabolic diseases are often attributed to the accumulation of toxic intermediates or byproducts, no matter whether the disease-causing enzyme participates in a biosynthetic or a degradation pathway. By showing that the phenotypes observed in a C. elegans model of HSAN1 disease could be caused by loss of a downstream product (glucosylceramide) rather than the accumulation of a toxic byproduct, our work provides new insights into the origins of the symptoms of inherited metabolic diseases while expanding the repertoire of sphingolipid functions, specifically, of glucosylceramides. These findings not only have their most immediate relevance for neuroprotective treatments for HSAN1, they may also have implications for a much broader range of neurologic conditions.
Collapse
|
11
|
Hänel V, Pendleton C, Witting M. The sphingolipidome of the model organism Caenorhabditis elegans. Chem Phys Lipids 2019; 222:15-22. [PMID: 31028715 DOI: 10.1016/j.chemphyslip.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Sphingolipids are important lipids and integral members of membranes, where they form small microdomains called lipid rafts. These rafts are enriched in cholesterol and sphingolipids, which influences biophysical properties. Interestingly, the membranes of the biomedical model organism Caenorhabditis elegans contain only low amounts of cholesterol. Sphingolipids in C. elegans are based on an unusual C17iso branched sphingoid base. In order to analyze and the sphingolipidome of C. elegans in more detail, we performed fractionation of lipid extracts and depletion of glycero- and glycerophospholipids together with in-depth analysis using UPLC-UHR-ToF-MS. In total we were able to detect 82 different sphingolipids from different classes, including several isomeric species.
Collapse
Affiliation(s)
- Victoria Hänel
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85674 Neuherberg, Germany
| | - Christian Pendleton
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85674 Neuherberg, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85674 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| |
Collapse
|
12
|
Paschinger K, Yan S, Wilson IBH. N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode? Front Mol Biosci 2019; 6:9. [PMID: 30915340 PMCID: PMC6422873 DOI: 10.3389/fmolb.2019.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is a genetically well-studied model nematode or "worm"; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2-3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome.
Collapse
Affiliation(s)
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | | |
Collapse
|
13
|
Elevated peritoneal fluid ceramides in human endometriosis-associated infertility and their effects on mouse oocyte maturation. Fertil Steril 2019; 110:767-777.e5. [PMID: 30196975 DOI: 10.1016/j.fertnstert.2018.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the peritoneal fluid (PF) sphingolipid profile in endometriosis-associated infertility (EAI), and to assess the plausible functional role(s) of ceramides in oocyte maturation potential. DESIGN Retrospective case-control study and in vitro mouse oocyte study. SETTING University-affiliated hospital and university laboratory. SUBJECTS Twenty-seven infertile patients diagnosed with endometriosis and 20 infertile patients who did not have endometriosis; BALB/c female mice. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) PF sphingolipid concentrations. Number of metaphase II (MII) mouse oocytes. RESULT(S) Liquid chromatography-tandem mass spectrometry revealed 11 significantly elevated PF sphingolipids in infertile women with severe endometriosis compared with infertile women without endometriosis (change >50%, false discovery rate ≤10%). Logistic regression analysis identified three very-long-chain ceramides potentially associated with EAI. Functional studies revealed that very-long-chain ceramides may compromise or induce murine MII oocyte maturation. The oocyte maturation effects induced by the very long-chain ceramides were triggered by alterations in mitochondrial superoxide production in a concentration-dependent manner. Scavenging of mitochondrial superoxide reversed the maturation effects of C24:0 ceramide. CONCLUSION(S) EAI is associated with accumulation of PF very-long-chain ceramides. Mouse studies demonstrated how ceramides affect MII oocyte maturation, mediating through mitochondrial superoxide. These results provide an opportunity for direct functional readout of pathophysiology in EAI, and future therapies targeted at this sphingolipid metabolism may be harnessed for improved oocyte maturation.
Collapse
|
14
|
Phani V, Somvanshi VS, Shukla RN, Davies KG, Rao U. A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita. BMC Genomics 2018; 19:850. [PMID: 30486772 PMCID: PMC6263062 DOI: 10.1186/s12864-018-5230-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. RESULTS A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. CONCLUSIONS Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.
Collapse
Affiliation(s)
- Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, India
| | - Keith G Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, UK. .,Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Postboks 115 NO-1431, Ås, Norway.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
15
|
Jennemann R, Federico G, Mathow D, Rabionet M, Rampoldi F, Popovic ZV, Volz M, Hielscher T, Sandhoff R, Gröne HJ. Inhibition of hepatocellular carcinoma growth by blockade of glycosphingolipid synthesis. Oncotarget 2017; 8:109201-109216. [PMID: 29312601 PMCID: PMC5752514 DOI: 10.18632/oncotarget.22648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/28/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers. In vitro studies suggest that growth and response to therapy of human carcinomas may depend on glycosphingolipid (GSL) expression. Glucosylceramide synthase (GCS), encoded by the gene Ugcg, is the basic enzyme required for the synthesis of GSLs. Gene array analysis implied that Ugcg is significantly overexpressed in human HCC as compared to non-tumorous liver tissue. Therefore we have investigated whether tumor - genesis and - growth is altered in the absence of GSLs. An endogenous liver cancer model has been initiated by application of diethylnitrosamine in mice lacking Ugcg specifically in hepatocytes. We have now shown that hepatocellular tumor initiation and growth in mice is significantly inhibited by hepatic GSL deficiency in vivo. Neither the expression of cell cycle proteins, such as cyclins and pathways such as the MAP-kinase/Erk pathway nor the mTOR/Akt pathway as well as the number of liver infiltrating macrophages and T cells were essentially changed in tumors lacking GSLs. Significantly elevated bi-nucleation of atypical hepatocytes, a feature for impaired cytokinesis, was detected in tumors of mice lacking liver-specific GSLs. A reduction of proliferation and restricted growth of tumor microspheres due to delayed, GSL-dependent cytokinesis, analogous to the histopathologic phenotype in vivo could be demonstrated in vitro. GSL synthesis inhibition may thus constitute a potential therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Mathow
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Mariona Rabionet
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Francesca Rampoldi
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Zoran V Popovic
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Martina Volz
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
16
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
17
|
Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 2017; 42:951-962. [PMID: 27711049 PMCID: PMC5312067 DOI: 10.1038/npp.2016.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/27/2016] [Accepted: 09/21/2016] [Indexed: 12/31/2022]
Abstract
Defining the mechanisms of action of the antipsychotic drug (APD), clozapine, is of great importance, as clozapine is more effective and has therapeutic benefits in a broader range of psychiatric disorders compared with other APDs. Its range of actions have not been fully characterized. Exposure to APDs early in development causes dose-dependent developmental delay and lethality in Caenorhabditis elegans. A previous genome-wide RNAi screen for suppressors of clozapine-induced developmental delay and lethality revealed 40 candidate genes, including sms-1, which encodes a sphingomyelin synthase. One sms-1 isoform is expressed in the C. elegans pharynx, and its transgene rescues the sms-1 mutant phenotype. We examined pharyngeal pumping and observed that clozapine-induced inhibition of pharyngeal pumping requires sms-1, a finding that may explain the role of the gene in mediating clozapine-induced developmental delay/lethality. By analyzing multiple enzymes involved in sphingolipid metabolism, and by observing the effect of addition of various lipids directly to the worms, we suggest that glucosylceramide may be a key mediator of the effects of clozapine. We further observed that clozapine clears protein aggregates, such as α-synuclein, PolyQ protein, and α-1-antitrypsin mutant protein. In addition, it enhances ATG8/LC3. We conclude that clozapine appears to affect the development and induce lethality of worms, in part, through modulating glucosylceramide. We discuss the possible connections among glucosylceramide, protein aggregate clearance, and autophagy. Interactions, including mechanistic pathways involving these elements, may underlie some of the clinical effects of clozapine.
Collapse
|
18
|
Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans. Genetics 2016; 205:775-785. [PMID: 27974500 DOI: 10.1534/genetics.116.194282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Our understanding of the cellular mechanisms by which animals regulate their response to starvation is limited, despite the strong relevance of the problem to major human health issues. The L1 diapause of Caenorhabditis elegans, where first-stage larvae arrest in response to a food-less environment, is an excellent system to study this mechanism. We found, through genetic manipulation and lipid analysis, that biosynthesis of ceramide, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic interaction analysis suggests that ceramide may act in both insulin-IGF-1 signaling (IIS)-dependent and IIS-independent pathways to affect starvation survival. Genetic and expression analyses indicate that ceramide is required for maintaining the proper expression of previously characterized starvation-responsive genes, genes that are regulated by the IIS pathway and tumor suppressor Rb, and genes responsive to pathogen. These findings provide an important insight into the roles of sphingolipid metabolism, not only in starvation response, but also in aging and food-response-related human health problems.
Collapse
|
19
|
Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans. Biochem J 2016; 473:1507-21. [PMID: 27009306 PMCID: PMC4888466 DOI: 10.1042/bcj20160142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/23/2016] [Indexed: 01/08/2023]
Abstract
The rhamnose biosynthetic pathway, which is highly conserved across nematode species, was characterized in the nematode Caenorhabditis elegans. The pathway is up-regulated before each larval molt, suggesting that rhamnose biosynthesis plays a role in cuticle or surface coat synthesis. L-Rhamnose is a common component of cell-wall polysaccharides, glycoproteins and some natural products in bacteria and plants, but is rare in fungi and animals. In the present study, we identify and characterize a biosynthetic pathway for dTDP-rhamnose in Caenorhabditis elegans that is highly conserved across nematode species. We show that RML-1 activates glucose 1-phosphate (Glc-1-P) in the presence of either dTTP or UTP to yield dTDP-glucose or UDP-glucose, respectively. RML-2 is a dTDP-glucose 4,6-dehydratase, converting dTDP-glucose into dTDP-4-keto-6-deoxyglucose. Using mass spectrometry and NMR spectroscopy, we demonstrate that coincubation of dTDP-4-keto-6-deoxyglucose with RML-3 (3,5-epimerase) and RML-4 (4-keto-reductase) produces dTDP-rhamnose. RML-4 could only be expressed and purified in an active form through co-expression with a co-regulated protein, RML-5, which forms a complex with RML-4. Analysis of the sugar nucleotide pool in C. elegans established the presence of dTDP-rhamnose in vivo. Targeting the expression of the rhamnose biosynthetic genes by RNAi resulted in significant reductions in dTDP-rhamnose, but had no effect on the biosynthesis of a closely related sugar, ascarylose, found in the ascaroside pheromones. Therefore, the rhamnose and ascarylose biosynthetic pathways are distinct. We also show that transcriptional reporters for the rhamnose biosynthetic genes are expressed highly in the embryo, in the hypodermis during molting cycles and in the hypodermal seam cells specifically before the molt to the stress-resistant dauer larval stage. These expression patterns suggest that rhamnose biosynthesis may play an important role in hypodermal development or the production of the cuticle or surface coat during molting.
Collapse
|
20
|
Deng X, Kolesnick R. Caenorhabditis elegans as a model to study sphingolipid signaling. Biol Chem 2016; 396:767-73. [PMID: 25720116 DOI: 10.1515/hsz-2014-0298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/26/2015] [Indexed: 12/19/2022]
Abstract
Sphingolipid signaling in Caenorhabditis elegans is vital for sensing environmental change and effecting appropriate cellular response. Many molecular components in sphingolipid intermediary metabolism are conserved throughout evolution. Here we review use of C. elegans as a model system for conducting sphingolipid-based scientific investigation, which has helped us better understand vital roles these remarkable lipids play in human metabolism and disease.
Collapse
|
21
|
Cui X, Wei Y, Wang YH, Li J, Wong FL, Zheng YJ, Yan H, Liu SS, Liu JL, Jia BL, Zhang SH. Proteins interacting with mitochondrial ATP-dependent Lon protease (MAP1) in Magnaporthe oryzae are involved in rice blast disease. MOLECULAR PLANT PATHOLOGY 2015; 16:847-59. [PMID: 25605006 PMCID: PMC6638408 DOI: 10.1111/mpp.12242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ATP-dependent Lon protease is involved in many physiological processes. In bacteria, Lon regulates pathogenesis and, in yeast, Lon protects mitochondia from oxidative damage. However, little is known about Lon in fungal phytopathogens. MAP1, a homologue of Lon in Magnaporthe oryzae, was recently identified to be important for stress resistance and pathogenesis. Here, we focus on a novel pathogenic pathway mediated by MAP1. Based on an interaction system between rice and a tandem affinity purification (TAP)-tagged MAP1 complementation strain, we identified 23 novel fungal proteins from infected leaves using a TAP approach with mass spectrometry, and confirmed that 14 of these proteins physically interact with MAP1 in vivo. Among these 14 proteins, 11 candidates, presumably localized to the mitochondria, were biochemically determined to be substrates of MAP1 hydrolysis. Deletion mutants were created and functionally analysed to further confirm the involvement of these proteins in pathogenesis. The results indicated that all mutants showed reduced conidiation and sensitivity to hydrogen peroxide. Appressorial formations were not affected, although conidia from certain mutants were morphologically altered. In addition, virulence was reduced in four mutants, enhanced (with lesions forming earlier) in two mutants and remained unchanged in one mutant. Together with the known virulence-related proteins alternative oxidase and enoyl-CoA hydratase, we propose that most of the Lon-interacting proteins are involved in the pathogenic regulation pathway mediated by MAP1 in M. oryzae. Perturbation of this pathway may represent an effective approach for the inhibition of rice blast disease.
Collapse
Affiliation(s)
- Xiao Cui
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yu-Han Wang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jian Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Fuk-Ling Wong
- Department of Biology, The Chinese University of Hong Kong, 999077, Hong Kong SAR
| | - Ya-Jie Zheng
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Hai Yan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Shao-Shuai Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jin-Liang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Bao-Lei Jia
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| |
Collapse
|
22
|
Zhu M, Wu G, Li YX, Stevens JK, Fan CX, Spang A, Dong MQ. Serum- and Glucocorticoid-Inducible Kinase-1 (SGK-1) Plays a Role in Membrane Trafficking in Caenorhabditis elegans. PLoS One 2015; 10:e0130778. [PMID: 26115433 PMCID: PMC4482599 DOI: 10.1371/journal.pone.0130778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/22/2015] [Indexed: 02/03/2023] Open
Abstract
The mammalian serum- and glucocorticoid-inducible kinase SGK1 regulates the endocytosis of ion channels. Here we report that in C. elegans sgk-1 null mutants, GFP-tagged MIG-14/Wntless, the sorting receptor of Wnt, failed to localize to the basolateral membrane of intestinal cells; instead, it was mis-sorted to lysosomes. This effect can be explained in part by altered sphingolipid levels, because reducing glucosylceramide biosynthesis restored the localization of MIG-14::GFP. Membrane traffic was not perturbed in general, as no obvious morphological defects were detected for early endosomes, the Golgi apparatus, and the endoplasmic reticulum (ER) in sgk-1 null animals. The recycling of MIG-14/Wntless through the Golgi might be partially responsible for the observed phenotype because the subcellular distribution of two plasma membrane cargoes that do not recycle through the trans-Golgi network (TGN) was affected to a lesser degree. Consistently, knockdown of the ArfGEF gbf-1 altered the distribution of SGK-1 at the basolateral membrane of intestinal cells. In addition, we found that sgk-1(RNAi) induced unfolded protein response in the ER, suggesting at least an indirect role of SGK-1 early in the secretory pathway. We propose that SGK-1 function is required for lipid homeostasis and that it acts at different intracellular trafficking steps.
Collapse
Affiliation(s)
- Ming Zhu
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Gang Wu
- National Institute of Biological Sciences, Beijing, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing, Beijing, China
| | - Yu-Xin Li
- National Institute of Biological Sciences, Beijing, Beijing, China
| | | | - Chao-Xuan Fan
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Anne Spang
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Meng-Qiu Dong
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing, Beijing, China
| |
Collapse
|
23
|
Ishibashi Y, Hirabayashi Y. AMP-activated Protein Kinase Suppresses Biosynthesis of Glucosylceramide by Reducing Intracellular Sugar Nucleotides. J Biol Chem 2015; 290:18245-18260. [PMID: 26048992 DOI: 10.1074/jbc.m115.658948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 12/25/2022] Open
Abstract
The membrane glycolipid glucosylceramide (GlcCer) plays a critical role in cellular homeostasis. Its intracellular levels are thought to be tightly regulated. How cells regulate GlcCer levels remains to be clarified. AMP-activated protein kinase (AMPK), which is a crucial cellular energy sensor, regulates glucose and lipid metabolism to maintain energy homeostasis. Here, we investigated whether AMPK affects GlcCer metabolism. AMPK activators (5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside and metformin) decreased intracellular GlcCer levels and synthase activity in mouse fibroblasts. AMPK inhibitors or AMPK siRNA reversed these effects, suggesting that GlcCer synthesis is negatively regulated by an AMPK-dependent mechanism. Although AMPK did not affect the phosphorylation or expression of GlcCer synthase, the amount of UDP-glucose, an activated form of glucose required for GlcCer synthesis, decreased under AMPK-activating conditions. Importantly, the UDP-glucose pyrophosphatase Nudt14, which degrades UDP-glucose, generating UMP and glucose 1-phosphate, was phosphorylated and activated by AMPK. On the other hand, suppression of Nudt14 by siRNA had little effect on UDP-glucose levels, indicating that mammalian cells have an alternative UDP-glucose pyrophosphatase that mainly contributes to the reduction of UDP-glucose under AMPK-activating conditions. Because AMPK activators are capable of reducing GlcCer levels in cells from Gaucher disease patients, our findings suggest that reducing GlcCer through AMPK activation may lead to a new strategy for treating diseases caused by abnormal accumulation of GlcCer.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
24
|
Promotion of bone morphogenetic protein signaling by tetraspanins and glycosphingolipids. PLoS Genet 2015; 11:e1005221. [PMID: 25978409 PMCID: PMC4433240 DOI: 10.1371/journal.pgen.1005221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/14/2015] [Indexed: 02/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. The bone morphogenetic protein (BMP) signaling pathway is required for multiple developmental processes during metazoan development. Various diseases, including cancer, can result from mis-regulation of the BMP pathway. Thus, it is critical to identify factors that ensure proper regulation of BMP signaling. Using the nematode C. elegans, we have devised a highly specific and sensitive genetic screen to identify new modulators in the BMP pathway. Through this screen, we identified three conserved tetraspanin molecules as novel factors that function to promote BMP signaling in a living organism. We further showed that these three tetraspanins likely form a complex and function together with glycosphingolipids to promote BMP signaling. Recent studies have implicated several tetraspanins in cancer initiation, progression and metastasis in mammals. Our findings suggest that the involvement of tetraspanins in cancer may partially be due to their function in modulating the activity of BMP signaling.
Collapse
|
25
|
Akiyoshi S, Nomura KH, Dejima K, Murata D, Matsuda A, Kanaki N, Takaki T, Mihara H, Nagaishi T, Furukawa S, Ando KG, Yoshina S, Mitani S, Togayachi A, Suzuki Y, Shikanai T, Narimatsu H, Nomura K. RNAi screening of human glycogene orthologs in the nematode Caenorhabditis elegans and the construction of the C. elegans glycogene database. Glycobiology 2015; 25:8-20. [PMID: 25091817 PMCID: PMC4245905 DOI: 10.1093/glycob/cwu080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/16/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
In this study, we selected 181 nematode glycogenes that are orthologous to human glycogenes and examined their RNAi phenotypes. The results are deposited in the Caenorhabditis elegans Glycogene Database (CGGDB) at AIST, Tsukuba, Japan. The most prominent RNAi phenotypes observed are disruptions of cell cycle progression in germline mitosis/meiosis and in early embryonic cell mitosis. Along with the previously reported roles of chondroitin proteoglycans, glycosphingolipids and GPI-anchored proteins in cell cycle progression, we show for the first time that the inhibition of the functions of N-glycan synthesis genes (cytoplasmic alg genes) resulted in abnormal germline formation, ER stress and small body size phenotypes. The results provide additional information on the roles of glycoconjugates in the cell cycle progression mechanisms of germline and embryonic cells.
Collapse
Affiliation(s)
| | - Kazuko H Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsufumi Dejima
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Daisuke Murata
- Graduate School of Systems Life Sciences, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Nanako Kanaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Tetsuro Takaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroyuki Mihara
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Takayuki Nagaishi
- Graduate School of Systems Life Sciences, and Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Shuhei Furukawa
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Keiko-Gengyo Ando
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Akira Togayachi
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Yoshinori Suzuki
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Toshihide Shikanai
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Kazuya Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
26
|
Aguilera-Romero A, Gehin C, Riezman H. Sphingolipid homeostasis in the web of metabolic routes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:647-56. [DOI: 10.1016/j.bbalip.2013.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
27
|
Zhang H, Kim A, Abraham N, Khan LA, Göbel V. Vesicular sorting controls the polarity of expanding membranes in the C. elegans intestine. WORM 2013; 2:e23702. [PMID: 24058862 PMCID: PMC3670463 DOI: 10.4161/worm.23702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
Biological tubes consist of polarized epithelial cells with apical membranes building the central lumen and basolateral membranes contacting adjacent cells or the extracellular matrix. Cellular polarity requires distinct inputs from outside the cell, e.g., the matrix, inside the cell, e.g., vesicular trafficking and the plasma membrane and its junctions.1 Many highly conserved polarity cues have been identified, but their integration during the complex process of polarized tissue and organ morphogenesis is not well understood. It is assumed that plasma-membrane-associated polarity determinants, such as the partitioning-defective (PAR) complex, define plasma membrane domain identities, whereas vesicular trafficking delivers membrane components to these domains, but lacks the ability to define them. In vitro studies on lumenal membrane biogenesis in mammalian cell lines now indicate that trafficking could contribute to defining membrane domains by targeting the polarity determinants, e.g., the PARs, themselves.2 This possibility suggests a mechanism for PARs’ asymmetric distribution on membranes and places vesicle-associated polarity cues upstream of membrane-associated polarity determinants. In such an upstream position, trafficking might even direct multiple membrane components, not only polarity determinants, an original concept of polarized plasma membrane biogenesis3,4that was largely abandoned due to the failure to identify a molecularly defined intrinsic vesicular sorting mechanism. Our two recent studies on C. elegans intestinal tubulogenesis reveal that glycosphingolipids (GSLs) and the well-recognized vesicle components clathrin and its AP-1 adaptor are required for targeting multiple apical molecules, including polarity regulators, to the expanding apical/lumenal membrane.5,6 These findings support GSLs’ long-proposed role in in vivo polarized epithelial membrane biogenesis and development and identify a novel function in apical polarity for classical post-Golgi vesicle components. They are also compatible with a vesicle-intrinsic sorting mechanism during membrane biogenesis and suggest a model for how vesicles could acquire apical directionality during the assembly of the functionally critical polarized lumenal surfaces of epithelial tubes.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Pediatrics; Massachusetts General Hospital; Harvard Medical School; Boston, MA USA
| | | | | | | | | |
Collapse
|
28
|
Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y. New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1475-85. [PMID: 23770033 DOI: 10.1016/j.bbalip.2013.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
Abstract
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | |
Collapse
|
29
|
Jennemann R, Gröne HJ. Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 2013; 52:231-48. [PMID: 23473748 DOI: 10.1016/j.plipres.2013.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022]
Abstract
Glycosphingolipids (GSLs) are believed to be involved in many cellular events including trafficking, signaling and cellular interactions. Over the past decade considerable progress was made elucidating the function of GSLs by generating and exploring animal models with GSL-deficiency. Initial studies focused on exploring the role of complex sialic acid containing GSLs (gangliosides) in neuronal tissue. Although complex gangliosides were absent, surprisingly, the phenotype observed was rather mild. In subsequent studies, several mouse models with combinations of gene-deletions encoding GSL-synthesizing enzymes were developed. The results indicated that reduction of GSL-complexity correlated with severity of phenotypes. However, in these mice, accumulation of precursor GSLs or neobiosynthesized GSL-series seemed to partly compensate the loss of GSLs. Thus, UDP-glucose:ceramide glucosyltransferase (Ugcg), catalyzing the basic step of the glucosylceramide-based GSL-biosynthesis, was genetically disrupted. A total systemic deletion of Ugcg caused early embryonic lethality. Therefore, Ugcg was eliminated in a cell-specific manner using the cre/loxP-system. New insights into the cellular function of GSLs were gained. It was demonstrated that neurons require GSLs for differentiation and maintenance. In keratinocytes, preservation of the skin barrier depends on GSL synthesis and in enterocytes of the small intestine GSLs are involved in endocytosis and vesicular transport.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
30
|
Hagiwara K, Nagamori S, Umemura YM, Ohgaki R, Tanaka H, Murata D, Nakagomi S, Nomura KH, Kage-Nakadai E, Mitani S, Nomura K, Kanai Y. NRFL-1, the C. elegans NHERF orthologue, interacts with amino acid transporter 6 (AAT-6) for age-dependent maintenance of AAT-6 on the membrane. PLoS One 2012; 7:e43050. [PMID: 22916205 PMCID: PMC3419730 DOI: 10.1371/journal.pone.0043050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 07/18/2012] [Indexed: 12/11/2022] Open
Abstract
The NHERF (Na(+)/H(+) exchanger regulatory factor) family has been proposed to play a key role in regulating transmembrane protein localization and retention at the plasma membrane. Due to the high homology between the family members, potential functional compensations have been a concern in sorting out the function of individual NHERF numbers. Here, we studied C. elegans NRFL-1 (C01F6.6) (nherf-like protein 1), the sole C. elegans orthologue of the NHERF family, which makes worm a model with low genetic redundancy of NHERF homologues. Integrating bioinformatic knowledge of C. elegans proteins into yeast two-hybrid scheme, we identified NRFL-1 as an interactor of AAT-6, a member of the C. elegans AAT (amino acid transporter) family. A combination of GST pull-down assay, localization study, and co-immunoprecipitation confirmed the binding and characterized the PDZ interaction. AAT-6 localizes to the luminal membrane even in the absence of NRFL-1 when the worm is up to four-day old. A fluorescence recovery after photobleaching (FRAP) analysis suggested that NRFL-1 immobilizes AAT-6 at the luminal membrane. When the nrfl-1 deficient worm is six-day or older, in contrast, the membranous localization of AAT-6 is not observed, whereas AAT-6 tightly localizes to the membrane in worms with NRFL-1. Sorting out the in vivo functions of the C. elegans NHERF protein, we found that NRFL-1, a PDZ-interactor of AAT-6, is responsible for the immobilization and the age-dependent maintenance of AAT-6 on the intestinal luminal membrane.
Collapse
Affiliation(s)
- Kohei Hagiwara
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
- School of Medicine, Osaka University, Osaka, Japan
| | - Shushi Nagamori
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuhiro M. Umemura
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichi Ohgaki
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidekazu Tanaka
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisuke Murata
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Saya Nakagomi
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuko H. Nomura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
- Department of Biological Sciences, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Kazuya Nomura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
- Department of Biological Sciences, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| |
Collapse
|
31
|
Dou J, Chen L, Hu Y, Miao L. Cholesterol and the biosynthesis of glycosphingolipids are required for sperm activation in Caenorhabditis elegans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:934-42. [DOI: 10.1016/j.bbalip.2012.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
32
|
Zhang H, Kim A, Abraham N, Khan LA, Hall DH, Fleming JT, Gobel V. Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis. Development 2012; 139:2071-83. [PMID: 22535410 DOI: 10.1242/dev.077347] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clathrin coats vesicles in all eukaryotic cells and has a well-defined role in endocytosis, moving molecules away from the plasma membrane. Its function on routes towards the plasma membrane was only recently appreciated and is thought to be limited to basolateral transport. Here, an unbiased RNAi-based tubulogenesis screen identifies a role of clathrin (CHC-1) and its AP-1 adaptor in apical polarity during de novo lumenal membrane biogenesis in the C. elegans intestine. We show that CHC-1/AP-1-mediated polarized transport intersects with a sphingolipid-dependent apical sorting process. Depleting each presumed trafficking component mislocalizes the same set of apical membrane molecules basolaterally, including the polarity regulator PAR-6, and generates ectopic lateral lumens. GFP::CHC-1 and BODIPY-ceramide vesicles associate perinuclearly and assemble asymmetrically at polarized plasma membrane domains in a co-dependent and AP-1-dependent manner. Based on these findings, we propose a trafficking pathway for apical membrane polarity and lumen morphogenesis that implies: (1) a clathrin/AP-1 function on an apically directed transport route; and (2) the convergence of this route with a sphingolipid-dependent apical trafficking path.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Hirabayashi Y. A world of sphingolipids and glycolipids in the brain--novel functions of simple lipids modified with glucose. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:129-143. [PMID: 22498977 PMCID: PMC3406307 DOI: 10.2183/pjab.88.129] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Glycosphingolipids (GSLs) are present on cell surface membranes and are particularly abundant in the brain. Since over 300-400 GSLs are synthesized from glucosylceramide (GlcCer), GlcCer is believed to only serve as the source of most GSLs, including sialic acid-containing GSLs or gangliosides, in the brain. Recent studies, however, suggest that GlcCer itself plays a role in the heat stress response, as it functions as a glucose donor for the synthesis of cholesterylglucoside, a lipid mediator in heat stress responses in animals. GlcCer in adipose tissues is also thought to be involved in mechanisms that regulate energy (sugar and lipid) metabolism. Our extensive structural study revealed an additional novel glucosylated membrane lipid, called phosphatidylglucoside, in developing rodent brains and human neutrophils. These lipids, all modified with glucose, are enriched in lipid rafts and play important roles in basic cellular processes. Here, I summarize the recent progress regarding these glucosylated lipids and their biosynthesis and regulation in the central nervous system (CNS).
Collapse
Affiliation(s)
- Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan.
| |
Collapse
|
34
|
Zhang H, Abraham N, Khan LA, Hall DH, Fleming JT, Göbel V. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat Cell Biol 2011; 13:1189-201. [PMID: 21926990 PMCID: PMC3249144 DOI: 10.1038/ncb2328] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 07/28/2011] [Indexed: 02/06/2023]
Abstract
Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that multiple-lumen formation is caused by apicobasal polarity conversion, and demonstrate that in situ modulation of lipid biosynthesis is sufficient to reversibly switch apical domain identities on growing membranes of single post-mitotic cells, shifting lumen positions. Follow-on targeted lipid-biosynthesis pathway screens and functional genetic assays were designed to identify a putative single causative lipid species. They demonstrate that fatty-acid biosynthesis affects polarity through sphingolipid synthesis, and reveal ceramide glucosyltransferases (CGTs) as end-point biosynthetic enzymes in this pathway. Our findings identify glycosphingolipids, CGT products and obligate membrane lipids, as critical determinants of in vivo polarity and indicate that they sort new components to the expanding apical membrane.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kohyama-Koganeya A, Nabetani T, Miura M, Hirabayashi Y. Glucosylceramide synthase in the fat body controls energy metabolism in Drosophila. J Lipid Res 2011; 52:1392-9. [PMID: 21550991 DOI: 10.1194/jlr.m014266] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucosylceramide synthase (GlcT-1) catalyzes the synthesis of glucosylceramide (GlcCer), the core structure of major glycosphingolipids (GSLs). Obesity is a metabolic disorder caused by an imbalance between energy uptake and expenditure, resulting in excess stored body fat. Recent studies have shown that GSL levels are increased in obese rodents and that pharmacologically reducing GSL levels by inhibiting GlcCer synthesis improves adipocyte function. However, the molecular mechanism underlying these processes is still not clearly understood. Using Drosophila as a model animal, we report that GlcT-1 expression in the fat body, which is equivalent to mammalian adipose tissue, regulates energy metabolism. Overexpression of GlcT-1 increases stored nutrition (triacylglycerol and carbohydrate) levels. Conversely, reduced expression of GlcT-1 in the fat body causes a reduction of fat storage. This regulation occurs, at least in part, through the activation of p38-ATF2 signaling. Furthermore, we found that GlcCer is the sole GSL of the fat body, indicating that regulation of GlcCer synthesis by GlcT-1 in the fat body is responsible for regulating energy homeostasis. Both GlcT-1 and p38-ATF2 signaling are evolutionarily conserved, leading us to propose an evolutionary perspective in which GlcT-1 appears to be one of the key factors that control fat metabolism.
Collapse
Affiliation(s)
- Ayako Kohyama-Koganeya
- Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|