1
|
Ma S, Gao J, Tian Y, Wen L. Recent progress in chemoenzymatic synthesis of human glycans. Org Biomol Chem 2024; 22:7767-7785. [PMID: 39246045 DOI: 10.1039/d4ob01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Glycan is an essential cell component that usually exists in either a free form or a glycoconjugated form. Glycosylation affects the regulatory function of glycoconjugates in health and disease development, indicating the key role of glycan in organisms. Because of the complexity and diversity of glycan structures, it is challenging to prepare structurally well-defined glycans, which hinders the investigation of biological functions at the molecular level. Chemoenzymatic synthesis is an attractive approach for preparing complex glycans, because it avoids tedious protecting group manipulations in chemical synthesis and ensures high regio- and stereo-selectivity of glucosides during glycan assembly. Herein, enzymes, such as glycosyltransferases (GTs) and glycosidases (GHs), and sugar donors involved in the chemoenzymatic synthesis of human glycans are initially discussed. Many state-of-the-art chemoenzymatic methodologies are subsequently displayed and summarized to illustrate the development of synthetic human glycans, for example, N- and O-linked glycans, human milk oligosaccharides, and glycosaminoglycans. Thus, we provide an overview of recent chemoenzymatic synthetic designs and applications for synthesizing complex human glycans, along with insights into the limitations and perspectives of the current methods.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Gao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Qualtieri A, De Benedittis S, Cerantonio A, Citrigno L, Di Palma G, Gallo O, Cavalcanti F, Spadafora P. Molecular Study of the Fukutin-Related Protein ( FKRP) Gene in Patients from Southern Italy with Duchenne/Becker-like Phenotype. Int J Mol Sci 2024; 25:10356. [PMID: 39408683 PMCID: PMC11476872 DOI: 10.3390/ijms251910356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Pathogenic variants localized in the gene coding for the Fukutin-Related Protein (FKRP) are responsible for Limb-Girdle Muscular Dystrophy type 9 (LGMDR9), Congenital Muscular Dystrophies type 1C (MDC1C), Walker-Warburg Syndrome (WWS), and Muscle-Eye-Brain diseases (MEBs). LGMDR9 is the fourth most common hereditary Limb Girdle Muscular Dystrophy in Italy. LGMDR9 patients with severe disease show an overlapping Duchenne/Becker phenotype and may have secondary dystrophin reduction on muscle biopsy. We conducted a molecular analysis of the FKRP gene by direct sequencing in 153 patients from Southern Italy (Calabria) with Duchenne/Becker-like phenotypes without confirmed genetic diagnosis. Mutational screening of the patients (112 men and 41 women, aged between 5 and 84 years), revealed pathogenic variants in 16 subjects. The most frequent variants identified were c.427C > A, p.R143S, and c.826C > A, p.L276I (NM_024301.5). The results obtained show that the Duchenne/Becker-like phenotype is frequently determined by mutations in the FKRP gene in our cohort and highlight the importance of considering LGMDR9 in the differential diagnosis of dystrophinopathies in Calabria. Finally, this study, which, to our knowledge, is the first conducted on Calabrian subjects, will contribute to the rapid identification and management of LGMDR9 patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation, National Research Council, 87050 Mangone, Italy; (A.Q.); (S.D.B.); (A.C.); (L.C.); (G.D.P.); (O.G.); (F.C.)
| |
Collapse
|
3
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
4
|
Povolo L, Tian W, Vakhrushev SY, Halim A. Global View of Domain-Specific O-Linked Mannose Glycosylation in Glycoengineered Cells. Mol Cell Proteomics 2024; 23:100796. [PMID: 38851451 PMCID: PMC11292533 DOI: 10.1016/j.mcpro.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Protein O-linked mannose (O-Man) glycosylation is an evolutionary conserved posttranslational modification that fulfills important biological roles during embryonic development. Three nonredundant enzyme families, POMT1/POMT2, TMTC1-4, and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins, and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knockout of O-Man glycosyltransferase genes. We established a human cell library for the analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway, and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man-glycosylated adhesion molecules and receptors.
Collapse
Affiliation(s)
- Lorenzo Povolo
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
5
|
Hord JM, Anderson ME, Prouty SJ, Melton S, Gastel Z, Zimmerman K, Weiss RM, Campbell KP. Matriglycan maintains t-tubule structural integrity in cardiac muscle. Proc Natl Acad Sci U S A 2024; 121:e2402890121. [PMID: 38771868 PMCID: PMC11145246 DOI: 10.1073/pnas.2402890121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
Maintaining the structure of cardiac membranes and membrane organelles is essential for heart function. A critical cardiac membrane organelle is the transverse tubule system (called the t-tubule system) which is an invagination of the surface membrane. A unique structural characteristic of the cardiac muscle t-tubule system is the extension of the extracellular matrix (ECM) from the surface membrane into the t-tubule lumen. However, the importance of the ECM extending into the cardiac t-tubule lumen is not well understood. Dystroglycan (DG) is an ECM receptor in the surface membrane of many cells, and it is also expressed in t-tubules in cardiac muscle. Extensive posttranslational processing and O-glycosylation are required for DG to bind ECM proteins and the binding is mediated by a glycan structure known as matriglycan. Genetic disruption resulting in defective O-glycosylation of DG results in muscular dystrophy with cardiorespiratory pathophysiology. Here, we show that DG is essential for maintaining cardiac t-tubule structural integrity. Mice with defects in O-glycosylation of DG developed normal t-tubules but were susceptible to stress-induced t-tubule loss or severing that contributed to cardiac dysfunction and disease progression. Finally, we observed similar stress-induced cardiac t-tubule disruption in a cohort of mice that solely lacked matriglycan. Collectively, our data indicate that DG in t-tubules anchors the luminal ECM to the t-tubule membrane via the polysaccharide matriglycan, which is critical to transmitting structural strength of the ECM to the t-tubules and provides resistance to mechanical stress, ultimately preventing disruptions in cardiac t-tubule integrity.
Collapse
Affiliation(s)
- Jeffrey M. Hord
- HHMI, University of Iowa, Iowa City, IA52242
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa, Iowa City, IA52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Mary E. Anderson
- HHMI, University of Iowa, Iowa City, IA52242
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa, Iowa City, IA52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Sally J. Prouty
- HHMI, University of Iowa, Iowa City, IA52242
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa, Iowa City, IA52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Shelly Melton
- HHMI, University of Iowa, Iowa City, IA52242
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa, Iowa City, IA52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Zeita Gastel
- HHMI, University of Iowa, Iowa City, IA52242
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa, Iowa City, IA52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Kathy Zimmerman
- Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Robert M. Weiss
- Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Abboud Cardiovascular Research Center, Carver College of Medicine, Department of Internal Medicine-Cardiovascular Medicine, University of Iowa, Iowa City, IA52242
- Iowa City Veterans Affairs Health Care System, University of Iowa, Iowa City, IA52242
| | - Kevin P. Campbell
- HHMI, University of Iowa, Iowa City, IA52242
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa, Iowa City, IA52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| |
Collapse
|
6
|
Ma Y, Luo Y, Li W, Wang D, Ning Z. White Isthmus Transcriptome Analysis Reveals the Mechanism of Translucent Eggshell Formation. Animals (Basel) 2024; 14:1477. [PMID: 38791694 PMCID: PMC11117225 DOI: 10.3390/ani14101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The presence of translucent eggshells is a type of egg quality issue that impacts egg sales. While many researchers have studied them, the exact mechanisms behind their formation remain unclear. In this study, we conducted a transcriptomic differential expression analysis of the isthmus region of the oviduct in both normal egg- and translucent egg-laying hens. The analysis revealed that differentially expressed gene pathways were predominantly concentrated in the synthesis, modification, and transport of eggshell membrane proteins, particularly collagen proteins, which provide structural support. These findings suggest that variations in the physical structure of the eggshell membrane, resulting from changes in its chemical composition, are the fundamental cause of translucent eggshell formation. This research provides a theoretical reference for reducing the occurrence of translucent eggs.
Collapse
Affiliation(s)
- Ying Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Yuxing Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Wen Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Dehe Wang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| |
Collapse
|
7
|
Kopeć M, Beton-Mysur K, Abramczyk H. Biochemical changes in lipid and protein metabolism caused by mannose-Raman spectroscopy studies. Analyst 2024; 149:2942-2955. [PMID: 38597575 DOI: 10.1039/d4an00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biochemical analysis of human normal bronchial cells (BEpiC) and human cancer lung cells (A549) has been performed by using Raman spectroscopy and Raman imaging. Our approach provides a biochemical compositional mapping of the main cell components: nucleus, mitochondria, lipid droplets, endoplasmic reticulum, cytoplasm and cell membrane. We proved that Raman spectroscopy and Raman imaging can distinguish successfully BEpiC and A549 cells. In this study, we have focused on the role of mannose in cancer development. It has been shown that changes in the concentration of mannose can regulate some metabolic processes in cells. Presented results suggest lipids and proteins can be considered as Raman biomarkers during lung cancer progression. Analysis obtained for bands 1444 cm-1, and 2854 cm-1 characteristic for lipids and derivatives proved that the addition of mannose reduced levels of these compounds. Results obtained for protein compounds based on bands 858 cm-1, 1004 cm-1 and 1584 cm-1 proved that the addition of mannose increases the values of protein in BEpiC cells and blocks protein glycolisation in A549 cells. Noticing Raman spectral changes in BEpiC and A549 cells supplemented with mannose can help to understand the mechanism of sugar metabolism during cancer development and could play in the future an important role in clinical treatment.
Collapse
Affiliation(s)
- Monika Kopeć
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
8
|
Ling D, Xie W, Mao X, Yang S, Pang H, Yang P, Shen P, Tang Y. Compound heterozygous B3GALNT2 mutations in a fetus with encephalocele: A case report. Clin Case Rep 2024; 12:e8691. [PMID: 38585583 PMCID: PMC10997814 DOI: 10.1002/ccr3.8691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
An encephalocele is a congenital malformation characterized by protrusion of the intracranial contents through a cranial defect. We report that a fetus of a pregnant mother who had two consecutive pregnancies with ultrasound-detected encephalocele carried compound heterozygous variants in B3GALNT2 NM_152490.5:c.[1423C > T (p.Gln475Ter)]; [261-2A > G] of maternal and paternal origins, respectively, as confirmed by exome sequencing followed by Sanger sequencing validation. The present case implies that mutations in B3GALNT2, a well-known dystroglycanopathy causative gene, may result in a phenotype of neural tube defect, providing new insights into the clinical spectrum of B3GALNT2-related disorders. Our study may contribute to prenatal screening/diagnosis and genetic counseling of congenital brain malformations.
Collapse
Affiliation(s)
- Dandan Ling
- Clinical Research Center For Placental Medicine In Hunan ProvinceChangsha CityChina
- Department of ObstetricsHunan Provincial Maternal and Child Health Care HospitalChangsha CityChina
| | - Wanqin Xie
- Clinical Research Center For Placental Medicine In Hunan ProvinceChangsha CityChina
- NHC key labratory of birth defects for research and prevention, Hunan Provincial Maternal and Child Health Care HospitalChangsha CityChina
| | - Xiao Mao
- Clinical Research Center For Placental Medicine In Hunan ProvinceChangsha CityChina
- NHC key labratory of birth defects for research and prevention, Hunan Provincial Maternal and Child Health Care HospitalChangsha CityChina
| | - Shengzhi Yang
- Department of PediatricsHunan Provincial Maternal and Child Health Care HospitalChangsha CityChina
| | - Haiyan Pang
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Ping Yang
- Clinical Research Center For Placental Medicine In Hunan ProvinceChangsha CityChina
- Department of ObstetricsHunan Provincial Maternal and Child Health Care HospitalChangsha CityChina
| | - Ping Shen
- Clinical Research Center For Placental Medicine In Hunan ProvinceChangsha CityChina
- Department of ObstetricsHunan Provincial Maternal and Child Health Care HospitalChangsha CityChina
| | - Yabing Tang
- Clinical Research Center For Placental Medicine In Hunan ProvinceChangsha CityChina
- Department of ObstetricsHunan Provincial Maternal and Child Health Care HospitalChangsha CityChina
| |
Collapse
|
9
|
Katz M, Diskin R. The underlying mechanisms of arenaviral entry through matriglycan. Front Mol Biosci 2024; 11:1371551. [PMID: 38516183 PMCID: PMC10955480 DOI: 10.3389/fmolb.2024.1371551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Matriglycan, a recently characterized linear polysaccharide, is composed of alternating xylose and glucuronic acid subunits bound to the ubiquitously expressed protein α-dystroglycan (α-DG). Pathogenic arenaviruses, like the Lassa virus (LASV), hijack this long linear polysaccharide to gain cellular entry. Until recently, it was unclear through what mechanisms LASV engages its matriglycan receptor to initiate infection. Additionally, how matriglycan is synthesized onto α-DG by the Golgi-resident glycosyltransferase LARGE1 remained enigmatic. Recent structural data for LARGE1 and for the LASV spike complex informs us about the synthesis of matriglycan as well as its usage as an entry receptor by arenaviruses. In this review, we discuss structural insights into the system of matriglycan generation and eventual recognition by pathogenic viruses. We also highlight the unique usage of matriglycan as a high-affinity host receptor compared with other polysaccharides that decorate cells.
Collapse
Affiliation(s)
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology 2023; 33:911-926. [PMID: 37565810 PMCID: PMC10859634 DOI: 10.1093/glycob/cwad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms associated with protein O-mannosylation functions.
Collapse
Affiliation(s)
- Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| |
Collapse
|
11
|
Snelling T, Saalfrank A, Wood NT, Cohen P. ALPK1 mutants causing ROSAH syndrome or Spiradenoma are activated by human nucleotide sugars. Proc Natl Acad Sci U S A 2023; 120:e2313148120. [PMID: 38060563 PMCID: PMC10723048 DOI: 10.1073/pnas.2313148120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
The atypical protein kinase ALPK1 is activated by the bacterial nucleotide sugar ADP-heptose and phosphorylates TIFA to switch on a signaling pathway that combats microbial infection. In contrast, ALPK1 mutations cause two human diseases: the ALPK1[T237M] and ALPK1[Y254C] mutations underlie ROSAH syndrome (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis, and migraine headache), while the ALPK1[V1092A] mutation accounts for 45% of spiradenoma and 30% of spiradenocarcinoma cases studied. In this study, we demonstrate that unlike wild-type (WT) ALPK1, the disease-causing ALPK1 mutants trigger the TIFA-dependent activation of an NF-κB/activator protein 1 reporter gene in the absence of ADP-heptose, which can be suppressed by either of two additional mutations in the ADP-heptose binding site that prevent the activation of WT ALPK1 by ADP-heptose. These observations are explained by our key finding that although ALPK1[T237M] and ALPK1[V1092A] are activated by bacterial ADP-heptose, they can also be activated by nucleotide sugars present in human cells (UDP-mannose, ADP-ribose, and cyclic ADP-ribose) which can be prevented by disruption of the ADP-heptose binding site. The ALPK1[V1092A] mutant was also activated by GDP-mannose, which did not activate ALPK1[T237M]. These are new examples of disease-causing mutations permitting the allosteric activation of an enzyme by endogenous molecules that the WT enzyme does not respond to. We propose that the loss of the specificity of ALPK1 for bacterial ADP-heptose underlies ROSAH syndrome and spiradenoma/spiradenocarcinoma caused by ALPK1 mutation.
Collapse
Affiliation(s)
- Tom Snelling
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Anton Saalfrank
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Nicola T. Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| |
Collapse
|
12
|
Patel A, Cui R, Odom JV, Leys M. Case Series on Autosomal Recessive Non-Syndromic Retinitis Pigmentosa Caused by POMGNT1 Mutations with a Report of a New Variant. J Clin Med 2023; 12:7549. [PMID: 38137617 PMCID: PMC10743436 DOI: 10.3390/jcm12247549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Recessive Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) mutations can cause early onset muscle-eye-brain disease but have also more recently been associated with non-syndromic Retinitis Pigmentosa. In this case series, we describe three sisters affected by non-syndromic autosomal recessive POMGNT1 retinopathy with a report of a new variant. The three patients received care at West Virginia University Eye Institute, including full ophthalmic examination with additional fundus imaging, optical coherence tomography (OCT), electroretinogram (ERG), and visual field testing. Diagnostic panel testing of 330 genes was also obtained. The proband was seen for cataract evaluation at age 42, and her fundus examination was suggestive of retinitis pigmentosa. Her oldest sister had been treated for acute anterior uveitis with retinal vasculitis. Another sister was diagnosed with multiple sclerosis (MS) and peripheral retinal degeneration. Posterior subcapsular cataracts were diagnosed between age 42 and 55 in all three sisters, each with constricted fields with preserved central vision. We identified one pathogenic POMGNT1 variant (c.751 + 1G > A) and one likely pathogenic variant (c.1010T > C p.Ile337Thr) in all three sisters. A thorough family history and examination of the siblings with genotyping might have led to an earlier diagnosis of retinal inherited disease and avoidance of immunomodulatory treatment in the oldest sibling.
Collapse
Affiliation(s)
- Ami Patel
- Department of Ophthalmology and Visual Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (R.C.); (J.V.O.); (M.L.)
| | | | | | | |
Collapse
|
13
|
Costa J, Hayes C, Lisacek F. Protein glycosylation and glycoinformatics for novel biomarker discovery in neurodegenerative diseases. Ageing Res Rev 2023; 89:101991. [PMID: 37348818 DOI: 10.1016/j.arr.2023.101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.
Collapse
Affiliation(s)
- Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Catherine Hayes
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland; Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
14
|
Larsen ISB, Povolo L, Zhou L, Tian W, Mygind KJ, Hintze J, Jiang C, Hartill V, Prescott K, Johnson CA, Mullegama SV, McConkie-Rosell A, McDonald M, Hansen L, Vakhrushev SY, Schjoldager KT, Clausen H, Worzfeld T, Joshi HJ, Halim A. The SHDRA syndrome-associated gene TMEM260 encodes a protein-specific O-mannosyltransferase. Proc Natl Acad Sci U S A 2023; 120:e2302584120. [PMID: 37186866 PMCID: PMC10214176 DOI: 10.1073/pnas.2302584120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Mutations in the TMEM260 gene cause structural heart defects and renal anomalies syndrome, but the function of the encoded protein remains unknown. We previously reported wide occurrence of O-mannose glycans on extracellular immunoglobulin, plexin, transcription factor (IPT) domains found in the hepatocyte growth factor receptor (cMET), macrophage-stimulating protein receptor (RON), and plexin receptors, and further demonstrated that two known protein O-mannosylation systems orchestrated by the POMT1/2 and transmembrane and tetratricopeptide repeat-containing proteins 1-4 gene families were not required for glycosylation of these IPT domains. Here, we report that the TMEM260 gene encodes an ER-located protein O-mannosyltransferase that selectively glycosylates IPT domains. We demonstrate that disease-causing TMEM260 mutations impair O-mannosylation of IPT domains and that TMEM260 knockout in cells results in receptor maturation defects and abnormal growth of 3D cell models. Thus, our study identifies the third protein-specific O-mannosylation pathway in mammals and demonstrates that O-mannosylation of IPT domains serves critical functions during epithelial morphogenesis. Our findings add a new glycosylation pathway and gene to a growing group of congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Lorenzo Povolo
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Luping Zhou
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, 35043Marburg, Germany
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Kasper Johansen Mygind
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - John Hintze
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Chen Jiang
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, 35043Marburg, Germany
| | - Verity Hartill
- Leeds Institute of Medical Research, University of Leeds, St James’ University Hospital, LeedsLS2 9JT, United Kingdom
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, LeedsLS7 4SA, United Kingdom
| | - Katrina Prescott
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, LeedsLS7 4SA, United Kingdom
| | - Colin A. Johnson
- Leeds Institute of Medical Research, University of Leeds, St James’ University Hospital, LeedsLS2 9JT, United Kingdom
| | | | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Katrine T. Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Thomas Worzfeld
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, 35043Marburg, Germany
- Max-Planck-Institute for Heart and Lung Research, 61231Bad Nauheim, Germany
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| |
Collapse
|
15
|
Zago S, Silvestri E, Arcangeli T, Calisesi M, Romeo C, Parmeggiani G, Parrini E, Cetica V, Guerrini R, Palicelli A, Bonasoni MP. Fetal Presentation of Walker-Warburg Syndrome with Compound Heterozygous POMT2 Missense Mutations. Fetal Pediatr Pathol 2023; 42:334-341. [PMID: 36048137 DOI: 10.1080/15513815.2022.2116620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background: Walker-Warburg syndrome (WWS) (OMIM #236670) is an autosomal recessive disorder characterized by congenital muscular dystrophy, hydrocephalus, cobblestone lissencephaly, and retinal dysplasia. The main genes involved are: POMT1, POMT2, POMGNT1, FKTN, LARGE1, and FKRP. Case report: We present a fetus with WWS showing at ultrasound severe triventricular hydrocephalus. Pregnancy was legally terminated at 21 weeks +2 days of gestation. In vivo and postmortem magnetic resonance revealed corpus callosum agenesis and cerebellar hypoplasia. Cobblestone lissencephaly was observed at post-mortem. Next generation sequencing (NGS) of 193 genes, performed on fetal DNA extracted from amniocytes, detected two heterozygous mutations in the POMT2 gene. The c.1238G > C p.(Arg413Pro) mutation was paternally inherited and is known to be pathogenic. The c.553G > A p.(Gly185Arg) mutation was maternally inherited and has not been previously described. Conclusion: Compound heterozygous mutations in the POMT2 gene caused a severe cerebral fetal phenotype diagnosed prenatally at midgestation allowing therapeutic pregnancy termination.
Collapse
Affiliation(s)
- Silvia Zago
- Unit of Pathology, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | - Evelina Silvestri
- Division of Pathology, Unit of Fetal and Neonatal Pathology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Tiziana Arcangeli
- Unit of Obstetrics and Gynecology, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | - Marina Calisesi
- Unit of Obstetrics and Gynecology, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | - Chiara Romeo
- Unit of Radiology, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | - Giulia Parmeggiani
- Medical Genetics Unit, AUSL della Romagna, Ospedale Bufalini, Cesena, Italy
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Valentina Cetica
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | |
Collapse
|
16
|
Monagas-Valentin P, Bridger R, Chandel I, Koff M, Novikov B, Schroeder P, Wells L, Panin V. Protein tyrosine phosphatase 69D is a substrate of protein O-mannosyltransferases 1-2 that is required for the wiring of sensory axons in Drosophila. J Biol Chem 2023; 299:102890. [PMID: 36634851 PMCID: PMC9950532 DOI: 10.1016/j.jbc.2023.102890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Mutations in protein O-mannosyltransferases (POMTs) result in severe brain defects and congenital muscular dystrophies characterized by abnormal glycosylation of α-dystroglycan (α-Dg). However, neurological phenotypes of POMT mutants are not well understood, and the functional substrates of POMTs other than α-Dg remain unknown. Using a Drosophila model, here we reveal that Dg alone cannot account for the phenotypes of POMT mutants, and identify Protein tyrosine phosphatase 69D (PTP69D) as a gene interacting with POMTs in producing the abdomen rotation phenotype. Using RNAi-mediated knockdown, mutant alleles, and a dominant-negative form of PTP69D, we reveal that PTP69D is required for the wiring of larval sensory axons. We also found that PTP69D and POMT genes interact in this process, and that their interactions lead to complex synergistic or antagonistic effects on axon wiring phenotypes, depending on the mode of genetic manipulation. Using glycoproteomic approaches, we further characterized the glycosylation of the PTP69D transgenic construct expressed in genetic strains with different levels of POMT activity. We found that the PTP69D construct carries many O-linked mannose modifications when expressed in Drosophila with wild-type or ectopically upregulated expression of POMTs. These modifications were absent in POMT mutants, suggesting that PTP69D is a substrate of POMT-mediated O-mannosylation. Taken together, our results indicate that PTP69D is a novel functional substrate of POMTs that is required for axon connectivity. This mechanism of POMT-mediated regulation of receptor-type protein tyrosine phosphatase functions could potentially be conserved in mammals and may shed new light on the etiology of neurological defects in muscular dystrophies.
Collapse
Affiliation(s)
- Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Patrick Schroeder
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
17
|
Okuma H, Hord JM, Chandel I, Venzke D, Anderson ME, Walimbe AS, Joseph S, Gastel Z, Hara Y, Saito F, Matsumura K, Campbell KP. N-terminal domain on dystroglycan enables LARGE1 to extend matriglycan on α-dystroglycan and prevents muscular dystrophy. eLife 2023; 12:e82811. [PMID: 36723429 PMCID: PMC9917425 DOI: 10.7554/elife.82811] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
Dystroglycan (DG) requires extensive post-translational processing and O-glycosylation to function as a receptor for extracellular matrix (ECM) proteins containing laminin-G (LG) domains. Matriglycan is an elongated polysaccharide of alternating xylose (Xyl) and glucuronic acid (GlcA) that binds with high affinity to ECM proteins with LG domains and is uniquely synthesized on α-dystroglycan (α-DG) by like-acetylglucosaminyltransferase-1 (LARGE1). Defects in the post-translational processing or O-glycosylation of α-DG that result in a shorter form of matriglycan reduce the size of α-DG and decrease laminin binding, leading to various forms of muscular dystrophy. Previously, we demonstrated that protein O-mannose kinase (POMK) is required for LARGE1 to generate full-length matriglycan on α-DG (~150-250 kDa) (Walimbe et al., 2020). Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in mouse skeletal muscle that lacks the DG N-terminus (α-DGN), resulting in an ~100-125 kDa α-DG. This smaller form of α-DG binds laminin and maintains specific force but does not prevent muscle pathophysiology, including reduced force production after eccentric contractions (ECs) or abnormalities in the neuromuscular junctions. Collectively, our study demonstrates that α-DGN, like POMK, is required for LARGE1 to extend matriglycan to its full mature length on α-DG and thus prevent muscle pathophysiology.
Collapse
Affiliation(s)
- Hidehiko Okuma
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Jeffrey M Hord
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Ishita Chandel
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - David Venzke
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Mary E Anderson
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Ameya S Walimbe
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Zeita Gastel
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Yuji Hara
- Department Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of ShizuokaShizuokaJapan
| | - Fumiaki Saito
- Department of Neurology, School of Medicine, Teikyo UniversityTokyoJapan
| | - Kiichiro Matsumura
- Department of Neurology, School of Medicine, Teikyo UniversityTokyoJapan
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| |
Collapse
|
18
|
Structural basis for matriglycan synthesis by the LARGE1 dual glycosyltransferase. PLoS One 2022; 17:e0278713. [PMID: 36512577 PMCID: PMC9746966 DOI: 10.1371/journal.pone.0278713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
LARGE1 is a bifunctional glycosyltransferase responsible for generating a long linear polysaccharide termed matriglycan that links the cytoskeleton and the extracellular matrix and is required for proper muscle function. This matriglycan polymer is made with an alternating pattern of xylose and glucuronic acid monomers. Mutations in the LARGE1 gene have been shown to cause life-threatening dystroglycanopathies through the inhibition of matriglycan synthesis. Despite its major role in muscle maintenance, the structure of the LARGE1 enzyme and how it assembles in the Golgi are unknown. Here we present the structure of LARGE1, obtained by a combination of X-ray crystallography and single-particle cryo-EM. We found that LARGE1 homo-dimerizes in a configuration that is dictated by its coiled-coil stem domain. The structure shows that this enzyme has two canonical GT-A folds within each of its catalytic domains. In the context of its dimeric structure, the two types of catalytic domains are brought into close proximity from opposing monomers to allow efficient shuttling of the substrates between the two domains. Together, with putative retention of matriglycan by electrostatic interactions, this dimeric organization offers a possible mechanism for the ability of LARGE1 to synthesize long matriglycan chains. The structural information further reveals the mechanisms in which disease-causing mutations disrupt the activity of LARGE1. Collectively, these data shed light on how matriglycan is synthesized alongside the functional significance of glycosyltransferase oligomerization.
Collapse
|
19
|
Quereda C, Pastor À, Martín-Nieto J. Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis. Cancer Cell Int 2022; 22:395. [PMID: 36494657 PMCID: PMC9733019 DOI: 10.1186/s12935-022-02812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dystroglycan (DG) is a glycoprotein composed of two subunits that remain non-covalently bound at the plasma membrane: α-DG, which is extracellular and heavily O-mannosyl glycosylated, and β-DG, an integral transmembrane polypeptide. α-DG is involved in the maintenance of tissue integrity and function in the adult, providing an O-glycosylation-dependent link for cells to their extracellular matrix. β-DG in turn contacts the cytoskeleton via dystrophin and participates in a variety of pathways transmitting extracellular signals to the nucleus. Increasing evidence exists of a pivotal role of DG in the modulation of normal cellular proliferation. In this context, deficiencies in DG glycosylation levels, in particular those affecting the so-called matriglycan structure, have been found in an ample variety of human tumors and cancer-derived cell lines. This occurs together with an underexpression of the DAG1 mRNA and/or its α-DG (core) polypeptide product or, more frequently, with a downregulation of β-DG protein levels. These changes are in general accompanied in tumor cells by a low expression of genes involved in the last steps of the α-DG O-mannosyl glycosylation pathway, namely POMT1/2, POMGNT2, CRPPA, B4GAT1 and LARGE1/2. On the other hand, a series of other genes acting earlier in this pathway are overexpressed in tumor cells, namely DOLK, DPM1/2/3, POMGNT1, B3GALNT2, POMK and FKTN, hence exerting instead a pro-oncogenic role. Finally, downregulation of β-DG, altered β-DG processing and/or impaired β-DG nuclear levels are increasingly found in human tumors and cell lines. It follows that DG itself, particular genes/proteins involved in its glycosylation and/or their interactors in the cell could be useful as biomarkers of certain types of human cancer, and/or as molecular targets of new therapies addressing these neoplasms.
Collapse
Affiliation(s)
- Cristina Quereda
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - Àngels Pastor
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - José Martín-Nieto
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain ,grid.5268.90000 0001 2168 1800Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
20
|
Sheikh MO, Capicciotti CJ, Liu L, Praissman J, Ding D, Mead DG, Brindley MA, Willer T, Campbell KP, Moremen KW, Wells L, Boons GJ. Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nat Commun 2022; 13:3617. [PMID: 35750689 PMCID: PMC9232514 DOI: 10.1038/s41467-022-31205-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2022] [Indexed: 12/29/2022] Open
Abstract
α-Dystroglycan (α-DG) is uniquely modified on O-mannose sites by a repeating disaccharide (-Xylα1,3-GlcAβ1,3-)n termed matriglycan, which is a receptor for laminin-G domain-containing proteins and employed by old-world arenaviruses for infection. Using chemoenzymatically synthesized matriglycans printed as a microarray, we demonstrate length-dependent binding to Laminin, Lassa virus GP1, and the clinically-important antibody IIH6. Utilizing an enzymatic engineering approach, an N-linked glycoprotein was converted into a IIH6-positive Laminin-binding glycoprotein. Engineering of the surface of cells deficient for either α-DG or O-mannosylation with matriglycans of sufficient length recovers infection with a Lassa-pseudovirus. Finally, free matriglycan in a dose and length dependent manner inhibits viral infection of wildtype cells. These results indicate that matriglycan alone is necessary and sufficient for IIH6 staining, Laminin and LASV GP1 binding, and Lassa-pseudovirus infection and support a model in which it is a tunable receptor for which increasing chain length enhances ligand-binding capacity.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chantelle J Capicciotti
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Departments of Chemistry, Biomedical and Molecular Sciences, and Surgery, Queen's University, Kingston, ON, Canada
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jeremy Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Dahai Ding
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Daniel G Mead
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Tobias Willer
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Department of Chemistry, University of Georgia, Athens, GA, USA.
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Dworkin LA, Clausen H, Joshi HJ. Applying transcriptomics to studyglycosylation at the cell type level. iScience 2022; 25:104419. [PMID: 35663018 PMCID: PMC9156939 DOI: 10.1016/j.isci.2022.104419] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
The complex multi-step process of glycosylation occurs in a single cell, yet current analytics generally cannot measure the output (the glycome) of a single cell. Here, we addressed this discordance by investigating how single cell RNA-seq data can be used to characterize the state of the glycosylation machinery and metabolic network in a single cell. The metabolic network involves 214 glycosylation and modification enzymes outlined in our previously built atlas of cellular glycosylation pathways. We studied differential mRNA regulation of enzymes at the organ and single cell level, finding that most of the general protein and lipid oligosaccharide scaffolds are produced by enzymes exhibiting limited transcriptional regulation among cells. We predict key enzymes within different glycosylation pathways to be highly transcriptionally regulated as regulatable hotspots of the cellular glycome. We designed the Glycopacity software that enables investigators to extract and interpret glycosylation information from transcriptome data and define hotspots of regulation. RNA-seq can provide information on the glycosylation metabolic network state It is possible to readout glycosylation capacity from single cell RNA-seq data Genes regulating the biosynthesis of common glycan scaffolds show little regulation Key enzymes in the glycosylation network are predicted to be regulatable hotspots
Collapse
Affiliation(s)
- Leo Alexander Dworkin
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Hiren Jitendra Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Corresponding author
| |
Collapse
|
22
|
Gaertner A, Burr L, Klauke B, Brodehl A, Laser KT, Klingel K, Tiesmeier J, Schulz U, zu Knyphausen E, Gummert J, Milting H. Compound Heterozygous FKTN Variants in a Patient with Dilated Cardiomyopathy Led to an Aberrant α-Dystroglycan Pattern. Int J Mol Sci 2022; 23:ijms23126685. [PMID: 35743126 PMCID: PMC9223741 DOI: 10.3390/ijms23126685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Fukutin encoded by FKTN is a ribitol 5-phosphate transferase involved in glycosylation of α-dystroglycan. It is known that mutations in FKTN affect the glycosylation of α-dystroglycan, leading to a dystroglycanopathy. Dystroglycanopathies are a group of syndromes with a broad clinical spectrum including dilated cardiomyopathy and muscular dystrophy. In this study, we reported the case of a patient with muscular dystrophy, early onset dilated cardiomyopathy, and elevated creatine kinase levels who was a carrier of the compound heterozygous variants p.Ser299Arg and p.Asn442Ser in FKTN. Our work showed that compound heterozygous mutations in FKTN lead to a loss of fully glycosylated α-dystroglycan and result in cardiomyopathy and end-stage heart failure at a young age.
Collapse
Affiliation(s)
- Anna Gaertner
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
- Correspondence: (A.G.); (H.M.)
| | - Lidia Burr
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Baerbel Klauke
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Andreas Brodehl
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Kai Thorsten Laser
- Zentrum für Angeborene Herzfehler, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (K.T.L.); (E.z.K.)
| | - Karin Klingel
- Kardiopathologie, Institut für Pathologie und Neuropathologie, Universitätsklinikum Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany;
| | - Jens Tiesmeier
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Uwe Schulz
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Edzard zu Knyphausen
- Zentrum für Angeborene Herzfehler, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (K.T.L.); (E.z.K.)
| | - Jan Gummert
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Hendrik Milting
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
- Correspondence: (A.G.); (H.M.)
| |
Collapse
|
23
|
Glycosyltransferases in Cancer: Prognostic Biomarkers of Survival in Patient Cohorts and Impact on Malignancy in Experimental Models. Cancers (Basel) 2022; 14:cancers14092128. [PMID: 35565254 PMCID: PMC9100214 DOI: 10.3390/cancers14092128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Glycosylation changes are a main feature of cancer. Some carbohydrate epitopes and expression levels of glycosyltransferases have been used or proposed as prognostic markers, while many experimental works have investigated the role of glycosyltransferases in malignancy. Using the transcriptomic data of the 21 TCGA cohorts, we correlated the expression level of 114 glycosyltransferases with the overall survival of patients. Methods: Using the Oncolnc website, we determined the Kaplan−Meier survival curves for the patients falling in the 15% upper or lower percentile of mRNA expression of each glycosyltransferase. Results: Seventeen glycosyltransferases involved in initial steps of N- or O-glycosylation and of glycolipid biosynthesis, in chain extension and sialylation were unequivocally associated with bad prognosis in a majority of cohorts. Four glycosyltransferases were associated with good prognosis. Other glycosyltransferases displayed an extremely high predictive value in only one or a few cohorts. The top were GALNT3, ALG6 and B3GNT7, which displayed a p < 1 × 10−9 in the low-grade glioma (LGG) cohort. Comparison with published experimental data points to ALG3, GALNT2, B4GALNT1, POFUT1, B4GALT5, B3GNT5 and ST3GAL2 as the most consistently malignancy-associated enzymes. Conclusions: We identified several cancer-associated glycosyltransferases as potential prognostic markers and therapeutic targets.
Collapse
|
24
|
Li T, Zhang Y, Li T, Zhuang H, Wang F, Wang N, Schmidt RR, Peng P. Divergent Synthesis of Core m1, Core m2 and Core m3
O
‐Mannosyl
Glycopeptides via a Chemoenzymatic Approach. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Youqin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Haoru Zhuang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | | | - Peng Peng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
25
|
Tokuoka H, Imae R, Nakashima H, Manya H, Masuda C, Hoshino S, Kobayashi K, Lefeber DJ, Matsumoto R, Okada T, Endo T, Kanagawa M, Toda T. CDP-ribitol prodrug treatment ameliorates ISPD-deficient muscular dystrophy mouse model. Nat Commun 2022; 13:1847. [PMID: 35422047 PMCID: PMC9010444 DOI: 10.1038/s41467-022-29473-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2022] [Indexed: 01/05/2023] Open
Abstract
Ribitol-phosphate modification is crucial for the functional maturation of α-dystroglycan. Its dysfunction is associated with muscular dystrophy, cardiomyopathy, and central nervous system abnormalities; however, no effective treatments are currently available for diseases caused by ribitol-phosphate defects. In this study, we demonstrate that prodrug treatments can ameliorate muscular dystrophy caused by defects in isoprenoid synthase domain containing (ISPD), which encodes an enzyme that synthesizes CDP-ribitol, a donor substrate for ribitol-phosphate modification. We generated skeletal muscle-selective Ispd conditional knockout mice, leading to a pathogenic reduction in CDP-ribitol levels, abnormal glycosylation of α-dystroglycan, and severe muscular dystrophy. Adeno-associated virus-mediated gene replacement experiments suggested that the recovery of CDP-ribitol levels rescues the ISPD-deficient pathology. As a prodrug treatment strategy, we developed a series of membrane-permeable CDP-ribitol derivatives, among which tetraacetylated CDP-ribitol ameliorated the dystrophic pathology. In addition, the prodrug successfully rescued abnormal α-dystroglycan glycosylation in patient fibroblasts. Consequently, our findings provide proof-of-concept for supplementation therapy with CDP-ribitol and could accelerate the development of therapeutic agents for muscular dystrophy and other diseases caused by glycosylation defects.
Collapse
Affiliation(s)
- Hideki Tokuoka
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Rieko Imae
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Hitomi Nakashima
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Hiroshi Manya
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Chiaki Masuda
- grid.410821.e0000 0001 2173 8328Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Shunsuke Hoshino
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Kazuhiro Kobayashi
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Dirk J. Lefeber
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Riki Matsumoto
- grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Takashi Okada
- grid.26999.3d0000 0001 2151 536XDivision of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639 Japan
| | - Tamao Endo
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Motoi Kanagawa
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.255464.40000 0001 1011 3808Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Tatsushi Toda
- grid.26999.3d0000 0001 2151 536XDepartment of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
26
|
Boyd A, Montandon M, Wood AJ, Currie PD. FKRP directed fibronectin glycosylation: A novel mechanism giving insights into muscular dystrophies? Bioessays 2022; 44:e2100270. [PMID: 35229908 DOI: 10.1002/bies.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.
Collapse
Affiliation(s)
- Andrew Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Chao Q, Li T, Jia JX, Li Z, Peng P, Gao XD, Wang N. Spore-Encapsulating Glycosyltransferase Catalysis Tandem Reactions: Facile Chemoenzymatic Synthesis of Complex Human Glycans. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qiang Chao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tianlu Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250012, China
| | - Ji-Xiang Jia
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250012, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
28
|
Hang J, Wang J, Lu M, Xue Y, Qiao J, Tao L. Protein O-mannosylation across kingdoms and related diseases: From glycobiology to glycopathology. Biomed Pharmacother 2022; 148:112685. [PMID: 35149389 DOI: 10.1016/j.biopha.2022.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
The post-translational glycosylation of proteins by O-linked α-mannose is conserved from bacteria to humans. Due to advances in high-throughput mass spectrometry-based approaches, a variety of glycoproteins are identified to be O-mannosylated. Various proteins with O-mannosylation are involved in biological processes, providing essential necessity for proper growth and development. In this review, we summarize the process and regulation of O-mannosylation. The multi-step O-mannosylation procedures are quite dynamic and complex, especially when considering the structural and functional inspection of the involved enzymes. The widely studied O-mannosylated proteins in human include α-Dystroglycan (α-DG), cadherins, protocadherins, and plexin, and their aberrant O-mannosylation are associated with many diseases. In addition, O-mannosylation also contributes to diverse functions in lower eukaryotes and prokaryotes. Finally, we present the relationship between O-mannosylation and gut microbiota (GM), and elucidate that O-mannosylation in microbiome is of great importance in the dynamic balance of GM. Our study provides an overview of the processes of O-mannosylation in mammalian cells and other organisms, and also associated regulated enzymes and biological functions, which could contribute to the understanding of newly discovered O-mannosylated glycoproteins.
Collapse
Affiliation(s)
- Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Minzhen Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang 110001, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
29
|
Psychosocial moderators of polygenic risk for suicidal ideation: Results from a 7-year population-based, prospective cohort study of U.S. veterans. Mol Psychiatry 2022; 27:1068-1074. [PMID: 34725455 DOI: 10.1038/s41380-021-01352-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Polygenic risk scores (PRS) may help inform the etiology of suicidal thoughts and behaviors. In this study, we evaluated whether a suicidality PRS derived from a large genome-wide association study (GWAS) of suicidality from the UK Biobank (N = 122,935) predicted suicidal ideation (SI) in a 7-year population-based, prospective cohort of European-American US veterans (N = 1326). Results revealed that 8.8% (n = 115) of veterans developed new-onset SI, 4.0% (n = 52) had chronic SI, 3.4% (n = 31) had remitted SI, and 83.8% (n = 1128) denied SI over the study period. Suicidality PRSstandardized was positively associated with chronic SI (relative risk ratio [RRR] = 4.54, 95% confidence interval [CI] = 1.01-20.48) and new-onset SI (RRR = 2.97, 95%CI = 1.22-7.23), and negatively associated with remitted SI (RRR = 0.12, 95% CI = 0.02-0.60). Among veterans with higher suicidality PRS, those with higher baseline dispositional optimism had a lower likelihood of chronic SI (RRR = 0.67, 95% CI = 0.49-0.91) and higher likelihood of remitted SI (RRR = 1.98, 95% CI = 1.18-3.31). Among veterans with higher suicidality PRS, those with higher baseline levels of social support were less likely to develop new-onset SI (RRR = 0.95, 95% CI = 0.92-0.99). These interaction effects were enriched for genes implicated in neuron recognition and development, while the PRS main effect was enriched for genes involved in mannosylation. Collectively, results of this study suggest that suicidality PRS is linked prospectively to symptomatic courses of SI, and that dispositional optimism and social support moderate these associations. Interventions targeting these modifiable psychosocial factors may help mitigate risk of SI in veterans with high polygenic risk for suicidality.
Collapse
|
30
|
Wu WJ, Sun SZ, Li BG. Congenital muscular dystrophy caused by beta1,3-N-acetylgalactosaminyltransferase 2 gene mutation: Two case reports. World J Clin Cases 2022; 10:1056-1066. [PMID: 35127920 PMCID: PMC8790464 DOI: 10.12998/wjcc.v10.i3.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations in the beta1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2) gene can lead to impaired glycosylation of α-dystroglycan, which, in turn, causes congenital muscular dystrophy (CMD). The clinical phenotypes of CMD are broad, and there are only a few reports of CMD worldwide.
CASE SUMMARY This report describes the cases of two children with CMD caused by B3GALNT2 gene mutation. The main manifestations of the two cases were abnormal walking posture, language development delay, and abnormal development of the white matter. Case 2 also had unreported symptoms of meningocele and giant arachnoid cyst. Both cases had compound heterozygous mutations of the B3GALNT2 gene, each containing a truncated mutation and a missense mutation, and three of the four loci had not been reported. Nineteen patients with CMD caused by B3GALNT2 gene mutation were found in the literature. Summary and analysis of the characteristics of CMD caused by B3GALNT2 gene mutation showed that 100% of the cases had nervous system involvement. Head magnetic resonance imaging often showed abnormal manifestations, and more than half of the children had eye and muscle involvement; some of the gene-related symptoms were self-healing.
CONCLUSION B3GALNT2 gene can be used as one of the candidate genes for screening CMD, cognitive development retardation, epilepsy, and multiple brain developmental malformations in infants.
Collapse
Affiliation(s)
- Wen-Juan Wu
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang 050031, Hebei Province, China
| | - Su-Zhen Sun
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang 050031, Hebei Province, China
| | - Bao-Guang Li
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang 050031, Hebei Province, China
| |
Collapse
|
31
|
Malaker SA, Quanico J, Raffo-Romero A, Kobeissy F, Aboulouard S, Tierny D, Bertozzi CR, Fournier I, Salzet M. On-tissue spatially resolved glycoproteomics guided by N-glycan imaging reveal global dysregulation of canine glioma glycoproteomic landscape. Cell Chem Biol 2022; 29:30-42.e4. [PMID: 34102146 PMCID: PMC8617081 DOI: 10.1016/j.chembiol.2021.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023]
Abstract
Here, we present an approach to identify N-linked glycoproteins and deduce their spatial localization using a combination of matrix-assisted laser desorption ionization (MALDI) N-glycan mass spectrometry imaging (MSI) and spatially resolved glycoproteomics. We subjected glioma biopsies to on-tissue PNGaseF digestion and MALDI-MSI and found that the glycan HexNAc4-Hex5-NeuAc2 was predominantly expressed in necrotic regions of high-grade canine gliomas. To determine the underlying sialo-glycoprotein, various regions in adjacent tissue sections were subjected to microdigestion and manual glycoproteomic analysis. Results identified haptoglobin as the protein associated with HexNAc4-Hex5-NeuAc2, thus directly linking glycan imaging with intact glycopeptide identification. In total, our spatially resolved glycoproteomics technique identified over 400 N-, O-, and S- glycopeptides from over 30 proteins, demonstrating the diverse array of glycosylation present on the tissue slices and the sensitivity of our technique. Ultimately, this proof-of-principle work demonstrates that spatially resolved glycoproteomics greatly complement MALDI-MSI in understanding dysregulated glycosylation.
Collapse
Affiliation(s)
- Stacy Alyse Malaker
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94035, USA,Present address: Department of Chemistry, Yale University, New Haven, CT 06511, USA,These authors contributed equally
| | - Jusal Quanico
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Present address: Center for Proteomics, Antwerp University,Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium,These authors contributed equally
| | - Antonella Raffo-Romero
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Soulaimane Aboulouard
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France
| | - Dominique Tierny
- OCR (Oncovet Clinical Research), Parc Eurasanté Lille Métropole, 80 rue du Dr Yersin, 59120 Loos, France
| | - Carolyn Ruth Bertozzi
- Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94035, USA,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Isabelle Fournier
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Correspondence: (I.F.), (M.S.)
| | - Michel Salzet
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Lead contact,Correspondence: (I.F.), (M.S.)
| |
Collapse
|
32
|
Biosynthetic Mechanisms and Biological Significance of Glycerol Phosphate-Containing Glycan in Mammals. Molecules 2021; 26:molecules26216675. [PMID: 34771084 PMCID: PMC8587909 DOI: 10.3390/molecules26216675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Bacteria contain glycerol phosphate (GroP)-containing glycans, which are important constituents of cell-surface glycopolymers such as the teichoic acids of Gram-positive bacterial cell walls. These glycopolymers comprising GroP play crucial roles in bacterial physiology and virulence. Recently, the first identification of a GroP-containing glycan in mammals was reported as a variant form of O-mannosyl glycan on α-dystroglycan (α-DG). However, the biological significance of such GroP modification remains largely unknown. In this review, we provide an overview of this new discovery of GroP-containing glycan in mammals and then outline the recent progress in elucidating the biosynthetic mechanisms of GroP-containing glycans on α-DG. In addition, we discuss the potential biological role of GroP modification along with the challenges and prospects for further research. The progress in this newly identified glycan modification will provide insights into the phylogenetic implications of glycan.
Collapse
|
33
|
Gan S, Yang H, Xiao T, Pan Z, Wu L. POMT1 and POMT2 gene mutations result in 2 cases of alpha-dystroglycanopathy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:915-919. [PMID: 34565739 PMCID: PMC10929972 DOI: 10.11817/j.issn.1672-7347.2021.200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 11/03/2022]
Abstract
Alpha-dystroglycanopathy (α-DGP) is a group of congenital muscular dystrophy and limb band muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (α-DG). At present, there are few studies on the clinical manifestations, genetic characteristics, and diagnostic methods for α-DGP in China. Two cases of α-DGP caused by POMT1 and POMT2 gene mutations in the protein O-mannosyltransferases (PMTs) family were admitted to the Department of Pediatrics, Xiangya Hospital, Central South University. The 2 patients showed exercise retardation, with or without mental retardation. Serum level of creatine kinase (CK) was increased significantly. Electromyography showed myogenic impairment. Muscle biopsy was consistent with myopathy. Genetic test showed that both patients had compound heterozygous mutations, and the parents of the 2 patients were heterozygous with one of the mutations. There were c.824+1G>A, splicing and c.1777G>A, p.A593T in POMT1 gene, and c.604T>G, p.F202V and c.868C>T, p.P290S in POMT2 gene. The online database was used to predict the mutation sites and suggested the pathogenicity. Finally, one patient was diagnosed as congenital muscular dystrophy with mental retardation (CMD-MR) and the other was dystrophytype 2N (LGMD2N). PMTs family has similar sequences. Gene mutations can lead to different degrees of muscular dystrophy with the increase of serum level of CK. α-DG is easy to be misdiagnosed. Genetic examination is beneficial to early diagnosis, prognosis, and genetic counseling.
Collapse
Affiliation(s)
- Siyi Gan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Haiyan Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zou Pan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
34
|
Wilkinson H, Thomsson KA, Rebelo AL, Hilliard M, Pandit A, Rudd PM, Karlsson NG, Saldova R. The O-Glycome of Human Nigrostriatal Tissue and Its Alteration in Parkinson's Disease. J Proteome Res 2021; 20:3913-3924. [PMID: 34191522 PMCID: PMC8353623 DOI: 10.1021/acs.jproteome.1c00219] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/31/2022]
Abstract
O-Glycosylation changes in misfolded proteins are of particular interest in understanding neurodegenerative conditions such as Parkinson's disease (PD) and incidental Lewy body disease (ILBD). This work outlines optimizations of a microwave-assisted nonreductive release to limit glycan degradation and employs this methodology to analyze O-glycosylation on the human striatum and substantia nigra tissue in PD, ILBD, and healthy controls, working alongside well-established reductive release approaches. A total of 70 O-glycans were identified, with ILBD presenting significantly decreased levels of mannose-core (p = 0.017) and glucuronylated structures (p = 0.039) in the striatum and PD presenting an increase in sialylation (p < 0.001) and a decrease in sulfation (p = 0.001). Significant increases in sialylation (p = 0.038) in PD were also observed in the substantia nigra. This is the first study to profile the whole nigrostriatal O-glycome in healthy, PD, and ILBD tissues, outlining disease biomarkers alongside benefits of employing orthogonal techniques for O-glycan analysis.
Collapse
Affiliation(s)
- Hayden Wilkinson
- NIBRT
GlycoScience Group, National Institute for
Bioprocessing, Research and Training, Blackrock, Dublin A94 X099, Ireland
- CÚRAM,
SFI Research Centre for Medical Devices, National University of Ireland, Galway, Galway H91 W2TY, Ireland
- UCD
School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin D07 A8NN, Ireland
| | - Kristina A. Thomsson
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Ana L. Rebelo
- CÚRAM,
SFI Research Centre for Medical Devices, National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Mark Hilliard
- NIBRT
GlycoScience Group, National Institute for
Bioprocessing, Research and Training, Blackrock, Dublin A94 X099, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Pauline M. Rudd
- NIBRT
GlycoScience Group, National Institute for
Bioprocessing, Research and Training, Blackrock, Dublin A94 X099, Ireland
| | - Niclas G. Karlsson
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
- Department
of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo 0167, Norway
| | - Radka Saldova
- NIBRT
GlycoScience Group, National Institute for
Bioprocessing, Research and Training, Blackrock, Dublin A94 X099, Ireland
- CÚRAM,
SFI Research Centre for Medical Devices, National University of Ireland, Galway, Galway H91 W2TY, Ireland
- UCD
School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin D07 A8NN, Ireland
| |
Collapse
|
35
|
Imae R, Manya H, Tsumoto H, Miura Y, Endo T. PCYT2 synthesizes CDP-glycerol in mammals and reduced PCYT2 enhances the expression of functionally glycosylated α-dystroglycan. J Biochem 2021; 170:183-194. [PMID: 34255834 DOI: 10.1093/jb/mvab069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 11/14/2022] Open
Abstract
α-Dystroglycan (α-DG) is a highly glycosylated cell-surface protein. Defective O-mannosyl glycan on α-DG is associated with muscular dystrophies and cancer. In the biosynthetic pathway of the O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP) transfer ribitol phosphate (RboP). Previously, we reported that FKTN and FKRP can also transfer glycerol phosphate (GroP) from CDP-glycerol (CDP-Gro) and showed the inhibitory effects of CDP-Gro on functional glycan synthesis by preventing glycan elongation in vitro. However, whether mammalian cells have CDP-Gro or associated synthetic machinery has not been elucidated. Therefore, the function of CDP-Gro in mammals is largely unknown. Here, we reveal that cultured human cells and mouse tissues contain CDP-Gro using liquid chromatography tandem-mass spectrometry (LC-MS/MS). By performing the enzyme activity assay of candidate recombinant proteins, we found that ethanolamine-phosphate cytidylyltransferase (PCYT2), the key enzyme in de novo phosphatidylethanolamine biosynthesis, has CDP-Gro synthetic activity from glycerol-3-phosphate (Gro3P) and CTP. In addition, knockdown of PCYT2 dramatically reduced cellular CDP-Gro. These results indicate that PCYT2 is a CDP-Gro synthase in mammals. Furthermore, we found that the expression of functionally glycosylated α-DG is increased by reducing PCYT2 expression. Our results suggest an important role for CDP-Gro in the regulation of α-DG function in mammals.
Collapse
Affiliation(s)
| | | | - Hiroki Tsumoto
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Yuri Miura
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | | |
Collapse
|
36
|
Glycobiology of the Epithelial to Mesenchymal Transition. Biomedicines 2021; 9:biomedicines9070770. [PMID: 34356834 PMCID: PMC8301408 DOI: 10.3390/biomedicines9070770] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Glycosylation consists in the covalent, enzyme mediated, attachment of sugar chains to proteins and lipids. A large proportion of membrane and secreted proteins are indeed glycoproteins, while glycolipids are fundamental component of cell membranes. The biosynthesis of sugar chains is mediated by glycosyltransferases, whose level of expression represents a major factor of regulation of the glycosylation process. In cancer, glycosylation undergoes profound changes, which often contribute to invasion and metastasis. Epithelial to mesenchymal transition (EMT) is a key step in metastasis formation and is intimately associated with glycosylation changes. Numerous carbohydrate structures undergo up- or down-regulation during EMT and often regulate the process. In this review, we will discuss the relationship with EMT of the N-glycans, of the different types of O-glycans, including the classical mucin-type, O-GlcNAc, O-linked fucose, O-linked mannose and of glycolipids. Finally, we will discuss the role in EMT of galectins, a major class of mammalian galactoside-binding lectins. While the expression of specific carbohydrate structures can be used as a marker of EMT and of the propensity to migrate, the manipulation of the glycosylation machinery offers new perspectives for cancer treatment through inhibition of EMT.
Collapse
|
37
|
Imae R, Kuwabara N, Manya H, Tanaka T, Tsuyuguchi M, Mizuno M, Endo T, Kato R. The structure of POMGNT2 provides new insights into the mechanism to determine the functional O-mannosylation site on α-dystroglycan. Genes Cells 2021; 26:485-494. [PMID: 33893702 PMCID: PMC8360118 DOI: 10.1111/gtc.12853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Defects in the O‐mannosyl glycan of α‐dystroglycan (α‐DG) are associated with α‐dystroglycanopathy, a group of congenital muscular dystrophies. While α‐DG has many O‐mannosylation sites, only the specific positions can be modified with the functional O‐mannosyl glycan, namely, core M3‐type glycan. POMGNT2 is a glycosyltransferase which adds β1,4‐linked GlcNAc to the O‐mannose (Man) residue to acquire core M3‐type glycan. Although it is assumed that POMGNT2 extends the specific O‐Man residues around particular amino acid sequences, the details are not well understood. Here, we determined a series of crystal structures of POMGNT2 with and without the acceptor O‐mannosyl peptides and identified the critical interactions between POMGNT2 and the acceptor peptide. POMGNT2 has an N‐terminal catalytic domain and a C‐terminal fibronectin type III (FnIII) domain and forms a dimer. The acceptor peptide is sandwiched between the two protomers. The catalytic domain of one protomer recognizes the O‐mannosylation site (TPT motif), and the FnIII domain of the other protomer recognizes the C‐terminal region of the peptide. Structure‐based mutational studies confirmed that amino acid residues of the catalytic domain interacting with mannose or the TPT motif are essential for POMGNT2 enzymatic activity. In addition, the FnIII domain is also essential for the activity and it interacts with the peptide mainly by hydrophobic interaction. Our study provides the first atomic‐resolution insights into specific acceptor recognition by the FnIII domain of POMGNT2. The catalytic mechanism of POMGNT2 is proposed based on the structure.
Collapse
Affiliation(s)
- Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - Naoyuki Kuwabara
- High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - Tomohiro Tanaka
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi-ku, Japan
| | - Masato Tsuyuguchi
- High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi-ku, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - Ryuichi Kato
- High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan
| |
Collapse
|
38
|
Chen S, Qin R, Mahal LK. Sweet systems: technologies for glycomic analysis and their integration into systems biology. Crit Rev Biochem Mol Biol 2021; 56:301-320. [PMID: 33820453 DOI: 10.1080/10409238.2021.1908953] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Chemistry, New York University, New York City, NY, USA
| | - Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, New York University, New York City, NY, USA.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Yang JY, Halmo SM, Praissman J, Chapla D, Singh D, Wells L, Moremen KW, Lanzilotta WN. Crystal structures of β-1,4-N-acetylglucosaminyltransferase 2: structural basis for inherited muscular dystrophies. Acta Crystallogr D Struct Biol 2021; 77:486-495. [PMID: 33825709 PMCID: PMC8025878 DOI: 10.1107/s2059798321001261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/02/2021] [Indexed: 11/11/2022] Open
Abstract
The canonical O-mannosylation pathway in humans is essential for the functional glycosylation of α-dystroglycan. Disruption of this post-translational modification pathway leads to congenital muscular dystrophies. The first committed step in the construction of a functional matriglycan structure involves the post-translational modification of α-dystroglycan. This is essential for binding extracellular matrix proteins and arenaviruses, and is catalyzed by β-1,4-N-acetylglucosaminyltransferase 2 (POMGNT2). While another glycosyl transferase, β-1,4-N-acetylglucosaminyltransferase 1 (POMGNT1), has been shown to be promiscuous in extending O-mannosylated sites, POMGNT2 has been shown to display significant primary amino-acid selectivity near the site of O-mannosylation. Moreover, several single point mutations in POMGNT2 have been identified in patients with assorted dystroglycanopathies such as Walker-Warburg syndrome and limb girdle muscular dystrophy. To gain insight into POMGNT2 function in humans, the enzyme was expressed as a soluble, secreted fusion protein by transient infection of HEK293 suspension cultures. Here, crystal structures of POMGNT2 (amino-acid residues 25-580) with and without UDP bound are reported. Consistent with a novel fold and a unique domain organization, no molecular-replacement model was available and phases were obtained through crystallization of a selenomethionine variant of the enzyme in the same space group. Tetragonal (space group P4212; unit-cell parameters a = b = 129.8, c = 81.6 Å, α = γ = β = 90°) crystals with UDP bound diffracted to 1.98 Å resolution and contained a single monomer in the asymmetric unit. Orthorhombic (space group P212121; unit-cell parameters a = 142.3, b = 153.9, c = 187.4 Å, α = γ = β = 90°) crystals were also obtained; they diffracted to 2.57 Å resolution and contained four monomers with differential glycosylation patterns and conformations. These structures provide the first rational basis for an explanation of the loss-of-function mutations and offer significant insights into the mechanics of this important human enzyme.
Collapse
Affiliation(s)
- Jeong Yeh Yang
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Stephanie M. Halmo
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jeremy Praissman
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Digantkumar Chapla
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Danish Singh
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lance Wells
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W. Moremen
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - William N. Lanzilotta
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
40
|
Takeshita S, Saito Y, Oyama Y, Watanabe Y, Ikeda A, Iai M, Sato T, Ishigaki K, Ito SI. Infection-associated decrease of serum creatine kinase levels in Fukuyama congenital muscular dystrophy. Brain Dev 2021; 43:440-447. [PMID: 33277141 DOI: 10.1016/j.braindev.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Marked decreases in serum creatine kinase levels have been noted in Duchenne and Becker muscular dystrophies as rare complications of autoimmune or autoinflammatory diseases. SUBJECTS AND METHODS The influence of systemic inflammation on serum creatine kinase levels was reviewed from the charts of three subjects with Fukuyama congenital muscular dystrophy. RESULTS A total of 30 infectious events were identified. Elevated serum C-reactive protein levels coincided with decreased creatine kinase levels on 19 occasions. In one subject, administration of 2 mg/kg/d prednisolone for bronchial asthma resulted in a decrease in creatine kinase level on six other occasions. CONCLUSION Apart from an increase in endogenous cortisol secretion, certain inflammation-related molecules could play a role in mitigating muscle cell damage in Fukuyama congenital muscular dystrophy during febrile infectious episodes. Corticosteroids may be a promising agent for the treatment of muscular symptoms in this disorder.
Collapse
Affiliation(s)
- Saoko Takeshita
- Department of Pediatrics, Yokohama City University Medical Center, 4-57 Urafune, Minami-ku, Yokohama 232-0024, Japan; Division of Child Neurology, Yokohama Medical and Welfare Center, Konan, 4-6-20 Konandai, Konan-ku, Yokohama 234-0054, Japan.
| | - Yoshiaki Saito
- Department of Pediatrics, Yokohama City University Medical Center, 4-57 Urafune, Minami-ku, Yokohama 232-0024, Japan; Division of Child Neurology, Yokohama Medical and Welfare Center, Konan, 4-6-20 Konandai, Konan-ku, Yokohama 234-0054, Japan
| | - Yoshitaka Oyama
- Department of Pediatrics, Yokohama City University Medical Center, 4-57 Urafune, Minami-ku, Yokohama 232-0024, Japan
| | - Yoshihiro Watanabe
- Department of Pediatrics, Yokohama City University Medical Center, 4-57 Urafune, Minami-ku, Yokohama 232-0024, Japan
| | - Azusa Ikeda
- Department of Neurology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama 232-8555, Japan
| | - Mizue Iai
- Department of Neurology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama 232-8555, Japan
| | - Takatoshi Sato
- Department of Pediatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Tokyo 162-8666, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Tokyo 162-8666, Japan
| | - Shu-Ichi Ito
- Department of Pediatrics, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
41
|
Kurz S, Sheikh MO, Lu S, Wells L, Tiemeyer M. Separation and Identification of Permethylated Glycan Isomers by Reversed Phase NanoLC-NSI-MS n. Mol Cell Proteomics 2021; 20:100045. [PMID: 33376194 PMCID: PMC8724860 DOI: 10.1074/mcp.ra120.002266] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023] Open
Abstract
HPLC has been employed for decades to enhance detection sensitivity and quantification of complex analytes within biological mixtures. Among these analytes, glycans released from glycoproteins and glycolipids have been characterized as underivatized or fluorescently tagged derivatives by HPLC coupled to various detection methods. These approaches have proven extremely useful for profiling the structural diversity of glycoprotein and glycolipid glycosylation but require the availability of glycan standards and secondary orthogonal degradation strategies to validate structural assignments. A robust method for HPLC separation of glycans as their permethylated derivatives, coupled with in-line multidimensional ion fragmentation (MSn) to assign structural features independent of standards, would significantly enhance the depth of knowledge obtainable from biological samples. Here, we report an optimized workflow for LC-MS analysis of permethylated glycans that includes sample preparation, mobile phase optimization, and MSn method development to resolve structural isomers on-the-fly. We report baseline separation and MSn of isomeric N- and O-glycan structures, aided by supplementing mobile phases with Li+, which simplifies adduct heterogeneity and facilitates cross-ring fragmentation to obtain valuable monosaccharide linkage information. Our workflow has been adapted from standard proteomics-based workflows and, therefore, provides opportunities for laboratories with expertise in proteomics to acquire glycomic data with minimal deviation from existing buffer systems, chromatography media, and instrument configurations. Furthermore, our workflow does not require a mass spectrometer with high-resolution/accurate mass capabilities. The rapidly evolving appreciation of the biological significance of glycans for human health and disease requires the implementation of high-throughput methods to identify and quantify glycans harvested from sample sets of sufficient size to achieve appropriately powered statistical significance. The LC-MSn approach we report generates glycan isomeric separations and robust structural characterization and is amenable to autosampling with associated throughput enhancements.
Collapse
Affiliation(s)
- Simone Kurz
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
42
|
Song D, Dai Y, Chen X, Fu X, Chang X, Wang N, Zhang C, Yan C, Zheng H, Wu L, Jiang L, Hua Y, Yang H, Wang Z, Dai T, Zhu W, Han C, Yuan Y, Kobayashi K, Toda T, Xiong H. Genetic variations and clinical spectrum of dystroglycanopathy in a large cohort of Chinese patients. Clin Genet 2021; 99:384-395. [PMID: 33200426 DOI: 10.1111/cge.13886] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
Dystroglycanopathy is a group of muscular dystrophies with deficient glycosylation of alpha-dystroglycan (α-DG). We recruited patients from 36 tertiary academic hospitals in China. In total, 143 patients with genetically diagnosed dystroglycanopathy were enrolled. Of these, limb girdle muscular dystrophy was the most common initial diagnosis (83 patients) and Walker-Warburg syndrome was the least common (1 patient). In 143 patients, mutations in FKRP gene were the most prevalent (62 patients), followed by POMT2, POMT1 (16), POMGNT1, ISPD (14), FKTN, GMPPB, B3GALNT2, DPM3, and DAG1. Several frequent mutations were identified in FKRP, POMT1, POMGNT1, ISPD, and FKTN genes. Many of these were founder mutations. Patients with FKRP mutations tended to have milder phenotypes, while those with mutations in POMGNT1 genes had more severe phenotypes. Mental retardation was a clinical feature associated with mutations of POMT1 gene. Detailed clinical data of 83 patients followed up in Peking University First Hospital were further analyzed. Our clinical and genetic analysis of a large cohort of Chinese patients with dystroglycanopathy expanded the genotype variation and clinical spectrum of congenital muscular dystrophies.
Collapse
Affiliation(s)
- Danyu Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaona Fu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Cheng Zhang
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Hong Zheng
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Hua
- Department of Neurology, Wuxi Children's Hospital, Wuxi, China
| | - Haipo Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhiqiang Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tingjun Dai
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunxi Han
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Kazuhiro Kobayashi
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
43
|
West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Mol Cell Proteomics 2021; 20:100024. [PMID: 32994314 PMCID: PMC8724618 DOI: 10.1074/mcp.r120.002263] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Glycosylation is a highly diverse set of co- and posttranslational modifications of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue-, and species-specific and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological, and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes-different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; VetCore Facility for Research/Proteomics Unit, Veterinärmedizinische Universität, Vienna, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| |
Collapse
|
44
|
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020; 25:E5755. [PMID: 33291296 PMCID: PMC7729866 DOI: 10.3390/molecules25235755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
45
|
Ortiz-Cordero C, Azzag K, Perlingeiro RCR. Fukutin-Related Protein: From Pathology to Treatments. Trends Cell Biol 2020; 31:197-210. [PMID: 33272829 DOI: 10.1016/j.tcb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022]
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in the functional glycosylation of α-dystroglycan (DG), a key component in the link between the cytoskeleton and the extracellular matrix (ECM). Mutations in FKRP lead to dystroglycanopathies with broad severity, including limb-girdle and congenital muscular dystrophy. Studies over the past 5 years have elucidated the function of FKRP, which has expanded the number of therapeutic opportunities for patients carrying FKRP mutations. These include small molecules, gene delivery, and cell therapy. Here we summarize recent findings on the function of FKRP and describe available models for studying diseases and testing therapeutics. Lastly, we highlight preclinical studies that hold potential for the treatment of FKRP-associated dystroglycanopathies.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
46
|
Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21:729-749. [PMID: 33087899 DOI: 10.1038/s41580-020-00294-x] [Citation(s) in RCA: 572] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.
Collapse
|
47
|
Southern WM, Nichenko AS, Qualls AE, Portman K, Gidon A, Beedle AM, Call JA. Mitochondrial dysfunction in skeletal muscle of fukutin-deficient mice is resistant to exercise- and 5-aminoimidazole-4-carboxamide ribonucleotide-induced rescue. Exp Physiol 2020; 105:1767-1777. [PMID: 32833332 DOI: 10.1113/ep088812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does fukutin deficiency in skeletal muscle cause mitochondrial dysfunction, and if so, can AMP-activated protein kinase (AMPK) stimulation via 5-aminoimidazole-4-carboxamide ribonucleotide attenuate this through regulation of mitochondrial biogenesis and autophagy? What is the main finding and its importance? Mitochondrial dysfunction is associated with fukutin deficiency and AMPK stimulation may benefit muscle contractility to a greater extent than mitochondrial function. ABSTRACT Disruptions in the dystrophin-glycoprotein complex (DGC) are clearly the primary basis underlying various forms of muscular dystrophies and dystroglycanopathies, but the cellular consequences of DGC disruption are still being investigated. Mitochondrial abnormalities are becoming an apparent consequence and contributor to dystrophy disease pathology. Herein, we demonstrate that muscle-specific deletion of the fukutin gene (Myf5/fktn-KO mice (Fktn KO)), a model of secondary dystroglycanopathy, results in ∼30% lower muscle strength (P < 0.001) and 16% lower mitochondrial respiratory function (P = 0.002) compared to healthy littermate controls (LM). We also observed ∼80% lower expression of the gene for peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) (P = 0.004), a primary transcription factor for mitochondrial biogenesis, in Fktn KO mice that likely contributes to the mitochondrial defects. PGC-1α is post-translationally regulated via phosphorylation by AMP-activated protein kinase (AMPK). Treatment with the AMPK agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) failed to rescue mitochondrial deficits in Fktn KO mice (P = 0.458) but did have beneficial (∼30% greater) effects on recovery of muscle contractility following injury in both LM and Fktn KO mice compared to saline treatment (P = 0.006). The beneficial effects of AMPK stimulation via AICAR on muscle contractile function may be partially explained by AMPK's other role of regulating skeletal muscle autophagy, a cellular process critical for clearance of damaged and/or dysfunctional organelles. Two primary conclusions can be drawn from this data: (1) fukutin deletion produces intrinsic muscular metabolic defects that likely contribute to dystroglycanopathy disease pathology, and (2) AICAR treatment accelerates recovery of muscle contractile function following injury suggesting AMPK signalling as a possible target for therapeutic strategies.
Collapse
Affiliation(s)
- W Michael Southern
- Department of Kinesiology, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Anna S Nichenko
- Department of Kinesiology, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Anita E Qualls
- Department of Kinesiology, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kensey Portman
- Department of Pharmaceutical Sciences, SUNY at Binghamton, Binghamton, NY, USA
| | - Ariel Gidon
- Department of Pharmaceutical Sciences, SUNY at Binghamton, Binghamton, NY, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, SUNY at Binghamton, Binghamton, NY, USA.,Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
48
|
Dietinger V, García de Durango CR, Wiechmann S, Boos SL, Michl M, Neumann J, Hermeking H, Kuster B, Jung P. Wnt-driven LARGE2 mediates laminin-adhesive O-glycosylation in human colonic epithelial cells and colorectal cancer. Cell Commun Signal 2020; 18:102. [PMID: 32586342 PMCID: PMC7315491 DOI: 10.1186/s12964-020-00561-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Wnt signaling drives epithelial self-renewal and disease progression in human colonic epithelium and colorectal cancer (CRC). Characterization of Wnt effector pathways is key for our understanding of these processes and for developing therapeutic strategies that aim to preserve tissue homeostasis. O-glycosylated cell surface proteins, such as α-dystroglycan (α-DG), mediate cellular adhesion to extracellular matrix components. We revealed a Wnt/LARGE2/α-DG signaling pathway which triggers this mode of colonic epithelial cell-to-matrix interaction in health and disease. METHODS Next generation sequencing upon shRNA-mediated silencing of adenomatous polyposis coli (APC), and quantitative chromatin immunoprecipitation (qChIP) combined with CRISPR/Cas9-mediated transcription factor binding site targeting characterized LARGE2 as a Wnt target gene. Quantitative mass spectrometry analysis on size-fractionated, glycoprotein-enriched samples revealed functional O-glycosylation of α-DG by LARGE2 in CRC. The biology of Wnt/LARGE2/α-DG signaling was assessed by affinity-based glycoprotein enrichment, laminin overlay, CRC-to-endothelial cell adhesion, and transwell migration assays. Experiments on primary tissue, human colonic (tumor) organoids, and bioinformatic analysis of CRC cohort data confirmed the biological relevance of our findings. RESULTS Next generation sequencing identified the LARGE2 O-glycosyltransferase encoding gene as differentially expressed upon Wnt activation in CRC. Silencing of APC, conditional expression of oncogenic β-catenin and endogenous β-catenin-sequestration affected LARGE2 expression. The first intron of LARGE2 contained a CTTTGATC motif essential for Wnt-driven LARGE2 expression, showed occupation by the Wnt transcription factor TCF7L2, and Wnt activation triggered LARGE2-dependent α-DG O-glycosylation and laminin-adhesion in CRC cells. Colonic crypts and organoids expressed LARGE2 mainly in stem cell-enriched subpopulations. In human adenoma organoids, activity of the LARGE2/α-DG axis was Wnt-dose dependent. LARGE2 expression was elevated in CRC and correlated with the Wnt-driven molecular subtype and intestinal stem cell features. O-glycosylated α-DG represented a Wnt/LARGE2-dependent feature in CRC cell lines and patient-derived tumor organoids. Modulation of LARGE2/α-DG signaling affected CRC cell migration through laminin-coated membranes and adhesion to endothelial cells. CONCLUSIONS We conclude that the LARGE2 O-glycosyltransferase-encoding gene represents a direct target of canonical Wnt signaling and mediates functional O-glycosylation of α-dystroglycan (α-DG) in human colonic stem/progenitor cells and Wnt-driven CRC. Our work implies that aberrant Wnt activation augments CRC cell-matrix adhesion by increasing LARGE/α-DG-mediated laminin-adhesiveness. Video abstract.
Collapse
Affiliation(s)
- Vanessa Dietinger
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Cira R García de Durango
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Svenja Wiechmann
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sophie L Boos
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marlies Michl
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernhard Kuster
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Peter Jung
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany. .,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany. .,DKTK AG Oncogenic Signal Transduction Pathways in Colorectal/Pancreatic Cancer, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, DKTK Partnerstandort München, Institut für Pathologie der Ludwig-Maximilians-Universität (LMU) München, Thalkirchner Straße 36, D-80337, Munich, Germany.
| |
Collapse
|
49
|
Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy. PLoS Genet 2020; 16:e1008826. [PMID: 32453729 PMCID: PMC7274486 DOI: 10.1371/journal.pgen.1008826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/05/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hearing loss (HL) is one of the most common sensory impairments and etiologically and genetically heterogeneous disorders in humans. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. Aberrant glycosylation of α-dystroglycan causes at least eighteen subtypes of MD, now categorized as MD-dystroglycanopathy (MD-DG), with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes and increasing evidence regarding their molecular pathogeneses, no comprehensive study has investigated sensorineural HL (SNHL) in MD-DG. Here, we found that two mouse models of MD-DG, Largemyd/myd and POMGnT1-KO mice, exhibited congenital, non-progressive, and mild-to-moderate SNHL in auditory brainstem response (ABR) accompanied by extended latency of wave I. Profoundly abnormal myelination was found at the peripheral segment of the cochlear nerve, which is rich in the glycosylated α-dystroglycan–laminin complex and demarcated by “the glial dome.” In addition, patients with Fukuyama congenital MD, a type of MD-DG, also had latent SNHL with extended latency of wave I in ABR. Collectively, these findings indicate that hearing impairment associated with impaired Schwann cell-mediated myelination at the peripheral segment of the cochlear nerve is a notable symptom of MD-DG. Hearing loss (HL) is one of the most common sensory impairments and heterogeneous disorders in humans. Up to 60% of HL cases are caused by genetic factors, and approximately 30% of genetic HL cases are syndromic. Although 400–700 genetic syndromes are associated with sensorineural HL (SNHL), caused due to problems in the nerve pathways from the cochlea to the brain, only about 45 genes are known to be associated with syndromic HL. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. MD-dystroglycanopathy (MD-DG), caused by aberrant glycosylation of α-dystroglycan, is an MD subtype with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes (at least 18), no comprehensive study has investigated SNHL in MD-DG. Here, we found that hearing impairment was associated with abnormal myelination of the peripheral segment of the cochlear nerve caused by impaired dystrophin–dystroglycan complex in two mouse models (type 3 and 6) of MD-DG and in patients (type 4) with MD-DG. This is the first comprehensive study investigating SNHL in MD-DG. Our findings may provide new insights into understanding the pathogenic characteristics and mechanisms underlying inherited syndromic hearing impairment.
Collapse
|
50
|
Badolia R, Ramadurai DKA, Abel ED, Ferrin P, Taleb I, Shankar TS, Krokidi AT, Navankasattusas S, McKellar SH, Yin M, Kfoury AG, Wever-Pinzon O, Fang JC, Selzman CH, Chaudhuri D, Rutter J, Drakos SG. The Role of Nonglycolytic Glucose Metabolism in Myocardial Recovery Upon Mechanical Unloading and Circulatory Support in Chronic Heart Failure. Circulation 2020; 142:259-274. [PMID: 32351122 DOI: 10.1161/circulationaha.119.044452] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Significant improvements in myocardial structure and function have been reported in some patients with advanced heart failure (termed responders [R]) following left ventricular assist device (LVAD)-induced mechanical unloading. This therapeutic strategy may alter myocardial energy metabolism in a manner that reverses the deleterious metabolic adaptations of the failing heart. Specifically, our previous work demonstrated a post-LVAD dissociation of glycolysis and oxidative-phosphorylation characterized by induction of glycolysis without subsequent increase in pyruvate oxidation through the tricarboxylic acid cycle. The underlying mechanisms responsible for this dissociation are not well understood. We hypothesized that the accumulated glycolytic intermediates are channeled into cardioprotective and repair pathways, such as the pentose-phosphate pathway and 1-carbon metabolism, which may mediate myocardial recovery in R. METHODS We prospectively obtained paired left ventricular apical myocardial tissue from nonfailing donor hearts as well as R and nonresponders at LVAD implantation (pre-LVAD) and transplantation (post-LVAD). We conducted protein expression and metabolite profiling and evaluated mitochondrial structure using electron microscopy. RESULTS Western blot analysis shows significant increase in rate-limiting enzymes of pentose-phosphate pathway and 1-carbon metabolism in post-LVAD R (post-R) as compared with post-LVAD nonresponders (post-NR). The metabolite levels of these enzyme substrates, such as sedoheptulose-6-phosphate (pentose phosphate pathway) and serine and glycine (1-carbon metabolism) were also decreased in Post-R. Furthermore, post-R had significantly higher reduced nicotinamide adenine dinucleotide phosphate levels, reduced reactive oxygen species levels, improved mitochondrial density, and enhanced glycosylation of the extracellular matrix protein, α-dystroglycan, all consistent with enhanced pentose-phosphate pathway and 1-carbon metabolism that correlated with the observed myocardial recovery. CONCLUSIONS The recovering heart appears to direct glycolytic metabolites into pentose-phosphate pathway and 1-carbon metabolism, which could contribute to cardioprotection by generating reduced nicotinamide adenine dinucleotide phosphate to enhance biosynthesis and by reducing oxidative stress. These findings provide further insights into mechanisms responsible for the beneficial effect of glycolysis induction during the recovery of failing human hearts after mechanical unloading.
Collapse
Affiliation(s)
- Rachit Badolia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.).,Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Dinesh K A Ramadurai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City (E.D.A.)
| | - Peter Ferrin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.).,Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Thirupura S Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Aspasia Thodou Krokidi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Stephen H McKellar
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Michael Yin
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Abdallah G Kfoury
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Omar Wever-Pinzon
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - James C Fang
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Craig H Selzman
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.).,Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Jared Rutter
- Department of Biochemistry, University of Utah and Howard Hughes Medical Institute, Salt Lake City (J.R.)
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.).,Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| |
Collapse
|