1
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
3
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. mSystems 2023; 8:e0090423. [PMID: 37874141 PMCID: PMC10734534 DOI: 10.1128/msystems.00904-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP-a pro-fibrotic transcriptional cofactor-as a potential driver of infection-mediated fibrotic gene expression. Furthermore, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling and identify YAP as a potential therapeutic target for the prevention of Chlamydia-associated scarring of the female genital tract.
Collapse
Affiliation(s)
- Liam Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Rey Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Feng J, Nie C, Xie E, Thongrom B, Reiter-Scherer V, Block S, Herrmann A, Quaas E, Sieben C, Haag R. Sulfated Polyglycerol-Modified Hydrogels for Binding HSV-1 and RSV. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903283 DOI: 10.1021/acsami.3c09553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide on the surface of mammalian cells and in the extracellular matrix and has been found to be important for virus binding and infection. In this work, we designed synthetic hydrogels with viral binding and deactivation activities through the postfunctionalization of an HS-mimicking polyelectrolyte and alkyl chains. Three polyglycerol-based hydrogels were prepared as substrates and postfunctionalized by sulfated linear polyglycerol (lPGS) via thiol-ene click reaction. The viral binding properties were studied using herpes simplex virus type 1 (HSV-1) and respiratory syncytial virus (RSV). The effect of hydrogel types and molecular weight (Mw) of conjugated lPGS on viral binding properties was also assessed, and promising binding activities were observed in all lPGS-functionalized samples. Further coupling of 11 carbons long alkyl chains to the hydrogel revealed virucidal properties caused by destruction of the viral envelope, as shown by atomic force microscopy (AFM) imaging.
Collapse
Affiliation(s)
- Jun Feng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Boonya Thongrom
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Valentin Reiter-Scherer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Andreas Herrmann
- Institute of Chemistry and Biochemistry, SupraFAB, Freie Universität Berlin, Altensteinstr. 23a,14195 Berlin, Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
- Institute of Genetics, Technische Universität Braunschweig, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
5
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542940. [PMID: 37398163 PMCID: PMC10312526 DOI: 10.1101/2023.05.30.542940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Infection of the female genital tract by Chlamydia trachomatis can produce severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. While infection demonstrably mediates a pro-fibrotic response in host cells, it remains unclear if intrinsic properties of the upper genital tract exacerbate chlamydial fibrosis. The relatively sterile environment of the upper genital tract is primed for a pro-inflammatory response to infection, potentially enhancing fibrosis - however, subclinical C. trachomatis infections still develop fibrosis-related sequelae. Here, we compare infection-associated and steady-state gene expression of primary human cervical and vaginal epithelial cells. In the former, we observe enhanced baseline expression and infection-mediated induction of fibrosis-associated signal factors (e.g. TGFA , IL6 , IL8 , IL20 ), implying predisposition to Chlamydia -associated pro-fibrotic signaling. Transcription factor enrichment analysis identified regulatory targets of YAP, a transcriptional cofactor induced by infection of cervical epithelial cells, but not vaginal epithelial cells. YAP target genes induced by infection include secreted fibroblast-activating signal factors; therefore, we developed an in vitro model involving coculture of infected endocervical epithelial cells with uninfected fibroblasts. Coculture enhanced fibroblast expression of type I collagen, as well as prompting reproducible (albeit statistically insignificant) induction of α-smooth muscle actin. Fibroblast collagen induction was sensitive to siRNA-mediated YAP knockdown in infected epithelial cells, implicating chlamydial YAP activation in this effect. Collectively, our results present a novel mechanism of fibrosis initiated by Chlamydia, wherein infection-mediated induction of host YAP facilitates pro-fibrotic intercellular communication. Chlamydial YAP activation in cervical epithelial cells is thus a determinant of this tissue's susceptibility to fibrosis. Importance Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP - a pro-fibrotic transcriptional cofactor - as a potential driver of infection-mediated fibrotic gene expression. Further, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts, and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling, and identify YAP as a potential therapeutic target for prevention of Chlamydia -associated scarring of the female genital tract.
Collapse
|
6
|
Page TM, Nie C, Neander L, Povolotsky TL, Sahoo AK, Nickl P, Adler JM, Bawadkji O, Radnik J, Achazi K, Ludwig K, Lauster D, Netz RR, Trimpert J, Kaufer B, Haag R, Donskyi IS. Functionalized Fullerene for Inhibition of SARS-CoV-2 Variants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206154. [PMID: 36651127 DOI: 10.1002/smll.202206154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene's hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously.
Collapse
Affiliation(s)
- Taylor M Page
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Lenard Neander
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Tatyana L Povolotsky
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Anil Kumar Sahoo
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Philip Nickl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- BAM - Federal Institute for Material Science and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Julia M Adler
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163, Berlin, Germany
- Tiermedizinischen Zentrum für Resistenzforschung (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Obida Bawadkji
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Jörg Radnik
- BAM - Federal Institute for Material Science and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Freie Universität Berlin, Fabeckstraße 36A, 14195, Berlin, Germany
| | - Daniel Lauster
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Roland R Netz
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163, Berlin, Germany
- Tiermedizinischen Zentrum für Resistenzforschung (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Benedikt Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163, Berlin, Germany
- Tiermedizinischen Zentrum für Resistenzforschung (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- BAM - Federal Institute for Material Science and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205, Berlin, Germany
| |
Collapse
|
7
|
Al-Kuraishy HM, Al-Gareeb AI, Hetta HF, Alexiou A, Papadakis M, Batiha GES. Heparanase is the possible link between monkeypox and Covid-19: robust candidature in the mystic and present perspective. AMB Express 2023; 13:13. [PMID: 36705773 PMCID: PMC9880376 DOI: 10.1186/s13568-023-01517-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Heparanase (HPSE) is an endoglycosidase cleaves heparan sulfate (HS) and this contributes to the degradation and remodeling of the extracellular matrix. HS cleaved by HPSE induces activation of autophagy and formation of autophagosommes which facilitate binding of HPSE to the HS and subsequent release of growth factors. The interaction between HPSE and HS triggers releases of chemokines and cytokines which affect inflammatory response and cell signaling pathways with development of hyperinflammation, cytokine storm (CS) and coagulopathy. HPSE expression is induced by both SARS-CoV-2 and monkeypox virus (MPXV) leading to induction release of pro-inflammatory cytokines, endothelial dysfunction and thrombotic events. Co-infection of MPX with SARS-CoV-2 may occur as we facing many outbreaks of MPX cases during Covid-19 pandemic. Therefore, targeting of HPSE by specific inhibitors may reduce the risk of complications in both SARS-CoV-2 and MPXV infections. Taken together, HPSE could be a potential link between MPX with SARS-CoV-2 in Covid-19 era.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511 Egypt
| |
Collapse
|
8
|
Elste J, Chan A, Patil C, Tripathi V, Shadrack DM, Jaishankar D, Hawkey A, Mungerson MS, Shukla D, Tiwari V. Archaic connectivity between the sulfated heparan sulfate and the herpesviruses - An evolutionary potential for cross-species interactions. Comput Struct Biotechnol J 2023; 21:1030-1040. [PMID: 36733705 PMCID: PMC9880898 DOI: 10.1016/j.csbj.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The structural diversity of metazoic heparan sulfate (HS) composed of unique sulfated domains is remarkably preserved among various vertebrates and invertebrate species. Interestingly the sulfated moieties of HS have been known as the key determinants generating extraordinary ligand binding sites in the HS chain to regulate multiple biological functions and homeostasis. One such ligand for 3-O sulfation in the HS chain is a glycoprotein D (gD) from an ancient herpesvirus, herpes simplex virus (HSV). This interaction between gD and 3-O sulfated HS leads to virus-cell fusion to promote HSV entry. It is quite astonishing that HSV-1, which infects two-thirds of the world population, is also capable of causing severe diseases in primates and non-primates including primitive zebrafish. Supporting evidence that HSV may cross the species barrier comes from the fact that an enzymatic modification in HS encoded by 3-O sulfotransferase-3 (3-OST-3) from a vertebrate zoonotic species enhances HSV-1 infectivity. The latter phenomenon suggests the possible role of sulfated-HS as an entry receptor during reverse zoonosis, especially during an event when humans encounter domesticated animals in proximity. In this mini-review, we explore the possibility that structural diversity in HS may have played a substantial role in species-specific adaptability for herpesviruses in general including their potential role in promoting cross-species transmission.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Angelica Chan
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Chandrashekhar Patil
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Vinisha Tripathi
- Mountain Vista High School, 10585 Mountain Vista Ridge, Highlands Ranch, CO 80126, USA
| | - Daniel M. Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St John's University of Tanzania, Dodoma, Tanzania
| | - Dinesh Jaishankar
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew Hawkey
- Department of Biomedical Sciences, Midwestern University, Downers Grove, IL 60515, USA
| | - Michelle Swanson Mungerson
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA,Corresponding author.
| |
Collapse
|
9
|
Ultrastructural analysis and three-dimensional reconstruction of cellular structures involved in SARS-CoV-2 spread. Histochem Cell Biol 2022; 159:47-60. [PMID: 36175690 PMCID: PMC9521873 DOI: 10.1007/s00418-022-02152-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
The cytoskeleton not only deals with numerous interaction and communication mechanisms at the cellular level but also has a crucial role in the viral infection cycle. Although numerous aspects of SARS-CoV-2 virus interaction at the cellular level have been widely studied, little has been reported about the structural and functional response of the cytoskeleton. This work aims to characterize, at the ultrastructural level, the modifications in the cytoskeleton of infected cells, namely, its participation in filopodia formation, the junction of these nanostructures forming bridges, the viral surfing, and the generation of tunnel effect nanotubes (TNT) as probable structures of intracellular viral dissemination. The three-dimensional reconstruction from the obtained micrographs allowed observing viral propagation events between cells in detail for the first time. More profound knowledge about these cell-cell interaction models in the viral spread mechanisms could lead to a better understanding of the clinical manifestations of COVID-19 disease and to find new therapeutic strategies.
Collapse
|
10
|
Mollel JT, Said JS, Masalu RJ, Hannoun C, Mbunde MVN, Nondo RSO, Bergström T, Trybala E. Anti-respiratory syncytial virus and anti-herpes simplex virus activity of six Tanzanian medicinal plants with extended studies of Erythrina abyssinica stem bark. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115204. [PMID: 35304278 DOI: 10.1016/j.jep.2022.115204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Except for few highly pathogenic viruses, no antiviral drug has been approved for treatment of viral infections in humans. Plant extracts, selected based on their ethno-medical use, represent an important source of compounds for the development of novel candidate antiviral drugs. This especially concerns plants with ethnomedical records on their use in treatment of viral infections. AIM OF THE STUDY To identify and document medicinal plants used by traditional health practitioners (THPs) for treatment of respiratory infections and muco-cutaneous lesions in order to study their antiviral activity including identification of active components and elucidation of mode of antiviral activity. MATERIALS AND METHODS The ethno-medical survey was performed in the Kagera region of Tanzania. The THPs were asked for plants used for treatment of signs and symptoms of respiratory infections and watery muco-cutaneous blisters in oral and genital regions. The plants identified were successively extracted with n-hexane, ethyl acetate and water, and the extracts assayed for anti-respiratory syncytial virus (RSV), anti-herpes simplex virus 2 (HSV-2), and anti-human parainfluenza virus 2 (HPIV-2) activity in cultured cells. Antiviral components were separated by ethanol precipitation and CL-6B chromatography, and the mode of antiviral activity elucidated by the time-of-addition assay and selection for the virus variants resistant to antiviral plant extract. RESULTS THPs identified fifteen plants used for treatment of respiratory infections and muco-cutaneous blisters. The water extract, but not n-hexane or ethyl acetate extracts, of six of these plants including Erythrina abyssinica stem bark, inhibited infectivity of two glycosaminoglycan-binding viruses i.e., RSV and HSV-2 but not the sialic acid binding HPIV-2. An activity-guided separation revealed that antiviral component(s) of water extract of E. abyssinica could be precipitated with ethanol. This sample potently and selectively inhibited RSV and HSV-2 infectivity in cultured cells with IC50 values of 2.1 μg/ml (selectivity index >476) and 0.14 μg/ml (selectivity index >7143) respectively. The sample exhibited inhibitory effect on the virus attachment to and entry into the cells by directly targeting the viral particles. Indeed, 10 consecutive virus passages in HEp-2 cells in the presence of this extract selected for a resistant RSV variant lacking the attachment, viral membrane-associated, G protein due to a stop codon at amino acid residue 33 (Leu33stop). Fractionation of the E. abyssinica extract on a CL-6B column revealed that anti-RSV and HSV-2 activity correlated with carbohydrate content. The most pronounced antiviral activity was associated with a carbohydrate containing ingredient of molecular mass of <5 kDa, which may polymerize to antiviral composites of up to 410 kDa. CONCLUSIONS Altogether, the water extract of six medicinal plants showed anti-RSV and anti-HSV-2 activities. Extended studies of the stem bark of E. abyssinica identified antiviral components that potently and selectively inhibited infectivity of free RSV and HSV-2 particles, a feature of importance in topical treatment of these infections. This observation confirms ethno-medical information concerning the use of E. abyssinica extract for treatment of respiratory infections and herpetic lesions.
Collapse
Affiliation(s)
- Jackson T Mollel
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden; Department of Molecular Biology and Biotechnology, University of Dar es Salaam, P. O. Box 35179, Dar es Salaam, Tanzania; Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania.
| | - Joanna S Said
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden.
| | - Rose J Masalu
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, P. O. Box 35179, Dar es Salaam, Tanzania.
| | - Charles Hannoun
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden.
| | - Mourice V N Mbunde
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania.
| | - Ramadhani S O Nondo
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania.
| | - Tomas Bergström
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden.
| | - Edward Trybala
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden.
| |
Collapse
|
11
|
Lujan AL, Croci DO, Rabinovich GA, Damiani MT. Galectins as potential therapeutic targets in STIs in the female genital tract. Nat Rev Urol 2022; 19:240-252. [PMID: 35105978 DOI: 10.1038/s41585-021-00562-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Every day, more than one million people worldwide acquire a sexually transmitted infection (STI). This public health problem has a direct effect on women's reproductive and sexual health as STIs can cause irreversible damage to fertility and can have negative consequences associated with discrimination and social exclusion. Infection with one sexually transmitted pathogen predisposes to co-infection with others, suggesting the existence of shared pathways that serve as molecular links between these diseases. Galectins, a family of β-galactoside-binding proteins, have emerged as endogenous mediators that facilitate cell-surface binding, internalization and cell invasion of many sexually transmitted pathogens, including Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Candida albicans, HIV and herpes simplex virus. The ability of certain galectins to dimerize or form multimeric complexes confers the capacity to interact simultaneously with glycosylated ligands on both the pathogen and the cervico-vaginal tissue on these proteins. Galectins can act as a bridge by engaging glycans from the pathogen surface and glycosylated receptors from host cells, which is a mechanism that has been shown to be shared by several sexually transmitted pathogens. In the case of viruses and obligate intracellular bacteria, binding to the cell surface promotes pathogen internalization and cell invasion. Inflammatory responses that occur in cervico-vaginal tissue might trigger secretion of galectins, which in turn control the establishment, evolution and severity of STIs. Thus, galectin-targeted therapies could potentially prevent or decrease STIs caused by a diverse array of pathogenic microorganisms; furthermore, anti-galectin agents might reduce treatment costs of STIs and reach the most vulnerable populations.
Collapse
Affiliation(s)
- Agustin L Lujan
- Laboratorio de Bioquímica e Inmunidad, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo (UNCUYO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego O Croci
- Laboratorio de Inmunopatología, Facultad de Ciencias Exactas y Naturales, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo (UNCUYO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), C1428AGE, Buenos Aires, Argentina.
| | - Maria T Damiani
- Laboratorio de Bioquímica e Inmunidad, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo (UNCUYO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
12
|
Young JM, Zine El Abidine A, Gómez-Martinez RA, Bondu V, Sterk RT, Surviladze Z, Ozbun MA. Protamine Sulfate Is a Potent Inhibitor of Human Papillomavirus Infection In Vitro and In Vivo. Antimicrob Agents Chemother 2022; 66:e0151321. [PMID: 34723633 PMCID: PMC8765401 DOI: 10.1128/aac.01513-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Human papillomavirus (HPV) infections are transmitted through sexual or other close contact and are etiologically associated with epithelial warts, papillomas, and intraepithelial lesions that may progress to cancer. Indeed, 4.8% of the global cancer burden is linked to HPV infection. Highly effective vaccines protect against two to nine of the most medically important HPV genotypes, yet vaccine uptake is inadequate and/or cost prohibitive in many settings. With HPV-related cancer incidence expected to rise over the coming decades, there is a need for effective HPV microbicides. Herein, we demonstrate the strong inhibitory activity of the heparin-neutralizing drug protamine sulfate (PS) against HPV infection. Pretreatment of cells with PS greatly reduced infection, regardless of HPV genotype or virus source. Vaginal application of PS prevented infection of the murine genital tract by HPV pseudovirions. Time-of-addition assays where PS was added to cells before infection, during infection, or after viral attachment demonstrated strong inhibitory activities on early infection steps. No effect on virus infection was found for cell lines deficient in heparan sulfate expression, suggesting that PS binds to heparan sulfate on the cell surface. Consistent with this, prophylactic PS exposure prevented viral attachment, including under low-pH conditions akin to the human vaginal tract. Our findings suggest PS acts dually to prevent HPV infection: prophylactic treatment prevents HPV attachment to host cells, and postattachment administration alters viral entry. Clinical trials are warranted to determine whether protamine-based products are effective as topical microbicides against genital HPVs.
Collapse
Affiliation(s)
- Jesse M. Young
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Amira Zine El Abidine
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ricardo A. Gómez-Martinez
- Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Virginie Bondu
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Rosa T. Sterk
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Zurab Surviladze
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Michelle A. Ozbun
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| |
Collapse
|
13
|
Koganti R, Memon A, Shukla D. Emerging Roles of Heparan Sulfate Proteoglycans in Viral Pathogenesis. Semin Thromb Hemost 2021; 47:283-294. [PMID: 33851373 DOI: 10.1055/s-0041-1725068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heparan sulfate is a glycosaminoglycan present in nearly all mammalian tissues. Heparan sulfate moieties are attached to the cell surface via heparan sulfate proteoglycans (HSPGs) which are composed of a protein core bound to multiple heparan sulfate chains. HSPGs contribute to the structural integrity of the extracellular matrix and participate in cell signaling by releasing bound cytokines and chemokines once cleaved by an enzyme, heparanase. HSPGs are often exploited by viruses during infection, particularly during attachment and egress. Loss or inhibition of HSPGs initially during infection can yield significant decreases in viral entry and infectivity. In this review, we provide an overview of HSPGs in the lifecycle of multiple viruses, including herpesviruses, human immunodeficiency virus, dengue virus, human papillomavirus, and coronaviruses.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Abdullah Memon
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Mehta SD, Nandi D, Agingu W, Green SJ, Bhaumik DK, Bailey RC, Otieno F. Vaginal and Penile Microbiome Associations with HSV-2 in Women and their Male Sex Partners. J Infect Dis 2020; 226:644-654. [PMID: 32822500 PMCID: PMC9441199 DOI: 10.1093/infdis/jiaa529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 02/04/2023] Open
Abstract
Background We determined how the vaginal and penile microbiomes contribute to herpes simplex virus type 2 (HSV-2) serostatus within sexual partnerships. Methods Microbiomes were characterized in cervicovaginal lavage and penile meatal swab specimens through high-throughput 16s ribosomal RNA gene amplicon sequencing. HSV-2 antibody was detected in serum specimens. We modeled vaginal and penile taxa and covariates contributing to HSV-2 status in women and men using bivariate probit analysis. Results Among 231 couples, HSV-2 was detected in both partners in 78 couples (33.8%), in the woman only in 52 (22.5%),in the man only in 27 (11.7%), and in neither in 74 (32.0%). Among the women (median age, 22 years) 10.9% had human immunodeficiency virus (HIV), and 21.4% had Bacterial vaginosis. Among men (median age, 26 years), 11.8% had HIV, and 55.0% circumcised. In an analysis with adjustment for sociodemographics and Bacterial vaginosis, enrichment of vaginal Gardnerella vaginalis and Lactobacillus iners was associated with increased likelihood of HSV-2 in both partners. Penile taxa (including Ureaplasma and Aerococcus) were associated with HSV-2 in women. Conclusions We demonstrate that penile taxa are associated with HSV-2 in female partners, and vaginal taxa are associated with HSV-2 in male partners. Our findings suggest that couples-level joint consideration of genital microbiome and sexually transmitted infection or related outcomes could lead to new avenues for prevention.
Collapse
Affiliation(s)
- Supriya D Mehta
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Debarghya Nandi
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, USA
| | | | - Stefan J Green
- Genome Research Core, University of Illinois at Chicago School of Medicine, Chicago, USA
| | - Dulal K Bhaumik
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Robert C Bailey
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Fredrick Otieno
- Genome Research Core, University of Illinois at Chicago School of Medicine, Chicago, USA
| |
Collapse
|
15
|
Nijmeijer BM, Eder J, Langedijk CJM, Kaptein TM, Meeussen S, Zimmermann P, Ribeiro CMS, Geijtenbeek TBH. Syndecan 4 Upregulation on Activated Langerhans Cells Counteracts Langerin Restriction to Facilitate Hepatitis C Virus Transmission. Front Immunol 2020; 11:503. [PMID: 32292405 PMCID: PMC7118926 DOI: 10.3389/fimmu.2020.00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
Sexually transmitted Hepatitis C virus (HCV) infections and high reinfections are a major concern amongst men who have sex with men (MSM) living with HIV-1 and HIV-negative MSM. Immune activation and/or HIV-1 coinfection enhance HCV susceptibility via sexual contact, suggesting that changes in immune cells or external factors are involved in increased susceptibility. Activation of anal mucosal Langerhans cells (LCs) has been implicated in increased HCV susceptibility as activated but not immature LCs efficiently retain and transmit HCV to other cells. However, the underlying molecular mechanism of transmission remains unclear. Here we identified the Heparan Sulfate Proteoglycan Syndecan 4 as the molecular switch, controlling HCV transmission by LCs. Syndecan 4 was highly upregulated upon activation of LCs and interference with Heparan Sulfate Proteoglycans or silencing of Syndecan 4 abrogated HCV transmission. These data strongly suggest that Syndecan 4 mediates HCV transmission by activated LCs. Notably, our data also identified the C-type lectin receptor langerin as a restriction factor for HCV infection and transmission. Langerin expression abrogated HCV infection in HCV permissive cells, whereas langerin expression on the Syndecan 4 expressing cell line strongly decreased HCV transmission to a target hepatoma cell line. These data suggest that the balanced interplay between langerin restriction and Syndecan 4 transmission determines HCV dissemination. Silencing of langerin enhanced HCV transmission whereas silencing Syndecan 4 on activated LCs decreased transmission. Blocking Heparan Sulfate Proteoglycans abrogated HCV transmission by LCs ex vivo identifying Heparan Sulfate Proteoglycans and Syndecan 4 as potential targets to prevent sexual transmission of HCV. Thus, our data strongly suggest that the interplay between receptors promotes or restricts transmission and further indicate that Syndecan 4 is the molecular switch controlling HCV susceptibility after sexual contact.
Collapse
Affiliation(s)
- Bernadien M. Nijmeijer
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Julia Eder
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Catharina J. M. Langedijk
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Tanja M. Kaptein
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sofie Meeussen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Pascale Zimmermann
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France
| | - Carla M. S. Ribeiro
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Caven L, Carabeo RA. Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by Chlamydia trachomatis. Int J Mol Sci 2019; 21:ijms21010090. [PMID: 31877733 PMCID: PMC6981773 DOI: 10.3390/ijms21010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
The actin cytoskeleton is crucially important to maintenance of the cellular structure, cell motility, and endocytosis. Accordingly, bacterial pathogens often co-opt the actin-restructuring machinery of host cells to access or create a favorable environment for their own replication. The obligate intracellular organism Chlamydia trachomatis and related species exemplify this dynamic: by inducing actin polymerization at the site of pathogen-host attachment, Chlamydiae induce their own uptake by the typically non-phagocytic epithelium they infect. The interaction of chlamydial adhesins with host surface receptors has been implicated in this effect, as has the activity of the chlamydial effector TarP (translocated actin recruitment protein). Following invasion, C. trachomatis dynamically assembles and maintains an actin-rich cage around the pathogen’s membrane-bound replicative niche, known as the chlamydial inclusion. Through further induction of actin polymerization and modulation of the actin-crosslinking protein myosin II, C. trachomatis promotes egress from the host via extrusion of the inclusion. In this review, we present the experimental findings that can inform our understanding of actin-dependent chlamydial pathogenesis, discuss lingering questions, and identify potential avenues of future study.
Collapse
Affiliation(s)
- Liam Caven
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Correspondence: ; Tel.: +1-402-836-9778
| |
Collapse
|
17
|
Mao Q, Wu W, Liao Z, Li J, Jia D, Zhang X, Chen Q, Chen H, Wei J, Wei T. Viral pathogens hitchhike with insect sperm for paternal transmission. Nat Commun 2019; 10:955. [PMID: 30814506 PMCID: PMC6393494 DOI: 10.1038/s41467-019-08860-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/03/2019] [Indexed: 01/09/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) can be maternally transmitted by female insects to their offspring, however, it is unknown whether male sperm can directly interact with the arbovirus and mediate its paternal transmission. Here we report that an important rice arbovirus is paternally transmitted by the male leafhoppers by hitchhiking with the sperm. The virus-sperm binding is mediated by the interaction of viral capsid protein and heparan sulfate proteoglycan on the sperm head surfaces. Mating experiments reveal that paternal virus transmission is more efficient than maternal transmission. Such paternal virus transmission scarcely affects the fitness of adult males or their offspring, and plays a pivotal role in maintenance of viral population during seasons unfavorable for rice hosts in the field. Our findings reveal that a preferred mode of vertical arbovirus transmission has been evolved by hitchhiking with insect sperm without disturbing sperm functioning, facilitating the long-term viral epidemic and persistence in nature.
Collapse
Affiliation(s)
- Qianzhuo Mao
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhenfeng Liao
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiajia Li
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jing Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China. .,State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Gallegos KM, Taylor CR, Rabulinski DJ, Del Toro R, Girgis DE, Jourha D, Tiwari V, Desai UR, Ramsey KH. A Synthetic, Small, Sulfated Agent Is a Promising Inhibitor of Chlamydia spp. Infection in vivo. Front Microbiol 2019; 9:3269. [PMID: 30700982 PMCID: PMC6343517 DOI: 10.3389/fmicb.2018.03269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/17/2018] [Indexed: 01/19/2023] Open
Abstract
Chlamydia is the most frequently reported sexually transmitted bacteria causing 2.9 million infections annually in the United States. Diagnosis, treatment, and sequelae of chlamydial disease cost billions of dollars each year in the United States alone. Considering that a heparin sulfate-like cell surface receptor is involved in Chlamydia infections, we reasoned that sulfated and sulfonated mimics of heparin sulfate would be useful in topical prophylactic prevention of Chlamydia. In this study, we tested a small, synthetic sulfated agent sulfated pentagalloyl glucoside (SPGG) and three synthetic sulfonated polymers PSS and SPS with average molecular weight in the range of 11 to 1000 kDa for inhibition against Chlamydia. Infection of HeLa cells with C. muridarum or C. trachomatis in the presence of increasing concentrations of SPGG or sulfonated polymers were quantified by immunofluorescence of Chlamydia inclusions. To determine whether in vitro pre-treatment of SPGG inhibits infection of C. muridarum, HeLa monolayers were incubated with SPGG-containing media, and then infected with Chlamydia. Our in vitro results show that SPGG pre-treatment inhibits Chlamydia infection in a dose-dependent manner. In addition, we further determined if SPGG treatment has an inhibitory effect during infection, therefore cell monolayers were infected with C. muridarum in the concurrent presence of SPGG. Our results show that SPGG inhibits C. muridarum infection with an IC50 at 10 μg/ml levels. We also tested the inhibitory effect of synthetic polymers PSS and SPS against Chlamydia and found inhibition of C. muridarum and C. trachomatis infections with IC50 ranging from 0.3 to 0.8 μg/ml. SPGG, PSS, and SPS inhibit formation of Chlamydia inclusions in a concentration-dependent manner. For evaluation of in vivo efficacy of the most effective agent in blocking C. muridarum, SPGG, we intravaginally pre-treated mice with SPGG before infection with C. muridarum. Cervical swabs were collected post-infection to quantify Chlamydia inclusions in vitro. Our in vivo data show that the SPGG-treated group has a statistically significant reduction of infection compared to the no-treatment control. Overall, our results show that SPGG could serve as a promising topical inhibitor for preventing Chlamydia infection.
Collapse
Affiliation(s)
- Karen M. Gallegos
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Christopher R. Taylor
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
- Department of Dermatology, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado – Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel J. Rabulinski
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Rosalinda Del Toro
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Danielle E. Girgis
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dapinder Jourha
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Kyle H. Ramsey
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
19
|
Kaltenbach DD, Jaishankar D, Hao M, Beer JC, Volin MV, Desai UR, Tiwari V. Sulfotransferase and Heparanase: Remodeling Engines in Promoting Virus Infection and Disease Development. Front Pharmacol 2018; 9:1315. [PMID: 30555321 PMCID: PMC6282075 DOI: 10.3389/fphar.2018.01315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
An extraordinary binding site generated in heparan sulfate (HS) structures, during its biosynthesis, provides a unique opportunity to interact with multiple protein ligands including viral proteins, and therefore adds tremendous value to this master molecule. An example of such a moiety is the sulfation at the C3 position of glucosamine residues in HS chain via 3-O sulfotransferase (3-OST) enzymes, which generates a unique virus-cell fusion receptor during herpes simplex virus (HSV) entry and spread. Emerging evidence now suggests that the unique patterns in HS sulfation assist multiple viruses in invading host cells at various steps of their life cycles. In addition, sulfated-HS structures are known to assist in invading host defense mechanisms and initiating multiple inflammatory processes; a critical event in the disease development. All these processes are detrimental for the host and therefore raise the question of how HS-sulfation is regulated. Epigenetic modulations have been shown to be implicated in these reactions during HSV infection as well as in HS modifying enzyme sulfotransferases, and therefore pose a critical component in answering it. Interestingly, heparanase (HPSE) activity is shown to be upregulated during virus infection and multiple other diseases assisting in virus replication to promote cell and tissue damage. These phenomena suggest that sulfotransferases and HPSE serve as key players in extracellular matrix remodeling and possibly generating unique signatures in a given disease. Therefore, identifying the epigenetic regulation of OST genes, and HPSE resulting in altered yet specific sulfation patterns in HS chain during virus infection, will be a significant a step toward developing potential diagnostic markers and designing novel therapies.
Collapse
Affiliation(s)
- Dominik D Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dinesh Jaishankar
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Meng Hao
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Jacob C Beer
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
20
|
Therapeutic strategies to target microbial protein-glycosaminoglycan interactions. Biochem Soc Trans 2018; 46:1505-1515. [PMID: 30381333 DOI: 10.1042/bst20170485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023]
Abstract
Glycans are involved in a plethora of human pathologies including infectious diseases. Especially, glycosaminoglycans (GAGs), like heparan sulfate and chondroitin sulfate, have been found to be involved in different crucial stages of microbial invasion. Here, we review various therapeutic approaches, which target the interface of host GAGs and microbial proteins and discuss their limitations and challenges for drug development.
Collapse
|
21
|
Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection. Proc Natl Acad Sci U S A 2018; 115:E6000-E6009. [PMID: 29891717 DOI: 10.1073/pnas.1802188115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chlamydia trachomatis (Ct) constitutes the most prevalent sexually transmitted bacterium worldwide. Chlamydial infections can lead to severe clinical sequelae including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. As an obligate intracellular pathogen, Ct has evolved multiple strategies to promote adhesion and invasion of host cells, including those involving both bacterial and host glycans. Here, we show that galectin-1 (Gal1), an endogenous lectin widely expressed in female and male genital tracts, promotes Ct infection. Through glycosylation-dependent mechanisms involving recognition of bacterial glycoproteins and N-glycosylated host cell receptors, Gal1 enhanced Ct attachment to cervical epithelial cells. Exposure to Gal1, mainly in its dimeric form, facilitated bacterial entry and increased the number of infected cells by favoring Ct-Ct and Ct-host cell interactions. These effects were substantiated in vivo in mice lacking Gal1 or complex β1-6-branched N-glycans. Thus, disrupting Gal1-N-glycan interactions may limit the severity of chlamydial infection by inhibiting bacterial invasion of host cells.
Collapse
|
22
|
Agelidis AM, Hadigal SR, Jaishankar D, Shukla D. Viral Activation of Heparanase Drives Pathogenesis of Herpes Simplex Virus-1. Cell Rep 2018; 20:439-450. [PMID: 28700944 DOI: 10.1016/j.celrep.2017.06.041] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) causes lifelong recurrent pathologies without a cure. How infection by HSV-1 triggers disease processes, especially in the immune-privileged avascular human cornea, remains a major unresolved puzzle. It has been speculated that a cornea-resident molecule must tip the balance in favor of pro-inflammatory and pro-angiogenic conditions observed with herpetic, as well as non-herpetic, ailments of the cornea. Here, we demonstrate that heparanase (HPSE), a host enzyme, is the molecular trigger for multiple pathologies associated with HSV-1 infection. In human corneal epithelial cells, HSV-1 infection upregulates HPSE in a manner dependent on HSV-1 infected cell protein 34.5. HPSE then relocates to the nucleus to regulate cytokine production, inhibits wound closure, enhances viral spread, and thus generates a toxic local environment. Overall, our findings implicate activated HPSE as a driver of viral pathogenesis and call for further attention to this host protein in infection and other inflammatory disorders.
Collapse
Affiliation(s)
- Alex M Agelidis
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA; Department of Microbiology and Immunology, College of Medicine, E-704 Medical Sciences Building, University of Illinois at Chicago, 835 South Wolcott Avenue, M/C 790, Chicago, IL 60612, USA
| | - Satvik R Hadigal
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA
| | - Dinesh Jaishankar
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, M/C 063, Chicago, IL 60607, USA
| | - Deepak Shukla
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA; Department of Microbiology and Immunology, College of Medicine, E-704 Medical Sciences Building, University of Illinois at Chicago, 835 South Wolcott Avenue, M/C 790, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, M/C 063, Chicago, IL 60607, USA.
| |
Collapse
|
23
|
Rudd TR, Preston MD, Yates EA. The nature of the conserved basic amino acid sequences found among 437 heparin binding proteins determined by network analysis. MOLECULAR BIOSYSTEMS 2018; 13:852-865. [PMID: 28317949 DOI: 10.1039/c6mb00857g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, a large number of proteins interact with the polyanionic polysaccharides heparan sulphate (HS) and heparin. These interactions are usually assumed to be dominated by charge-charge interactions between the anionic carboxylate and/or sulfate groups of the polysaccharide and cationic amino acids of the protein. A major question is whether there exist conserved amino acid sequences for HS/heparin binding among these diverse proteins. Potentially conserved HS/heparin binding sequences were sought amongst 437 HS/heparin binding proteins. Amino acid sequences were extracted and compared using a Levenshtein distance metric. The resultant similarity matrices were visualised as graphs, enabling extraction of strongly conserved sequences from highly variable primary sequences while excluding short, core regions. This approach did not reveal extensive, conserved HS/heparin binding sequences, rather a number of shorter, more widely spaced sequences that may work in unison to form heparin-binding sites on protein surfaces, arguing for convergent evolution. Thus, it is the three-dimensional arrangement of these conserved motifs on the protein surface, rather than the primary sequence per se, which are the evolutionary elements.
Collapse
Affiliation(s)
- Timothy R Rudd
- The National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | | | | |
Collapse
|
24
|
Genome-Wide Screening Uncovers the Significance of N-Sulfation of Heparan Sulfate as a Host Cell Factor for Chikungunya Virus Infection. J Virol 2017; 91:JVI.00432-17. [PMID: 28404855 DOI: 10.1128/jvi.00432-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanisms underlying chikungunya virus (CHIKV) infection are poorly characterized. In this study, we analyzed the host factors involved in CHIKV infection using genome-wide screening. Human haploid HAP1 cells, into which an exon-trapping vector was introduced, were challenged with a vesicular stomatitis virus pseudotype bearing the CHIKV E3 to E1 envelope proteins. Analysis of genes enriched in the cells resistant to the pseudotyped virus infection unveiled a critical role of N-sulfation of heparan sulfate (HS) for the infectivity of the clinically isolated CHIKV Thai#16856 strain to HAP1 cells. Knockout of NDST1 that catalyzes N-sulfation of HS greatly decreased the binding and infectivity of CHIKV Thai#16856 strain but not infectivity of Japanese encephalitis virus (JEV) and yellow fever virus (YFV). While glycosaminoglycans were commonly required for the efficient infectivity of CHIKV, JEV, and YFV, as shown by using B3GAT3 knockout cells, the tropism for N-sulfate was specific to CHIKV. Expression of chondroitin sulfate (CS) in NDST1-knockout HAP1 cells did not restore the binding of CHIKV Thai#16856 strain and the infectivity of its pseudotype but restored the infectivity of authentic CHIKV Thai#16856, suggesting that CS functions at later steps after CHIKV binding. Among the genes enriched in this screening, we found that TM9SF2 is critical for N-sulfation of HS and therefore for CHIKV infection because it is involved in the proper localization and stability of NDST1. Determination of the significance of and the relevant proteins to N-sulfation of HS may contribute to understanding mechanisms of CHIKV propagation, cell tropism, and pathogenesis.IMPORTANCE Recent outbreaks of chikungunya fever have increased its clinical importance. Chikungunya virus (CHIKV) utilizes host glycosaminoglycans to bind efficiently to its target cells. However, the substructure in glycosaminoglycans required for CHIKV infection have not been characterized. Here, we unveil that N-sulfate in heparan sulfate is essential for the efficient infection of a clinical CHIKV strain to HAP1 cells and that chondroitin sulfate does not help the CHIKV binding but does play roles at the later steps in HAP1 cells. We show, by comparing previous reports using Chinese hamster ovary cells, along with another observation that enhanced infectivity of CHIKV bearing Arg82 in envelope E2 does not depend on glycosaminoglycans in HAP1 cells, that the infection manner of CHIKV varies among host cells. We also show that TM9SF2 is required for CHIKV infection to HAP1 cells because it is involved in the N-sulfation of heparan sulfate through ensuring NDST1 activity.
Collapse
|
25
|
Sharthiya H, Seng C, Van Kuppevelt TH, Tiwari V, Fornaro M. HSV-1 interaction to 3-O-sulfated heparan sulfate in mouse-derived DRG explant and profiles of inflammatory markers during virus infection. J Neurovirol 2017; 23:483-491. [PMID: 28326469 PMCID: PMC5440488 DOI: 10.1007/s13365-017-0521-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 11/29/2022]
Abstract
The molecular mechanism of herpes simplex virus (HSV) entry and the associated inflammatory response in the nervous system remain poorly understood. Using mouse-derived ex vivo dorsal root ganglia (DRG) explant model and single cell neurons (SCNs), in this study, we provided a visual evidence for the expression of heparan sulfate (HS) and 3-O-sulfated heparan sulfate (3-OS HS) followed by their interactions with HSV-1 glycoprotein B (gB) and glycoprotein D (gD) during cell entry. Upon heparanase treatment of DRG-derived SCN, a significant inhibition of HSV-1 entry was observed suggesting the involvement of HS role during viral entry. Finally, a cytokine array profile generated during HSV-1 infection in DRG explant indicated an enhanced expression of chemokines (LIX, TIMP-2, and M-CSF)—known regulators of HS. Taken together, these results highlight the significance of HS during HSV-1 entry in DRG explant. Further investigation is needed to understand which isoforms of 3-O-sulfotransferase (3-OST)-generated HS contributed during HSV-1 infection and associated cell damage.
Collapse
Affiliation(s)
- Harsh Sharthiya
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Chanmoly Seng
- Department of Biomedical sciences, College of Health Sciences, Midwestern University, Downers Grove, IL, 60515, USA
| | - T H Van Kuppevelt
- Department of Biochemistry, Nijmegen Institute for Molecular Life Sciences, Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Michele Fornaro
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA.
| |
Collapse
|
26
|
Suryawanshi R, Jadhav S, Makwana N, Desai D, Chaturbhuj D, Sonawani A, Idicula-Thomas S, Murugesan V, Katti SB, Tripathy S, Paranjape R, Kulkarni S. Evaluation of 4-thiazolidinone derivatives as potential reverse transcriptase inhibitors against HIV-1 drug resistant strains. Bioorg Chem 2017; 71:211-218. [PMID: 28236450 DOI: 10.1016/j.bioorg.2017.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 02/03/2023]
Abstract
Rapid emergence of drug resistance is crucial in management of HIV infection limiting implementation of efficacious drugs in the ART regimen. Designing new molecules against HIV drug resistant strains is utmost essential. Based on the anti-HIV-1 activity, we selected four 4-thiazolidinone derivatives (S009-1908, S009-1909, S009-1911, S009-1912) and studied their interaction with reverse transcriptase (RT) from a panel of 10 clinical isolates (8 nevirapine resistant and two susceptible) using in silico methods, and inhibition pattern using in vitro cell based assays. On the basis of binding affinity observed in in silico analysis, 2-(2-chloro-6-nitrophenyl)-3-(4, 6-dimethylpyridin-2-yl) thiazolidin-4-one (S009-1912) was identified as the lead molecule followed by S009-1908, S009-1909 and S009-1911. The in vitro activity against the same panel was assessed using TZM-bl assay (IC50: 0.4-11.44µg/ml, TI: 4-126) and subsequently in PBMC assay against a nevirapine resistant clinical isolate (IC50: 0.8-6.65µg/ml, TI: 8.31-11.43) and standard strain from NIH ARRRP (IC50: 0.95-3.6µg/ml, TI: 9-26). The study shows analogue with pyrimidin-2-yl amino substitution at N-3 position of thiazolidin-4-one ring (S009-1908, S009-1909, S009-1911) exhibited enhanced activity as compared to pyridin-2-yl substituted derivatives (S009-1912), suggesting the use 4-thiazolidinones for developing potent inhibitors against HIV-1 drug resistant strains.
Collapse
Affiliation(s)
| | | | | | - Dipen Desai
- National AIDS Research Institute, Pune, India
| | | | - Archana Sonawani
- National Institute for Research in Reproductive Health, Mumbai, India
| | | | - Vanangamudi Murugesan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Sector-10, Lucknow 226031, Uttar Pradesh, India
| | - Seturam B Katti
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Sector-10, Lucknow 226031, Uttar Pradesh, India
| | | | | | | |
Collapse
|
27
|
Ghiselli G. Drug-Mediated Regulation of Glycosaminoglycan Biosynthesis. Med Res Rev 2016; 37:1051-1094. [DOI: 10.1002/med.21429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl; Parco Scientifico Silvano Fumero; Via Ribes 5 Colleretto Giacosa, (TO) Italy
| |
Collapse
|
28
|
Sepúlveda-Crespo D, Ceña-Díez R, Jiménez JL, Ángeles Muñoz-Fernández M. Mechanistic Studies of Viral Entry: An Overview of Dendrimer-Based Microbicides As Entry Inhibitors Against Both HIV and HSV-2 Overlapped Infections. Med Res Rev 2016; 37:149-179. [PMID: 27518199 DOI: 10.1002/med.21405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the development of different dendrimers, mainly polyanionic, against human immunodeficiency virus (HIV) and genital herpes (HSV-2) as topical microbicides targeting the viral entry process. Vaginal topical microbicides to prevent sexually transmitted infections such as HIV and HSV-2 are urgently needed. To inhibit HIV/HSV-2 entry processes, new preventive targets have been established to maximize the current therapies against wild-type and drug-resistant viruses. The entry of HIV/HSV-2 into target cells is a multistep process that triggers a cascade of molecular interactions between viral envelope proteins and cell surface receptors. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV/HSV-2. Inhibitors of each entry step have been identified with regard to generations and surface groups, and possible roles for these agents in anti-HIV/HSV-2 therapies have also been discussed. Four potential binding sites for impeding HIV infection (HSPG, DC-SIGN, GSL, and CD4/gp120 inhibitors) and HSV-2 infection (HS, gB, gD, and gH/gL inhibitors) exist according to their mechanisms of action and structures. This review clarifies that inhibition of HIV/HSV-2 entry continues to be a promising target for drug development because nanotechnology can transform the field of HIV/HSV-2 prevention by improving the efficacy of the currently available antiviral treatments.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Luis Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
29
|
Mateu CG, Artuso MC, Pujol CA, Linero FN, Scolaro LA, Carlucci MJ. In vitro isolation of variants of herpes simplex virus attenuated with altered thymidine kinase and DNA polymerase genes using carrageenans as selection agents. Symbiosis 2016. [DOI: 10.1007/s13199-016-0437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Li JP, Kusche-Gullberg M. Heparan Sulfate: Biosynthesis, Structure, and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:215-73. [PMID: 27241222 DOI: 10.1016/bs.ircmb.2016.02.009] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS) proteoglycans (PGs) are ubiquitously expressed on cell surfaces and in the extracellular matrix of most animal tissues, having essential functions in development and homeostasis, as well as playing various roles in disease processes. The functions of HSPGs are mainly dependent on interactions between the HS-side chains with a variety of proteins including cytokines, growth factors, and their receptors. In a given HS polysaccharide, negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The mode of HS-protein interactions is assessed through binding experiments using saccharides of defined composition in vitro, signaling assays in cell models where HS structures are manipulated, and targeted disruption of genes for biosynthetic enzymes in animals (mouse, zebrafish, Drosophila, and Caenorhabditis elegans) followed by phenotype analysis. Whereas some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis and the potential for development of therapeutics targeting HS-protein interactions.
Collapse
Affiliation(s)
- J-P Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden; SciLifeLab, University of Uppsala, Uppsala, Sweden.
| | | |
Collapse
|
31
|
Chang K, Baginski J, Hassan SF, Volin M, Shukla D, Tiwari V. Filopodia and Viruses: An Analysis of Membrane Processes in Entry Mechanisms. Front Microbiol 2016; 7:300. [PMID: 27014223 PMCID: PMC4785137 DOI: 10.3389/fmicb.2016.00300] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022] Open
Abstract
Filopodia are thin, actin rich bundles protruding from cell plasma membranes, serving physiological purposes, such as probing the environment and facilitating cell-to-cell adhesion. Recent studies have highlighted that actively polymerized filopodial-protrusions are exploited during virus entry, trafficking, spread, and the development of clinical pathology of viral diseases. These observations have caused a surge in investigation of the key determinants of filopodial induction and their influence on cell topography including receptor expression for viral entry. It is now very clear that filopodia can provide unique opportunities for many viruses to invade host cells vertically during primary infection, or horizontally during virus spread from cell-to-cell. These emerging concepts can explain the unprecedented ability of viruses to invade both nearby and long-distant host cells, a feature that may directly contribute to viral tropism. In this review, we summarize the significance of filopodia in viral diseases and discuss future therapeutic possibilities to precisely target filopodial-flyovers to prevent or control infectious diseases.
Collapse
Affiliation(s)
- Kenneth Chang
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - John Baginski
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Samer F Hassan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Michael Volin
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| |
Collapse
|
32
|
Ceña-Díez R, Sepúlveda-Crespo D, Maly M, Muñoz-Fernández MA. Dendrimeric based microbicides against sexual transmitted infections associated to heparan sulfate. RSC Adv 2016. [DOI: 10.1039/c6ra06969j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell surface heparan sulfate (HS) represents a common link that many sexually transmitted infections (STIs) require for infection.
Collapse
Affiliation(s)
- Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Marek Maly
- Department of Innovative Technologies
- University of Applied Science of Southern Switzerland
- Switzerland
- Faculty of Science
- J. E. Purkinje University
| | - Mª Angeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| |
Collapse
|
33
|
Galus A, Mallet JM, Lembo D, Cagno V, Djabourov M, Lortat-Jacob H, Bouchemal K. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity. Carbohydr Polym 2016; 136:113-20. [DOI: 10.1016/j.carbpol.2015.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/31/2022]
|
34
|
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 2015; 33:1-17. [DOI: 10.1007/s10719-015-9642-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
35
|
Heparan Sulfate Modulates Neutrophil and Endothelial Function in Antibacterial Innate Immunity. Infect Immun 2015; 83:3648-56. [PMID: 26150541 DOI: 10.1128/iai.00545-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/26/2015] [Indexed: 12/24/2022] Open
Abstract
Recently, we showed that endothelial heparan sulfate facilitates entry of a bacterial pathogen into the central nervous system. Here, we show that normal bactericidal activity of neutrophils is influenced by the sulfation pattern of heparan sulfate. Inactivation of heparan sulfate uronyl 2-O-sulfotransferase (Hs2st) in neutrophils substantially reduced their bactericidal activity, and Hs2st deficiency rendered mice more susceptible to systemic infection with the pathogenic bacterium group B Streptococcus. Specifically, altered sulfation of heparan sulfate in mutant neutrophils affected formation of neutrophil extracellular traps while not influencing phagocytosis, production of reactive oxygen species, or secretion of granular proteases. Heparan sulfate proteoglycan(s) is present in neutrophil extracellular traps, modulates histone affinity, and modulates their microbial activity. Hs2st-deficient brain endothelial cells show enhanced binding to group B Streptococcus and are more susceptible to apoptosis, likely contributing to the observed increase in dissemination of group B Streptococcus into the brain of Hs2st-deficient mice following intravenous challenge. Taken together, our data provide strong evidence that heparan sulfate from both neutrophils and the endothelium plays important roles in modulating innate immunity.
Collapse
|
36
|
Yabe T, Maeda N. Histochemical analysis of heparan sulfate 3-O-sulfotransferase expression in mouse brain. Methods Mol Biol 2015; 1229:377-87. [PMID: 25325966 DOI: 10.1007/978-1-4939-1714-3_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In situ hybridization provides information for understanding the localization of gene expression in various tissues. The relative expression levels of mRNAs in a single cell can be sensitively visualized by this technique. Furthermore, since in situ hybridization is a histological technique, tissue structure is maintained after fixation, and it is possible to accurately identify cell types. We have examined the expression of heparan sulfate sulfotransferases by in situ hybridization to better understand the functions of heparan sulfate in the development of mouse nervous system. This chapter describes methods of in situ hybridization analyses using cRNA probes labeled with nonradioactive nucleotides.
Collapse
Affiliation(s)
- Tomio Yabe
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan,
| | | |
Collapse
|
37
|
Irvin SC, Herold BC. Molecular mechanisms linking high dose medroxyprogesterone with HIV-1 risk. PLoS One 2015; 10:e0121135. [PMID: 25798593 PMCID: PMC4370479 DOI: 10.1371/journal.pone.0121135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/11/2015] [Indexed: 11/24/2022] Open
Abstract
Background Epidemiological studies suggest that medroxyprogesterone acetate (MPA) may increase the risk of HIV-1. The current studies were designed to identify potential underlying biological mechanisms. Methods Human vaginal epithelial (VK2/E6E7), peripheral blood mononuclear (PBMC), and polarized endometrial (HEC-1-A) cells were treated with a range of concentrations of MPA (0.015-150 μg/ml) and the impact on gene expression, protein secretion, and HIV infection was evaluated. Results Treatment of VK2/E6E7 cells with high doses (>15μg/ml] of MPA significantly upregulated proinflammatory cytokines, which resulted in a significant increase in HIV p24 levels secreted by latently infected U1 cells following exposure to culture supernatants harvested from MPA compared to mock-treated cells. MPA also increased syndecan expression by VK2/E6E7 cells and cells treated with 15 μg/ml of MPA bound and transferred more HIV-1 to T cells compared to mock-treated cells. Moreover, MPA treatment of epithelial cells and PBMC significantly decreased cell proliferation resulting in disruption of the epithelial barrier and decreased cytokine responses to phytohaemagglutinin, respectively. Conclusion We identified several molecular mechanisms that could contribute to an association between DMPA and HIV including proinflammatory cytokine and chemokine responses that could activate the HIV promoter and recruit immune targets, increased expression of syndecans to facilitate the transfer of virus from epithelial to immune cells and decreased cell proliferation. The latter could impede the ability to maintain an effective epithelial barrier and adversely impact immune cell function. However, these responses were observed primarily following exposure to high (15-150 μg/ml) MPA concentrations. Clinical correlation is needed to determine whether the prolonged MPA exposure associated with contraception activates these mechanisms in vivo.
Collapse
Affiliation(s)
- Susan C. Irvin
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, United States of America and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States of America
| | - Betsy C. Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, United States of America and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States of America
- * E-mail:
| |
Collapse
|
38
|
Tiwari V, Tarbutton MS, Shukla D. Diversity of heparan sulfate and HSV entry: basic understanding and treatment strategies. Molecules 2015; 20:2707-27. [PMID: 25665065 PMCID: PMC6272628 DOI: 10.3390/molecules20022707] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
A modified form of heparan sulfate (HS) known as 3-O-sulfated heparan sulfate (3-OS HS) generates fusion receptor for herpes simplex virus (HSV) entry and spread. Primary cultures of corneal fibroblasts derived from human eye donors have shown the clinical significance of this receptor during HSV corneal infection. 3-OS HS- is a product of a rare enzymatic modification at C3 position of glucosamine residue which is catalyzed by 3-O-sulfotransferases (3-OSTs) enzymes. From humans to zebrafish, the 3-OST enzymes are highly conserved and widely expressed in cells and tissues. There are multiple forms of 3-OSTs each producing unique subset of sulfated HS making it chemically diverse and heterogeneous. HSV infection of cells or zebrafish can be used as a unique tool to understand the structural-functional activities of HS and 3-OS HS and likewise, the infection can be used as a functional assay to screen phage display libraries for identifying HS and 3-OS HS binding peptides or small molecule inhibitors. Using this approach over 200 unique 12-mer HS and 3-OS HS recognizing peptides were isolated and characterized against HSV corneal infection where 3-OS HS is known to be a key receptor. In this review we discuss emerging role of 3-OS HS based therapeutic strategies in preventing viral infection and tissue damage.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Morgan S Tarbutton
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Microbiology & Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Taniguchi N, Endo T, Hart GW, Seeberger PH, Wong CH. Viral Interactions with Glycans. GLYCOSCIENCE: BIOLOGY AND MEDICINE 2015. [PMCID: PMC7120038 DOI: 10.1007/978-4-431-54841-6_152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Wako, Saitama Japan
| | - Tamao Endo
- Tokyo Metropolitan Institute of Gerontology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Gerald W. Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | | |
Collapse
|
40
|
Abstract
Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus-glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus-glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus-glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications.
Collapse
|
41
|
Comprehensive analysis of herpes simplex virus 1 (HSV-1) entry mediated by zebrafish 3-O-Sulfotransferase isoforms: implications for the development of a zebrafish model of HSV-1 infection. J Virol 2014; 88:12915-22. [PMID: 25142596 DOI: 10.1128/jvi.02071-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Binding of herpes simplex virus 1 (HSV-1) envelope glycoprotein D (gD) to the receptor 3-O-sulfated heparan sulfate (3-OS HS) mediates viral entry. 3-O-Sulfation of HS is catalyzed by the 3-O-sulfotransferase (3-OST) enzyme. Multiple isoforms of 3-OST are differentially expressed in tissues of zebrafish (ZF) embryos. Here, we performed a comprehensive analysis of the role of ZF 3-OST isoforms (3-OST-1, 3-OST-5, 3-OST-6, and 3-OST-7) in HSV-1 entry. We found that a group of 3-OST gene family isoforms (3-OST-2, -3, -4, and -6) with conserved catalytic and substrate-binding residues of the enzyme mediates HSV-1 entry and spread, while the other group (3-OST-1, -5, and -7) lacks these properties. These results demonstrate that HSV-1 entry can be recapitulated by certain ZF 3-OST enzymes, a significant step toward the establishment of a ZF model of HSV-1 infection and tissue-specific tropism.
Collapse
|
42
|
Agmatine-containing poly(amidoamine)s as a novel class of antiviral macromolecules: structural properties and in vitro evaluation of infectivity inhibition. Antimicrob Agents Chemother 2014; 58:6315-9. [PMID: 25092704 DOI: 10.1128/aac.03420-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Poly(amidoamine)s (PAAs) are multifunctional tert-amine polymers endowed with high structural versatility. Here we report on the screening of a minilibrary of PAAs against a panel of viruses. The PAA AGMA1 showed antiviral activity against herpes simplex virus, human cytomegalovirus, human papillomavirus 16, and respiratory syncytial virus but not against human rotavirus and vesicular stomatitis virus. The results suggest the contribution of both a polycationic nature and side guanidine groups in imparting antiviral activity.
Collapse
|
43
|
Lembo D, Donalisio M, Laine C, Cagno V, Civra A, Bianchini EP, Zeghbib N, Bouchemal K. Auto-associative heparin nanoassemblies: a biomimetic platform against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV. Eur J Pharm Biopharm 2014; 88:275-82. [PMID: 24835150 DOI: 10.1016/j.ejpb.2014.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/06/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022]
Abstract
A new, simple and green method was developed for the manufacturing of heparin nanoassemblies active against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV. These nanoassemblies were obtained by the auto-association of O-palmitoyl-heparin and α-cyclodextrin in water. The synthesized O-palmitoyl-heparin derivatives mixed with α-cyclodextrin resulted in the formation of crystalline hexagonal nanoassemblies as observed by transmission electron microscopy. The nanoassembly mean hydrodynamic diameters were modulated from 340 to 659 nm depending on the type and the initial concentration of O-palmitoyl-heparin or α-cyclodextrin. The antiviral activity of the nanoassemblies was not affected by the concentration of the components. However, the method of the synthesis of O-palmitoyl-heparin affected the antiviral activity of the formulations. We showed that reduced antiviral activity is correlated with lower sulfation degree and anticoagulant activity.
Collapse
Affiliation(s)
- David Lembo
- University of Turin, Department of Clinical and Biological Sciences, Torino, Italy
| | - Manuela Donalisio
- University of Turin, Department of Clinical and Biological Sciences, Torino, Italy
| | - Claire Laine
- Univ Paris-Sud, Institut Galien Paris Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry cedex, France
| | - Valeria Cagno
- University of Turin, Department of Clinical and Biological Sciences, Torino, Italy
| | - Andrea Civra
- University of Turin, Department of Clinical and Biological Sciences, Torino, Italy
| | - Elsa P Bianchini
- Univ Paris Sud, Laboratoire d'hématologie, Faculté de Pharmacie, Châtenay-Malabry cedex, France
| | - Narimane Zeghbib
- Univ Paris-Sud, Institut Galien Paris Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry cedex, France
| | - Kawthar Bouchemal
- Univ Paris-Sud, Institut Galien Paris Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry cedex, France.
| |
Collapse
|
44
|
Antoine TE, Yakoub A, Maus E, Shukla D, Tiwari V. Zebrafish 3-O-sulfotransferase-4 generated heparan sulfate mediates HSV-1 entry and spread. PLoS One 2014; 9:e87302. [PMID: 24498308 PMCID: PMC3911948 DOI: 10.1371/journal.pone.0087302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023] Open
Abstract
Rare modification of heparan sulfate (HS) by glucosaminyl 3-O sulfotransferase (3-OST) isforms generates an entry receptor for herpes simplex virus type-1 (HSV-1). In the zebrafish (ZF) model multiple 3-OST isoforms are differentially expressed. One such isoform is 3-OST-4 which is widely expressed in the central nervous system of ZF. In this report we characterize the role of ZF encoded 3-OST-4 isoform for HSV-1 entry. Expression of ZF 3-OST-4 into resistant Chinese hamster ovary (CHO-K1) cells promoted susceptibility to HSV-1 infection. This entry was 3-O sulfated HS (3-OS HS) dependent as pre-treatment of ZF 3-OST-4 cells with enzyme HS lyases (heparinase II/III) significantly reduced HSV-1 entry. Interestingly, co-expression of ZF 3-OST-4 along with ZF 3-OST-2 which is also expressed in brain rendered cells more susceptible to HSV-1 than 3-OST-4 alone. The role of ZF-3-OST-4 in the spread of HSV-1 was also evaluated as CHO-K1 cells that expressed HSV-1 glycoproteins fused with ZF 3-OST-4 expressing effector CHO-K1 cells. Finally, adding further evidence ZF 3-OST-4 mediated HSV-1 entry was inhibited by anti-3O HS G2 peptide. Taken together our results demonstrate a role for ZF 3-OST-4 in HSV-1 pathogenesis and support the use of ZF as a model to study it.
Collapse
Affiliation(s)
- Thessicar E. Antoine
- Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Abraam Yakoub
- Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Erika Maus
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Deepak Shukla
- Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Vaibhav Tiwari
- Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, United States of America
- * E-mail:
| |
Collapse
|
45
|
Mott KR, Allen SJ, Zandian M, Akbari O, Hamrah P, Maazi H, Wechsler SL, Sharpe AH, Freeman GJ, Ghiasi H. Inclusion of CD80 in HSV targets the recombinant virus to PD-L1 on DCs and allows productive infection and robust immune responses. PLoS One 2014; 9:e87617. [PMID: 24475315 PMCID: PMC3903765 DOI: 10.1371/journal.pone.0087617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022] Open
Abstract
CD80 plays a critical role in stimulation of T cells and subsequent control of infection. To investigate the effect of CD80 on HSV-1 infection, we constructed a recombinant HSV-1 virus that expresses two copies of the CD80 gene in place of the latency associated transcript (LAT). This mutant virus (HSV-CD80) expressed high levels of CD80 and had similar virus replication kinetics as control viruses in rabbit skin cells. In contrast to parental virus, this CD80 expressing recombinant virus replicated efficiently in immature dendritic cells (DCs). Additionally, the susceptibility of immature DCs to HSV-CD80 infection was mediated by CD80 binding to PD-L1 on DCs. This interaction also contributed to a significant increase in T cell activation. Taken together, these results suggest that inclusion of CD80 as a vaccine adjuvant may promote increased vaccine efficacy by enhancing the immune response directly and also indirectly by targeting to DC.
Collapse
Affiliation(s)
- Kevin R. Mott
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Sariah J. Allen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Mandana Zandian
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pedram Hamrah
- Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Steven L. Wechsler
- Gavin Herbert Eye Institute, the Department of Ophthalmology, the Department of Microbiology and Molecular Genetics, and the Center for Virus Research, University of California Irvine, School of Medicine, Irvine, California, United States of America
| | - Arlene H. Sharpe
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Connell BJ, Lortat-Jacob H. Human immunodeficiency virus and heparan sulfate: from attachment to entry inhibition. Front Immunol 2013; 4:385. [PMID: 24312095 PMCID: PMC3834540 DOI: 10.3389/fimmu.2013.00385] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/05/2013] [Indexed: 11/13/2022] Open
Abstract
By targeting cells that provide protection against infection, HIV-1 causes acquired immunodeficiency syndrome. Infection starts when gp120, the viral envelope glycoprotein, binds to CD4 and to a chemokine receptor usually CCR5 or CXCR4. As many microorganisms, HIV-1 also interacts with heparan sulfate (HS), a complex group of cell surface associated anionic polysaccharides. It has been thought that this binding, occurring at a step prior to CD4 recognition, increases infectivity by pre-concentrating the virion particles at the cell surface. Early work, dating from before the identification of CCR5 and CXCR4, showed that a variety of HS mimetics bind to the gp120 V3 loop through electrostatic interactions, compete with cell surface associated HS to bind the virus and consequently, neutralize the infectivity of a number of T-cell line-adapted HIV-1 strains. However, progress made to better understand HIV-1 attachment and entry, coupled with the recent identification of additional gp120 regions mediating HS recognition, have considerably modified this view. Firstly, the V3 loop from CXCR4-using viruses is much more positively charged compared to those using CCR5. HS inhibition of cell attachment is thus restricted to CXCR4-using viruses (such as T-cell line-adapted HIV-1). Secondly, studies aiming at characterizing the gp120/HS complex revealed that HS binding was far more complex than previously thought: in addition to the V3 loop of CXCR4 tropic gp120, HS interacts with several other cryptic areas of the protein, which can be induced upon CD4 binding, and are conserved amongst CCR5 and CXCR4 viruses. In view of these data, this review will detail the present knowledge on HS binding to HIV-1, with regards to attachment and entry processes. It will discuss the perspective of targeting the gp120 co-receptor binding site with HS mimetic compounds, a strategy that recently gave rise to entry inhibitors that work in the low nanomolar range, independently of co-receptor usage.
Collapse
Affiliation(s)
- Bridgette J Connell
- University of Grenoble Alpes, Institut de Biologie Structurale , Grenoble , France ; Centre National de la Recherche Scientifique, Institut de Biologie Structurale , Grenoble , France ; Commissariat à l'Énergie Atomique, Direction des Sciences du Vivant, Institut de Biologie Structurale , Grenoble , France
| | | |
Collapse
|
47
|
Kim JH, Chan C, Elwell C, Singer MS, Dierks T, Lemjabbar-Alaoui H, Rosen SD, Engel JN. Endosulfatases SULF1 and SULF2 limit Chlamydia muridarum infection. Cell Microbiol 2013; 15:1560-71. [PMID: 23480519 DOI: 10.1111/cmi.12133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 12/30/2022]
Abstract
The first step in attachment of Chlamydia to host cells is thought to involve reversible binding to host heparan sulfate proteoglycans (HSPGs), polymers of variably sulfated repeating disaccharide units coupled to diverse protein backbones. However, the key determinants of HSPG structure that are involved in Chlamydia binding are incompletely defined. A previous genome-wide Drosophila RNAi screen suggested that the level of HSPG 6-O sulfation rather than the identity of the proteoglycan backbone maybe a critical determinant for binding. Here, we tested in mammalian cells whether SULF1 or SULF2, human endosulfatases, which remove 6-O sulfates from HSPGs, modulate Chlamydia infection. Ectopic expression of SULF1 or SULF2 in HeLa cells, which decreases cell surface HSPG sulfation, diminished C. muridarum binding and decreased vacuole formation. ShRNA depletion of endogenous SULF2 in a cell line that primarily expresses SULF2 augmented binding and increased vacuole formation. C. muridarum infection of diverse cell lines resulted indownregulation of SULF2 mRNA. In a murine model of acute pneumonia, mice genetically deficient in both endosulfatases or in SULF2 alone demonstrated increased susceptibility to C. muridarum lung infection. Collectively, these studies demonstrate that the level of HSPG 6-O sulfation is a critical determinant of C. muridarum infection in vivo and that 6-O endosulfatases are previously unappreciated modulators of microbial pathogenesis.
Collapse
Affiliation(s)
- J H Kim
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Baldwin J, Antoine TE, Shukla D, Tiwari V. Zebrafish encoded 3-O-sulfotransferase-2 generated heparan sulfate serves as a receptor during HSV-1 entry and spread. Biochem Biophys Res Commun 2013; 432:672-6. [PMID: 23416072 DOI: 10.1016/j.bbrc.2013.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 01/13/2023]
Abstract
Previously we reported the role of zebrafish (ZF) encoded glucosaminyl 3-O-sulfotransferase-3 (3-OST-3) isoform in assisting herpes simplex virus type-1 (HSV-1) entry and spread by generating an entry receptor to HSV-1 envelope glycoprotein D (gD). However, the ability of ZF encoded 3-OST-2 isoform to participate in HSV-1 entry has not been determined although it is predominantly expressed in ZF brain, a prime target for HSV-1 to infect and establish lifelong latency. Here we report the expression cloning of ZF encoded 3-OST-2 isoform and demonstrate HSV-1 entry into resistant Chinese hamster ovary (CHO-K1) cells expressing the clone. Additional significance of ZF encoded 3-OST-2 receptor was demonstrated using medically important isolates of HSV-1. In addition, interference to HSV-1 entry was observed upon co-expression of HSV-1 gD and ZF 3-OST-2. Similarly HSV-1 entry was significantly inhibited by the pre-treatment of cells with enzyme HS lyases (heparinase II/III). Finally, ZF-3-OST-2 expressing CHO-K1 was able to fuse with HSV-1 glycoprotein expressing cells suggesting their role in HSV-1 spread. Taken together our result demonstrates a role for ZF 3-OST-2 in HSV-1 pathogenesis.
Collapse
Affiliation(s)
- John Baldwin
- Department of Microbiology & Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | | | | | | |
Collapse
|
49
|
Park PJ, Shukla D. Role of heparan sulfate in ocular diseases. Exp Eye Res 2013; 110:1-9. [PMID: 23410824 DOI: 10.1016/j.exer.2013.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 12/12/2022]
Abstract
Heparan sulfate (HS), a ubiquitous and structurally diverse cell surface polysaccharide and extracellular matrix component, is a factor common to several major eye pathologies. Its multitude of functions and variable distribution among the different ocular tissues makes it an important contributor to a variety of disease states. Although HS facilitates the pathogenesis of many disorders, its role in each varies. Unique functions of HS have been particularly noted in viral and bacterial keratitis and age-related macular degeneration. Combined, these pathologies comprise a large portion of conditions leading to visual impairment worldwide. Given this prevalence of diseases facilitated by HS, it is prudent to take an in-depth look at this compound in the context of these pathologic states. While the initial part of the review will discuss the pathogenic aspects of HS, it is also important to consider the wider implications of such roles for HS. The remainder of the article will specifically address one such implication, the possibility for future use of novel HS-based therapeutics to combat these eye pathologies.
Collapse
Affiliation(s)
- Paul J Park
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
50
|
Baldwin J, Shukla D, Tiwari V. Members of 3-O-Sulfotransferases (3-OST) Family: A Valuable Tool from Zebrafish to Humans for Understanding Herpes Simplex Virus Entry. Open Virol J 2013; 7:5-11. [PMID: 23358893 PMCID: PMC3553493 DOI: 10.2174/1874357901307010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/28/2012] [Accepted: 10/17/2012] [Indexed: 11/30/2022] Open
Abstract
The journey of many viruses to infect cells begins when the virus first binds to cell surface heparan sulfate (HS). The initial step of cell attachment or binding during herpes simplex virus type-1 (HSV-1) entry is mediated by envelope glycoprotein B (gB) and C (gC). The binding is followed by fusion between virus envelope and cell membrane during which HSV-1 glycoprotein D (gD) interacts with a modified form of HS know as 3-O-sulfated heparan sulfate (3-OS HS). The rare modification of 3-O-sulfation on HS chain is governed by enzymes known as 3-O-sulfotransferase (3-OST). Currently, there are seven isoforms of human 3-OSTs that have been identified, and with the exception of 3-OST-1, all other 3-OST isoforms allow HSV-1 entry and spread. Recently, the product of the zebrafish (ZF)-encoded 3-OST-3 was also recognized as a gD receptor, which mediates HSV-1 entry and cell-cell fusion similar to human 3-OST-3. Interestingly, the ZF system expresses multiple isoforms of 3-OST which could be very useful for studying the involvement of HS and 3-OS HS in virus tropism and virus-induced inflammation. In addition, therapeutic targeting of 3-OST generated HS is likely to bring about novel interventions against HSV-1. In this review we have taken a closer look at the potential of both human and ZF encoded 3-OSTs as valuable tools in HSV entry and inflammation studies.
Collapse
Affiliation(s)
- John Baldwin
- Department of Microbiology & Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | | | | |
Collapse
|