1
|
Khabou B, Sahari UBM, Ben Issa A, Bouchaala W, Szenker-Ravi E, Yu Jin Ng A, Bonnard C, Mbarek H, Zeyaul I, Fakhfakh F, Kammoun F, Reversade B, Charfi Triki C. Characterization of a missense variant in COG5 in a Tunisian patient with COG5-CDG syndrome and insights into the effect of non-synonymous variants on COG5 protein. J Hum Genet 2024; 69:591-597. [PMID: 38987656 DOI: 10.1038/s10038-024-01273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
The clinical diagnosis of patients with multisystem involvement including a pronounced neurologic damage is challenging. High-throughput sequencing methods remains crucial to provide an accurate diagnosis. In this study, we reported a Tunisian patient manifesting hypotonia and global developmental delay with visual and skin abnormalities. Exome sequencing was conducted followed by segregation analysis and, subsequently additional investigations. In silico analysis of non-synonymous variants (nsSNPs) described in COG5 in conserved positions was made. Results revealed a homozygous missense variant c.298 C > T (p.Leu100Phe) in the COG5 inherited from both parents. This variant altered both protein solubility and stability, in addition to a putative disruption of the COG5-COG7 interaction. This disruption has been confirmed using patient-derived cells in vitro in a COG5 co-immuno-precipitation, where interaction with binding partner COG7 was abrogated. Hence, we established the COG5-CDG diagnosis. Clinically, the patient shared common features with the already described cases with the report of the ichtyosis as a new manifestation. Conversely, the CADD scoring revealed 19 putatively pathogenic nsSNPs (Minor Allele Frequency MAF < 0.001, CADD > 30), 11 of which had a significant impact on the solubility and/or stability of COG5. These properties seem to be disrupted by six of the seven missense COG5-CDG variants. In conclusion, our study expands the genetic and phenotypic spectrum of COG5-CDG disease and highlight the utility of the next generation sequencing as a powerful tool in accurate diagnosis. Our results shed light on a likely molecular mechanism underlying the pathogenic effect of missense COG5 variants, which is the alteration of COG5 stability and solubility.
Collapse
Affiliation(s)
- Boudour Khabou
- Research laboratory of Neuropediatrics LR19ES15, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia.
| | - Umar Bin Mohamad Sahari
- Laboratory of Regulatory Genomics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abir Ben Issa
- Research laboratory of Neuropediatrics LR19ES15, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| | - Wafa Bouchaala
- Research laboratory of Neuropediatrics LR19ES15, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Child Neurology department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
- Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| | - Emmanuelle Szenker-Ravi
- Smart-Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Hamdi Mbarek
- Qatar Genome Program, Qatar Science and Technology Park, Qatar Foundation, Doha, Qatar
| | - Islam Zeyaul
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Fatma Kammoun
- Research laboratory of Neuropediatrics LR19ES15, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Child Neurology department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
- Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| | - Bruno Reversade
- Smart-Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Medical Genetics Department, School of Medicine, Koç University, Istanbul, Turkey
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chahnez Charfi Triki
- Research laboratory of Neuropediatrics LR19ES15, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Child Neurology department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
- Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| |
Collapse
|
2
|
Xing Y, Jian Y, Zhao X, Zhang Y, Zhang Z, Zhang X, Zhang X. Morphological determination of localization and function of Golgi proteins. BIOPHYSICS REPORTS 2024; 10:121-132. [PMID: 38774352 PMCID: PMC11103716 DOI: 10.52601/bpr.2024.240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 05/24/2024] Open
Abstract
In animal cells, the Golgi apparatus serves as the central hub of the endomembrane secretory pathway. It is responsible for the processing, modification, and sorting of proteins and lipids. The unique stacking and ribbon-like architecture of the Golgi apparatus forms the foundation for its precise functionality. Under cellular stress or pathological conditions, the structure of the Golgi and its important glycosylation modification function may change. It is crucial to employ suitable methodologies to study the structure and function of the Golgi apparatus, particularly when assessing the involvement of a target protein in Golgi regulation. This article provides a comprehensive overview of the diverse microscopy techniques used to determine the specific location of the target protein within the Golgi apparatus. Additionally, it outlines methods for assessing changes in the Golgi structure and its glycosylation modification function following the knockout of the target gene.
Collapse
Affiliation(s)
- Yusheng Xing
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yannan Jian
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodan Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenqian Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Tan WS, Rong E, Dry I, Lillico S, Law A, Digard P, Whitelaw B, Dalziel RG. Validation of Candidate Host Cell Entry Factors for Bovine Herpes Virus Type-1 Based on a Genome-Wide CRISPR Knockout Screen. Viruses 2024; 16:297. [PMID: 38400072 PMCID: PMC10893506 DOI: 10.3390/v16020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
To identify host factors that affect Bovine Herpes Virus Type 1 (BoHV-1) infection we previously applied a genome wide CRISPR knockout screen targeting all bovine protein coding genes. By doing so we compiled a list of both pro-viral and anti-viral proteins involved in BoHV-1 replication. Here we provide further analysis of those that are potentially involved in viral entry into the host cell. We first generated single cell knockout clones deficient in some of the candidate genes for validation. We provide evidence that Polio Virus Receptor-related protein (PVRL2) serves as a receptor for BoHV-1, mediating more efficient entry than the previously identified Polio Virus Receptor (PVR). By knocking out two enzymes that catalyze HSPG chain elongation, HST2ST1 and GLCE, we further demonstrate the significance of HSPG in BoHV-1 entry. Another intriguing cluster of candidate genes, COG1, COG2 and COG4-7 encode six subunits of the Conserved Oligomeric Golgi (COG) complex. MDBK cells lacking COG6 produced fewer but bigger plaques compared to control cells, suggesting more efficient release of newly produced virions from these COG6 knockout cells, due to impaired HSPG biosynthesis. We further observed that viruses produced by the COG6 knockout cells consist of protein(s) with reduced N-glycosylation, potentially explaining their lower infectivity. To facilitate candidate validation, we also detailed a one-step multiplex CRISPR interference (CRISPRi) system, an orthogonal method to KO that enables quick and simultaneous deployment of three CRISPRs for efficient gene inactivation. Using CRISPR3i, we verified eight candidates that have been implicated in the synthesis of surface heparan sulfate proteoglycans (HSPGs). In summary, our experiments confirmed the two receptors PVR and PVRL2 for BoHV-1 entry into the host cell and other factors that affect this process, likely through the direct or indirect roles they play during HSPG synthesis and glycosylation of viral proteins.
Collapse
Affiliation(s)
- Wenfang Spring Tan
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Enguang Rong
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Inga Dry
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Simon Lillico
- Division of Functional Genetics and Development, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK; (S.L.); (B.W.)
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK
| | - Andy Law
- Division of Genetics and Genomics, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK;
| | - Paul Digard
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Bruce Whitelaw
- Division of Functional Genetics and Development, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK; (S.L.); (B.W.)
- Division of Genetics and Genomics, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK;
| | - Robert G. Dalziel
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| |
Collapse
|
4
|
Zobaroğlu-Özer P, Bora-Akoğlu G. Split but merge: Golgi fragmentation in physiological and pathological conditions. Mol Biol Rep 2024; 51:214. [PMID: 38280063 DOI: 10.1007/s11033-023-09153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/12/2023] [Indexed: 01/29/2024]
Abstract
The Golgi complex is a highly dynamic and tightly regulated cellular organelle with essential roles in the processing as well as the sorting of proteins and lipids. Its structure undergoes rapid disassembly and reassembly during normal physiological processes, including cell division, migration, polarization, differentiation, and cell death. Golgi dispersal or fragmentation also occurs in pathological conditions, such as neurodegenerative diseases, infectious diseases, congenital disorders of glycosylation diseases, and cancer. In this review, current knowledge about both structural organization and morphological alterations in the Golgi in physiological and pathological conditions is summarized together with the methodologies that help to reveal its structure.
Collapse
Affiliation(s)
- Pelin Zobaroğlu-Özer
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biology, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Gamze Bora-Akoğlu
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
5
|
Marsilia C, Batra M, Pokrovskaya ID, Wang C, Chaput D, Naumova DA, Lupashin VV, Suvorova ES. Essential role of the conserved oligomeric Golgi complex in Toxoplasma gondii. mBio 2023; 14:e0251323. [PMID: 37966241 PMCID: PMC10746232 DOI: 10.1128/mbio.02513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The Golgi is an essential eukaryotic organelle and a major place for protein sorting and glycosylation. Among apicomplexan parasites, Toxoplasma gondii retains the most developed Golgi structure and produces many glycosylated factors necessary for parasite survival. Despite its importance, Golgi function received little attention in the past. In the current study, we identified and characterized the conserved oligomeric Golgi complex and its novel partners critical for protein transport in T. gondii tachyzoites. Our results suggest that T. gondii broadened the role of the conserved elements and reinvented the missing components of the trafficking machinery to accommodate the specific needs of the opportunistic parasite T. gondii.
Collapse
Affiliation(s)
- Clem Marsilia
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mrinalini Batra
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Irina D. Pokrovskaya
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Changqi Wang
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Daria A. Naumova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Elena S. Suvorova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Yashavarddhan MH, Bohra D, Rana R, Tuli HS, Ranjan V, Rana DS, Ganguly NK. Comprehensive overview of 2022 human monkeypox outbreak and its pathology, prevention, and treatment: A strategy for disease control. Microbiol Res 2023; 277:127504. [PMID: 37812873 DOI: 10.1016/j.micres.2023.127504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The 2022 Monkeypox virus, an evolved DNA strain originating in Africa, exhibits heightened human-to-human transmissibility and potential animal transmission. Its host remains unidentified. While its initial slow transmission rate restrained global impact, 2022 saw a surge in cases, causing widespread concern in over 103 countries by September. This virus's distinctive human-to-human transmission marks a crucial shift, demanding a prompt revaluation of containment strategies. However, the host source for this shift requires urgent research attention. Regrettably, no universal preventive or curative methods have emerged for this evolved virus. Repurposed from smallpox vaccines, only some vaccinations offer a partial defense. Solely one therapeutic drug is available. The article's essence is to provide a comprehensive grasp of the virus's epidemiology, morphology, immune invasion mechanisms, and existing preventive and treatment measures. This knowledge equips researchers to devise strategies against its spread and potential public health implications.
Collapse
Affiliation(s)
- M H Yashavarddhan
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Deepika Bohra
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| | | | - Vivek Ranjan
- Department of Blood Transfusion Medicine, Sir Ganga Ram Hospital, New Delhi 110060, India
| | | | - Nirmal Kumar Ganguly
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
7
|
Choi HS, Bjornson M, Liang J, Wang J, Ke H, Hur M, De Souza A, Kumar KS, Mortimer JC, Dehesh K. COG-imposed Golgi functional integrity determines the onset of dark-induced senescence. NATURE PLANTS 2023; 9:1890-1901. [PMID: 37884654 DOI: 10.1038/s41477-023-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Plant survival depends on dynamic stress-response pathways in changing environments. To uncover pathway components, we screened an ethyl methanesulfonate-mutagenized transgenic line containing a stress-inducible luciferase construct and isolated a constitutive expression mutant. The mutant is the result of an amino acid substitution in the seventh subunit of the hetero-octameric conserved oligomeric Golgi (COG) complex of Arabidopsis thaliana. Complementation studies verified the Golgi localization of cog7, and stress tests established accelerated dark-induced carbon deprivation/senescence of the mutant compared with wild-type plants. Multiomics and biochemical analyses revealed accelerated induction of protein ubiquitination and autophagy, and a counterintuitive increased protein N-glycosylation in senescencing cog7 relative to wild-type. A revertant screen using the overexpressor (FOX)-hunting system established partial, but notable rescue of cog7 phenotypes by COG5 overexpression, and conversely premature senescence in reduced COG5 expressing lines. These findings identify COG-imposed Golgi functional integrity as a main player in ensuring cellular survival under energy-limiting conditions.
Collapse
Affiliation(s)
- Hee-Seung Choi
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Marta Bjornson
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Jiubo Liang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Jinzheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Amancio De Souza
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | | | - Jenny C Mortimer
- Lawrence Berkeley National Lab, Joint BioEnergy Institute, Emeryville, CA, USA
- School of Agriculture Food and Wine & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
8
|
Tagka A, Geronikolou S, Evaggelopoulos A, Grigoropoulou S, Kavatha D, Botsi C, Papadopoulou A, Tryfinopoulou K, Katsoulidou A, Pappa S, Papa A, Paparizos V, Nicolaidou E, Tsiodras S, Stratigos AJ. Simultaneous Multiple-Stages Mpox Genital Lesions on the Same Site in a Traveler to Greece: A Case Report. Vaccines (Basel) 2023; 11:vaccines11050901. [PMID: 37243005 DOI: 10.3390/vaccines11050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
A 47-year-old Caucasian traveller from an mpox (formerly monkeypox and also best suited abbreviated MPX)-endemic country was referred for a skin rash, of recent onset, confined to the genital area. The rash consisted of erythematous umbilicated papules, vesicles and pustules with a characteristic white ring. The lesions were observed simultaneously at different stages of progression on the same anatomical site, a clinical presentation that is not encountered frequently. The patient was febrile, fatigued and had blood-tinged cough. The clinical suspicion of mpox was raised, and the initial real-time PCR identified a non-variola orthopox virus, which was confirmed at the National Reference Laboratory to belong to the West African clade.
Collapse
Affiliation(s)
- Anna Tagka
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Styliani Geronikolou
- Clinical Translational and Experimental Surgery Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Apostolos Evaggelopoulos
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Sotiria Grigoropoulou
- 4th Department of Internal Medicine, Athens Medical School, National and Kapodistrian University, 11527 Athens, Greece
| | - Dimitra Kavatha
- 4th Department of Internal Medicine, Athens Medical School, National and Kapodistrian University, 11527 Athens, Greece
| | - Chryssoula Botsi
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Aggeliki Papadopoulou
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Kyriaki Tryfinopoulou
- Central Public Health Laboratory, National Public Health Organization, 15123 Athens, Greece
| | - Antigoni Katsoulidou
- Central Public Health Laboratory, National Public Health Organization, 15123 Athens, Greece
| | - Styliani Pappa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasilios Paparizos
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Electra Nicolaidou
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Athens Medical School, National and Kapodistrian University, 11527 Athens, Greece
| | - Alexandros J Stratigos
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| |
Collapse
|
9
|
B.R. R, Shah N, Joshi P, Madhusudan MS, Balasubramanian N. Kinetics of Arf1 inactivation regulates Golgi organisation and function in non-adherent fibroblasts. Biol Open 2023; 12:bio059669. [PMID: 36946871 PMCID: PMC10187640 DOI: 10.1242/bio.059669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Arf1 belongs to the Arf family of small GTPases that localise at the Golgi and plasma membrane. Active Arf1 plays a crucial role in regulating Golgi organisation and function. In mouse fibroblasts, loss of adhesion triggers a consistent drop (∼50%) in Arf1 activation that causes the Golgi to disorganise but not fragment. In suspended cells, the trans-Golgi (GalTase) disperses more prominently than cis-Golgi (Man II), accompanied by increased active Arf1 (detected using GFP-ABD: ARHGAP10 Arf1 binding domain) associated with the cis-Golgi compartment. Re-adhesion restores Arf1 activation at the trans-Golgi as it reorganises. Arf1 activation at the Golgi is regulated by Arf1 Guanine nucleotide exchange factors (GEFs), GBF1, and BIG1/2. In non-adherent fibroblasts, the cis-medial Golgi provides a unique setting to test and understand the role GEF-mediated Arf1 activation has in regulating Golgi organisation. Labelled with Man II-GFP, non-adherent fibroblasts treated with increasing concentrations of Brefeldin-A (BFA) (which inhibits BIG1/2 and GBF1) or Golgicide A (GCA) (which inhibits GBF1 only) comparably decrease active Arf1 levels. They, however, cause a concentration-dependent increase in cis-medial Golgi fragmentation and fusion with the endoplasmic reticulum (ER). Using selected BFA and GCA concentrations, we find a change in the kinetics of Arf1 inactivation could mediate this by regulating cis-medial Golgi localisation of GBF1. On loss of adhesion, a ∼50% drop in Arf1 activation over 120 min causes the Golgi to disorganise. The kinetics of this drop, when altered by BFA or GCA treatment causes a similar decline in Arf1 activation but over 10 min. This causes the Golgi to now fragment which affects cell surface glycosylation and re-adherent cell spreading. Using non-adherent fibroblasts this study reveals the kinetics of Arf1 inactivation, with active Arf1 levels, to be vital for Golgi organisation and function.
Collapse
Affiliation(s)
- Rajeshwari B.R.
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Nikita Shah
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Prachi Joshi
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - M. S. Madhusudan
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
10
|
Buyukdogan M, Hancer VS, Sucak A. The First Congenital Disorders of Glycosylation Patient (Fetus) with Homozygous COG5 c.95T>G Variant. Mol Syndromol 2023; 14:181-183. [PMID: 37064333 PMCID: PMC10091003 DOI: 10.1159/000527221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Congenital disorders of glycosylation (CDG) are autosomal recessive hereditary genetic disorders characterized by abnormal glycosylation of N-linked oligosaccharides. Case Presentation In this research, prenatal testing (24th week of pregnancy) revealed findings like polyhydramnios, hydrocephaly, abnormal facial features/shape, brain morphology abnormality, spina bifida, vertebral column abnormality, macrocephaly, scoliosis, micrognathia, abnormal kidney morphology, short fetal femur length, and short fetal humerus length in the fetus. Whole-exome sequencing was performed; the COG5 gene has shown a pathogenic variant. Discussion Homozygous patients have never been seen before in the literature for COG5-CDG. We demonstrate the first CDG patient at fetus stage with homozygous COG5 c.95T>G variant.
Collapse
Affiliation(s)
- Murat Buyukdogan
- Department of Medical Genetics, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Veysel Sabri Hancer
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Ayhan Sucak
- Department of Gynecology and Obstetrics, Faculty of Medicine, Istinye University, Istanbul, Turkey
| |
Collapse
|
11
|
Sumya FT, Pokrovskaya ID, D'Souza Z, Lupashin VV. Acute COG complex inactivation unveiled its immediate impact on Golgi and illuminated the nature of intra-Golgi recycling vesicles. Traffic 2023; 24:52-75. [PMID: 36468177 PMCID: PMC9969905 DOI: 10.1111/tra.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina D. Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zinia D'Souza
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
12
|
Sumya FT, Pokrovskaya ID, Lupashin VV. Rapid COG Depletion in Mammalian Cell by Auxin-Inducible Degradation System. Methods Mol Biol 2023; 2557:365-390. [PMID: 36512227 PMCID: PMC10019459 DOI: 10.1007/978-1-0716-2639-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conserved oligomeric Golgi (COG) complex orchestrates intra-Golgi retrograde trafficking and glycosylation of macromolecules, but the detailed mechanism of COG action is unknown. Previous studies employed prolonged protein knockout and knockdown approaches which may potentially generate off-target and indirect mutant phenotypes. To achieve a fast depletion of COG subunits in human cells, the auxin-inducible degradation system was employed. This method of protein regulation allows a very fast and efficient depletion of COG subunits, which provides the ability to accumulate COG complex dependent (CCD) vesicles and investigate initial cellular defects associated with the acute depletion of COG complex subunits. This protocol is applicable to other vesicle tethering complexes and can be utilized to investigate anterograde and retrograde intracellular membrane trafficking pathways.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Irina D Pokrovskaya
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vladimir V Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
13
|
Li H, Huang QZ, Zhang H, Liu ZX, Chen XH, Ye LL, Luo Y. The land-scape of immune response to monkeypox virus. EBioMedicine 2022; 87:104424. [PMID: 36584594 PMCID: PMC9797195 DOI: 10.1016/j.ebiom.2022.104424] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
Human monkeypox is a viral zoonotic smallpox-like disease caused by the monkeypox virus (MPXV) and has become the greatest public health threat in the genus Orthopoxvirus after smallpox was eradicated. The host immune response to MPXV plays an essential role in disease pathogenesis and clinical manifestations. MPXV infection leads to skin lesions with the genital area as the main feature in the current outbreak and triggers a strong immune response that results in sepsis, deep tissue abscess, severe respiratory disease, and injuries to multiple immune organs. Emerging evidence shows that the immunopathogenesis of MPXV infection is closely associated with impaired NK-cell function, lymphopenia, immune evasion, increased antibodies, increased blood monocytes and granulocytes, cytokine storm, inhibition of the host complement system, and antibody-dependent enhancement. In this overview, we discuss the immunopathology and immunopathogenesis of monkeypox to aid the development of novel immunotherapeutic strategies against monkeypox.
Collapse
Affiliation(s)
- Heng Li
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Qi-Zhao Huang
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Zhen-Xing Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Xiao-Hui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Li-Lin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, PR China,Corresponding author: Institute of Immunology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Yang Luo
- College of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China,Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, 650118, PR China,Department of Laboratory Medicine, Jiangjin Hospital, Chongqing University, Chongqing, 402260, PR China,Corresponding author: College of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China.
| |
Collapse
|
14
|
Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods Mol Biol 2022; 2557:453-493. [PMID: 36512231 PMCID: PMC10178357 DOI: 10.1007/978-1-0716-2639-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we provide a detailed guide for the application of commonly used small molecules to study Golgi structure and function in vitro. Furthermore, we have curated a concise, validated list of endomembrane markers typically used in downstream assays to examine the consequent effect on the Golgi via microscopy and western blot after drug treatment. This chapter will be useful for researchers beginning their foray into the field of intracellular trafficking and Golgi biology.
Collapse
|
15
|
Shedding of N-acetylglucosaminyltransferase-V is regulated by maturity of cellular N-glycan. Commun Biol 2022; 5:743. [PMID: 35915223 PMCID: PMC9343384 DOI: 10.1038/s42003-022-03697-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
The number of N-glycan branches on glycoproteins is closely related to the development and aggravation of various diseases. Dysregulated formation of the branch produced by N-acetylglucosaminyltransferase-V (GnT-V, also called as MGAT5) promotes cancer growth and malignancy. However, it is largely unknown how the activity of GnT-V in cells is regulated. Here, we discover that the activity of GnT-V in cells is selectively upregulated by changing cellular N-glycans from mature to immature forms. Our glycomic analysis further shows that loss of terminal modifications of N-glycans resulted in an increase in the amount of the GnT-V-produced branch. Mechanistically, shedding (cleavage and extracellular secretion) of GnT-V mediated by signal peptide peptidase-like 3 (SPPL3) protease is greatly inhibited by blocking maturation of cellular N-glycans, resulting in an increased level of GnT-V protein in cells. Alteration of cellular N-glycans hardly impairs expression or localization of SPPL3; instead, SPPL3-mediated shedding of GnT-V is shown to be regulated by N-glycans on GnT-V, suggesting that the level of GnT-V cleavage is regulated by its own N-glycan structures. These findings shed light on a mechanism of secretion-based regulation of GnT-V activity. Cleavage of the glycan-branching enzyme N-acetylglucosaminyltransferase-V (GnT-V) by signal peptide peptidase-like 3 (SPPL3) protease and extracellular secretion of active glycan GnT-V depend on GnT-V’s own glycosylation state.
Collapse
|
16
|
Glendenning LM, Zhou JY, Reynero KM, Cobb BA. Divergent Golgi trafficking limits B cell-mediated IgG sialylation. J Leukoc Biol 2022; 112:1555-1566. [PMID: 35726710 PMCID: PMC9701147 DOI: 10.1002/jlb.3ma0522-731r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Indexed: 01/04/2023] Open
Abstract
The degree of α2,6-linked sialylation on IgG glycans is associated with a variety of inflammatory conditions and is thought to drive IgG anti-inflammatory activity. Previous findings revealed that ablation of β-galactoside α2,6-sialyltransferase 1 (ST6Gal1) in B cells failed to alter IgG sialylation in vivo, yet resulted in the loss of B cell surface α2,6 sialylation, suggesting divergent pathways for IgG and cell surface glycoprotein glycosylation and trafficking. Employing both B cell hybridomas and ex vivo murine B cells, we discovered that IgG was poorly sialylated by ST6Gal1 and highly core fucosylated by α1,6-fucosyltransferase 8 (Fut8) in cell culture. In contrast, cell surface glycoproteins on IgG-producing cells showed the opposite pattern by flow cytometry, with high α2,6 sialylation and low α1,6 fucosylation. Paired studies further revealed that ex vivo B cell-produced IgG carried significantly less sialylation compared with IgG isolated from the plasma of matched animals, providing evidence that IgG sialylation increases after release in vivo. Finally, confocal analyses demonstrated that IgG poorly localized to subcellular compartments rich in sialylation and ST6Gal1, and strongly to regions rich in fucosylation and Fut8. These findings support a model in which IgG subcellular trafficking diverges from the canonical secretory pathway by promoting Fut8-mediated core fucosylation and limiting exposure to and modification by ST6Gal1, providing a mechanism for why B cell-expressed ST6Gal1 is dispensable for IgG sialylation in vivo.
Collapse
Affiliation(s)
- Leandre M. Glendenning
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH 44106, USA
| | - Julie Y. Zhou
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH 44106, USA
| | - Kalob M. Reynero
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH 44106, USA
| | - Brian A. Cobb
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH 44106, USA
- To whom correspondence should be sent
| |
Collapse
|
17
|
Toustou C, Walet-Balieu ML, Kiefer-Meyer MC, Houdou M, Lerouge P, Foulquier F, Bardor M. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biol Rev Camb Philos Soc 2021; 97:732-748. [PMID: 34873817 PMCID: PMC9300197 DOI: 10.1111/brv.12820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
N‐glycosylation is an important post‐translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N‐glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N‐glycan processing and further describe recent findings regarding the diversity of N‐glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N‐glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N‐glycosylation are highlighted, especially the regulation of the biosynthesis of complex‐type N‐glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.
Collapse
Affiliation(s)
- Charlotte Toustou
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France
| | - Marie-Laure Walet-Balieu
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France
| | - Marie-Christine Kiefer-Meyer
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France
| | - Marine Houdou
- Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France.,Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, Leuven, 3000, Belgium
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France
| | - François Foulquier
- Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France.,Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France
| |
Collapse
|
18
|
Sardana R, Highland CM, Straight BE, Chavez CF, Fromme JC, Emr SD. Golgi membrane protein Erd1 Is essential for recycling a subset of Golgi glycosyltransferases. eLife 2021; 10:e70774. [PMID: 34821548 PMCID: PMC8616560 DOI: 10.7554/elife.70774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Protein glycosylation in the Golgi is a sequential process that requires proper distribution of transmembrane glycosyltransferase enzymes in the appropriate Golgi compartments. Some of the cytosolic machinery required for the steady-state localization of some Golgi enzymes are known but existing models do not explain how many of these enzymes are localized. Here, we uncover the role of an integral membrane protein in yeast, Erd1, as a key facilitator of Golgi glycosyltransferase recycling by directly interacting with both the Golgi enzymes and the cytosolic receptor, Vps74. Loss of Erd1 function results in mislocalization of Golgi enzymes to the vacuole/lysosome. We present evidence that Erd1 forms an integral part of the recycling machinery and ensures productive recycling of several early Golgi enzymes. Our work provides new insights on how the localization of Golgi glycosyltransferases is spatially and temporally regulated, and is finely tuned to the cues of Golgi maturation.
Collapse
Affiliation(s)
- Richa Sardana
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| | - Carolyn M Highland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Beth E Straight
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Christopher F Chavez
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Scott D Emr
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
19
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
20
|
Abnormal Expression and Prognosis Value of COG Complex Members in Kidney Renal Clear Cell Carcinoma (KIRC). DISEASE MARKERS 2021; 2021:4570235. [PMID: 34539936 PMCID: PMC8443394 DOI: 10.1155/2021/4570235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most aggressive subtype of kidney tumours with poor prognosis as well as the increasing incidence rate in worldwide. The conserved oligomeric Golgi (COG) complex is an eight-subunit (Cog1-8) peripheral Golgi protein that controls membrane trafficking and protein glycosylation and plays vital roles in human disease including cancers. Therefore, to uncover the prognostic value of COG complex in KIRC, a series of databases, including UALCAN database, GEPIA database, and Kaplan-Meier plotter, were used to analyse the mRNA expression of COG complex subunits and their prognostic values in patients with KIRC in this study. Compared with normal counterparts, mRNA expression of six COG complex subunits was significantly downregulated in KIRC tissue in UALCAN database, while COG4 mRNA expression was significantly upregulated in KIRC tissue. Moreover, the survival analysis indicated that all members of COG complex subunits were closely related with the prognosis of KIRC patients, while COG1 and COG4 were significantly associated with unfavourable overall survival (OS), the rest of COG complex subunits were importantly correlated with favourable OS. Simultaneously, higher mRNA expression of COG3, COG6, and COG8 exhibits better progression-free survival (PFS) and disease-free survival (DFS) in KIRC patients. These results identified that COG complex subunits, especially COG3, COG6, and COG8, are potential prognostic biomarkers of KIRC patients and may offer effective and new strategies for more accurately diagnosing the patients with KIRC in advance.
Collapse
|
21
|
Sumya FT, Pokrovskaya ID, Lupashin V. Development and Initial Characterization of Cellular Models for COG Complex-Related CDG-II Diseases. Front Genet 2021; 12:733048. [PMID: 34603392 PMCID: PMC8484713 DOI: 10.3389/fgene.2021.733048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Conserved Oligomeric Golgi (COG) is an octameric protein complex that orchestrates intra-Golgi trafficking of glycosylation enzymes. Over a hundred individuals with 31 different COG mutations have been identified until now. The cellular phenotypes and clinical presentations of COG-CDGs are heterogeneous, and patients primarily represent neurological, skeletal, and hepatic abnormalities. The establishment of a cellular COG disease model will benefit the molecular study of the disease, explaining the detailed sequence of the interplay between the COG complex and the trafficking machinery. Moreover, patient fibroblasts are not a good representative of all the organ systems and cell types that are affected by COG mutations. We developed and characterized cellular models for human COG4 mutations, specifically in RPE1 and HEK293T cell lines. Using a combination of CRISPR/Cas9 and lentiviral transduction technologies, both myc-tagged wild-type and mutant (G516R and R729W) COG4 proteins were expressed under the endogenous COG4 promoter. Constructed isogenic cell lines were comprehensively characterized using biochemical, microscopy (superresolution and electron), and proteomics approaches. The analysis revealed similar stability and localization of COG complex subunits, wild-type cell growth, and normal Golgi morphology in all three cell lines. Importantly, COG4-G516R cells demonstrated increased HPA-647 binding to the plasma membrane glycoconjugates, while COG4-R729W cells revealed high GNL-647 binding, indicating specific defects in O- and N-glycosylation. Both mutant cell lines express an elevated level of heparin sulfate proteoglycans. Moreover, a quantitative mass-spectrometry analysis of proteins secreted by COG-deficient cell lines revealed abnormal secretion of SIL1 and ERGIC-53 proteins by COG4-G516R cells. Interestingly, the clinical phenotype of patients with congenital mutations in the SIL1 gene (Marinesco-Sjogren syndrome) overlaps with the phenotype of COG4-G516R patients (Saul-Wilson syndrome). Our work is the first compressive study involving the creation of different COG mutations in different cell lines other than the patient's fibroblast. It may help to address the underlying cause of the phenotypic defects leading to the discovery of a proper treatment guideline for COG-CDGs.
Collapse
Affiliation(s)
| | | | - Vladimir Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
22
|
Klink VP, Darwish O, Alkharouf NW, Lawaju BR, Khatri R, Lawrence KS. Conserved oligomeric Golgi (COG) complex genes functioning in defense are expressed in root cells undergoing a defense response to a pathogenic infection and exhibit regulation my MAPKs. PLoS One 2021; 16:e0256472. [PMID: 34437620 PMCID: PMC8389442 DOI: 10.1371/journal.pone.0256472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The conserved oligomeric Golgi (COG) complex maintains correct Golgi structure and function during retrograde trafficking. Glycine max has 2 paralogs of each COG gene, with one paralog of each gene family having a defense function to the parasitic nematode Heterodera glycines. Experiments presented here show G. max COG paralogs functioning in defense are expressed specifically in the root cells (syncytia) undergoing the defense response. The expressed defense COG gene COG7-2-b is an alternate splice variant, indicating specific COG variants are important to defense. Transcriptomic experiments examining RNA isolated from COG overexpressing and RNAi roots show some COG genes co-regulate the expression of other COG complex genes. Examining signaling events responsible for COG expression, transcriptomic experiments probing MAPK overexpressing roots show their expression influences the relative transcript abundance of COG genes as compared to controls. COG complex paralogs are shown to be found in plants that are agriculturally relevant on a world-wide scale including Manihot esculenta, Zea mays, Oryza sativa, Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Brassica rapa, Elaes guineensis and Saccharum officinalis and in additional crops significant to U.S. agriculture including Beta vulgaris, Solanum tuberosum, Solanum lycopersicum and Gossypium hirsutum. The analyses provide basic information on COG complex biology, including the coregulation of some COG genes and that MAPKs functioning in defense influence their expression. Furthermore, it appears in G. max and likely other crops that some level of neofunctionalization of the duplicated genes is occurring. The analysis has identified important avenues for future research broadly in plants.
Collapse
Affiliation(s)
- Vincent P. Klink
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States of America
| | - Omar Darwish
- Department of Mathematics Computer Science, Texas Woman’s University, Denton, TX, United States of America
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States of America
| | - Bisho R. Lawaju
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| | - Rishi Khatri
- Department of Biological Sciences, Mississippi State University, Mississippi, MS, United States of America
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
23
|
Khakurel A, Kudlyk T, Bonifacino JS, Lupashin VV. The Golgi-associated retrograde protein (GARP) complex plays an essential role in the maintenance of the Golgi glycosylation machinery. Mol Biol Cell 2021; 32:1594-1610. [PMID: 34161137 PMCID: PMC8351751 DOI: 10.1091/mbc.e21-04-0169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
The Golgi complex is a central hub for intracellular protein trafficking and glycosylation. Steady-state localization of glycosylation enzymes is achieved by a combination of mechanisms involving retention and recycling, but the machinery governing these mechanisms is poorly understood. Herein we show that the Golgi-associated retrograde protein (GARP) complex is a critical component of this machinery. Using multiple human cell lines, we show that depletion of GARP subunits impairs Golgi modification of N- and O-glycans and reduces the stability of glycoproteins and Golgi enzymes. Moreover, GARP-knockout (KO) cells exhibit reduced retention of glycosylation enzymes in the Golgi. A RUSH assay shows that, in GARP-KO cells, the enzyme beta-1,4-galactosyltransferase 1 is not retained at the Golgi complex but instead is missorted to the endolysosomal system. We propose that the endosomal system is part of the trafficking itinerary of Golgi enzymes or their recycling adaptors and that the GARP complex is essential for recycling and stabilization of the Golgi glycosylation machinery. [Media: see text].
Collapse
Affiliation(s)
- Amrita Khakurel
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| | - Tetyana Kudlyk
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Vladimir V. Lupashin
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| |
Collapse
|
24
|
Adusumalli R, Åsheim HC, Lupashin V, Blackburn JB, Prydz K. Proteoglycan synthesis in conserved oligomeric Golgi subunit deficient HEK293T cells is affected differently, depending on the lacking subunit. Traffic 2021; 22:230-239. [PMID: 34053170 DOI: 10.1111/tra.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
The Conserved Oligomeric Golgi (COG) complex is an eight subunit protein complex associated with Golgi membranes. Genetic defects affecting individual COG subunits cause congenital disorders of glycosylation (CDGs), due to mislocalization of Golgi proteins involved in glycosylation mechanisms. While the resulting defects in N-and O-glycosylation have been extensively studied, no corresponding study of proteoglycan (PG) synthesis has been undertaken. We here show that glycosaminoglycan (GAG) modification of PGs is significantly reduced, regardless which COG subunit that is missing in HEK293T cells. Least reduction was observed for cells lacking COG1 and COG8 subunits, that bridge the A and B lobes of the complex. Lack of these subunits did not reduce GAG chain lengths of secreted PGs, which was reduced in cells lacking any other subunit (COG2-7). COG3 knock out (KO) cells had particularly reduced ability to polymerize GAG chains. For cell-associated GAGs, the mutant cell lines, except COG4 and COG7 KO, displayed longer GAG chains than wild-type cells, indicating that COG subunits play a role in cellular turnover of PGs. In light of the important roles PGs play in animal development, the effects KO of individual COG subunits have on GAG synthesis could explain the variable severity of COG associated CDGs.
Collapse
Affiliation(s)
| | | | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jessica B Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Medicine, Division of Allergy, Vanderbilt University Medical Center, Pulmonary and Critical Care Medicine, Nashville, Tennessee, USA
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Hartwig C, Méndez GM, Bhattacharjee S, Vrailas-Mortimer AD, Zlatic SA, Freeman AAH, Gokhale A, Concilli M, Werner E, Sapp Savas C, Rudin-Rush S, Palmer L, Shearing N, Margewich L, McArthy J, Taylor S, Roberts B, Lupashin V, Polishchuk RS, Cox DN, Jorquera RA, Faundez V. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. J Neurosci 2021; 41:215-233. [PMID: 33208468 PMCID: PMC7810662 DOI: 10.1523/jneurosci.1284-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Shatabdi Bhattacharjee
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | | | | | - Amanda A H Freeman
- The Center for the Study of Human Health, Emory University, Atlanta, Georgia 30322
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Erica Werner
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | | | - Laura Palmer
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Nicole Shearing
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Lindsey Margewich
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Jacob McArthy
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Savanah Taylor
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Blaine Roberts
- Departments of Biochemistry, Emory University, Atlanta, Georgia 30322
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Daniel N Cox
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Ramon A Jorquera
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico 00956
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
26
|
The Close Relationship between the Golgi Trafficking Machinery and Protein Glycosylation. Cells 2020; 9:cells9122652. [PMID: 33321764 PMCID: PMC7764369 DOI: 10.3390/cells9122652] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is the most common post-translational modification of proteins; it mediates their correct folding and stability, as well as their transport through the secretory transport. Changes in N- and O-linked glycans have been associated with multiple pathological conditions including congenital disorders of glycosylation, inflammatory diseases and cancer. Glycoprotein glycosylation at the Golgi involves the coordinated action of hundreds of glycosyltransferases and glycosidases, which are maintained at the correct location through retrograde vesicle trafficking between Golgi cisternae. In this review, we describe the molecular machinery involved in vesicle trafficking and tethering at the Golgi apparatus and the effects of mutations in the context of glycan biosynthesis and human diseases.
Collapse
|
27
|
D'Souza Z, Taher FS, Lupashin VV. Golgi inCOGnito: From vesicle tethering to human disease. Biochim Biophys Acta Gen Subj 2020; 1864:129694. [PMID: 32730773 PMCID: PMC7384418 DOI: 10.1016/j.bbagen.2020.129694] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The Conserved Oligomeric Golgi (COG) complex, a multi-subunit vesicle tethering complex of the CATCHR (Complexes Associated with Tethering Containing Helical Rods) family, controls several aspects of cellular homeostasis by orchestrating retrograde vesicle traffic within the Golgi. The COG complex interacts with all key players regulating intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, and vesicular coats. In cells, COG deficiencies result in the accumulation of non-tethered COG-complex dependent (CCD) vesicles, dramatic morphological and functional abnormalities of the Golgi and endosomes, severe defects in N- and O- glycosylation, Golgi retrograde trafficking, sorting and protein secretion. In humans, COG mutations lead to severe multi-systemic diseases known as COG-Congenital Disorders of Glycosylation (COG-CDG). In this report, we review the current knowledge of the COG complex and analyze COG-related trafficking and glycosylation defects in COG-CDG patients.
Collapse
Affiliation(s)
- Zinia D'Souza
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Farhana S Taher
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vladimir V Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
28
|
Abstract
La glycosylation est un processus cellulaire complexe conduisant à des transferts successifs de monosaccharides sur une molécule acceptrice, le plus souvent une protéine ou un lipide. Ce processus est universel chez tous les organismes vivants et est très conservé au cours de l’évolution. Chez l’homme, des perturbations survenant au cours d’une ou plusieurs réactions de glycosylation sont à l’origine de glycopathologies génétiques rares, appelées anomalies congénitales de la glycosylation ou congenital disorders of glycosylation (CDG). Cette revue propose de revisiter ces CDG, de 1980 à aujourd’hui, en présentant leurs découvertes, leurs diagnostics, leurs causes biochimiques et les traitements actuellement disponibles.
Collapse
|
29
|
Realegeno S, Priyamvada L, Kumar A, Blackburn JB, Hartloge C, Puschnik AS, Sambhara S, Olson VA, Carette JE, Lupashin V, Satheshkumar PS. Conserved Oligomeric Golgi (COG) Complex Proteins Facilitate Orthopoxvirus Entry, Fusion and Spread. Viruses 2020; 12:v12070707. [PMID: 32629851 PMCID: PMC7411930 DOI: 10.3390/v12070707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Although orthopoxviruses (OPXV) are known to encode a majority of the genes required for replication in host cells, genome-wide genetic screens have revealed that several host pathways are indispensable for OPXV infection. Through a haploid genetic screen, we previously identified several host genes required for monkeypox virus (MPXV) infection, including the individual genes that form the conserved oligomeric Golgi (COG) complex. The COG complex is an eight-protein (COG1-COG8) vesicle tethering complex important for regulating membrane trafficking, glycosylation enzymes, and maintaining Golgi structure. In this study, we investigated the role of the COG complex in OPXV infection using cell lines with individual COG gene knockout (KO) mutations. COG KO cells infected with MPXV and vaccinia virus (VACV) produced small plaques and a lower virus yield compared to wild type (WT) cells. In cells where the KO phenotype was reversed using a rescue plasmid, the size of virus plaques increased demonstrating a direct link between the decrease in viral spread and the KO of COG genes. KO cells infected with VACV displayed lower levels of viral fusion and entry compared to WT suggesting that the COG complex is important for early events in OPXV infection. Additionally, fewer actin tails were observed in VACV-infected KO cells compared to WT. Since COG complex proteins are required for cellular trafficking of glycosylated membrane proteins, the disruption of this process due to lack of individual COG complex proteins may potentially impair the virus-cell interactions required for viral entry and egress. These data validate that the COG complex previously identified in our genetic screens plays a role in OPXV infection.
Collapse
Affiliation(s)
- Susan Realegeno
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
| | - Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
| | - Amrita Kumar
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (A.K.); (S.S.)
| | - Jessica B. Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.B.B.); (V.L.)
| | - Claire Hartloge
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
| | - Andreas S. Puschnik
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035, USA; (A.S.P.); (J.E.C.)
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (A.K.); (S.S.)
| | - Victoria A. Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035, USA; (A.S.P.); (J.E.C.)
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.B.B.); (V.L.)
| | - Panayampalli Subbian Satheshkumar
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
- Correspondence:
| |
Collapse
|
30
|
Linders PTA, Peters E, ter Beest M, Lefeber DJ, van den Bogaart G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:E4654. [PMID: 32629928 PMCID: PMC7369703 DOI: 10.3390/ijms21134654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification for both intracellular and secreted proteins. For glycosylation to occur, cargo must be transported after synthesis through the different compartments of the Golgi apparatus where distinct monosaccharides are sequentially bound and trimmed, resulting in increasingly complex branched glycan structures. Of utmost importance for this process is the intraorganellar environment of the Golgi. Each Golgi compartment has a distinct pH, which is maintained by the vacuolar H+-ATPase (V-ATPase). Moreover, tethering factors such as Golgins and the conserved oligomeric Golgi (COG) complex, in concert with coatomer (COPI) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion, efficiently deliver glycosylation enzymes to the right Golgi compartment. Together, these factors maintain intra-Golgi trafficking of proteins involved in glycosylation and thereby enable proper glycosylation. However, pathogenic mutations in these factors can cause defective glycosylation and lead to diseases with a wide variety of symptoms such as liver dysfunction and skin and bone disorders. Collectively, this group of disorders is known as congenital disorders of glycosylation (CDG). Recent technological advances have enabled the robust identification of novel CDGs related to membrane trafficking components. In this review, we highlight differences and similarities between membrane trafficking-related CDGs.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Ella Peters
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Martin ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
31
|
Modeling Glycan Processing Reveals Golgi-Enzyme Homeostasis upon Trafficking Defects and Cellular Differentiation. Cell Rep 2020; 27:1231-1243.e6. [PMID: 31018136 PMCID: PMC6486481 DOI: 10.1016/j.celrep.2019.03.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/24/2019] [Accepted: 03/27/2019] [Indexed: 01/11/2023] Open
Abstract
The decoration of proteins by carbohydrates is essential for eukaryotic life yet heterogeneous due to a lack of biosynthetic templates. This complex carbohydrate mixture—the glycan profile—is generated in the compartmentalized Golgi, in which level and localization of glycosylation enzymes are key determinants. Here, we develop and validate a computational model for glycan biosynthesis to probe how the biosynthetic machinery creates different glycan profiles. We combined stochastic modeling with Bayesian fitting that enables rigorous comparison to experimental data despite starting with uncertain initial parameters. This is an important development in the field of glycan modeling, which revealed biological insights about the glycosylation machinery in altered cellular states. We experimentally validated changes in N-linked glycan-modifying enzymes in cells with perturbed intra-Golgi-enzyme sorting and the predicted glycan-branching activity during osteogenesis. Our model can provide detailed information on altered biosynthetic paths, with potential for advancing treatments for glycosylation-related diseases and glyco-engineering of cells. Developed a stochastic model of N-glycosylation coupled with Bayesian fitting Validated predicted changes of Golgi organization in trafficking mutants Model pinpointed functionally relevant glycan alterations in osteogenesis
Collapse
|
32
|
Post-translational protein modifications in schizophrenia. NPJ SCHIZOPHRENIA 2020; 6:5. [PMID: 32123175 PMCID: PMC7051976 DOI: 10.1038/s41537-020-0093-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Research investigating the pathophysiology of schizophrenia has not yet precisely defined the molecular phenotype of this disorder. Many studies have investigated cellular dysfunction by examining expression levels of molecular targets in postmortem patient brain; however, inconsistencies between transcript and protein measures in schizophrenia are common in the field and represent a challenge to the identification of a unified model of schizophrenia pathogenesis. In humans, >4800 unique proteins are expressed, and the majority of these are modified by glycans and/or lipids. Estimates indicate ~70% of all eukaryotic proteins are modified by at least one type of glycosylation, while nearly 20% of all proteins are known to be lipid-modified. Protein post-translational modification (PTM) by glycosylation and lipidation rely on the spatiotemporal colocalization of enzyme, substrate, and glycan or lipid donor molecule and do not require an upstream “blueprint” or specialized processing machinery for synthesis. Glycan and lipid PTMs can thus facilitate cellular adaptation to environmental signals more rapidly than changes of gene or protein expression, and can significantly impact the localization, function, and interactions of modified substrates, though relatively few studies in schizophrenia have evaluated the PTM status of target proteins. A growing body of literature reports glycosylation and lipidation abnormalities in schizophrenia brain as well as in patient peripheral fluids. In this review, we explain the functional significance of key glycan and lipid PTMs and summarize current findings associated with abnormal glycosylation and lipidation in this illness.
Collapse
|
33
|
Abstract
The mammalian Golgi apparatus is a highly dynamic organelle, which is normally localized in the juxtanuclear space and plays an essential role in the regulation of cellular homeostasis. While posttranslational modification of cargo is mediated by the resident enzymes (glycosyltransferases, glycosidases, and kinases), the ribbon structure of Golgi and its cisternal stacking mostly rely on the cooperation of coiled-coil matrix golgins. Among them, giantin, GM130, and GRASPs are unique, because they form a tripartite complex and serve as Golgi docking sites for cargo delivered from the endoplasmic reticulum (ER). Golgi undergoes significant disorganization in many pathologies associated with a block of the ER-to-Golgi or intra-Golgi transport, including cancer, different neurological diseases, alcoholic liver damage, ischemic stress, viral infections, etc. In addition, Golgi fragments during apoptosis and mitosis. Here, we summarize and analyze clinically relevant observations indicating that Golgi fragmentation is associated with the selective loss of Golgi residency for some enzymes and, conversely, with the relocation of some cytoplasmic proteins to the Golgi. The central concept is that ER and Golgi stresses impair giantin docking site but have no impact on the GM130-GRASP65 complex, thus inducing mislocalization of giantin-sensitive enzymes only. This cardinally changes the processing of proteins by eliminating the pathways controlled by the missing enzymes and by activating the processes now driven by the GM130-GRASP65-dependent proteins. This type of Golgi disorganization is different from the one induced by the cytoskeleton alteration, which despite Golgi de-centralization, neither impairs function of golgins nor alters trafficking.
Collapse
Affiliation(s)
- A Petrosyan
- College of Medicine, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE 68588, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE 68106, USA
| |
Collapse
|
34
|
Lawaju BR, Niraula P, Lawrence GW, Lawrence KS, Klink VP. The Glycine max Conserved Oligomeric Golgi (COG) Complex Functions During a Defense Response to Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2020; 11:564495. [PMID: 33262774 PMCID: PMC7686354 DOI: 10.3389/fpls.2020.564495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The conserved oligomeric Golgi (COG) complex, functioning in retrograde trafficking, is a universal structure present among eukaryotes that maintains the correct Golgi structure and function. The COG complex is composed of eight subunits coalescing into two sub-complexes. COGs1-4 compose Sub-complex A. COGs5-8 compose Sub-complex B. The observation that COG interacts with the syntaxins, suppressors of the erd2-deletion 5 (Sed5p), is noteworthy because Sed5p also interacts with Sec17p [alpha soluble NSF attachment protein (α-SNAP)]. The α-SNAP gene is located within the major Heterodera glycines [soybean cyst nematode (SCN)] resistance locus (rhg1) and functions in resistance. The study presented here provides a functional analysis of the Glycine max COG complex. The analysis has identified two paralogs of each COG gene. Functional transgenic studies demonstrate at least one paralog of each COG gene family functions in G. max during H. glycines resistance. Furthermore, treatment of G. max with the bacterial effector harpin, known to function in effector triggered immunity (ETI), leads to the induced transcription of at least one member of each COG gene family that has a role in H. glycines resistance. In some instances, altered COG gene expression changes the relative transcript abundance of syntaxin 31. These results indicate that the G. max COG complex functions through processes involving ETI leading to H. glycines resistance.
Collapse
Affiliation(s)
- Bisho Ram Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Vincent P. Klink
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
- *Correspondence: Vincent P. Klink, ;
| |
Collapse
|
35
|
Frisbie CP, Lushnikov AY, Krasnoslobodtsev AV, Riethoven JJM, Clarke JL, Stepchenkova EI, Petrosyan A. Post-ER Stress Biogenesis of Golgi Is Governed by Giantin. Cells 2019; 8:E1631. [PMID: 31847122 PMCID: PMC6953117 DOI: 10.3390/cells8121631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Golgi apparatus undergoes disorganization in response to stress, but it is able to restore compact and perinuclear structure under recovery. This self-organization mechanism is significant for cellular homeostasis, but remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. METHODS In HeLa and different prostate cancer cells, we used the model of cellular stress induced by Brefeldin A (BFA). The conformational structure of giantin was assessed by proximity ligation assay and atomic force microscopy. The post-BFA distribution of Golgi resident enzymes was examined by 3D SIM high-resolution microscopy. RESULTS We detected that giantin is rather flexible than an extended coiled-coil dimer and BFA-induced Golgi disassembly was associated with giantin monomerization. A fusion of the nascent Golgi membranes after BFA washout is forced by giantin re-dimerization via disulfide bond in its luminal domain and assisted by Rab6a GTPase. GM130-GRASP65-dependent enzymes are able to reach the nascent Golgi membranes, while giantin-sensitive enzymes appeared at the Golgi after its complete recovery via direct interaction of their cytoplasmic tail with N-terminus of giantin. CONCLUSION Post-stress recovery of Golgi is conducted by giantin dimer and Golgi proteins refill membranes according to their docking affiliation rather than their intra-Golgi location.
Collapse
Affiliation(s)
- Cole P. Frisbie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
| | - Alexander Y. Lushnikov
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
| | - Alexey V. Krasnoslobodtsev
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
- Department of Physics, University of Nebraska-Omaha, Omaha, NE 68182-0266, USA
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
| | - Jennifer L. Clarke
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583-0963, USA
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia;
- Department of Genetics, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- The Fred and Pamela Buffett Cancer Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
36
|
Blackburn JB, D'Souza Z, Lupashin VV. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett 2019; 593:2466-2487. [PMID: 31381138 PMCID: PMC6771879 DOI: 10.1002/1873-3468.13570] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
The conserved oligomeric Golgi (COG) complex, a multisubunit tethering complex of the CATCHR (complexes associated with tethering containing helical rods) family, controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle targeting within the Golgi. In humans, COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). The COG complex both physically and functionally interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, and vesicular coats. Here, we review our current knowledge of COG-related trafficking and glycosylation defects in humans and model organisms, and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting.
Collapse
Affiliation(s)
- Jessica B. Blackburn
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Present address:
Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Zinia D'Souza
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Vladimir V. Lupashin
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
37
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
38
|
D'Souza Z, Blackburn JB, Kudlyk T, Pokrovskaya ID, Lupashin VV. Defects in COG-Mediated Golgi Trafficking Alter Endo-Lysosomal System in Human Cells. Front Cell Dev Biol 2019; 7:118. [PMID: 31334232 PMCID: PMC6616090 DOI: 10.3389/fcell.2019.00118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
The conserved oligomeric complex (COG) is a multi-subunit vesicle tethering complex that functions in retrograde trafficking at the Golgi. We have previously demonstrated that the formation of enlarged endo-lysosomal structures (EELSs) is one of the major glycosylation-independent phenotypes of cells depleted for individual COG complex subunits. Here, we characterize the EELSs in HEK293T cells using microscopy and biochemical approaches. Our analysis revealed that the EELSs are highly acidic and that vATPase-dependent acidification is essential for the maintenance of this enlarged compartment. The EELSs are accessible to both trans-Golgi enzymes and endocytic cargo. Moreover, the EELSs specifically accumulate endolysosomal proteins Lamp2, CD63, Rab7, Rab9, Rab39, Vamp7, and STX8 on their surface. The EELSs are distinct from lysosomes and do not accumulate active Cathepsin B. Retention using selective hooks (RUSH) experiments revealed that biosynthetic cargo mCherry-Lamp1 reaches the EELSs much faster as compared to both receptor-mediated and soluble endocytic cargo, indicating TGN origin of the EELSs. In support to this hypothesis, EELSs are enriched with TGN specific lipid PI4P. Additionally, analysis of COG4/VPS54 double KO cells revealed that the activity of the GARP tethering complex is necessary for EELSs’ accumulation, indicating that protein mistargeting and the imbalance of Golgi-endosome membrane flow leads to the formation of EELSs in COG-deficient cells. The EELSs are likely to serve as a degradative storage hybrid organelle for mistargeted Golgi enzymes and underglycosylated glycoconjugates. To our knowledge this is the first report of the formation of an enlarged hybrid endosomal compartment in a response to malfunction of the intra-Golgi trafficking machinery.
Collapse
Affiliation(s)
- Zinia D'Souza
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jessica Bailey Blackburn
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tetyana Kudlyk
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Irina D Pokrovskaya
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vladimir V Lupashin
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
39
|
Li G, Xu Y, Hu X, Li N, Yao R, Yu T, Wang X, Guo W, Wang J. Compound heterozygous variants of the COG6 gene in a Chinese patient with deficiency of subunit 6 of the conserved oligomeric Golgi complex (COG6-CDG). Eur J Med Genet 2019; 62:44-46. [DOI: 10.1016/j.ejmg.2018.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022]
|
40
|
Park JS, Helble JD, Lazarus JE, Yang G, Blondel CJ, Doench JG, Starnbach MN, Waldor MK. A FACS-Based Genome-wide CRISPR Screen Reveals a Requirement for COPI in Chlamydia trachomatis Invasion. iScience 2018; 11:71-84. [PMID: 30590252 PMCID: PMC6308251 DOI: 10.1016/j.isci.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
The invasion of Chlamydia trachomatis, an obligate intracellular bacterium, into epithelial cells is driven by a complex interplay of host and bacterial factors. To comprehensively define the host genes required for pathogen invasion, we undertook a fluorescence-activated cell sorting (FACS)-based CRISPR screen in human cells. A genome-wide loss-of-function library was infected with fluorescent C. trachomatis and then sorted to enrich for invasion-deficient mutants. The screen identified heparan sulfate, a known pathogen receptor, as well as coatomer complex I (COPI). We found that COPI, through a previously unappreciated role, promotes heparan sulfate cell surface presentation, thereby facilitating C. trachomatis attachment. The heparan sulfate defect does not fully account for the resistance of COPI mutants. COPI also promotes the activity of the pathogen's type III secretion system. Together, our findings establish the requirement for COPI in C. trachomatis invasion and the utility of FACS-based CRISPR screening for the elucidation of host factors required for pathogen invasion. FACS-based CRISPR screen to identify host factors required for C. trachomatis invasion Candidate genes comprise heparan sulfate biosynthesis, actin remodeling, and COPI COPI regulates heparan sulfate cell surface presentation and C. trachomatis attachment COPI is also required for efficient C. trachomatis T3SS translocation
Collapse
Affiliation(s)
- Joseph S Park
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Boston University School of Medicine, Boston, MA 02120, USA
| | - Jennifer D Helble
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob E Lazarus
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Guanhua Yang
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - Carlos J Blondel
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew K Waldor
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
41
|
Singh V, Erady C, Balasubramanian N. Cell-matrix adhesion controls Golgi organization and function through Arf1 activation in anchorage-dependent cells. J Cell Sci 2018; 131:jcs.215855. [PMID: 30054383 PMCID: PMC6127727 DOI: 10.1242/jcs.215855] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
Cell-matrix adhesion regulates membrane trafficking controlling anchorage-dependent signaling. While a dynamic Golgi complex can contribute to this pathway, its regulation by adhesion remains unclear. Here we report that loss of adhesion dramatically disorganized the Golgi in mouse and human fibroblast cells. Golgi integrity is restored rapidly upon integrin-mediated re-adhesion to FN and is disrupted by integrin blocking antibody. In suspended cells, the cis, cis-medial and trans-Golgi networks differentially disorganize along the microtubule network but show no overlap with the ER, making this disorganization distinct from known Golgi fragmentation. This pathway is regulated by an adhesion-dependent reduction and recovery of Arf1 activation. Constitutively active Arf1 disrupts this regulation and prevents Golgi disorganization due to loss of adhesion. Adhesion-dependent Arf1 activation regulates its binding to the microtubule minus-end motor protein dynein to control Golgi reorganization, which is blocked by ciliobrevin. Adhesion-dependent Golgi organization controls its function, regulating cell surface glycosylation due to loss of adhesion, which is blocked by constitutively active Arf1. This study, hence, identified integrin-dependent cell-matrix adhesion to be a novel regulator of Arf1 activation, controlling Golgi organization and function in anchorage-dependent cells.
This article has an associated First Person interview with the first author of the paper. Summary: Integrin-dependent cell-matrix adhesion activates Arf1, which then recruits dynein to regulate Golgi organization and function along the microtubule network.
Collapse
Affiliation(s)
- Vibha Singh
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Chaitanya Erady
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
42
|
Blackburn JB, Kudlyk T, Pokrovskaya I, Lupashin VV. More than just sugars: Conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects. Traffic 2018; 19:463-480. [PMID: 29573151 PMCID: PMC5948163 DOI: 10.1111/tra.12564] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/03/2023]
Abstract
The conserved oligomeric Golgi (COG) complex controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle trafficking within the Golgi. Human COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). To gain better understanding of COG-CDGs, we compared COG knockout cells with cells deficient to 2 key enzymes, Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase and uridine diphosphate-glucose 4-epimerase (GALE), which contribute to proper N- and O-glycosylation. While all knockout cells share similar defects in glycosylation, these defects only account for a small fraction of observed COG knockout phenotypes. Glycosylation deficiencies were not associated with the fragmented Golgi, abnormal endolysosomes, defective sorting and secretion or delayed retrograde trafficking, indicating that these phenotypes are probably not due to hypoglycosylation, but to other specific interactions or roles of the COG complex. Importantly, these COG deficiency specific phenotypes were also apparent in COG7-CDG patient fibroblasts, proving the human disease relevance of our CRISPR knockout findings. The knowledge gained from this study has important implications, both for understanding the physiological role of COG complex in Golgi homeostasis in eukaryotic cells, and for better understanding human diseases associated with COG/Golgi impairment.
Collapse
Affiliation(s)
- Jessica B Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tetyana Kudlyk
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Irina Pokrovskaya
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Vladimir V Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
43
|
Climer LK, Pokrovskaya ID, Blackburn JB, Lupashin VV. Membrane detachment is not essential for COG complex function. Mol Biol Cell 2018; 29:964-974. [PMID: 29467253 PMCID: PMC5896934 DOI: 10.1091/mbc.e17-11-0694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
COG is a multisubunit vesicle tethering complex in the Golgi. We demonstrate that both COG subcomplexes can be permanently attached to Golgi membranes and that major COG functions do not require cycling between the membrane and cytosol. The conserved oligomeric Golgi (COG) complex is a vesicle tether of the “complexes associated with tethering containing helical rods” family, which functions on the cytoplasmic side of Golgi. It is currently unknown whether COG function, or function of any multisubunit vesicular tether, depends on cycling between the membrane and cytosol. Therefore, we permanently anchored key subunits of COG subcomplexes (COG4, COG7, and COG8) to Golgi membranes using transmembrane protein TMEM115 (TMEM-COG). All TMEM-COG subunits tested were Golgi localized, integrated into the COG complex, and stabilized membrane association of endogenous subunits. Interestingly, TMEM-COG4 and TMEM-COG7 equally rescued COG function in organization of Golgi markers, glycosylation, and abundance of COG-sensitive proteins. In contrast, TMEM-COG8 was not as effective, indicating that N-terminal attachment of COG8 interfered with overall COG structure and function, and none of the TMEM-COG subunits rescued the abnormal Golgi architecture caused by COG knockout. Collectively, these data indicate that both subcomplexes of the COG complex can perform most of COG function when permanently attached to membranes and that the cytosolic pool of COG is not completely essential to COG function.
Collapse
Affiliation(s)
- Leslie K Climer
- College of Medicine, Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Irina D Pokrovskaya
- College of Medicine, Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Jessica B Blackburn
- College of Medicine, Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Vladimir V Lupashin
- College of Medicine, Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
44
|
Miller CN, Smith EP, Cundiff JA, Knodler LA, Bailey Blackburn J, Lupashin V, Celli J. A Brucella Type IV Effector Targets the COG Tethering Complex to Remodel Host Secretory Traffic and Promote Intracellular Replication. Cell Host Microbe 2017; 22:317-329.e7. [PMID: 28844886 PMCID: PMC5599354 DOI: 10.1016/j.chom.2017.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/16/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Many intracellular pathogens exploit host secretory trafficking to support their intracellular cycle, but knowledge of these pathogenic processes is limited. The bacterium Brucella abortus uses a type IV secretion system (VirB T4SS) to generate a replication-permissive Brucella-containing vacuole (rBCV) derived from the host ER, a process that requires host early secretory trafficking. Here we show that the VirB T4SS effector BspB contributes to rBCV biogenesis and Brucella replication by interacting with the conserved oligomeric Golgi (COG) tethering complex, a major coordinator of Golgi vesicular trafficking, thus remodeling Golgi membrane traffic and redirecting Golgi-derived vesicles to the BCV. Altogether, these findings demonstrate that Brucella modulates COG-dependent trafficking via delivery of a T4SS effector to promote rBCV biogenesis and intracellular proliferation, providing mechanistic insight into how bacterial exploitation of host secretory functions promotes pathogenesis.
Collapse
Affiliation(s)
- Cheryl N Miller
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Erin P Smith
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Jennifer A Cundiff
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Leigh A Knodler
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Jessica Bailey Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
45
|
Haijes HA, Jaeken J, Foulquier F, van Hasselt PM. Hypothesis: lobe A (COG1–4)-CDG causes a more severe phenotype than lobe B (COG5–8)-CDG. J Med Genet 2017; 55:137-142. [DOI: 10.1136/jmedgenet-2017-104586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/07/2017] [Accepted: 06/21/2017] [Indexed: 01/26/2023]
Abstract
The conserved oligomeric Golgi (COG) complex consists of eight subunits organized in two lobes: lobe A (COG1–4) and lobe B (COG5–8). The different functional roles of COG lobe A and lobe B might result in distinct clinical phenotypes in patients with COG-CDG (congenital disorders of glycosylation). This hypothesis is supported by three observations. First, knock-down of COG lobe A components affects Golgi morphology more severely than knock-down of COG lobe B components. Second, nearly all of the 27 patients with lobe B COG-CDG had bi-allelic truncating mutations, as compared with only one of the six patients with lobe A COG-CDG. This represents a frequency gap which suggests that bi-allelic truncating mutations in COG lobe A genes might be non-viable. Third, in support, large-scale exome data of healthy adults (Exome Aggregation Consortium (ExAC)) underline that COG lobe A genes are less tolerant to genetic variation than COG lobe B genes. Thus, comparable molecular defects are more detrimental in lobe A COG-CDG than in lobe B COG-CDG. In a larger perspective, clinical phenotypic severity corresponded nicely with tolerance to genetic variation. Therefore, genomic epidemiology can potentially be used as a photographic negative for mutational severity.
Collapse
|
46
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
47
|
Comstra HS, McArthy J, Rudin-Rush S, Hartwig C, Gokhale A, Zlatic SA, Blackburn JB, Werner E, Petris M, D'Souza P, Panuwet P, Barr DB, Lupashin V, Vrailas-Mortimer A, Faundez V. The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors. eLife 2017; 6. [PMID: 28355134 PMCID: PMC5400511 DOI: 10.7554/elife.24722] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023] Open
Abstract
Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival.
Collapse
Affiliation(s)
- Heather S Comstra
- Departments of Cell Biology, Emory University, Atlanta, United States
| | - Jacob McArthy
- School of Biological Sciences, Illinois State University, Normal, United States
| | | | - Cortnie Hartwig
- Department of Chemistry, Agnes Scott College, Decatur, Georgia
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, United States
| | | | - Jessica B Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Erica Werner
- Department of Biochemistry, Emory University, Atlanta, United States
| | - Michael Petris
- Department of Biochemistry, University of Missouri, Columbia, United States
| | - Priya D'Souza
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Parinya Panuwet
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Dana Boyd Barr
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, United States
| |
Collapse
|
48
|
Climer LK, Hendrix RD, Lupashin VV. Conserved Oligomeric Golgi and Neuronal Vesicular Trafficking. Handb Exp Pharmacol 2017; 245:227-247. [PMID: 29063274 DOI: 10.1007/164_2017_65] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The conserved oligomeric Golgi (COG) complex is an evolutionary conserved multi-subunit vesicle tethering complex essential for the majority of Golgi apparatus functions: protein and lipid glycosylation and protein sorting. COG is present in neuronal cells, but the repertoire of COG function in different Golgi-like compartments is an enigma. Defects in COG subunits cause alteration of Golgi morphology, protein trafficking, and glycosylation resulting in human congenital disorders of glycosylation (CDG) type II. In this review we summarize and critically analyze recent advances in the function of Golgi and Golgi-like compartments in neuronal cells and functions and dysfunctions of the COG complex and its partner proteins.
Collapse
Affiliation(s)
- Leslie K Climer
- College of Medicine, Physiology and Biophysics, UAMS, Little Rock, AR, USA
| | - Rachel D Hendrix
- College of Medicine, Neurobiology and Developmental Sciences, UAMS, Little Rock, AR, USA
| | | |
Collapse
|
49
|
Casey CA, Bhat G, Holzapfel MS, Petrosyan A. Study of Ethanol-Induced Golgi Disorganization Reveals the Potential Mechanism of Alcohol-Impaired N-Glycosylation. Alcohol Clin Exp Res 2016; 40:2573-2590. [PMID: 27748959 PMCID: PMC5133184 DOI: 10.1111/acer.13247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/20/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND It is known that ethanol (EtOH) and its metabolites have a negative effect on protein glycosylation. The fragmentation of the Golgi apparatus induced by alteration of the structure of largest Golgi matrix protein, giantin, is the major consequence of damaging effects of EtOH-metabolism on the Golgi; however, the link between this and abnormal glycosylation remains unknown. Because previously we have shown that Golgi morphology dictates glycosylation, we examined the effect EtOH administration has on function of Golgi residential enzymes involved in N-glycosylation. METHODS HepG2 cells transfected with mouse ADH1 (VA-13 cells) were treated with 35 mM EtOH for 72 hours. Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Characterization of Golgi-associated mannosyl (α-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (MGAT1), α-1,2-mannosidase (Man-I), and α-mannosidase II (Man-II) were performed in VA-13 cells and rat hepatocytes followed by three-dimensional structured illumination microscopy (3D SIM). RESULTS First, we detected that EtOH administration results in the loss of sialylated N-glycans on asialoglycoprotein receptor; however, the high-mannose-type N-glycans are increased. Further analysis by 3D SIM revealed that EtOH treatment despite Golgi disorganization does not change cis-Golgi localization for Man-I, but does induce medial-to-cis relocation of MGAT1 and Man-II. Using different approaches, including electron microscopy, we revealed that EtOH treatment results in dysfunction of ADP-ribosylation factor 1 (Arf1) GTPase followed by a deficiency in COPI vesicles at the Golgi. Silencing beta-COP or expression of GDP-bound mutant Arf1(T31N) mimics the EtOH effect on retaining MGAT1 and Man-II at the cis-Golgi, suggesting that (i) EtOH specifically blocks activation of Arf1, and (ii) EtOH alters the proper localization of Golgi enzymes through impairment of COPI. Importantly, the level of MGAT1 was reduced, because likely MGAT1, contrary to Man-I and Man-II, is giantin sensitive. CONCLUSIONS Thus, we provide the mechanism by which EtOH-induced Golgi remodeling may significantly modify formation of N-glycans.
Collapse
Affiliation(s)
- Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Ganapati Bhat
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Melissa S. Holzapfel
- Department of Pathology and Microbiology, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| |
Collapse
|
50
|
Siegel N, Lupashin V, Storrie B, Brooker G. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers. NATURE PHOTONICS 2016; 10:802-808. [PMID: 28261321 PMCID: PMC5330308 DOI: 10.1038/nphoton.2016.207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/23/2016] [Indexed: 05/18/2023]
Abstract
Fresnel incoherent correlation holography (FINCH) microscopy is a promising approach for high-resolution biological imaging but has so far been limited to use with low-magnification, low-numerical-aperture configurations. We report the use of in-line incoherent interferometers made from uniaxial birefringent α-barium borate (α-BBO) or calcite crystals that overcome the aberrations and distortions present with previous implementations that employed spatial light modulators or gradient refractive index lenses. FINCH microscopy incorporating these birefringent elements and high-numerical-aperture oil immersion objectives could outperform standard wide-field fluorescence microscopy, with, for example, a 149 nm lateral point spread function at a wavelength of 590 nm. Enhanced resolution was confirmed with sub-resolution fluorescent beads. Taking the Golgi apparatus as a biological example, three different proteins labelled with GFP and two other fluorescent dyes in HeLa cells were resolved with an image quality that is comparable to similar samples captured by structured illumination microscopy.
Collapse
Affiliation(s)
- Nisan Siegel
- Department of Biomedical Engineering, Johns Hopkins University, 9605 Medical Center Drive Suite 240, Rockville, Maryland 20850, USA
- Microscopy Center, Johns Hopkins University Montgomery County Campus, Rockville, Maryland 20850, USA
- CellOptic, Inc., 9605 Medical Center Drive Suite 224, Rockville, Maryland 20850, USA
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Science, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Brian Storrie
- Department of Physiology and Biophysics, University of Arkansas for Medical Science, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Gary Brooker
- Department of Biomedical Engineering, Johns Hopkins University, 9605 Medical Center Drive Suite 240, Rockville, Maryland 20850, USA
- Microscopy Center, Johns Hopkins University Montgomery County Campus, Rockville, Maryland 20850, USA
- CellOptic, Inc., 9605 Medical Center Drive Suite 224, Rockville, Maryland 20850, USA
- Correspondence and requests for materials should be addressed to G.B.
| |
Collapse
|