1
|
Ferrari V, Conti M, Bovenzi R, Cerroni R, Pierantozzi M, Mercuri NB, Stefani A. Rare association between spinocerebellar ataxia and amyotrophic lateral sclerosis: a case series. Neurol Sci 2024; 45:4367-4371. [PMID: 38642323 PMCID: PMC11306432 DOI: 10.1007/s10072-024-07521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION In this work, we describe a new case of association between SCA2 and MND. CASE REPORT A 58-year-old man who was diagnosed with spinocerebellar ataxia type 2 presented dysphagia and a significant decline in his ability to walk, with a reduction in autonomy and the need to use a wheelchair. We performed electromyography and electroneurography of the four limbs and of the cranial district and motor-evoked potentials to study upper and lower motor neurons. Referring to the revised El Escorial criteria of 2015, ALS diagnosis was made. DISCUSSION Considering different cases described in literature over the years, SCA2 could represent an important risk factor for developing ALS. In particular, the presence of alleles of ATXN2 with 27 and 28 CAG repeats seems to slightly decrease the risk of developing the disease, which would instead be progressively increased by the presence of alleles with 29, 30, 31, 32, and 33 repeats. The exact physiopathological mechanism by which the mutation increases the risk of developing the disease is currently unknown. Transcriptomic studies on mouse models have demonstrated the involvement of several pathways, including the innate immunity regulation by STING and the biosynthesis of fatty acid and cholesterol by SREBP. CONCLUSION CAG repeat expansions in the ATXN2 gene have been associated with variable neurological presentations, which include SCA2, ALS, Parkinsonism, or a combination of them. Further research is needed to understand the relationship between SCA2 and ALS better and explore molecular underlying mechanisms.
Collapse
Affiliation(s)
- Valerio Ferrari
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Matteo Conti
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Roberta Bovenzi
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Rocco Cerroni
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Mariangela Pierantozzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Nicola B Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Alessandro Stefani
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.
| |
Collapse
|
2
|
Mukherjee A, Pandey S. Tremor in Spinocerebellar Ataxia: A Scoping Review. Tremor Other Hyperkinet Mov (N Y) 2024; 14:31. [PMID: 38911333 PMCID: PMC11192095 DOI: 10.5334/tohm.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
Background Spinocerebellar ataxia (SCA) denotes an expanding list of autosomal dominant cerebellar ataxias. Although tremor is an important aspect of the clinical spectrum of the SCAs, its prevalence, phenomenology, and pathophysiology are unknown. Objectives This review aims to describe the various types of tremors seen in the different SCAs, with a discussion on the pathophysiology of the tremors, and the possible treatment modalities. Methods The authors conducted a literature search on PubMed using search terms including tremor and the various SCAs. Relevant articles were included in the review after excluding duplicate publications. Results While action (postural and intention) tremors are most frequently associated with SCA, rest and other rare tremors have also been documented. The prevalence and types of tremors vary among the different SCAs. SCA12, common in certain ethnic populations, presents a unique situation, where the tremor is typically the principal manifestation. Clinical manifestations of SCAs may be confused with essential tremor or Parkinson's disease. The pathophysiology of tremors in SCAs predominantly involves the cerebellum and its networks, especially the cerebello-thalamo-cortical circuit. Additionally, connections with the basal ganglia, and striatal dopaminergic dysfunction may have a role. Medical management of tremor is usually guided by the phenomenology and associated clinical features. Deep brain stimulation surgery may be helpful in treatment-resistant tremors. Conclusions Tremor is an elemental component of SCAs, with diverse phenomenology, and emphasizes the role of the cerebellum in tremor. Further studies will be useful to delineate the clinical, pathophysiological, and therapeutic aspects of tremor in SCAs.
Collapse
Affiliation(s)
- Adreesh Mukherjee
- Department of Neurology and Stroke Medicine, Amrita Hospital, Mata Amritanandamayi Marg Sector 88, Faridabad, Delhi National Capital Region, India
| | - Sanjay Pandey
- Department of Neurology and Stroke Medicine, Amrita Hospital, Mata Amritanandamayi Marg Sector 88, Faridabad, Delhi National Capital Region, India
| |
Collapse
|
3
|
Vohra A, Keefe P, Puthanveetil P. Altered Metabolic Signaling and Potential Therapies in Polyglutamine Diseases. Metabolites 2024; 14:320. [PMID: 38921455 PMCID: PMC11205831 DOI: 10.3390/metabo14060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Polyglutamine diseases comprise a cluster of genetic disorders involving neurodegeneration and movement disabilities. In polyglutamine diseases, the target proteins become aberrated due to polyglutamine repeat formation. These aberrant proteins form the root cause of associated complications. The metabolic regulation during polyglutamine diseases is not well studied and needs more attention. We have brought to light the significance of regulating glutamine metabolism during polyglutamine diseases, which could help in decreasing the neuronal damage associated with excess glutamate and nucleotide generation. Most polyglutamine diseases are accompanied by symptoms that occur due to excess glutamate and nucleotide accumulation. Along with a dysregulated glutamine metabolism, the Nicotinamide adenine dinucleotide (NAD+) levels drop down, and, under these conditions, NAD+ supplementation is the only achievable strategy. NAD+ is a major co-factor in the glutamine metabolic pathway, and it helps in maintaining neuronal homeostasis. Thus, strategies to decrease excess glutamate and nucleotide generation, as well as channelizing glutamine toward the generation of ATP and the maintenance of NAD+ homeostasis, could aid in neuronal health. Along with understanding the metabolic dysregulation that occurs during polyglutamine diseases, we have also focused on potential therapeutic strategies that could provide direct benefits or could restore metabolic homeostasis. Our review will shed light into unique metabolic causes and into ideal therapeutic strategies for treating complications associated with polyglutamine diseases.
Collapse
Affiliation(s)
- Alisha Vohra
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Patrick Keefe
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Prasanth Puthanveetil
- College of Graduate Studies, Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
4
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
5
|
Matsushita M, Nakamura Y, Hosokawa T, Takahashi Y, Mizusawa H, Arawaka S. [Spinocerebellar ataxia 2 develop lower motor neuron involvement as an initial symptom: a case report]. Rinsho Shinkeigaku 2024; 64:28-32. [PMID: 38072442 DOI: 10.5692/clinicalneurol.cn-001910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A 36-year-old man has developed weakness of left thumb and atrophy of left thenar muscle and left first dorsal interosseous muscle without sensory disturbance for a year. A nerve conduction study revealed decreases in the amplitude of compound muscle action potentials and occurrence of F-waves on left medial nerve. Needle electromyography examination revealed positive sharp waves and later recruited motor units on left abductor pollicis brevis muscle. Brain MRI showed atrophy of bilateral cerebellar hemisphere. His grandmother and his two uncles have been diagnosed as spinocerebellar degeneration. After discharge, he developed bilateral lower limb ataxia. Genetic analysis showed heterozygous CAG repeat expansion (19/39) in ATXN2 gene, being diagnosed as spinocerebellar ataxia 2 (SCA2). A previous report has shown that motor neuron involvement is recognized as part of SCA2 in the same pedigree with full CAG repeat expansions in ATXN2 gene. We here report the patient with lower motor neuron involvement as an initial symptom of SCA2.
Collapse
Affiliation(s)
- Manami Matsushita
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine
| | - Yoshitsugu Nakamura
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine
| | - Takafumi Hosokawa
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| | - Shigeki Arawaka
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine
| |
Collapse
|
6
|
Kumar M, Tyagi N, Faruq M. The molecular mechanisms of spinocerebellar ataxias for DNA repeat expansion in disease. Emerg Top Life Sci 2023; 7:289-312. [PMID: 37668011 DOI: 10.1042/etls20230013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of neurodegenerative disorders which commonly inherited in an autosomal dominant manner. They cause muscle incoordination due to degeneration of the cerebellum and other parts of nervous system. Out of all the characterized (>50) SCAs, 14 SCAs are caused due to microsatellite repeat expansion mutations. Repeat expansions can result in toxic protein gain-of-function, protein loss-of-function, and/or RNA gain-of-function effects. The location and the nature of mutation modulate the underlying disease pathophysiology resulting in varying disease manifestations. Potential toxic effects of these mutations likely affect key major cellular processes such as transcriptional regulation, mitochondrial functioning, ion channel dysfunction and synaptic transmission. Involvement of several common pathways suggests interlinked function of genes implicated in the disease pathogenesis. A better understanding of the shared and distinct molecular pathogenic mechanisms in these diseases is required to develop targeted therapeutic tools and interventions for disease management. The prime focus of this review is to elaborate on how expanded 'CAG' repeats contribute to the common modes of neurotoxicity and their possible therapeutic targets in management of such devastating disorders.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Nishu Tyagi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
7
|
TR-FRET-Based Immunoassay to Measure Ataxin-2 as a Target Engagement Marker in Spinocerebellar Ataxia Type 2. Mol Neurobiol 2023; 60:3553-3567. [PMID: 36894829 PMCID: PMC10122633 DOI: 10.1007/s12035-023-03294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease, which belongs to the trinucleotide repeat disease group with a CAG repeat expansion in exon 1 of the ATXN2 gene resulting in an ataxin-2 protein with an expanded polyglutamine (polyQ)-stretch. The disease is late manifesting leading to early death. Today, therapeutic interventions to cure the disease or even to decelerate disease progression are not available yet. Furthermore, primary readout parameter for disease progression and therapeutic intervention studies are limited. Thus, there is an urgent need for quantifiable molecular biomarkers such as ataxin-2 becoming even more important due to numerous potential protein-lowering therapeutic intervention strategies. The aim of this study was to establish a sensitive technique to measure the amount of soluble polyQ-expanded ataxin-2 in human biofluids to evaluate ataxin-2 protein levels as prognostic and/or therapeutic biomarker in SCA2. Time-resolved fluorescence energy transfer (TR-FRET) was used to establish a polyQ-expanded ataxin-2-specific immunoassay. Two different ataxin-2 antibodies and two different polyQ-binding antibodies were validated in three different concentrations and tested in cellular and animal tissue as well as in human cell lines, comparing different buffer conditions to evaluate the best assay conditions. We established a TR-FRET-based immunoassay for soluble polyQ-expanded ataxin-2 and validated measurements in human cell lines including iPSC-derived cortical neurons. Additionally, our immunoassay was sensitive enough to monitor small ataxin-2 expression changes by siRNA or starvation treatment. We successfully established the first sensitive ataxin-2 immunoassay to measure specifically soluble polyQ-expanded ataxin-2 in human biomaterials.
Collapse
|
8
|
Carvalho CGM, Nóbrega PR, Scott SSDO, Rangel DM, Soares DMB, Maia CSC, Braga-Neto P. Nutritional status and eating habits of patients with hereditary ataxias: a case-control study. Nutr Neurosci 2022:1-6. [PMID: 35857702 DOI: 10.1080/1028415x.2022.2088942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Hereditary Ataxias (HAs) comprise a wide spectrum of genetically determined neurodegenerative diseases with progressive ataxia as the main symptom. Few studies have evaluated nutritional profile in HA patients and most of these focused on specific ataxia subtypes. The objectives of this study were: (1) to investigate whether hereditary ataxias were associated with changes in energy expenditure, body composition and dietary intake; (2) to verify differences in these variables according to ataxia subtype, sex, age, and disease severity. METHODS Thirty-eight hereditary ataxia patients from two neurology centers in Northeastern Brazil and 38 controls were evaluated. Body composition was assessed with bio-impedance analysis and dietary intake was estimated with a validated questionnaire (24-hour dietary recall). RESULTS Mean body mass index (BMI) was lower in HA compared to controls (p = 0.032). Hereditary ataxia patients showed lower protein intake, higher frequency of dysphagia and higher incidence of nausea and diarrhea. The difference in average estimated caloric intake did not reach statistical significance (2359kcal ± 622 in patients × 2713kcal ± 804 in controls, p = 0.08). Disease severity measured by the SARA scale was not associated with BMI, nor was ataxia subtype (autosomal dominant × non-autosomal dominant ataxias). CONCLUSION Hereditary ataxia patients have lower BMI compared to healthy controls. There was no difference in this cohort between dominant or non-dominant ataxia regarding BMI. Weight loss may be a common finding among hereditary ataxias and may affect the quality of life in these patients.
Collapse
Affiliation(s)
| | - Paulo Ribeiro Nóbrega
- Neurology Division, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Brazil.,Neurology Department, Hospital Geral de Fortaleza, Fortaleza, Brazil
| | | | - Deborah Moreira Rangel
- Neurology Division, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Brazil.,Micronutrient and Chronic disease Group, Nutrition and Health Post Graduation Department, UniversidadeEstadual do Ceará, Fortaleza, Brazil
| | | | - Carla Soraya Costa Maia
- Center of Health Science, Universidade Estadual do Ceará, Fortaleza, Brazil.,Micronutrient and Chronic disease Group, Nutrition and Health Post Graduation Department, UniversidadeEstadual do Ceará, Fortaleza, Brazil
| | - Pedro Braga-Neto
- Center of Health Science, Universidade Estadual do Ceará, Fortaleza, Brazil.,Neurology Division, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Brazil.,Neurology Department, Hospital Geral de Fortaleza, Fortaleza, Brazil
| |
Collapse
|
9
|
Li PP, Moulick R, Feng H, Sun X, Arbez N, Jin J, Marque LO, Hedglen E, Chan HE, Ross CA, Pulst SM, Margolis RL, Woodson S, Rudnicki DD. RNA Toxicity and Perturbation of rRNA Processing in Spinocerebellar Ataxia Type 2. Mov Disord 2021; 36:2519-2529. [PMID: 34390268 PMCID: PMC8884117 DOI: 10.1002/mds.28729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin β-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pan P. Li
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Roumita Moulick
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hongxuan Feng
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Xin Sun
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nicolas Arbez
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jing Jin
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Leonard O. Marque
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Erin Hedglen
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - H.Y. Edwin Chan
- Biochemistry Program, School of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Christopher A. Ross
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Stefan M. Pulst
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Russell L. Margolis
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sarah Woodson
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dobrila D. Rudnicki
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
10
|
Morigaki R, Miyamoto R, Matsuda T, Miyake K, Yamamoto N, Takagi Y. Dystonia and Cerebellum: From Bench to Bedside. Life (Basel) 2021; 11:776. [PMID: 34440520 PMCID: PMC8401781 DOI: 10.3390/life11080776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using various dystonia rodent models and clinical studies in dystonia patients continues to provide new pieces of knowledge regarding the role of the cerebellum in dystonia genesis. Herein, we review basic and clinical articles related to dystonia focusing on the cerebellum, and clarify the current understanding of the role of the cerebellum in dystonia pathogenesis. Given the recent evidence providing new hypotheses regarding dystonia pathogenesis, we discuss how the current evidence answers the unsolved clinical questions.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Ryosuke Miyamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Taku Matsuda
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Kazuhisa Miyake
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| |
Collapse
|
11
|
Sonakar AK, Shamim U, Srivastava MP, Faruq M, Srivastava AK. SCA2 in the Indian population: Unified haplotype and variable phenotypic patterns in a large case series. Parkinsonism Relat Disord 2021; 89:139-145. [PMID: 34298214 DOI: 10.1016/j.parkreldis.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Spinocerebellar ataxia-2 is one of the most prevalent SCA type across the world and one of the commonest in India. We aimed to characterize SCA2 patients both clinically and genetically (ATXN2-CAG repeats and its haplotypic background). METHODS A total of 436 SCA2 patients were recruited consecutively comprising individuals of multiple ethnicities and two large multigenerational families. A detailed clinical evaluation and genetic analysis for CAG repeat length estimation and two marker based haplotype analysis [rs695871 and rs695872 located 177 bp and 106 bp upstream of CAG sequence in Exon 1 of ATXN2] was performed. RESULTS Generalized limb ataxia and slow saccades were prevalent features in majority of our patients, while hyporeflexia and extrapyramidal features were less commonly observed manifestations. Slow ocular saccades, upper limb ataxia and tremor showed significant associations with age of onset, CAG repeat length and disease duration. We observed a 100% association of C-C haplotype with the expanded ATXN2 repeats. CONCLUSION This study represents the largest study of SCA2 Indian patients that highlights the clinico-genetic manifestations and haplotype analysis. A significant proportion of patients have not shown the characteristic slow saccades and hyporeflexia thus indicating the influences of other factors in modulation of the disease which warrants further investigations. The observation of CC haplotype in all our SCA2 patients indicates a common origin across all Indian sub populations and that also indicate a common global founder event in the past.
Collapse
Affiliation(s)
- Akhilesh K Sonakar
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Uzma Shamim
- Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | - Mv Padma Srivastava
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mohd Faruq
- Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology, Delhi, 110007, India.
| | - Achal K Srivastava
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
12
|
Sena LS, Dos Santos Pinheiro J, Hasan A, Saraiva-Pereira ML, Jardim LB. Spinocerebellar ataxia type 2 from an evolutionary perspective: Systematic review and meta-analysis. Clin Genet 2021; 100:258-267. [PMID: 33960424 DOI: 10.1111/cge.13978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 01/27/2023]
Abstract
Dominant diseases due to expanded CAG repeat tracts, such as spinocerebellar ataxia type 2 (SCA2), are prone to anticipation and worsening of clinical picture in subsequent generations. There is insufficient data about selective forces acting on the maintenance of these diseases in populations. We made a systematic review and meta-analysis on the effect of the CAG length over age at onset, instability of transmissions, anticipation, de novo or sporadic cases, fitness, segregation of alleles, and ancestral haplotypes. The correlation between CAG expanded and age at onset was r2 = 0.577, and transmission of the mutant allele was associated with an increase of 2.42 CAG repeats in the next generation and an anticipation of 14.62 years per generation, on average. One de novo and 18 sporadic cases were detected. Affected SCA2 individuals seem to have more children than controls. The expanded allele was less segregated than the 22-repeat allele in children of SCA2 subjects. Several ancestral SCA2 haplotypes were published. Data suggest that SCA2 lineages may tend to disappear eventually, due to strong anticipation phenomena. Whether or not the novel cases come from common haplotypes associated with a predisposition to further expansions is a question that needs to be addressed by future studies.
Collapse
Affiliation(s)
- Lucas Schenatto Sena
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jordânia Dos Santos Pinheiro
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ali Hasan
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Demystifying the spontaneous phenomena of motor hyperexcitability. Clin Neurophysiol 2021; 132:1830-1844. [PMID: 34130251 DOI: 10.1016/j.clinph.2021.03.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Possessing a discrete functional repertoire, the anterior horn cell can be in one of two electrophysiological states: on or off. Usually under tight regulatory control by the central nervous system, a hierarchical network of these specialist neurons ensures muscular strength is coordinated, gradated and adaptable. However, spontaneous activation of these cells and their axons can result in abnormal muscular twitching. The muscular twitch is the common building block of several distinct clinical patterns, namely fasciculation, myokymia and neuromyotonia. When attempting to distinguish these entities electromyographically, their unique temporal and morphological profiles must be appreciated. Detection and quantification of burst duration, firing frequency, multiplet patterns and amplitude are informative. A common feature is their persistence during sleep. In this review, we explain the accepted terminology used to describe the spontaneous phenomena of motor hyperexcitability, highlighting potential pitfalls amidst a bemusing and complex collection of overlapping terms. We outline the relevance of these findings within the context of disease, principally amyotrophic lateral sclerosis, Isaacs syndrome and Morvan syndrome. In addition, we highlight the use of high-density surface electromyography, suggesting that more widespread use of this non-invasive technique is likely to provide an enhanced understanding of these motor hyperexcitability syndromes.
Collapse
|
14
|
Kim DH, Kim R, Lee JY, Lee KM. Clinical, Imaging, and Laboratory Markers of Premanifest Spinocerebellar Ataxia 1, 2, 3, and 6: A Systematic Review. J Clin Neurol 2021; 17:187-199. [PMID: 33835738 PMCID: PMC8053554 DOI: 10.3988/jcn.2021.17.2.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Premanifest mutation carriers with spinocerebellar ataxia (SCA) can exhibit subtle abnormalities before developing ataxia. We summarized the preataxic manifestations of SCA1, -2, -3, and -6, and their associations with ataxia onset. Methods We included studies of the premanifest carriers of SCA published between January 1998 and December 2019 identified in Scopus and PubMed by searching for terms including ‘spinocerebellar ataxia’ and several synonyms of ‘preataxic manifestation’. We systematically reviewed the results obtained in studies categorized based on clinical, imaging, and laboratory markers. Results We finally performed a qualitative analysis of 48 papers. Common preataxic manifestations appearing in multiple SCA subtypes were muscle cramps, abnormal muscle reflexes, instability in gait and posture, lower Composite Cerebellar Functional Severity scores, abnormalities in video-oculography and transcranial magnetic stimulation, and gray-matter loss and volume reduction in the brainstem and cerebellar structures. Also, decreased sensory amplitudes in nerve conduction studies were observed in SCA2. Eotaxin and neurofilament light-chain levels were revealed as sensitive blood biomarkers in SCA3. Concerning potential predictive markers, hyporeflexia and abnormalities of somatosensory evoked potentials showed correlations with the time to ataxia onset in SCA2 carriers. However, no longitudinal data were found for the other SCA gene carriers. Conclusions Our results suggest that preataxic manifestations vary among SCA1, -2, -3, and -6, with some subtypes sharing specific features. Combining various markers into a standardized index for premanifest carriers may be useful for early screening and assessing the risk of disease progression in SCA carriers.
Collapse
Affiliation(s)
- Dong Hoi Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Jee Young Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyoung Min Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Vangoor VR, Gomes‐Duarte A, Pasterkamp RJ. Long non-coding RNAs in motor neuron development and disease. J Neurochem 2021; 156:777-801. [PMID: 32970857 PMCID: PMC8048821 DOI: 10.1111/jnc.15198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are RNAs that exceed 200 nucleotides in length and that are not translated into proteins. Thousands of lncRNAs have been identified with functions in processes such as transcription and translation regulation, RNA processing, and RNA and protein sponging. LncRNAs show prominent expression in the nervous system and have been implicated in neural development, function and disease. Recent work has begun to report on the expression and roles of lncRNAs in motor neurons (MNs). The cell bodies of MNs are located in cortex, brainstem or spinal cord and their axons project into the brainstem, spinal cord or towards peripheral muscles, thereby controlling important functions such as movement, breathing and swallowing. Degeneration of MNs is a pathological hallmark of diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. LncRNAs influence several aspects of MN development and disruptions in these lncRNA-mediated effects are proposed to contribute to the pathogenic mechanisms underlying MN diseases (MNDs). Accumulating evidence suggests that lncRNAs may comprise valuable therapeutic targets for different MNDs. In this review, we discuss the role of lncRNAs (including circular RNAs [circRNAs]) in the development of MNs, discuss how lncRNAs may contribute to MNDs and provide directions for future research.
Collapse
Affiliation(s)
- Vamshidhar R. Vangoor
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Andreia Gomes‐Duarte
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
16
|
Donaldson J, Powell S, Rickards N, Holmans P, Jones L. What is the Pathogenic CAG Expansion Length in Huntington's Disease? J Huntingtons Dis 2021; 10:175-202. [PMID: 33579866 PMCID: PMC7990448 DOI: 10.3233/jhd-200445] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington's disease (HD) (OMIM 143100) is caused by an expanded CAG repeat tract in the HTT gene. The inherited CAG length is known to expand further in somatic and germline cells in HD subjects. Age at onset of the disease is inversely correlated with the inherited CAG length, but is further modulated by a series of genetic modifiers which are most likely to act on the CAG repeat in HTT that permit it to further expand. Longer repeats are more prone to expansions, and this expansion is age dependent and tissue-specific. Given that the inherited tract expands through life and most subjects develop disease in mid-life, this implies that in cells that degenerate, the CAG length is likely to be longer than the inherited length. These findings suggest two thresholds- the inherited CAG length which permits further expansion, and the intracellular pathogenic threshold, above which cells become dysfunctional and die. This two-step mechanism has been previously proposed and modelled mathematically to give an intracellular pathogenic threshold at a tract length of 115 CAG (95% confidence intervals 70- 165 CAG). Empirically, the intracellular pathogenic threshold is difficult to determine. Clues from studies of people and models of HD, and from other diseases caused by expanded repeat tracts, place this threshold between 60- 100 CAG, most likely towards the upper part of that range. We assess this evidence and discuss how the intracellular pathogenic threshold in manifest disease might be better determined. Knowing the cellular pathogenic threshold would be informative for both understanding the mechanism in HD and deploying treatments.
Collapse
Affiliation(s)
- Jasmine Donaldson
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie Powell
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nadia Rickards
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Monckton DG. The Contribution of Somatic Expansion of the CAG Repeat to Symptomatic Development in Huntington's Disease: A Historical Perspective. J Huntingtons Dis 2021; 10:7-33. [PMID: 33579863 PMCID: PMC7990401 DOI: 10.3233/jhd-200429] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery in the early 1990s of the expansion of unstable simple sequence repeats as the causative mutation for a number of inherited human disorders, including Huntington's disease (HD), opened up a new era of human genetics and provided explanations for some old problems. In particular, an inverse association between the number of repeats inherited and age at onset, and unprecedented levels of germline instability, biased toward further expansion, provided an explanation for the wide symptomatic variability and anticipation observed in HD and many of these disorders. The repeats were also revealed to be somatically unstable in a process that is expansion-biased, age-dependent and tissue-specific, features that are now increasingly recognised as contributory to the age-dependence, progressive nature and tissue specificity of the symptoms of HD, and at least some related disorders. With much of the data deriving from affected individuals, and model systems, somatic expansions have been revealed to arise in a cell division-independent manner in critical target tissues via a mechanism involving key components of the DNA mismatch repair pathway. These insights have opened new approaches to thinking about how the disease could be treated by suppressing somatic expansion and revealed novel protein targets for intervention. Exciting times lie ahead in turning these insights into novel therapies for HD and related disorders.
Collapse
Affiliation(s)
- Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
19
|
Expanding the genotype-phenotype correlation of childhood sensory polyneuropathy of genetic origin. Sci Rep 2020; 10:16184. [PMID: 32999401 PMCID: PMC7528082 DOI: 10.1038/s41598-020-73219-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
Pure sensory polyneuropathy of genetic origin is rare in childhood and hence important to document the clinical and genetic etiologies from single or multi-center studies. This study focuses on a retrospective chart-review of neurological examinations and genetic and electrodiagnostic data of confirmed sensory polyneuropathy in subjects at a tertiary-care Children's Hospital from 2013 to 2019. Twenty subjects were identified and included. Neurological examination and electrodiagnostic testing showed gait-difficulties, absent tendon reflexes, decreased joint-position, positive Romberg's test and large fiber sensory polyneuropathy on sensory nerve conduction studies in all patients associated with lower-extremity spasticity (6), cardiac abnormalities or cardiomyopathy (5), developmental delay (4), scoliosis (3), epilepsy (3) and hearing-difficulties (2). Confirmation of genetic diagnosis in correlation with clinical presentation was obtained in all cases (COX20 n = 2, HADHA n = 2, POLG n = 1, FXN n = 4, ATXN2 n = 3, ATM n = 3, GAN n = 2, SPG7 n = 1, ZFYVE26 n = 1, FH n = 1). Our single-center study shows genetic sensory polyneuropathies associated with progressive neurodegenerative disorders such as mitochondrial ataxia, Friedreich ataxia, spinocerebellar ataxia type 2, ataxia telangiectasia, spastic paraplegia, giant axonal neuropathy, and fumarate hydratase deficiency. We also present our cohort data in light of clinical features reported for each gene-specific disease subtype in the literature and highlight the importance of genetic testing in the relevant clinical context of electrophysiological findings of peripheral sensory polyneuropathy.
Collapse
|
20
|
Doxakis E. Therapeutic antisense oligonucleotides for movement disorders. Med Res Rev 2020; 41:2656-2688. [PMID: 32656818 DOI: 10.1002/med.21706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Movement disorders are a group of neurological conditions characterized by abnormalities of movement and posture. They are broadly divided into akinetic and hyperkinetic syndromes. Until now, no effective symptomatic or disease-modifying therapies have been available. However, since many of these disorders are monogenic or have some well-defined genetic component, they represent strong candidates for antisense oligonucleotide (ASO) therapies. ASO therapies are based on the use of short synthetic single-stranded ASOs that bind to disease-related target RNAs via Watson-Crick base-pairing and pleiotropically modulate their function. With information arising from the RNA sequence alone, it is possible to design ASOs that not only alter the expression levels but also the splicing defects of any protein, far exceeding the intervention repertoire of traditional small molecule approaches. Following the regulatory approval of ASO therapies for spinal muscular atrophy and Duchenne muscular dystrophy in 2016, there has been tremendous momentum in testing such therapies for other neurological disorders. This review article initially focuses on the chemical modifications aimed at improving ASO effectiveness, the mechanisms by which ASOs can interfere with RNA function, delivery systems and pharmacokinetics, and the common set of toxicities associated with their application. It, then, describes the pathophysiology and the latest information on preclinical and clinical trials utilizing ASOs for the treatment of Parkinson's disease, Huntington's disease, and ataxias 1, 2, 3, and 7. It concludes with issues that require special attention to realize the full potential of ASO-based therapies.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
21
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
22
|
Impaired Saccade Adaptation in Tremor-Dominant Cervical Dystonia-Evidence for Maladaptive Cerebellum. THE CEREBELLUM 2020; 20:678-686. [PMID: 31965455 DOI: 10.1007/s12311-020-01104-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We examined the role of the cerebellum in patients with tremor-dominant cervical dystonia by measuring the adaptive capacity of rapid reflexive eye movements (saccades). We chose the saccade adaptation paradigm because, unlike other motor learning paradigms, the real-time modification of saccades cannot "wait" for the sensory (visual) feedback. Instead, saccades rely primarily on the internal reafference modulated by the cerebellum. The saccade adaptation happens over fast and slow timescales. The fast timescale has poor retention of learned response, while the slow timescale has strong retention. Cerebellar defects resulting in loss of function affect the fast timescale but the slow timescale of saccade adaptation is retained. In contrast, maladaptive cerebellar disorders feature the absence of both fast and slow timescales. We were able to measure both timescales using noninvasive oculography in 6 normal individuals. In contrast, both timescales were absent in 12 patients with tremor-dominant cervical dystonia. These findings are consistent with maladaptive cerebellar outflow as a putative pathophysiological basis for tremor-dominant cervical dystonia.
Collapse
|
23
|
Li ST, Zhou Y. Spinocerebellar ataxia type 2 presenting with involuntary movement: a diagnostic dilemma. J Int Med Res 2019; 47:6390-6396. [PMID: 31774014 PMCID: PMC7045683 DOI: 10.1177/0300060519889457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a rare disease characterized by slowly
progressive ataxia, dysarthria, ophthalmoplegia, and slow saccade. SCA2 can
present with a complex combination of hyperkinetic and hypokinetic movement
disorders. Here, we describe a patient with SCA2 that partly mimicked the
clinical manifestations of Huntington’s disease; similar symptoms had previously
occurred in the patient’s family members. The findings in this report indicate
that, when a patient exhibits choreiform movement (i.e., accompanying cerebellar
ataxia), an SCA2-related mutation could be responsible for the onset of disease.
In addition, this knowledge of the potential for extrapyramidal involvement in
such patients is critical for clinicians.
Collapse
Affiliation(s)
- Shu-Ting Li
- Department of General Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Zhou
- Department of Neurology, Jinhua Hospital, Jinhua, China
| |
Collapse
|
24
|
Isobe T, Sato H, Goto T, Yako T, Yoshida K, Hashimoto T. Long-Term Suppression of Disabling Tremor by Thalamic Stimulation in a Patient with Spinocerebellar Ataxia Type 2. Stereotact Funct Neurosurg 2019; 97:241-243. [PMID: 31743916 DOI: 10.1159/000504062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022]
Abstract
The beneficial effect of thalamic deep brain stimulation (DBS) on action tremor has been reported in a few cases of spinocerebellar ataxia (SCA); however, several factors should be taken into account regarding the indication for DBS in advanced cases. We performed DBS of the ventral intermediate nucleus (Vim) of the thalamus for treatment of coarse action tremor in a patient with SCA2 (spinocerebellar ataxia type 2) in the wheelchair-bound stage. Although improvement of the tremor of the proximal part was incomplete, the patient regained substantial parts of daily functioning. The effect lasted for more than 6 years, and the suppression of tremor significantly contributed to maintaining the level of the patient's expression into the bedridden stage. Vim DBS can be a treatment option for tremor in SCA patients, even in the advanced stage, as long as the tremor is depriving the patient of behavioral expression. As residual proximal tremor may hamper functional recovery, DBS of other targets or multi-targets should be further explored to attain a better outcome.
Collapse
Affiliation(s)
- Takashi Isobe
- Department of Neurology, Aizawa Hospital, Matsumoto, Japan
| | - Hiromasa Sato
- Department of Neurology, Aizawa Hospital, Matsumoto, Japan
| | - Tetsuya Goto
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takehiro Yako
- Department of Neurosurgery, Aizawa Hospital, Matsumoto, Japan
| | - Kunihiro Yoshida
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Japan
| | | |
Collapse
|
25
|
Payne K, Walls B, Wojcieszek J. Approach to Assessment of Parkinson Disease with Emphasis on Genetic Testing. Med Clin North Am 2019; 103:1055-1075. [PMID: 31582004 DOI: 10.1016/j.mcna.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article presents a nongeneticist's guide to understanding the genetics of Parkinson disease (PD), including clinical diagnostic criteria, differential diagnoses, symptom management, when to suspect a hereditary factor, a summary of autosomal dominant and recessive PD genes, and proposed algorithm for genetic testing. There is increasing availability of genetic testing for PD but there are few recommendations on how these tests should be used in clinical practice. This article guides clinicians on the overall management of patients with PD, with emphasis on determining which patients should have genetic testing and how to interpret the results.
Collapse
Affiliation(s)
- Katelyn Payne
- Department of Neurology, Indiana University School of Medicine, 355 West 16th Street, Suite 4700, Indianapolis, IN 46202, USA.
| | - Brooke Walls
- Department of Neurology, Indiana University School of Medicine, 355 West 16th Street, Suite 4700, Indianapolis, IN 46202, USA
| | - Joanne Wojcieszek
- Indiana University School of Medicine, 355 West 16th Street, Suite 4700, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Gigante AF, Lelli G, Romano R, Pellicciari R, Di Candia A, Mancino PV, Pau M, Fiore P, Defazio G. The Relationships Between Ataxia and Cognition in Spinocerebellar Ataxia Type 2. THE CEREBELLUM 2019; 19:40-47. [DOI: 10.1007/s12311-019-01079-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Sen NE, Canet-Pons J, Halbach MV, Arsovic A, Pilatus U, Chae WH, Kaya ZE, Seidel K, Rollmann E, Mittelbronn M, Meierhofer D, De Zeeuw CI, Bosman LWJ, Gispert S, Auburger G. Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiol Dis 2019; 132:104559. [PMID: 31376479 DOI: 10.1016/j.nbd.2019.104559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion mutations in the ATXN2 gene, mainly affecting motor neurons in the spinal cord and Purkinje neurons in the cerebellum. While the large expansions were shown to cause SCA2, the intermediate length expansions lead to increased risk for several atrophic processes including amyotrophic lateral sclerosis and Parkinson variants, e.g. progressive supranuclear palsy. Intense efforts to pioneer a neuroprotective therapy for SCA2 require longitudinal monitoring of patients and identification of crucial molecular pathways. The ataxin-2 (ATXN2) protein is mainly involved in RNA translation control and regulation of nutrient metabolism during stress periods. The preferential mRNA targets of ATXN2 are yet to be determined. In order to understand the molecular disease mechanism throughout different prognostic stages, we generated an Atxn2-CAG100-knock-in (KIN) mouse model of SCA2 with intact murine ATXN2 expression regulation. Its characterization revealed somatic mosaicism of the expansion, with shortened lifespan, a progressive spatio-temporal pattern of pathology with subsequent phenotypes, and anomalies of brain metabolites such as N-acetylaspartate (NAA), all of which mirror faithfully the findings in SCA2 patients. Novel molecular analyses from stages before the onset of motor deficits revealed a strong selective effect of ATXN2 on Nat8l mRNA which encodes the enzyme responsible for NAA synthesis. This metabolite is a prominent energy store of the brain and a well-established marker for neuronal health. Overall, we present a novel authentic rodent model of SCA2, where in vivo magnetic resonance imaging was feasible to monitor progression and where the definition of earliest transcriptional abnormalities was possible. We believe that this model will not only reveal crucial insights regarding the pathomechanism of SCA2 and other ATXN2-associated disorders, but will also aid in developing gene-targeted therapies and disease prevention.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Melanie V Halbach
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Woon-Hyung Chae
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Zeynep-Ece Kaya
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany; Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Kay Seidel
- Department of Anatomy II, Institute of Clinical Neuroanatomy, Goethe University, 60590 Frankfurt am Main, Germany
| | - Ewa Rollmann
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), Goethe University, 60590 Frankfurt am Main, Germany; Luxembourg Centre of Neuropathology (LCNP), Luxembourg; Department of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Oncology, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Shuvaev AN, Belozor OS, Smolnikova MV, Yakovleva DA, Shuvaev AN, Kazantseva OM, Pozhilenkova EA, Mozhei OI, Kasparov S. Population genetics of spinoсerebellar ataxias caused by polyglutamine expansions. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hereditary disorders of the neuronal system are some of the most important problems of medicine in the XXI century. The most interesting representatives of this group are highly prevalent polyglutamine spinocerebellar ataxias (SCAs). It has a basement for quick progression of expansion among different groups all over the World. These diseases are SCA1, 2, 3, 6, 7 and 17, which phenotypically belong to one group due to similarities in clinics and genetics. The substrate of these genetic conditions is CAG trinucleotide repeat of Ataxin genes which may expand in the course of reproduction. For this reason a characteristic feature of these diseases is not only an increase in patient numbers, but also a qualitative change in the progression of their neurological symptoms. All these aspects are reflected in the structure of the incidence of polyglutamine SCAs, both at the global level and at the level of individual population groups. However, most scientific reports that describe the population genetics of polyglutamine SCAs are limited to quantitative indicators of a specific condition in a certain area, while the history of the occurrence and principles of the distribution of polyglutamine SCAs are poorly understood. This prevents long-term predictions of the dynamics of the disease and development of strategies for controlling the spread of mutations in the populations. In this paper we make a detailed analysis of the polyglutamine SCAs population genetics, both in the whole world and specifically in theRussian Federation. We note that for a better analysis it would be necessary to cover a wider range of populations in Africa, Asia andSouth America, which will be possible with the development of new methods for molecular genetics. Development of new methods of detection of polyglutamine SCAs will allow the scientists to better understand how they lead to the brain disease, the means of their spread in the population and to develop better methods for therapy and prevention of these diseases.
Collapse
Affiliation(s)
- A. N. Shuvaev
- Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry
| | - O. S. Belozor
- Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry
| | - M. V. Smolnikova
- Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry;
Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
| | | | | | | | - E. A. Pozhilenkova
- Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry
| | | | - S. Kasparov
- Immanuel Kant Baltic Federal University;
University of Bristol
| |
Collapse
|
29
|
Merola A, Dwivedi AK, Shaikh AG, Tareen TK, Da Prat GA, Kauffman MA, Hampf J, Mahajan A, Marsili L, Jankovic J, Comella CL, Berman BD, Perlmutter JS, Jinnah HA, Espay AJ. Head tremor at disease onset: an ataxic phenotype of cervical dystonia. J Neurol 2019; 266:1844-1851. [PMID: 31028543 DOI: 10.1007/s00415-019-09341-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/21/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cervical dystonia (CD) can present with head tremor. It is unclear whether ataxic features are differentially associated with this phenotype at onset of CD. OBJECTIVES We sought to evaluate: (1) the demographic features of CD patients with (Tr-CD) and without head tremor (nTr-CD) at onset, and (2) the differential ataxic features between these CD subtypes. METHODS For the first objective, we compared demographic data in Tr-CD versus nTr-CD subtypes in the entire cohort of CD subjects enrolled in the Dystonia Coalition Natural History and Biorepository studies (n = 1608). For the second objective, we rated the standardized videos from consecutively enrolled Tr-CD subjects (n = 50) and age-, gender-, and disease duration-matched nTr-CD subjects (n = 50) for ataxia severity scoring using the Scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS); and for dystonia severity using the Toronto Western Spasmodic Torticollis Rating Scale section-I (TWSTRS) and the Global Dystonia Rating Scale (GDRS). RESULTS Of 1,608 subjects, 18.1% (n = 291) were classified as Tr-CD and 81.9% (n = 1317) as nTr-CD. The Tr-CD cohort was older, predominantly female, and had longer disease duration than the nTr-CD cohort (p = 0.01). Compared to nTr-CD, Tr-CD subjects had worse generalized ataxia, speech, and gait and posture scores. High ataxia severity with low dystonia severity distinguished Tr-CD from nTr-CD with high accuracy (area under the curve, 0.91 (95% CI 0.85-0.97). CONCLUSIONS Head tremor at disease onset represents a clinically distinguishable subtype of cervical dystonia affecting predominantly older women, with worse ataxia and milder dystonia than the non-tremulous dystonic phenotype.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA.
| | - Alok K Dwivedi
- Division of Biostatistics and Epidemiology, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center (TTUHSC), El Paso, TX, USA
| | - Aasef G Shaikh
- Department of Neurology, University Hospitals and Cleveland VA Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Tamour Khan Tareen
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Gustavo A Da Prat
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
- Departamento de Neurologia, Sanatorio de la Trinidad Mitre, Buenos Aires, Argentina
| | - Marcelo A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA, and Programa de Medicina de Precision y Genomica Clinica, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Jennie Hampf
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Abhimanyu Mahajan
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Luca Marsili
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, USA
| | | | - Brian D Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joel S Perlmutter
- Neurology, Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyder A Jinnah
- Department of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, GA, USA
| | - Alberto J Espay
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
30
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
31
|
Rezende Filho FM, Vale TC, Pedroso JL, Braga-Neto P, Barsottini OG. Facial grimacing and clinical correlates in spinocerebellar ataxia type 3. J Neurol Sci 2019; 397:138-140. [PMID: 30616057 DOI: 10.1016/j.jns.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common spinocerebellar ataxia (SCA) worldwide. SCA3 presents with cerebellar ataxia in association with pyramidal signs, peripheral amyotrophy, nystagmus, ophthalmoparesis, fasciculations of the face and tongue, dystonia and parkinsonism. Oromandibular dystonia (OMD) with facial grimacing (FG) in SCA3 has seldom been reported in the literature and in series of SCA3 patients. METHODS We evaluated 104 patients with SCA (59 patients with SCA3, 20 with SCA2, 20 with SCA7 and 5 with SCA6) and assessed dystonia frequency and types. RESULTS Thirteen cases of SCA3, one of SCA2 and two of SCA7 had dystonia. OMD in the form of FG was present in seven SCA3 patients (11.9%). Patients with FG were significantly younger, had earlier disease onset and a significantly higher CAG repetition length when compared to the SCA3 sample. Parkinsonism, dysphagia and pyramidal signs were significantly more frequent in the FG group than the non-FG group of the SCA3 sample. CONCLUSION Patients with SCA3 presenting with FG are younger, with earlier disease onset and higher CAG repetition length. They present with parkinsonism, dysphagia and pyramidal signs more frequently than SCA3 patients without FG.
Collapse
Affiliation(s)
- Flávio Moura Rezende Filho
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Brazil
| | - Thiago Cardoso Vale
- Movement Disorders Unit, Neurology Service, Hospital Universitário, Departamento de Clínica Médica da Universidade Federal de Juiz de Fora (MG), Brazil
| | - José Luiz Pedroso
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Brazil.
| | - Pedro Braga-Neto
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Brazil; Center of Health Sciences, Universidade Estadual do Ceará, Brazil
| | - Orlando G Barsottini
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
32
|
Pulst SM. The complex structure of ATXN2 genetic variation. Neurol Genet 2018; 4:e299. [PMID: 30588499 PMCID: PMC6290488 DOI: 10.1212/nxg.0000000000000299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT
| |
Collapse
|
33
|
Tojima M, Murakami G, Hikawa R, Yamakado H, Yamashita H, Takahashi R, Matsui M. Homozygous 31 trinucleotide repeats in the SCA2 allele are pathogenic for cerebellar ataxia. NEUROLOGY-GENETICS 2018; 4:e283. [PMID: 30533529 PMCID: PMC6244019 DOI: 10.1212/nxg.0000000000000283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Maya Tojima
- Department of Neurology (M.T., M.M.), Otsu Red Cross Hospital; Department of Neurology (M.T., R.H., H. Yamakado, H. Yamashita, R.T.), Kyoto University Hospital, Otsu, Japan; Murakami Clinic (G.M.), Kyoto, Japan; Department of Neurology (H. Yamashita), Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Gaku Murakami
- Department of Neurology (M.T., M.M.), Otsu Red Cross Hospital; Department of Neurology (M.T., R.H., H. Yamakado, H. Yamashita, R.T.), Kyoto University Hospital, Otsu, Japan; Murakami Clinic (G.M.), Kyoto, Japan; Department of Neurology (H. Yamashita), Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Rie Hikawa
- Department of Neurology (M.T., M.M.), Otsu Red Cross Hospital; Department of Neurology (M.T., R.H., H. Yamakado, H. Yamashita, R.T.), Kyoto University Hospital, Otsu, Japan; Murakami Clinic (G.M.), Kyoto, Japan; Department of Neurology (H. Yamashita), Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Hodaka Yamakado
- Department of Neurology (M.T., M.M.), Otsu Red Cross Hospital; Department of Neurology (M.T., R.H., H. Yamakado, H. Yamashita, R.T.), Kyoto University Hospital, Otsu, Japan; Murakami Clinic (G.M.), Kyoto, Japan; Department of Neurology (H. Yamashita), Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Hirofumi Yamashita
- Department of Neurology (M.T., M.M.), Otsu Red Cross Hospital; Department of Neurology (M.T., R.H., H. Yamakado, H. Yamashita, R.T.), Kyoto University Hospital, Otsu, Japan; Murakami Clinic (G.M.), Kyoto, Japan; Department of Neurology (H. Yamashita), Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Ryosuke Takahashi
- Department of Neurology (M.T., M.M.), Otsu Red Cross Hospital; Department of Neurology (M.T., R.H., H. Yamakado, H. Yamashita, R.T.), Kyoto University Hospital, Otsu, Japan; Murakami Clinic (G.M.), Kyoto, Japan; Department of Neurology (H. Yamashita), Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Masaru Matsui
- Department of Neurology (M.T., M.M.), Otsu Red Cross Hospital; Department of Neurology (M.T., R.H., H. Yamakado, H. Yamashita, R.T.), Kyoto University Hospital, Otsu, Japan; Murakami Clinic (G.M.), Kyoto, Japan; Department of Neurology (H. Yamashita), Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| |
Collapse
|
34
|
Non-ataxic manifestations of Spinocerebellar ataxia-2, their determinants and predictors. J Neurol Sci 2018; 394:14-18. [PMID: 30196130 DOI: 10.1016/j.jns.2018.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/04/2018] [Accepted: 08/26/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION To evaluate the non-ataxic clinical manifestations in genetically proven Spinocerebellar ataxia 2 (SCA2) and identify their determinants and predictors. METHODS Seventy-three subjects with genetically proven SCA2 were evaluated clinically for the common non-ataxic manifestations. Based on the presence or absence of non-ataxic manifestations, patients were classified into groups and then compared for significant differences in the CAG repeat length, age at onset (AAO), duration of disease, and ataxia rating score. Predictors of non-ataxic symptoms were identified using multivariable binary logistic regression. RESULTS The most common non-ataxic clinical manifestations were peripheral neuropathy, extrapyramidal features, pyramidal signs, cognitive impairment and lower motor neuron signs. The CAG repeat length was inversely related to the AAO of symptoms (r = -0.46, p < .001). Patients with peripheral neuropathy and psychiatric symptoms had earlier AAO. Patients with cognitive impairment and extrapyramidal symptoms had higher CAG repeat length whereas presence of lower motor neuron signs was more common in patients with lower CAG repeat length. CONCLUSION The lower strength of association between CAG repeat length and AAO in our cohort suggests the presence of additional factors underlying the variability in AAO. Both CAG repeat length and AAO were identified as significant determinants and predictors of non-ataxic symptoms.
Collapse
|
35
|
Cheng N, Wied HM, Gaul JJ, Doyle LE, Reich SG. SCA2 presenting as a focal dystonia. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2018; 5:6. [PMID: 30123518 PMCID: PMC6090825 DOI: 10.1186/s40734-018-0073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/03/2018] [Indexed: 11/14/2022]
Abstract
BACKGROUND Spinocerebellar ataxia 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in ATXN2 on chromosome 12q24. Patients present with adult-onset progressive gait ataxia, slow saccades, nystagmus, dysarthria and peripheral neuropathy. Dystonia is known to occur as SCA2 advances, but is rarely the presenting symptom. CASE PRESENTATION A 43-year-old right handed woman presented with focal dystonia of the right hand which started two years earlier with difficulty writing. There were only mild cerebellar signs. Her mother was reported to have a progressive gait disorder and we subsequently learned that she had SCA2. A total of 10 maternal family members were similarly affected. Over the course of 10 years, the patient's cerebellar signs progressed only mildly however the dystonia worsened to the extent of inability to use her right hand. Dystonia did not improve significantly with botulinum toxin, levodopa or trihexyphenidyl, but has shown marked improvement since DBS implantation in the GPi. CONCLUSIONS We describe a patient with SCA2 who presented with focal dystonia of the right upper extremity. Subtle cerebellar signs as well as the family history became especially important given the absence of predominant gait ataxia. Our case emphasizes that focal dystonia is not only a feature of SCA2, but can also rarely be the presenting sign as well as the most prominent feature during the disease course.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Heather M. Wied
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | | | - Lauren E. Doyle
- Department of Genetic Counseling, University of North Carolina Greensboro School of Health and Human Sciences, Greensboro, NC USA
| | - Stephen G. Reich
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
36
|
Baine FK, Peerbhai N, Krause A. A study of Huntington disease-like syndromes in black South African patients reveals a single SCA2 mutation and a unique distribution of normal alleles across five repeat loci. J Neurol Sci 2018; 390:200-204. [PMID: 29801887 DOI: 10.1016/j.jns.2018.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/28/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Huntington disease (HD) is a progressive neurodegenerative disease, characterised by a triad of movement disorder, emotional and behavioural disturbances and cognitive impairment. The underlying cause is an expanded CAG repeat in the huntingtin gene. For a small proportion of patients presenting with HD-like symptoms, the mutation in this gene is not identified and they are said to have a HD "phenocopy". South Africa has the highest number of recorded cases of an African-specific phenocopy, Huntington disease-like 2 (HDL2), caused by a repeat expansion in the junctophilin-3 gene. However, a significant proportion of black patients with clinical symptoms suggestive of HD still test negative for HD and HDL2. This study thus aimed to investigate five other loci associated with HD phenocopy syndromes - ATN1, ATXN2, ATXN7, TBP and C9orf72. In a sample of patients in whom HD and HDL2 had been excluded, a single expansion was identified in the ATXN2 gene, confirming a diagnosis of Spinocerebellar ataxia 2. The results indicate that common repeat expansion disorders do not contribute significantly to the HD-like phenotype in black South African patients. Importantly, allele sizing reveals unique distributions of normal repeat lengths across the associated loci in the African population studied.
Collapse
Affiliation(s)
- Fiona K Baine
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of the Witwatersrand, South Africa.
| | - Nabeelah Peerbhai
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of the Witwatersrand, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of the Witwatersrand, South Africa
| |
Collapse
|
37
|
Cagnoli C, Brussino A, Mancini C, Ferrone M, Orsi L, Salmin P, Pappi P, Giorgio E, Pozzi E, Cavalieri S, Di Gregorio E, Ferrero M, Filla A, De Michele G, Gellera C, Mariotti C, Nethisinghe S, Giunti P, Stevanin G, Brusco A. Spinocerebellar Ataxia Tethering PCR: A Rapid Genetic Test for the Diagnosis of Spinocerebellar Ataxia Types 1, 2, 3, 6, and 7 by PCR and Capillary Electrophoresis. J Mol Diagn 2018; 20:289-297. [PMID: 29462666 DOI: 10.1016/j.jmoldx.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, and 7, associated with a (CAG)n repeat expansion in coding sequences, are the most prevalent autosomal dominant ataxias worldwide (approximately 60% of the cases). In addition, the phenotype of SCA2 expansions has been now extended to Parkinson disease and amyotrophic lateral sclerosis. Their diagnosis is currently based on a PCR to identify small expanded alleles, followed by a second-level test whenever a false normal homozygous or a CAT interruption in SCA1 needs to be verified. Next-generation sequencing still does not allow efficient detection of these repeats. Here, we show the efficacy of a novel, rapid, and cost-effective method to identify and size pathogenic expansions in SCA1, 2, 3, 6, and 7 and recognize large alleles or interruptions without a second-level test. Twenty-five healthy controls and 33 expansion carriers were analyzed: alleles migrated consistently in different PCRs and capillary runs, and homozygous individuals were always distinguishable from heterozygous carriers of both common and large (>100 repeats) pathogenic CAG expansions. Repeat number could be calculated counting the number of peaks, except for the largest SCA2 and SCA7 alleles. Interruptions in SCA1 were always visible. Overall, our method allows a simpler, cost-effective, and sensibly faster SCA diagnostic protocol compared with the standard technique and to the still unadapted next-generation sequencing.
Collapse
Affiliation(s)
- Claudia Cagnoli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Cecilia Mancini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Marina Ferrone
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Laura Orsi
- Department of Laboratory Medicine, and the Neurologic Division I, Department of Neuroscience and Mental Health, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Paola Salmin
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Patrizia Pappi
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Marta Ferrero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Filla
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Suran Nethisinghe
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Paola Giunti
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Giovanni Stevanin
- INSERM, U 1127, Institut du Cerveau et de la Moelle epinière, Paris, France; Centre National de la Recherche Scientifique UMR 7225, Paris, France; UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.
| |
Collapse
|
38
|
Monte TL, Reckziegel ER, Augustin MC, Silva ASP, Locks-Coelho LD, Barsottini O, Pedroso JL, Vargas FR, Saraiva-Pereira ML, Leotti VB, Jardim LB. NESSCA Validation and Responsiveness of Several Rating Scales in Spinocerebellar Ataxia Type 2. THE CEREBELLUM 2018; 16:852-858. [PMID: 28456900 DOI: 10.1007/s12311-017-0855-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2), caused by a CAG expansion (CAGexp) at ATXN2, has a complex clinical picture. While validated ataxia scales are available, comprehensive instruments to measure all SCA2 neurological manifestations are required. This study aims to validate the Neurological Examination Score for the assessment of Spinocerebellar Ataxias (NESSCA) to be used in SCA2 and to compare its responsiveness to those obtained with other instruments. NESSCA, SARA, SCAFI, and CCFS scales were applied in symptomatic SCA2 patients. Correlations were done with age at onset, disease duration, CAGexp, and between scales. Responsiveness was estimated by comparing deltas of stable to worse patients after 12 months, according to Patient Global Impression of change, and the area under the curve (AUC) of the Receiver Operating Characteristics curve of scores range. Eighty-eight evaluations (49 patients) were obtained. NESSCA had an even distribution and correlated with disease duration (r = 0.55), SARA (r = 0.63), and CAGexp (rho = 0.32): both explained 44% of NESSCA variance. Deltas (95% CI) after 1 year in stable and worse patients were only significantly different for SARA. NESSCA, SARA, SCAFI, and CCFS AUC were 0.63, 0.81, 0.49, and 0.48, respectively. NESSCA is valid to be used in SCA2. However, the only instrument that presented good responsiveness to change in 1 year was SARA. We suggest that NESSCA can be used as a secondary outcome in future trials in SCA2 due to the burden of neurological disabilities related to disease progression.
Collapse
Affiliation(s)
- Thais L Monte
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Estela R Reckziegel
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina C Augustin
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda S P Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas D Locks-Coelho
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Orlando Barsottini
- Setor de Neurologia Geral e Ataxias, Disciplina de Neurologia Clínica da UNIFESP-Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José L Pedroso
- Setor de Neurologia Geral e Ataxias, Disciplina de Neurologia Clínica da UNIFESP-Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernando R Vargas
- Laboratório de Epidemiologia de Malformações Congênitas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria-Luiza Saraiva-Pereira
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90.035-903, Brazil
| | - Vanessa Bielefeldt Leotti
- Departamento de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil. .,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil. .,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil. .,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90.035-903, Brazil.
| | | |
Collapse
|
39
|
Monte TL, Reckziegel EDR, Augustin MC, Locks-Coelho LD, Santos ASP, Furtado GV, de Mattos EP, Pedroso JL, Barsottini OP, Vargas FR, Saraiva-Pereira ML, Camey SA, Leotti VB, Jardim LB. The progression rate of spinocerebellar ataxia type 2 changes with stage of disease. Orphanet J Rare Dis 2018; 13:20. [PMID: 29370806 PMCID: PMC5785809 DOI: 10.1186/s13023-017-0725-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Spinocerebellar ataxia type 2 (SCA2) affects several neurological structures, giving rise to multiple symptoms. However, only the natural history of ataxia is well known, as measured during the study duration. We aimed to describe the progression rate of ataxia, by the Scale for the Assessment and Rating of Ataxia (SARA), as well as the progression rate of the overall neurological picture, by the Neurological Examination Score for Spinocerebellar Ataxias (NESSCA), and not only during the study duration but also in a disease duration model. Comparisons between these models might allow us to explore whether progression is linear during the disease duration in SCA2; and to look for potential modifiers. Results Eighty–eight evaluations were prospectively done on 49 symptomatic subjects; on average (SD), study duration and disease duration models covered 13 (2.16) months and 14 (6.66) years of individuals’ life, respectively. SARA progressed 1.75 (CI 95%: 0.92–2.57) versus 0.79 (95% CI 0.45 to 1.14) points/year in the study duration and disease duration models. NESSCA progressed 1.45 (CI 95%: 0.74–2.16) versus 0.41 (95% CI 0.24 to 0.59) points/year in the same models. In order to explain these discrepancies, the progression rates of the study duration model were plotted against disease duration. Then an acceleration was detected after 10 years of disease duration: SARA scores progressed 0.35 before and 2.45 points/year after this deadline (p = 0.013). Age at onset, mutation severity, and presence of amyotrophy, parkinsonism, dystonic manifestations and cognitive decline at baseline did not influence the rate of disease progression. Conclusions NESSCA and SARA progression rates were not constant during disease duration in SCA2: early phases of disease were associated with slower progressions. Modelling of future clinical trials on SCA2 should take this phenomenon into account, since disease duration might impact on inclusion criteria, sample size, and study duration. Our database is available online and accessible to future studies aimed to compare the present data with other cohorts. Electronic supplementary material The online version of this article (10.1186/s13023-017-0725-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thais Lampert Monte
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Lucas D Locks-Coelho
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Senna P Santos
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel Vasata Furtado
- Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Preusser de Mattos
- Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Luiz Pedroso
- Setor de Neurologia Geral e Ataxias. Disciplina de Neurologia Clínica da UNIFESP - Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Orlando Póvoas Barsottini
- Setor de Neurologia Geral e Ataxias. Disciplina de Neurologia Clínica da UNIFESP - Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernando Regla Vargas
- Laboratório de Epidemiologia de Malformações Congênitas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional, Rio de Janeiro, Brazil
| | - Maria-Luiza Saraiva-Pereira
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90.035-903, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Suzi Alves Camey
- Grupo de Pesquisa e Pós-Graduação Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Bielefeldt Leotti
- Departamento de Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90.035-903, Brazil. .,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Instituto Nacional de Genética Médica Populacional, Rio de Janeiro, Brazil.
| | | |
Collapse
|
40
|
|
41
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
42
|
Shakkottai VG, Batla A, Bhatia K, Dauer WT, Dresel C, Niethammer M, Eidelberg D, Raike RS, Smith Y, Jinnah HA, Hess EJ, Meunier S, Hallett M, Fremont R, Khodakhah K, LeDoux MS, Popa T, Gallea C, Lehericy S, Bostan AC, Strick PL. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. THE CEREBELLUM 2017; 16:577-594. [PMID: 27734238 DOI: 10.1007/s12311-016-0825-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.
Collapse
Affiliation(s)
- Vikram G Shakkottai
- Department of Neurology, University of Michigan, Room 4009, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| | - Amit Batla
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - Kailash Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - William T Dauer
- Department of Neurology, University of Michigan, Room 4009, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christian Dresel
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Robert S Raike
- Global Research Organization, Medtronic Inc. Neuromodulation, Minneapolis, MN, USA
| | - Yoland Smith
- Yerkes National Primate Center and Department of Neurology, Emory University, Atlanta, GA, USA
| | - H A Jinnah
- Department of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Departments of Pharmacology and Neurology, Emory University, Atlanta, GA, USA
| | - Sabine Meunier
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR, S 1127, Paris, France.,Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rachel Fremont
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, and The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark S LeDoux
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Traian Popa
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Cécile Gallea
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Centre de NeuroImagerie de Recherche - CENIR, ICM, F-75013, Paris, France
| | - Stéphane Lehericy
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Andreea C Bostan
- Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter L Strick
- Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Antenora A, Rinaldi C, Roca A, Pane C, Lieto M, Saccà F, Peluso S, De Michele G, Filla A. The Multiple Faces of Spinocerebellar Ataxia type 2. Ann Clin Transl Neurol 2017; 4:687-695. [PMID: 28904990 PMCID: PMC5590519 DOI: 10.1002/acn3.437] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/09/2017] [Accepted: 06/07/2017] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is among the most common forms of autosomal dominant ataxias, accounting for 15% of the total families. Occurrence is higher in specific populations such as the Cuban and Southern Italian. The disease is caused by a CAG expansion in ATXN2 gene, leading to abnormal accumulation of the mutant protein, ataxin‐2, in intracellular inclusions. The clinical picture is mainly dominated by cerebellar ataxia, although a number of other neurological signs have been described, ranging from parkinsonism to motor neuron involvement, making the diagnosis frequently challenging for neurologists, particularly when information about the family history is not available. Although the functions of ataxin‐2 have not been completely elucidated, the protein is involved in mRNA processing and control of translation. Recently, it has also been shown that the size of the CAG repeat in normal alleles represents a risk factor for ALS, suggesting that ataxin‐2 plays a fundamental role in maintenance of neuronal homeostasis.
Collapse
Affiliation(s)
- Antonella Antenora
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Carlo Rinaldi
- Department of Physiology Anatomy and Genetics, University of Oxford Oxford United Kingdom
| | - Alessandro Roca
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Chiara Pane
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Maria Lieto
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy.,Department of Physiology Anatomy and Genetics, University of Oxford Oxford United Kingdom
| | - Francesco Saccà
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Silvio Peluso
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Giuseppe De Michele
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Alessandro Filla
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| |
Collapse
|
44
|
Neurological phenotypes in spinocerebellar ataxia type 2: Role of mitochondrial polymorphism A10398G and other risk factors. Parkinsonism Relat Disord 2017. [PMID: 28648514 DOI: 10.1016/j.parkreldis.2017.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is due to a CAG expansion (CAGexp) at ATXN2. SCA2 presents great clinical variability, alongside characteristic ataxia with saccadic slowness. AIMS To study parkinsonism, dementia, dystonia, and amyotrophy as subphenotypes of SCA2, and to explore the effect of CAG repeats at different loci and of mitochondrial polymorphism A10398G as modifiers of phenotype. METHODS Symptomatic subjects were classified by presence/absence of neurological signs mentioned above; SARA and NESSCA scores were obtained. CAG repeats at ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7 and RAI1, and polymorphism A10398G at mtDNA were established. Group characteristics were compared, with a p < 0.05. RESULTS Forty-eight SCA2 individuals were included. Age at onset, CAGexp, and disease duration explained 53% and 43% of SARA and NESSCA variations, respectively. CAGexp of subjects with and without parkinsonism were different (medians of 42 and 39 repeats) as well as of subjects with and without dystonia (44 and 40 repeats). Amyotrophy was not significantly related to any variable under study. Concerning polymorphism A10398G, 83% of subjects with and 34% of those without cognitive decline carried 10398G at (p = 0.003). DISCUSSION Treating the four phenotypic subgroups as outcomes was a valid strategy to identify modifiers of disease. Among correlations found, some confirmed previous reports, such as that between dystonia and CAGexp. Of note was the association between cognitive decline and the variant G at mitochondrial polymorphism A10398G, a variant formerly related to earlier ages at onset in SCA2.
Collapse
|
45
|
Li PP, Sun X, Xia G, Arbez N, Paul S, Zhu S, Peng HB, Ross CA, Koeppen AH, Margolis RL, Pulst SM, Ashizawa T, Rudnicki DD. ATXN2-AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann Neurol 2017; 80:600-15. [PMID: 27531668 DOI: 10.1002/ana.24761] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by a CAG repeat expansion in the gene ataxin-2 (ATXN2). ATXN2 intermediate-length CAG expansions were identified as a risk factor for amyotrophic lateral sclerosis (ALS). The ATXN2 CAG repeat is translated into polyglutamine, and SCA2 pathogenesis has been thought to derive from ATXN2 protein containing an expanded polyglutamine tract. However, recent evidence of bidirectional transcription at multiple CAG/CTG disease loci has led us to test whether additional mechanisms of pathogenesis may contribute to SCA2. METHODS In this work, using human postmortem tissue, various cell models, and animal models, we provide the first evidence that an antisense transcript at the SCA2 locus contributes to SCA2 pathogenesis. RESULTS We demonstrate the expression of a transcript, containing the repeat as a CUG tract, derived from a gene (ATXN2-AS) directly antisense to ATXN2. ATXN2-AS transcripts with normal and expanded CUG repeats are expressed in human postmortem SCA2 brains, human SCA2 fibroblasts, induced SCA2 pluripotent stem cells, SCA2 neural stem cells, and lymphoblastoid lines containing an expanded ATXN2 allele associated with ALS. ATXN2-AS transcripts with a CUG repeat expansion are toxic in an SCA2 cell model and form RNA foci in SCA2 cerebellar Purkinje cells. Finally, we detected missplicing of amyloid beta precursor protein and N-methyl-D-aspartate receptor 1 in SCA2 brains, consistent with findings in other diseases characterized by RNA-mediated pathogenesis. INTERPRETATION These results suggest that ATXN2-AS has a role in SCA2 and possibly ALS pathogenesis, and may therefore provide a novel therapeutic target for these diseases. Ann Neurol 2016;80:600-615.
Collapse
Affiliation(s)
- Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xin Sun
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Research and Neurology Services, Veterans Affairs Medical Center, Albany, NY
| | - Guangbin Xia
- Department of Neurology, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Shanshan Zhu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - H Benjamin Peng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Arnulf H Koeppen
- Research and Neurology Services, Veterans Affairs Medical Center, Albany, NY.,Department of Neurology and Pathology, Albany Medical College, Albany, NY
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Tetsuo Ashizawa
- Department of Neurology, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD. .,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
46
|
Figueroa KP, Coon H, Santos N, Velazquez L, Mederos LA, Pulst SM. Genetic analysis of age at onset variation in spinocerebellar ataxia type 2. NEUROLOGY-GENETICS 2017; 3:e155. [PMID: 28534046 PMCID: PMC5432368 DOI: 10.1212/nxg.0000000000000155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/03/2017] [Indexed: 12/28/2022]
Abstract
Objective: To examine heritability of the residual variability of spinocerebellar ataxia type 2 (SCA2) age at onset (AO) after controlling for CAG repeat length. Methods: From 1955 to 2001, dates of birth, CAG repeat lengths, AO, sex, familial inheritances, and clinical manifestations were collected for a large Cuban SCA2 cohort of 382 affected individuals, including 129 parent-child pairs and 69 sibships. Analyses were performed with log-transformed AO in the GENMOD procedure to predict AO using repeat length, taking into account family structure. Because all relationships were first degree, the model was implemented with an exchangeable correlation matrix. Familial correlations were estimated using the Pedigree Analysis Package to control for similarity due to genetic relatedness. Results: For the entire sample, the mutant CAG repeat allele explained 69% of AO variance. When adjusted for pedigree structure, this decreased to 50%. Evidence for imprinting or sex-specific effects of the CAG repeat on AO was not found. For the entire sample, we determined an upper bound for heritability of the residual variance of 33% (p = 0.008). Heritability was higher in sib-sib pairs, especially in female sib-sib pairs, than in parent-child pairs. Conclusions: We established that a large proportion of AO variance in SCA2 was determined by genetic modifiers in addition to CAG repeat length. The genetic structure of heritability of the residual AO variance was surprisingly similar to Huntington disease, suggesting the presence of recessive modifying alleles and possibly X-chromosome–linked modifiers.
Collapse
Affiliation(s)
- K P Figueroa
- Department of Neurology (K.P.F., S.-M.P.), Department of Psychiatry (H.C.), University of Utah, Salt Lake City; Department of Surgery (N.S.), University of Miami, FL; and Center for the Research and Rehabilitation of Hereditary Ataxias (L.V., L.A.M.), Holguin, Cuba
| | - Hilary Coon
- Department of Neurology (K.P.F., S.-M.P.), Department of Psychiatry (H.C.), University of Utah, Salt Lake City; Department of Surgery (N.S.), University of Miami, FL; and Center for the Research and Rehabilitation of Hereditary Ataxias (L.V., L.A.M.), Holguin, Cuba
| | - Nieves Santos
- Department of Neurology (K.P.F., S.-M.P.), Department of Psychiatry (H.C.), University of Utah, Salt Lake City; Department of Surgery (N.S.), University of Miami, FL; and Center for the Research and Rehabilitation of Hereditary Ataxias (L.V., L.A.M.), Holguin, Cuba
| | - Luis Velazquez
- Department of Neurology (K.P.F., S.-M.P.), Department of Psychiatry (H.C.), University of Utah, Salt Lake City; Department of Surgery (N.S.), University of Miami, FL; and Center for the Research and Rehabilitation of Hereditary Ataxias (L.V., L.A.M.), Holguin, Cuba
| | - Luis Almaguer Mederos
- Department of Neurology (K.P.F., S.-M.P.), Department of Psychiatry (H.C.), University of Utah, Salt Lake City; Department of Surgery (N.S.), University of Miami, FL; and Center for the Research and Rehabilitation of Hereditary Ataxias (L.V., L.A.M.), Holguin, Cuba
| | - Stefan-M Pulst
- Department of Neurology (K.P.F., S.-M.P.), Department of Psychiatry (H.C.), University of Utah, Salt Lake City; Department of Surgery (N.S.), University of Miami, FL; and Center for the Research and Rehabilitation of Hereditary Ataxias (L.V., L.A.M.), Holguin, Cuba
| |
Collapse
|
47
|
ATNX2 is not a regulatory gene in Italian amyotrophic lateral sclerosis patients with C9ORF72 GGGGCC expansion. Neurobiol Aging 2015; 39:218.e5-8. [PMID: 26733254 DOI: 10.1016/j.neurobiolaging.2015.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
There are indications that both familial amyotrophic lateral sclerosis (ALS) and sporadic ALS phenotype and prognosis are partly regulated by genetic and environmental factors, supporting the theory that ALS is a multifactorial disease. The aim of this article was to assess the role of ATXN2 intermediate length repeats in a large series of Italian and Sardinian ALS patients and controls carrying a pathogenetic C9ORF72 GGGGCC hexanucleotide repeat. A total of 1972 ALS cases were identified through the database of the Italian ALS Genetic consortium, a collaborative effort including 18 ALS centers throughout Italy. The study population included: (1) 276 Italian and 57 Sardinian ALS cases who carried the C9ORF72 expansion; (2) 1340 Italian and 299 Sardinian ALS cases not carrying the C9ORF72 expansion. A total of healthy 1043 controls were also assessed. Most Italian and Sardinian cases and controls were homozygous for 22/22 or 23/23 repeats or heterozygous for 22/23 repeats of the ATXN2 gene. ATXN2 intermediate length repeats alleles (≥28) were detected in 3 (0.6%) Italian ALS cases carrying the C9ORF72 expansion, in none of the Sardinian ALS cases carrying the expansion, in 60 (4.3%) Italian cases not carrying the expansion, and in 6 (2.0%) Sardinian ALS cases without C9ORF72 expansion. Intermediate length repeat alleles were found in 12 (1.5%) Italian controls and 1 (0.84%) Sardinian controls. Therefore, ALS patients with C9ORF72 expansion showed a lower frequency of ATXN2 polyQ intermediate length repeats than both controls (Italian cases, p = 0.137; Sardinian cases, p = 0.0001) and ALS patients without C9ORF72 expansion (Italian cases, p = 0.005; Sardinian cases, p = 0.178). In our large study on Italian and Sardinian ALS patients with C9ORF72 GGGGCC hexanucleotide repeat expansion, compared to age-, gender- and ethnic-matched controls, ATXN2 polyQ intermediate length does not represent a modifier of ALS risk, differently from non-C9ORF72 mutated patients.
Collapse
|
48
|
Vogel AP, Keage MJ, Johansson K, Schalling E. Treatment for dysphagia (swallowing difficulties) in hereditary ataxia. Cochrane Database Syst Rev 2015; 2015:CD010169. [PMID: 26564018 PMCID: PMC8504981 DOI: 10.1002/14651858.cd010169.pub2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hereditary ataxias are a heterogeneous group of disorders resulting in progressive inco-ordination. Swallowing impairment, also known as dysphagia, is a common and potentially life threatening sequel of disease progression. The incidence and nature of dysphagia in these conditions is largely unknown. The loss of an effective and safe swallow can dramatically affect the health and well-being of an individual. Remediation of difficulties of eating and drinking is an important goal in the clinical care of people with hereditary ataxia. OBJECTIVES To assess the effects of interventions for swallowing impairment (dysphagia) in people with hereditary ataxias. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL Plus, PsycINFO, and the Education Resources Information Center (ERIC) on 14 September 2015. We also searched Linguistics and Language Behavior Abstracts (LLBA), Dissertation Abstracts, and Trials Registries on 24 September 2015. SELECTION CRITERIA We considered all randomised controlled trials (RCTs) and quasi-RCTs that compared treatments for hereditary ataxia with placebo or no treatment. We only included studies measuring dysphagia. DATA COLLECTION AND ANALYSIS Three review authors (ES, KJ, MK) independently screened all titles and abstracts. In the event of any disagreement or uncertainty over the inclusion of a particular paper, the review authors planned to meet and reach consensus. MAIN RESULTS We identified no RCTs from the 519 titles and abstracts screened. We excluded papers primarily for not including participants with a hereditary ataxia (that is, being focused on other neurological conditions), being theoretical reviews rather than intervention studies, or being neither randomised nor quasi-randomised trials.We identified five papers of various design that described treatment for dysphagia, or improvement to swallow as a by-product of treatment, in people with hereditary ataxia. None of these studies were RCTs or quasi-RCTs. AUTHORS' CONCLUSIONS There is an absence of any significant evidence supporting the use of any dysphagia intervention in hereditary ataxia. The lack of evidence highlights the critical need for well-controlled treatment trials in the field.
Collapse
Affiliation(s)
- Adam P Vogel
- The University of MelbourneCentre for Neuroscience of Speech550 Swanston StreetParkvilleMelbourneVictoriaAustralia3010
| | - Megan J Keage
- The University of MelbourneCentre for Neuroscience of Speech550 Swanston StreetParkvilleMelbourneVictoriaAustralia3010
| | - Kerstin Johansson
- Karolinska InstitutetDepartment of Clinical Science, Intervention and Technology, Division of Speech and Language PathologyB69, Karolinska University HospitalHuddingeStockholmSwedenSE 141 86
| | - Ellika Schalling
- Karolinska InstitutetDepartment of Clinical Science, Intervention and Technology, Division of Speech and Language PathologyB69, Karolinska University HospitalHuddingeStockholmSwedenSE 141 86
| | | |
Collapse
|
49
|
Batla A, Sánchez MC, Erro R, Ganos C, Stamelou M, Balint B, Brugger F, Antelmi E, Bhatia KP. The role of cerebellum in patients with late onset cervical/segmental dystonia?--evidence from the clinic. Parkinsonism Relat Disord 2015; 21:1317-22. [PMID: 26385708 DOI: 10.1016/j.parkreldis.2015.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/14/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is evidence from animal studies, post-mortem pathology, functional imaging and neurophysiological studies to suggest that the cerebellum may be involved in the pathophysiology of dystonia. We sought to explore further the association of clinical and radiological abnormalities of the cerebellum in patients with dystonia. METHODS We retrospectively reviewed patients from our movement disorders research database, with predominant cervical dystonia who have been seen within last 6 months and had available routine magnetic resonance imaging (MRI). The clinical details including presence of cerebellar signs, imaging findings and results of investigations were recorded on a proforma. The results were analysed using percentages and means with standard deviation. RESULTS Out of 188 patients included 26 had evidence of cerebellar abnormality on neuroimaging. 17 patients showed cerebellar atrophy and 10 of these had cerebellar signs on examination. These patients were tested negative for common inherited ataxias. 9 patients had cerebellar lesions on MRI, reported as low grade tumour (n = 2), cerebellar infarct (n = 3), cyst (n = 2), white matter hyperintensity (n = 1) and ectopia (n = 1) out of these 4 had cerebellar signs. CONCLUSION The findings from our study suggest that there may be overt clinical or radiological cerebellar involvement in 14% of cases with cervical/segmental dystonia. However, larger prospective studies are needed in this context.
Collapse
Affiliation(s)
- A Batla
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - M C Sánchez
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom; Hospital Clínico Universitario Virgen de la Arrixaca, Neurology Department, Murcia, Spain
| | - R Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom; Dipartimento di Scienze Neurologiche e del Movimento, Università di Verona, Verona, Italy
| | - C Ganos
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom; Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - M Stamelou
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom; Second Dept of Neurology, Kapodistrian University of Athens, Greece; Neurology Clinic, Philipps University, Marburg, Germany
| | - B Balint
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom; Department of Neurology, University Hospital Heidelberg, Germany
| | - F Brugger
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom; Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - E Antelmi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - K P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom.
| |
Collapse
|
50
|
In Vitro Expansion of CAG, CAA, and Mixed CAG/CAA Repeats. Int J Mol Sci 2015; 16:18741-51. [PMID: 26270660 PMCID: PMC4581269 DOI: 10.3390/ijms160818741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/03/2022] Open
Abstract
Polyglutamine diseases, including Huntington’s disease and a number of spinocerebellar ataxias, are caused by expanded CAG repeats that are located in translated sequences of individual, functionally-unrelated genes. Only mutant proteins containing polyglutamine expansions have long been thought to be pathogenic, but recent evidence has implicated mutant transcripts containing long CAG repeats in pathogenic processes. The presence of two pathogenic factors prompted us to attempt to distinguish the effects triggered by mutant protein from those caused by mutant RNA in cellular models of polyglutamine diseases. We used the SLIP (Synthesis of Long Iterative Polynucleotide) method to generate plasmids expressing long CAG repeats (forming a hairpin structure), CAA-interrupted CAG repeats (forming multiple unstable hairpins) or pure CAA repeats (not forming any secondary structure). We successfully modified the original SLIP protocol to generate repeats of desired length starting from constructs containing short repeat tracts. We demonstrated that the SLIP method is a time- and cost-effective approach to manipulate the lengths of expanded repeat sequences.
Collapse
|