1
|
Porf-2 = Arhgap39 = Vilse: A Pivotal Role in Neurodevelopment, Learning and Memory. eNeuro 2018; 5:eN-REV-0082-18. [PMID: 30406180 PMCID: PMC6220574 DOI: 10.1523/eneuro.0082-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023] Open
Abstract
Small GTP-converting enzymes, GTPases, are essential for the efficient completion of many physiological and developmental processes. They are regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39, also known as preoptic regulatory factor-2 (Porf-2) or Vilse, a member of the Rho GAP group, was first identified in 1990 in the rat CNS. It has since been shown to regulate apoptosis, cell migration, neurogenesis, and cerebral and hippocampal dendritic spine morphology. It plays a pivotal role in neurodevelopment and learning and memory. Homologous or orthologous genes are found in more than 280 vertebrate and invertebrate species, suggesting preservation through evolution. Not surprisingly, loss of the Arhgap39/Porf-2 gene in mice manifests as an embryonic lethal condition. Although Arhgap39/Porf-2 is highly expressed in the brain, it is also widely distributed throughout the body, with potential additional roles in oncogenesis and morphogenesis. This review summarizes, for the first time, the known information about this gene under its various names, in addition to considering its transcripts and proteins. The majority of findings described have been made in rats, mice, humans, and fruit flies. This work surveys the known functions, functional mediators, variables modifying expression and upstream regulators of expression, and potential physiological and pathological roles of Arhgap39/Porf-2 in health and disease.
Collapse
|
2
|
Soler-Oliva ME, Guerrero-Martínez JA, Bachetti V, Reyes JC. Analysis of the relationship between coexpression domains and chromatin 3D organization. PLoS Comput Biol 2017; 13:e1005708. [PMID: 28902867 PMCID: PMC5612749 DOI: 10.1371/journal.pcbi.1005708] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/25/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
Gene order is not random in eukaryotic chromosomes, and co-regulated genes tend to be clustered. The mechanisms that determine co-regulation of large regions of the genome and its connection with chromatin three-dimensional (3D) organization are still unclear however. Here we have adapted a recently described method for identifying chromatin topologically associating domains (TADs) to identify coexpression domains (which we term “CODs”). Using human normal breast and breast cancer RNA-seq data, we have identified approximately 500 CODs. CODs in the normal and breast cancer genomes share similar characteristics but differ in their gene composition. COD genes have a greater tendency to be coexpressed with genes that reside in other CODs than with non-COD genes. Such inter-COD coexpression is maintained over large chromosomal distances in the normal genome but is partially lost in the cancer genome. Analyzing the relationship between CODs and chromatin 3D organization using Hi-C contact data, we find that CODs do not correspond to TADs. In fact, intra-TAD gene coexpression is the same as random for most chromosomes. However, the contact profile is similar between gene pairs that reside either in the same COD or in coexpressed CODs. These data indicate that co-regulated genes in the genome present similar patterns of contacts irrespective of the frequency of physical chromatin contacts between them. Prokaryotic operons normally comprise functionally related genes whose expression is coordinated. Even though operons do not exist in most eukaryotes, results from the last fifteen years indicate that gene order is nonetheless not random in eukaryotes, and that coexpressed genes tend to be grouped in the genome. We identify here about 500 coexpression domain (CODs) in normal breast tissue. Interestingly, we find that genes within CODs often are coexpressed with other genes that reside in other CODs placed very far away in the same chromosome, which is indicative of long-range inter-COD co-regulation. Furthermore, we find that coexpressed genes within CODs or within co-regulated CODs display similar three-dimensional chromatin contacts, suggesting a spatial coordination of CODs.
Collapse
Affiliation(s)
- María E. Soler-Oliva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
| | - José A. Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
| | - Valentina Bachetti
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
| | - José C. Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
- * E-mail:
| |
Collapse
|
3
|
Identification and characterization of a novel multifunctional placenta specific protein 8 in Dugesia japonica. Gene 2017; 613:1-9. [DOI: 10.1016/j.gene.2017.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
|
4
|
Oldenburg J, Watzka M, Bevans CG. VKORC1 and VKORC1L1: Why do Vertebrates Have Two Vitamin K 2,3-Epoxide Reductases? Nutrients 2015; 7:6250-80. [PMID: 26264021 PMCID: PMC4555119 DOI: 10.3390/nu7085280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 01/01/2023] Open
Abstract
Among all cellular life on earth, with the exception of yeasts, fungi, and some prokaryotes, VKOR family homologs are ubiquitously encoded in nuclear genomes, suggesting ancient and important biological roles for these enzymes. Despite single gene and whole genome duplications on the largest evolutionary timescales, and the fact that most gene duplications eventually result in loss of one copy, it is surprising that all jawed vertebrates (gnathostomes) have retained two paralogous VKOR genes. Both VKOR paralogs function as entry points for nutritionally acquired and recycled K vitamers in the vitamin K cycle. Here we present phylogenetic evidence that the human paralogs likely arose earlier than gnathostomes, possibly in the ancestor of crown chordates. We ask why gnathostomes have maintained these paralogs throughout evolution and present a current summary of what we know. In particular, we look to published studies about tissue- and developmental stage-specific expression, enzymatic function, phylogeny, biological roles and associated pathways that together suggest subfunctionalization as a major influence in evolutionary fixation of both paralogs. Additionally, we investigate on what evolutionary timescale the paralogs arose and under what circumstances in order to gain insight into the biological raison d’être for both VKOR paralogs in gnathostomes.
Collapse
Affiliation(s)
- Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | - Matthias Watzka
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | | |
Collapse
|
5
|
Subramaniam S, Sreenivas P, Cheedipudi S, Reddy VR, Shashidhara LS, Chilukoti RK, Mylavarapu M, Dhawan J. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest. PLoS One 2013; 8:e65097. [PMID: 23755177 PMCID: PMC3670900 DOI: 10.1371/journal.pone.0065097] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 04/23/2013] [Indexed: 01/09/2023] Open
Abstract
Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological states such as cancer and degenerative disease.
Collapse
Affiliation(s)
| | - Prethish Sreenivas
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Sirisha Cheedipudi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | | | | | | | | | - Jyotsna Dhawan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- * E-mail:
| |
Collapse
|
6
|
Ouedraogo M, Bettembourg C, Bretaudeau A, Sallou O, Diot C, Demeure O, Lecerf F. The duplicated genes database: identification and functional annotation of co-localised duplicated genes across genomes. PLoS One 2012; 7:e50653. [PMID: 23209799 PMCID: PMC3508997 DOI: 10.1371/journal.pone.0050653] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 10/24/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND There has been a surge in studies linking genome structure and gene expression, with special focus on duplicated genes. Although initially duplicated from the same sequence, duplicated genes can diverge strongly over evolution and take on different functions or regulated expression. However, information on the function and expression of duplicated genes remains sparse. Identifying groups of duplicated genes in different genomes and characterizing their expression and function would therefore be of great interest to the research community. The 'Duplicated Genes Database' (DGD) was developed for this purpose. METHODOLOGY Nine species were included in the DGD. For each species, BLAST analyses were conducted on peptide sequences corresponding to the genes mapped on a same chromosome. Groups of duplicated genes were defined based on these pairwise BLAST comparisons and the genomic location of the genes. For each group, Pearson correlations between gene expression data and semantic similarities between functional GO annotations were also computed when the relevant information was available. CONCLUSIONS The Duplicated Gene Database provides a list of co-localised and duplicated genes for several species with the available gene co-expression level and semantic similarity value of functional annotation. Adding these data to the groups of duplicated genes provides biological information that can prove useful to gene expression analyses. The Duplicated Gene Database can be freely accessed through the DGD website at http://dgd.genouest.org.
Collapse
Affiliation(s)
- Marion Ouedraogo
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
| | - Charles Bettembourg
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
| | | | - Olivier Sallou
- GenOuest Platform, INRIA/Irisa – Campus de Beaulieu, Rennes, France
| | - Christian Diot
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
| | - Olivier Demeure
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
| | - Frédéric Lecerf
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
- * E-mail:
| |
Collapse
|
7
|
Ramialison M, Reinhardt R, Henrich T, Wittbrodt B, Kellner T, Lowy CM, Wittbrodt J. Cis-regulatory properties of medaka synexpression groups. Development 2012; 139:917-28. [PMID: 22318626 DOI: 10.1242/dev.071803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During embryogenesis, tissue specification is triggered by the expression of a unique combination of developmental genes and their expression in time and space is crucial for successful development. Synexpression groups are batteries of spatiotemporally co-expressed genes that act in shared biological processes through their coordinated expression. Although several synexpression groups have been described in numerous vertebrate species, the regulatory mechanisms that orchestrate their common complex expression pattern remain to be elucidated. Here we performed a pilot screen on 560 genes of the vertebrate model system medaka (Oryzias latipes) to systematically identify synexpression groups and investigate their regulatory properties by searching for common regulatory cues. We find that synexpression groups share DNA motifs that are arranged in various combinations into cis-regulatory modules that drive co-expression. In contrast to previous assumptions that these genes are located randomly in the genome, we discovered that genes belonging to the same synexpression group frequently occur in synexpression clusters in the genome. This work presents a first repertoire of synexpression group common signatures, a resource that will contribute to deciphering developmental gene regulatory networks.
Collapse
Affiliation(s)
- Mirana Ramialison
- University of Heidelberg, Centre for Organismal Studies, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Rutkevich LA, Williams DB. Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum. Mol Biol Cell 2012; 23:2017-27. [PMID: 22496424 PMCID: PMC3364168 DOI: 10.1091/mbc.e12-02-0102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ero1 oxidation of PDI family members drives disulfide bond formation, but parallel pathways support Ero1 function. Relative contributions of known and candidate ER oxidation pathways are ranked by combinatorial RNAi in human hepatoma cells to reveal VKOR as a substantial contributor to ER oxidation, but no role for QSOX1 is observed. The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway. To identify additional pathways, we used RNA interference in human hepatoma cells and evaluated the relative contributions to oxidative protein folding and ER redox homeostasis of Ero1, PRDX4, and the candidate oxidants quiescin-sulfhydryl oxidase 1 (QSOX1) and vitamin K epoxide reductase (VKOR). We show that Ero1 is primarily responsible for maintaining cell growth, protein secretion, and recovery from a reductive challenge. We further show by combined depletion with Ero1 that PRDX4 and, for the first time, VKOR contribute to ER oxidation and that depletion of all three activities results in cell death. Of importance, Ero1, PRDX4, or VKOR was individually capable of supporting cell viability, secretion, and recovery after reductive challenge in the near absence of the other two activities. In contrast, no involvement of QSOX1 in ER oxidative processes could be detected. These findings establish VKOR as a significant contributor to disulfide bond formation within the ER.
Collapse
Affiliation(s)
- Lori A Rutkevich
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
9
|
Boutanaev AM, Nemchinov LG. Are clustered genes in the genomes of Arabidopsis and Drosophila regulated differently? Gene 2012; 491:284-8. [PMID: 22008664 DOI: 10.1016/j.gene.2011.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 10/16/2022]
Abstract
In the eukaryotic genome, genes with similar functions tend to co-localize in close proximity. Such gene clusters together with non-clustered genes constitute a chromatin domain which is a higher order regulatory unit. On a lower level co-expressed genes are regulated by differential activity of transcription factors (TF). We compared genome-wide distributions of TF in gene clusters in the genomes of Drosophila melanogaster and Arabidopsis thaliana. This revealed a significant excess of TF genes in gene clusters of the Arabidopsis genome, whereas in the genome of Drosophila distribution of TF in gene clusters did not differ from stochastic. We speculate that these alternatives could lead to different pathways of regulation of clustered genes in two species and to evolutionary-progressive changes in architecture of regulatory networks, governing the activity of clustered genes in the animal kingdom.
Collapse
Affiliation(s)
- Alexander M Boutanaev
- USDA/ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, Beltsville MD 20705, USA.
| | | |
Collapse
|
10
|
Ding NZ, He M, He CQ, Hu JS, Teng JL, Chen J. Yin yang-1 regulates the characterized murine focal adhesion-associated protein promoter. DNA Cell Biol 2011; 31:496-503. [PMID: 21977911 DOI: 10.1089/dna.2011.1352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The focal adhesion-associated protein (FAAP), product of the murine D10Wsu52e gene, is involved in modulating cell adhesion dynamics. The ubiquitously expressed protein belongs to the highly conserved UPF0027 family, the newly identified RNA >p ligase family. To understand the mechanisms underlying FAAP expression and regulation, we first mapped its major transcription start site at the nucleotide 79 bp upstream of the ATG codon. The murine FAAP 2.1 kb 5'-flanking region was cloned, analyzed, and aligned with the corresponding 1.7 kb region of its human homolog HSPC117. Despite the differences in activity, cell in vitro transfection and testis in vivo electroporation identified a 0.2 kb efficient promoter region lacking a functional TATA-box. Gel shift assays confirmed the specific interaction between Yin Yang-1 (YY1) and the potential element in the proximal region of the FAAP promoter. Site mutation, truncation, RNAi, and overexpression analyses suggested that YY1 is an important regulator of the FAAP promoter.
Collapse
Affiliation(s)
- Nai-Zheng Ding
- College of Life Science, Peking University , Beijing, China
| | | | | | | | | | | |
Collapse
|
11
|
Minakova NY, Shirshikova GN, Kreslavski VD, Boutanaev AM. Differential activity of clustered genes in Arabidopsis thaliana. DOKL BIOCHEM BIOPHYS 2011; 439:185-7. [PMID: 21928141 DOI: 10.1134/s1607672911040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Indexed: 11/22/2022]
Affiliation(s)
- N Yu Minakova
- Institute of Basic Problems in Biology, Russian Academy of Sciences, ul. Institutskaya 2, Pushchino, Moscow oblast, 142290 Russia
| | | | | | | |
Collapse
|
12
|
Pachkowski BF, Guyton KZ, Sonawane B. DNA repair during in utero development: A review of the current state of knowledge, research needs, and potential application in risk assessment. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 728:35-46. [DOI: 10.1016/j.mrrev.2011.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/29/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
|
13
|
Neighbourhood continuity is not required for correct testis gene expression in Drosophila. PLoS Biol 2010; 8:e1000552. [PMID: 21151342 PMCID: PMC2994658 DOI: 10.1371/journal.pbio.1000552] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/20/2010] [Indexed: 01/26/2023] Open
Abstract
Disrupting the linear organization of testis gene expression neighborhoods in the Drosophila genome does not affect gene expression, suggesting that neighborhood organization is not primarily driven by gene expression requirements. It is now widely accepted that gene organisation in eukaryotic genomes is non-random and it is proposed that such organisation may be important for gene expression and genome evolution. In particular, the results of several large-scale gene expression analyses in a range of organisms from yeast to human indicate that sets of genes with similar tissue-specific or temporal expression profiles are clustered within the genome in gene expression neighbourhoods. While the existence of neighbourhoods is clearly established, the underlying reason for this facet of genome organisation is currently unclear and there is little experimental evidence that addresses the genomic requisites for neighbourhood organisation. We report the targeted disruption of three well-defined male-specific gene expression neighbourhoods in the Drosophila genome by the synthesis of precisely mapped chromosomal inversions. We compare gene expression in individuals carrying inverted chromosomes with their non-inverted but otherwise identical progenitors using whole-transcriptome microarray analysis, validating these data with specific quantitative real-time PCR assays. For each neighbourhood we generate and examine multiple inversions. We find no significant differences in the expression of genes that define each of the neighbourhoods. We further show that the inversions spatially separate both halves of a neighbourhood in the nucleus. Thus, models explaining neighbourhood organisation in terms of local sequence interactions, enhancer crosstalk, or short-range chromatin effects are unlikely to account for this facet of genome organisation. Our study challenges the notion that, at least in the case of the testis, expression neighbourhoods are a feature of eukaryotic genome organisation necessary for correct gene expression. The order of genes within eukaryotic genomes is not completely random. In all genomes characterised to date there are regions of the genome, known as gene expression neighbourhoods, which contain clusters of genes that are expressed together in a particular tissue or at a particular developmental stage. Comparative genomics indicates that at least some neighbourhoods have been conserved during evolution, suggesting that this facet of genome organisation may be functionally advantageous. While several models explaining the organisation of the genome into neighbourhoods have been proposed, the functional significance of neighbourhood organisation has not been experimentally tested. Here, we report experiments that disrupt defined testis gene expression neighbourhoods in the Drosophila genome. We generated chromosomal inversions with a breakpoint within a neighbourhood, defined as having genes co-expressed within the testis. Comparing gene expression in flies carrying inversions with their otherwise identical progenitors shows that maintaining the linear organisation of genes in a neighbourhood is not necessary for correct gene expression. We also show that it is not necessary for genes in a neighbourhood to be in close proximity in the nucleus for them to be co-expressed, since the inversions disrupt the spatial organisation of neighbourhood genes in the nucleus. Our experiments indicate that the current models used to account for the existence of gene expression neighbourhoods are unlikely to be sufficient.
Collapse
|
14
|
Degrelle SA, Lê Cao KA, Heyman Y, Everts RE, Campion E, Richard C, Ducroix-Crépy C, Tian XC, Lewin HA, Renard JP, Robert-Granié C, Hue I. A small set of extra-embryonic genes defines a new landmark for bovine embryo staging. Reproduction 2010; 141:79-89. [PMID: 20926692 DOI: 10.1530/rep-10-0174] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Axis specification in mouse is determined by a sequence of reciprocal interactions between embryonic and extra-embryonic tissues so that a few extra-embryonic genes appear as 'patterning' the embryo. Considering these interactions as essential, but lacking in most mammals the genetically driven approaches used in mouse and the corresponding patterning mutants, we examined whether a molecular signature originating from extra-embryonic tissues could relate to the developmental stage of the embryo proper and predict it. To this end, we have profiled bovine extra-embryonic tissues at peri-implantation stages, when gastrulation and early neurulation occur, and analysed the subsequent expression profiles through the use of predictive methods as previously reported for tumour classification. A set of six genes (CALM1, CPA3, CITED1, DLD, HNRNPDL, and TGFB3), half of which had not been previously associated with any extra-embryonic feature, appeared significantly discriminative and mainly dependent on embryonic tissues for its faithful expression. The predictive value of this set of genes for gastrulation and early neurulation stages, as assessed on naive samples, was remarkably high (93%). In silico connected to the bovine orthologues of the mouse patterning genes, this gene set is proposed as a new trait for embryo staging. As such, this will allow saving the bovine embryo proper for molecular or cellular studies. To us, it offers as well new perspectives for developmental phenotyping and modelling of embryonic/extra-embryonic co-differentiation.
Collapse
Affiliation(s)
- Séverine A Degrelle
- INRA-ENVA, UMR 1198 Biologie du Développement et Reproduction, Domaine de Vilvert, Jouy en Josas, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fant M, Farina A, Nagaraja R, Schlessinger D. PLAC1 (Placenta-specific 1): a novel, X-linked gene with roles in reproductive and cancer biology. Prenat Diagn 2010; 30:497-502. [PMID: 20509147 PMCID: PMC4627609 DOI: 10.1002/pd.2506] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Placenta-specific 1 (PLAC1) is a recently described X-linked gene with expression restricted primarily to cells derived from trophoblast lineage during embryonic development. PLAC1 localizes to a region of the X chromosome thought to be important in placental development although its role in this process has not been defined. This review summarizes our current understanding of its expression, regulation, and function. PLAC1 is expressed throughout human pregnancy by the differentiated trophoblast and localizes to membranous structures in the syncytiotrophoblast, including the microvillous plasma membrane surface. Recent studies have demonstrated that PLAC1 is also expressed by a wide variety of human cancers. Studies of the PLAC1 promoter regions indicate that its expression in both normal placenta and cancer cells is driven by specific interactions involving a combination of transcription factors. Although functional insight into PLAC1 in the normal trophoblast is lacking, preliminary studies suggest that cancer-derived PLAC1 has the potential to promote tumor growth and function. In addition, it also appears to elicit a specific immunologic response that may influence survival in some cancer patients, suggesting that it may provide a therapeutic target for the treatment of some cancers. We also discuss a potential role for PLAC1 as a biomarker predictive of specific pregnancy complications, such as preeclampsia.
Collapse
Affiliation(s)
- Michael Fant
- Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL 33606-350, USA.
| | | | | | | |
Collapse
|
16
|
Ng YK, Wu W, Zhang L. Positive correlation between gene coexpression and positional clustering in the zebrafish genome. BMC Genomics 2009; 10:42. [PMID: 19159490 PMCID: PMC2654907 DOI: 10.1186/1471-2164-10-42] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 01/22/2009] [Indexed: 11/10/2022] Open
Abstract
Background Co-expressing genes tend to cluster in eukaryotic genomes. This paper analyzes correlation between the proximity of eukaryotic genes and their transcriptional expression pattern in the zebrafish (Danio rerio) genome using available microarray data and gene annotation. Results The analyses show that neighbouring genes are significantly coexpressed in the zebrafish genome, and the coexpression level is influenced by the intergenic distance and transcription orientation. This fact is further supported by examining the coexpression level of genes within positional clusters in the neighbourhood model. There is a positive correlation between gene coexpression and positional clustering in the zebrafish genome. Conclusion The study provides another piece of evidence for the hypothesis that coexpressed genes do cluster in the eukaryotic genomes.
Collapse
Affiliation(s)
- Yen Kaow Ng
- Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore.
| | | | | |
Collapse
|
17
|
Gilbert JS, Nijland MJ. Sex differences in the developmental origins of hypertension and cardiorenal disease. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1941-52. [PMID: 18971349 PMCID: PMC2685301 DOI: 10.1152/ajpregu.90724.2008] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/02/2008] [Indexed: 12/26/2022]
Abstract
The "developmental origins of health and disease" (DOHAD) hypothesis derives from clinical observations, indicating long-term health consequences for persons of low birth weight. There is growing evidence, primarily from animal studies, that supports the idea that processes put in motion during development that contribute to DOHAD do not necessarily reflect as significantly compromised growth and altered birth weight. Throughout the body of work investigating the DOHAD hypothesis, several themes have emerged; the importance of the placenta, the presence of critical periods of vulnerability, the involvement of the kidney in programmed hypertension, the presence of sex differences in the progression and development of adult diseases. Despite compelling findings in recent studies, much remains unclear regarding the impact of biological sex in the progression of human diseases, in general, and in the mechanisms underlying developmentally programmed responses, in particular. Although the contribution of biological sex to DOHAD is increasingly recognized, it also appears that it may exert distinctly different influences during fetal and adult life. The mechanisms by which biological sex contributes to these processes remains nebulous at present; nevertheless, several intriguing mechanistic candidates have been proposed ranging from differences in the amounts of sex hormones (e.g., estrogens, androgens) to recently described sexual dimorphism in the transcriptome of a variety of mammalian tissues. Recognizing the influences of biological sex or sex hormones on DOHAD uniquely situates research in this area to provide significant insights into the development and progression of many diseases, recent examples of which are the subject of this review.
Collapse
Affiliation(s)
- Jeffrey S Gilbert
- Department of Physiology and Pharmacology, University of Minnesota Medical School-Duluth, Duluth, MN 55812, USA.
| | | |
Collapse
|
18
|
Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 2008; 91:243-8. [DOI: 10.1016/j.ygeno.2007.11.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/09/2007] [Accepted: 11/10/2007] [Indexed: 02/03/2023]
|
19
|
Delbridge ML, McMillan DA, Doherty RJ, Deakin JE, Graves JAM. Origin and evolution of candidate mental retardation genes on the human X chromosome (MRX). BMC Genomics 2008; 9:65. [PMID: 18248684 PMCID: PMC2276207 DOI: 10.1186/1471-2164-9-65] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 02/05/2008] [Indexed: 01/22/2023] Open
Abstract
Background The human X chromosome has a biased gene content. One group of genes that is over-represented on the human X are those expressed in the brain, explaining the large number of sex-linked mental retardation (MRX) syndromes. Results To determine if MRX genes were recruited to the X, or whether their brain-specific functions were acquired after relocation to the mammalian X chromosome, we examined the location and expression of their orthologues in marsupials, which diverged from human approximately 180 million years ago. We isolated and mapped nine tammar wallaby MRX homologues, finding that six were located on the tammar wallaby X (which represents the ancient conserved mammal X) and three on chromosome 5, representing the recently added region of the human X chromosome. The location of MRX genes within the same synteny groups in human and wallaby does not support the hypothesis that genes with an important function in the brain were recruited in multiple independent events from autosomes to the mammalian X chromosome. Most of the tammar wallaby MRX homologues were more widely expressed in tammar wallaby than in human. Only one, the tammar wallaby ARX homologue (located on tammar chromosome 5p), has a restricted expression pattern comparable to its pattern in human. The retention of the brain-specific expression of ARX over 180 million years suggests that this gene plays a fundamental role in mammalian brain development and function. Conclusion Our results suggest all the genes in this study may have originally had more general functions that became more specialised and important in brain function during evolution of humans and other placental mammals.
Collapse
Affiliation(s)
- Margaret L Delbridge
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
20
|
Hunter SM, Mansergh FC, Evans MJ. Optimization of minuscule samples for use with cDNA microarrays. ACTA ACUST UNITED AC 2007; 70:1048-58. [PMID: 18261801 DOI: 10.1016/j.jprot.2007.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The recent advent of microarray technology and RNA amplification allows us to compare the expression profiles of thousands of genes from small amounts of tissue or cells. We have compared and contrasted various methods of RNA preparation, RNA amplification, target labelling and array analysis in order to achieve a streamlined protocol for microarraying small samples. We have concluded that usage of the NIA 15K cDNA array set, in combination with RNA extraction using the Mini RNA Isolation kit (Zymo), amplification with the RiboAmp kit (Arcturus), followed by indirect labelling via the Atlas PowerScript Fluorescent Labelling kit (using a modified protocol), is optimal with a material derived from either very early stage mouse embryos or individually picked embryonic stem cell colonies. Normalisation using the analysis package Limma (Bioconductor) with data normalisation by print tip Loess, using the "normexp" function with an offset of 50 for background adjustment, and incorporating A-quantile between array normalisation was best with our results. Furthermore, RT-PCR confirmation of array results is achievable without amplification, thereby controlling for amplification bias. These methods will be of great utility in mapping the transcriptome of embryonic and other small samples.
Collapse
Affiliation(s)
- Susan McLean Hunter
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10, 3US, Wales, UK
| | | | | |
Collapse
|
21
|
Ledford JG, Kovarova M, Koller BH. Impaired host defense in mice lacking ONZIN. THE JOURNAL OF IMMUNOLOGY 2007; 178:5132-43. [PMID: 17404296 DOI: 10.4049/jimmunol.178.8.5132] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ONZIN is a small, cysteine-rich peptide of unique structure that is conserved in all vertebrates examined to date. We show that ONZIN is expressed at high levels in epithelial cells of the intestinal tract, the lung, and in cells of the immune system including macrophages and granulocytes. Because this pattern of expression is suggestive of a role in innate immune function, we have generated mice lacking this protein and examined their ability to respond to challenge with infectious agents. Onzin(-/-) mice show a heightened innate immune response after induction of acute peritonitis with Klebsiella pneumoniae. This increased response is consistent with an increased bacterial burden in the Onzin(-/-) mice. Ex vivo studies show that, whereas phagocytosis is not altered in Onzin(-/-) neutrophils, phagocytes lacking this protein kill bacteria less effectively. This result identifies ONZIN as a novel class of intracellular protein required for optimal function of the neutrophils after uptake of bacteria.
Collapse
Affiliation(s)
- Julie G Ledford
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
22
|
Novel gene expression patterns along the proximo-distal axis of the mouse embryo before gastrulation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:8. [PMID: 17302988 PMCID: PMC1821012 DOI: 10.1186/1471-213x-7-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 02/15/2007] [Indexed: 01/29/2023]
Abstract
BACKGROUND To date, the earliest stage at which the orientation of the anterior-posterior axis in the mouse embryo is distinguishable by asymmetric gene expression is shortly after E5.5. At E5.5, prospective anterior markers are expressed at the distal tip of the embryo, whereas prospective posterior markers are expressed more proximally, close to the boundary with the extraembryonic region. RESULTS To contribute to elucidating the mechanisms underlying the events involved in early patterning of the mouse embryo, we have carried out a microarray screen to identify novel genes that are differentially expressed between the distal and proximal parts of the E5.5 embryo. Secondary screening of resulting candidates by in situ hybridisation at E5.5 and E6.5 revealed novel expression patterns for known and previously uncharacterised genes, including Peg10, Ctsz1, Cubilin, Jarid1b, Ndrg1, Sfmbt2, Gjb5, Talia and Plet1. The previously undescribed gene Talia and recently identified Plet1 are expressed specifically in the distal-most part of the extraembryonic ectoderm, adjacent to the epiblast, and are therefore potential candidates for regulating early patterning events. Talia and the previously described gene XE7 define a gene family highly conserved among metazoans and with a predicted protein structure suggestive of a post-transcriptional regulative function, whilst Plet1 appears to be mammal-specific and of unknown function. CONCLUSION Our approach has allowed us to compare expression between dissected parts of the egg cylinder and has identified multiple genes with novel expression patterns at this developmental stage. These genes are potential candidates for regulating tissue interactions following implantation.
Collapse
|
23
|
Jaroudi S, SenGupta S. DNA repair in mammalian embryos. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2007; 635:53-77. [PMID: 17141556 DOI: 10.1016/j.mrrev.2006.09.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/15/2022]
Abstract
Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages.
Collapse
Affiliation(s)
- Souraya Jaroudi
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Sioban SenGupta
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.
| |
Collapse
|
24
|
Seno S, Takenaka Y, Kai C, Kawai J, Carninci P, Hayashizaki Y, Matsuda H. A method for similarity search of genomic positional expression using CAGE. PLoS Genet 2006; 2:e44. [PMID: 16683027 PMCID: PMC1449887 DOI: 10.1371/journal.pgen.0020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 02/08/2006] [Indexed: 11/24/2022] Open
Abstract
With the advancement of genome research, it is becoming clear that genes are not distributed on the genome in random order. Clusters of genes distributed at localized genome positions have been reported in several eukaryotes. Various correlations have been observed between the expressions of genes in adjacent or nearby positions along the chromosomes depending on tissue type and developmental stage. Moreover, in several cases, their transcripts, which control epigenetic transcription via processes such as transcriptional interference and genomic imprinting, occur in clusters. It is reasonable that genomic regions that have similar mechanisms show similar expression patterns and that the characteristics of expression in the same genomic regions differ depending on tissue type and developmental stage. In this study, we analyzed gene expression patterns using the cap analysis gene expression (CAGE) method for exploring systematic views of the mouse transcriptome. Counting the number of mapped CAGE tags for fixed-length regions allowed us to determine genomic expression levels. These expression levels were normalized, quantified, and converted into four types of descriptors, allowing the expression patterns along the genome to be represented by character strings. We analyzed them using dynamic programming in the same manner as for sequence analysis. We have developed a novel algorithm that provides a novel view of the genome from the perspective of genomic positional expression. In a similarity search of expression patterns across chromosomes and tissues, we found regions that had clusters of genes that showed expression patterns similar to each other depending on tissue type. Our results suggest the possibility that the regions that have sense–antisense transcription show similar expression patterns between forward and reverse strands. Through the advancement of genome research, it is becoming clear that genes are not distributed on the genome in random order. Clusters of genes distributed at localized genome positions have been reported in several eukaryotes. Various correlations have been observed between the expressions of genes in adjacent or nearby positions along the chromosomes depending on tissue type and developmental stage. It is reasonable that genomic regions that have similar mechanisms show similar expression patterns. In this study, the authors analyzed gene expression patterns using the computational algorithm of similarity search for exploring systematic views of the mouse transcriptome. They found regions that had clusters of highly expressed genes in certain tissue types whose expression patterns showed strong similarity to each other. This work aims to provide additional insight into genome-wide mechanisms of transcription.
Collapse
Affiliation(s)
- Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Yoichi Takenaka
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Chikatoshi Kai
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Jun Kawai
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- Genome Science Laboratory, Discovery Research Institute, RIKEN Wako Institute, Wako, Japan
| | - Piero Carninci
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- Genome Science Laboratory, Discovery Research Institute, RIKEN Wako Institute, Wako, Japan
| | - Yoshihide Hayashizaki
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- Genome Science Laboratory, Discovery Research Institute, RIKEN Wako Institute, Wako, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
David KK, Sasaki M, Yu SW, Dawson TM, Dawson VL. EndoG is dispensable in embryogenesis and apoptosis. Cell Death Differ 2005; 13:1147-55. [PMID: 16239930 DOI: 10.1038/sj.cdd.4401787] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The mitochondrial protein, endonuclease G (EndoG), is one of the endonucleases implicated in DNA fragmentation during apoptosis. It has been shown to translocate from the mitochondria to the nucleus upon cell death stimuli. These observations suggest that EndoG is a mitochondrial cell death effector, and that it possibly acts as a cell death nuclease, similar to DNA fragmentation factor. To better understand the role of EndoG in development and apoptosis, we generated EndoG null mice by homologous gene targeting without disruption of D2Wsu81e. EndoG null mice are viable and develop to adulthood with no obvious abnormalities. Fibroblasts generated from the EndoG null mice show no difference in susceptibility when induced to die by a variety of intrinsic and extrinsic apoptotic stimuli. Additionally, EndoG null mice are equally sensitive to excitotoxic stress. These data suggest that EndoG is not essential for early embryogenesis and apoptosis.
Collapse
Affiliation(s)
- K K David
- Institute for Cell Engineering Program in Neuroregeneration and Repair, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Mammalian X chromosome inactivation is one of the most striking examples of epigenetic gene regulation. Early in development one of the pair of approximately 160-Mb X chromosomes is chosen to be silenced, and this silencing is then stably inherited through subsequent somatic cell divisions. Recent advances have revealed many of the chromatin changes that underlie this stable silencing of an entire chromosome. The key initiator of these changes is a functional RNA, XIST, which is transcribed from, and associates with, the inactive X chromosome, although the mechanism of association with the inactive X and recruitment of facultative heterochromatin remain to be elucidated. This review describes the unique evolutionary history and resulting genomic structure of the X chromosome as well as the current understanding of the factors and events involved in silencing an X chromosome in mammals.
Collapse
Affiliation(s)
- Jennifer C Chow
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
27
|
Li Q, Lee BTK, Zhang L. Genome-scale analysis of positional clustering of mouse testis-specific genes. BMC Genomics 2005; 6:7. [PMID: 15656914 PMCID: PMC548148 DOI: 10.1186/1471-2164-6-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 01/19/2005] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. RESULTS Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. CONCLUSION Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.
Collapse
Affiliation(s)
- Quan Li
- Institute for Infocomm Research, Heng Mui Keng Terrace 21, Singapore
| | - Bernett TK Lee
- Department of Biochemistry, National University of Singapore, MD 7, Medical Drive, Singapore
| | - Louxin Zhang
- Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore
| |
Collapse
|
28
|
Florin L, Hummerich L, Dittrich BT, Kokocinski F, Wrobel G, Gack S, Schorpp-Kistner M, Werner S, Hahn M, Lichter P, Szabowski A, Angel P. Identification of novel AP-1 target genes in fibroblasts regulated during cutaneous wound healing. Oncogene 2004; 23:7005-17. [PMID: 15273721 DOI: 10.1038/sj.onc.1207938] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mesenchymal-epithelial interactions are increasingly considered to be of vital importance for epithelial homeostasis and regeneration. In skin, the transcription factor AP-1 was shown to be critically involved in the communication between keratinocytes and dermal fibroblasts. After skin injury, the release of IL-1 from keratinocytes induces the activity of the AP-1 subunits c-Jun and JunB in fibroblasts leading to a global change in gene expression. To identify AP-1 target genes in fibroblasts, which are involved in the process of cutaneous repair, we performed gene expression profiling of wild-type, c-jun- and junB-deficient fibroblasts in response to IL-1, mimicking the initial phase of wound healing. Using a 15K cDNA collection, over 1000 genes were found to be Jun-dependent and additional 300 clones showed IL-1 responsiveness. Combinatorial evaluation allowed for the dissection of the specific contribution of either AP-1 subunit to gene regulation. Besides previously identified genes that are involved in cutaneous repair, we have identified novel genes regulated during wound healing in vivo and showed their expression by fibroblasts on wound sections. The identification of novel Jun target genes should provide a basis for understanding the molecular mechanisms underlying mesenchymal-epithelial interactions and the critical contribution of AP-1 to tissue homeostasis and repair.
Collapse
Affiliation(s)
- Lore Florin
- Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yager TD, Dempsey AA, Tang H, Stamatiou D, Chao S, Marshall KW, Liew CC. First comprehensive mapping of cartilage transcripts to the human genome. Genomics 2004; 84:524-35. [PMID: 15498459 DOI: 10.1016/j.ygeno.2004.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 05/17/2004] [Indexed: 11/22/2022]
Abstract
We present the first comprehensive transcriptome-to-genome mapping for human cartilage. First, we determined that the cartilage transcriptome represents between 13,200 and 15,800 unique genes. Next, a subset of approximately 10,000 of the best characterized cartilage-expressed transcripts (CETs) was selected and mapped to the human genome. The distribution of CETs across the genome was found to be significantly different compared to the expected distribution. Furthermore, clusters of adjacent coordinately transcribed genes, as well as numerous "hot spots" and "cold spots" for transcription in cartilage, were identified. We propose that transcriptional control in cartilage can be exerted over genomic domains containing as few as four neighboring genes. Our findings, which are consistent with recent "chromatin domain" models of transcription, are further supported by our identification of CETs that putatively encode components of the HDAC- and Swi/SNF-mediated chromatin remodeling pathways. Our study illustrates the value of comprehensive high-resolution scans to detect transcription patterns within the human genome.
Collapse
Affiliation(s)
- T D Yager
- ChondroGene, Inc, Toronto, Ontario, Canada M3J 3K4
| | | | | | | | | | | | | |
Collapse
|
30
|
Kosak ST, Groudine M. Form follows function: The genomic organization of cellular differentiation. Genes Dev 2004; 18:1371-84. [PMID: 15198979 DOI: 10.1101/gad.1209304] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extent to which the nucleus is functionally organized has broad biological implications. Evidence supports the idea that basic nuclear functions, such as transcription, are structurally integrated within the nucleus. Moreover, recent studies indicate that the linear arrangement of genes within eukaryotic genomes is nonrandom. We suggest that determining the relationship between nuclear organization and the linear arrangement of genes will lead to a greater understanding of how transcriptomes, dedicated to a particular cellular function or fate, are coordinately regulated. Current network theories may provide a useful framework for modeling the inherent complexity the functional organization of the nucleus.
Collapse
Affiliation(s)
- Steven T Kosak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
31
|
Bisognin A, Bortoluzzi S, Danieli GA. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma. BMC Bioinformatics 2004; 5:68. [PMID: 15176974 PMCID: PMC446182 DOI: 10.1186/1471-2105-5-68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 06/03/2004] [Indexed: 02/03/2023] Open
Abstract
Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers.
Collapse
MESH Headings
- Chromosome Mapping/methods
- Chromosomes, Human, X/genetics
- Down-Regulation/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Genes, Neoplasm/genetics
- Genome, Human
- Humans
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Oligonucleotide Array Sequence Analysis/methods
- Rhabdomyosarcoma, Alveolar/genetics
- Software
Collapse
Affiliation(s)
- Andrea Bisognin
- Department of Biology, University of Padua, via Ugo Bassi 58B, 35131, Padova, Italy
| | - Stefania Bortoluzzi
- Department of Biology, University of Padua, via Ugo Bassi 58B, 35131, Padova, Italy
| | - Gian Antonio Danieli
- Department of Biology, University of Padua, via Ugo Bassi 58B, 35131, Padova, Italy
| |
Collapse
|
32
|
Westerman BA, Poutsma A, Steegers EAP, Oudejans CBM. C2360, a nuclear protein expressed in human proliferative cytotrophoblasts, is a representative member of a novel protein family with a conserved coiled coil–helix–coiled coil–helix domain. Genomics 2004; 83:1094-104. [PMID: 15177562 DOI: 10.1016/j.ygeno.2003.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 12/11/2003] [Indexed: 11/24/2022]
Abstract
In this study, we describe the identification of nine novel genes isolated from a unique human first-trimester cDNA library generated from the placental bed. One of these clones, called C2360 and located on chromosome 10q22, was selected as it showed restricted expression in placental bed tissue as well as in JEG3 choriocarcinoma cells with absent expression in adult tissues. We show that the expression is restricted to first-trimester proliferative trophoblasts of the proximal column and show that C2360 is a nuclear protein. No detectable transactivation potential was observed for different domains of the protein. Secondary structure prediction showed that C2360 is a representative member of a eukaryotic family of proteins with a low conservation at the amino acid level, but with strong conservation at the structural level, sharing the general domain (coiled coil 1)-(helix 1)-(coiled coil 2)-(helix 2), or CHCH domain. Each alpha-helix within this domain contains two cysteine amino acids, and these intrahelical cysteines are separated by nine amino acids (C-X(9)-C motif). The fixed position within each helix indicated that both helices could form a hairpin structure stabilized by two interhelical disulfide bonds. Other proteins belonging to the family include estrogen-induced gene 2 and the ethanol-induced 6 protein. The conserved motif was found in yeast, plant, Drosophila, Caenorhabditis elegans, mouse, and human proteins, indicating that the ancestor of this protein family is of eukaryotic origin. These results indicate that C2360 is a representative member of a multifamily of proteins, sharing a protein domain that is conserved in eukaryotes.
Collapse
Affiliation(s)
- Bart A Westerman
- Molecular Biology Laboratory, Department of Clinical Chemistry, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
33
|
Hurst LD, Pál C, Lercher MJ. The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 2004; 5:299-310. [PMID: 15131653 DOI: 10.1038/nrg1319] [Citation(s) in RCA: 524] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Laurence D Hurst
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | | | |
Collapse
|
34
|
Carter MG, Piao Y, Dudekula DB, Qian Y, VanBuren V, Sharov AA, Tanaka TS, Martin PR, Bassey UC, Stagg CA, Aiba K, Hamatani T, Matoba R, Kargul GJ, Ko MSH. The NIA cDNA project in mouse stem cells and early embryos. C R Biol 2004; 326:931-40. [PMID: 14744099 DOI: 10.1016/j.crvi.2003.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A catalog of mouse genes expressed in early embryos, embryonic and adult stem cells was assembled, including 250000 ESTs, representing approximately 39000 unique transcripts. The cDNA libraries, enriched in full-length clones, were condensed into the NIA 15 and 7.4K clone sets, freely distributed to the research community, providing a standard platform for expression studies using microarrays. They are essential tools for studying mammalian development and stem cell biology, and to provide hints about the differential nature of embryonic and adult stem cells.
Collapse
Affiliation(s)
- Mark G Carter
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aune TM, Parker JS, Maas K, Liu Z, Olsen NJ, Moore JH. Co-localization of differentially expressed genes and shared susceptibility loci in human autoimmunity. Genet Epidemiol 2004; 27:162-72. [PMID: 15305332 DOI: 10.1002/gepi.20013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoimmune diseases arise from complex interactions between environmental and genetic factors. Genetic linkage scans show that different autoimmune diseases share overlapping susceptibility loci. Lymphocytes from individuals with different autoimmune diseases, as well as unaffected first-degree relatives, also share a common gene expression profile. We sought to determine if genes within this autoimmune expression profile were nonrandomly distributed in the genome and if their distribution overlapped with shared disease susceptibility loci. We found that differentially expressed genes were distributed in a nonrandom fashion in chromosomal domains within the genome. Furthermore, positions of these domains were not statistically different from a number of shared autoimmune disease susceptibility loci. To our knowledge, this is the first study showing concordance between gene expression and genetic linkage results in common complex multifactorial human diseases.
Collapse
Affiliation(s)
- Thomas M Aune
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Glinsky GV, Ivanova YA, Glinskii AB. Common malignancy-associated regions of transcriptional activation (MARTA) in human prostate, breast, ovarian, and colon cancers are targets for DNA amplification. Cancer Lett 2003; 201:67-77. [PMID: 14580688 DOI: 10.1016/s0304-3835(03)00419-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcriptional co-regulation of sets of adjacent genes at the chromosomal domain level has been demonstrated recently in eukaryotes, supporting the idea that genomes are divided into regions of clustered expression of groups of adjacent genes. The mechanism underlying this phenomenon and its significance for human pathology is not yet known. Systematic analysis of the chromosomal positions of cancer-associated transcripts for prostate, breast, ovarian, and colon tumors identified short segments of human chromosomes that appear to represent a common target for transcriptional activation in major epithelial malignancies in human (1q21-q23 [140-160 Mbp]; 11q12-q13 [62-69 Mbp]; 12q13 [49-58 Mbp]; 17q21 [37-50 Mbp]; 17q23-q25 [70-81 Mbp]; 19p13 [0.2-19 Mbp]; Xq28 [147-153 Mbp]). At least some of these cancer-associated MARTAs correspond well to the regions of recurrent amplification in human cancer and seemed to be targets for DNA amplifications in established cancer cell lines.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
37
|
Ishikawa H, Rattigan A, Fundele R, Burgoyne PS. Effects of sex chromosome dosage on placental size in mice. Biol Reprod 2003; 69:483-8. [PMID: 12700203 DOI: 10.1095/biolreprod.102.012641] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mice of the XO genotype with a paternally derived X chromosome (XpO) have placental hyperplasia in late pregnancy, although in early pregnancy the ectoplacental cone, a placental precursor, is smaller in XpO mice than in their XX sibs. This early size deficiency of the ectoplacental cone is apparently a consequence of Xp imprinting, because XmO embryos (with a maternally derived X chromosome) are unaffected. In the present study we sought to establish whether XpO placental hyperplasia in late pregnancy is also a consequence of Xp imprinting. Placental weight data were first collected from litters that included XpO or XmO fetuses and XX controls. Comparison of XO placentae with XX placentae showed that XpO and XmO placentae are hyperplastic. This finding suggested that the hyperplasia might be an X dosage effect, and this hypothesis was supported by the finding that XY male fetuses from the same crosses also had larger placentae than their XX sibs. Further analysis of a range of sex-chromosome variant genotypes, including XmYSry-negative females and XXSry transgenic males, showed that mouse fetuses with one X chromosome consistently had larger placentae than littermates with two X chromosomes, independent of their gonadal/androgen status.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
38
|
Galaviz-Hernandez C, Stagg C, de Ridder G, Tanaka TS, Ko MSH, Schlessinger D, Nagaraja R. Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene 2003; 309:81-9. [PMID: 12758124 DOI: 10.1016/s0378-1119(03)00508-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microarray expression profiling of a collection of 15,000 mouse genes with placental and embryonic RNAs revealed candidates for placental-enriched genes, three of which we have confirmed and further characterized. One, Plac1, strongly expressed in all trophoblast-derived cells in the placenta, has been described earlier (Genomics 68 (2000) 305). Here we report that of the other two, Plac8 expression is restricted to the spongiotrophoblast layer during development, whereas Plac9 is weakly expressed though highly enriched in placenta. For both, cDNAs with complete open reading frames were recovered and exon-intron structures inferred from comparisons of mouse cDNA and genomic sequence. The predicted proteins (112 and 108 amino acids) both contain putative signal peptides, with a coiled-coil segment of mPLAC9 as the only other detected motif. Genomic sequence comparisons reveal that in addition to an apparent pseudogene on chromosome 1, Plac8 is expressed at mouse cytoband 5e3. It is tightly conserved in human in a syntenically equivalent ortholog at 4q21.23. Plac9 is present in a single copy on chromosome 14, with a syntenically equivalent human ortholog at 10q22.3. Putative promoter regions up to 10 kb 5' of the transcription units for Plac1, Plac8, and Plac9 contain sites for widely-expressed transcription factors which, by analogy to other instances, may be sufficient to explain placental enrichment.
Collapse
Affiliation(s)
- Carlos Galaviz-Hernandez
- Laboratory of Genetics, National Institute on Aging, NIH, Suite 3000, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Mégy K, Audic S, Claverie JM. Positional clustering of differentially expressed genes on human chromosomes 20, 21 and 22. Genome Biol 2003; 4:P1. [PMID: 12620117 DOI: 10.1186/gb-2003-4-2-p1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clusters of genes co-expressed are known in prokaryotes (operons) and were recently described in several eukaryote organisms, including Human. According to some studies, these clusters consist of housekeeping genes, whereas other studies suggest that these clustered genes exhibit similar tissue specificity. Here we further explore the relationship between co-expression and chromosomal co-localization in the human genome by analyzing the expression status of the genes along the best-annotated chromosomes 20, 21 and 22. METHODS Gene expression levels were estimated according to their publicly available ESTs and gene differential expressions were assessed using a previously described and validated statistical test. Gene sequences for chromosomes 20, 21 and 22 were taken from the Ensembl annotation. RESULTS We identified clusters of genes specifically expressed in similar tissues along chromosomes 20, 21 and 22. These co-expression clusters occurred more frequently than expected by chance and may thus be biologically significant. CONCLUSION The co-expression of co-localized genes might be due to higher chromatin structures influencing the gene availability for transcription in a given tissue or cell type.
Collapse
Affiliation(s)
- Karine Mégy
- Genomic and Structural Information, UMR 1998 CNRS / Aventis, 31, chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
40
|
Chao HHJ, Mentzer SE, Schimenti JC, You Y. Overlapping deletions define novel embryonic lethal loci in the mouse t complex. Genesis 2003; 35:133-42. [PMID: 12533796 DOI: 10.1002/gene.10174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SUMMARY The t complex region of mouse chromosome 17 contains genetic information critical for embryonic development. To identify and map loci required for normal embryogenesis, a set of overlapping deletions (D17Aus9(df10J), D17Aus9(df12J), and D17Aus9(df13J)) surrounding the D17Aus9 locus and one encompassing the T locus, Del(17)T(7J), were bred in various combinations and the consequences of nullizygosity in overlapping regions were examined. The results indicated that there are at least two functional units within 1 cM of D17Aus9. l17J1 is a peri-implantation lethal mutation within the region deleted in D17Aus9(df13J), whereas l17J2 is a later-acting lethal defined by the region of overlap between Del(17)T(7J) and D17Aus9(df12J). Del(17)T(7J)/D17Aus9(df12J) embryos die around 10.5 dpc. The development of the mutant embryos is characterized by lack of axial rotation, an abnormal notochord structure, and a ballooning pericardium. These studies demonstrate the value of overlapping deletion complexes, as opposed to individual deletion complexes, for the identification, mapping, and analysis of genes required for embryonic development.
Collapse
Affiliation(s)
- Hanna H J Chao
- Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6445, USA
| | | | | | | |
Collapse
|
41
|
Hemberger M, Ferguson-Smith A, Moore G. 'Imprinting and Growth Congress' 2002, London, UK. Placenta 2003; 24:119-21. [PMID: 12495670 DOI: 10.1053/plac.2002.0892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M Hemberger
- Department of Molecular Biology and Biochemistry, University of Calgary, Alberta, T2N 4N1, Canada
| | | | | |
Collapse
|
42
|
Mizuno H, Okamoto I, Takagi N. Developmental abnormalities in mouse embryos tetrasomic for chromosome 11: apparent similarity to embryos functionally disomic for the x chromosome. Genes Genet Syst 2002; 77:269-76. [PMID: 12419899 DOI: 10.1266/ggs.77.269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Adopting a mating system involving two different Robertsonian translocations with monobrachial homology, we studied the early development of mouse embryos trisomic or tetrasomic for chromosome 11. A developmental delay of 12-24 hours was evident in trisomic embryos at embryonic day (E)7.5, whereas tetrasomic embryos apparently had stopped growth by E6.5 without formation of extraembryonic structures. This extremely severe developmental abnormality found in tetrasomic embryos is similar to that reported in embryos having two active X chromosomes in extraembryonic cell lineages. Autosomal tetrasomy, but not autosomal trisomy, can lead to such early developmental errors. Thus, a reasonable inference would be that the X chromosome is twice as active as the autosome. Probably, the X chromosome became upregulated in response to the evolutionary necessity of minimizing haplo-insufficiency brought about by miniaturization of the Y chromosome.
Collapse
Affiliation(s)
- Hiromichi Mizuno
- Division of Bioscicence, Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | |
Collapse
|
43
|
Tarrant JM, Groom J, Metcalf D, Li R, Borobokas B, Wright MD, Tarlinton D, Robb L. The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell proliferative responses. Mol Cell Biol 2002; 22:5006-18. [PMID: 12077330 PMCID: PMC139789 DOI: 10.1128/mcb.22.14.5006-5018.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2001] [Revised: 02/12/2002] [Accepted: 04/17/2002] [Indexed: 01/13/2023] Open
Abstract
The tetraspanins are a family of integral membrane proteins with four transmembrane domains. These molecules form multimolecular networks on the surfaces of many different cell types. Gene-targeting studies have revealed a role for tetraspanins in B- and T-lymphocyte function. We have isolated and deleted a novel tetraspanin, Tssc6, which is expressed exclusively in hematopoietic and lymphoid organs. Using a gene-trapping strategy, we generated an embryonic stem (ES) cell line with an insertion in the Tssc6 locus. Mice were derived from these ES cells and, using RNase protection and reverse transcription-PCR, we demonstrated that the insertion resulted in a null mutation of the Tssc6 allele. Mice homozygous for the gene trap insertion (Tssc6(gt/gt) mice) were viable and fertile, with normal steady-state hematopoiesis. Furthermore, responses to hemolysis and granulocyte colony-stimulating factor-induced granulopoiesis were equivalent to those of wild-type mice. Lymphoid development was normal in Tssc6(gt/gt) mice. Whereas Tssc6(gt/gt) B cells responded normally to lipopolysaccharide, anti-CD40, and anti-immunoglobulin M stimulation, Tssc6(gt/gt) T cells showed enhanced responses to concanavalin A, anti-CD3, and anti-CD28. This increased proliferation by Tssc6-deleted T lymphocytes was due to increased interleukin 2 production following T-cell receptor stimulation. These results demonstrate that Tssc6 is not required for normal development of the hematopoietic system but may play a role in the negative regulation of peripheral T-lymphocyte proliferation.
Collapse
Affiliation(s)
- Jacqueline M Tarrant
- The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, 3050 Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lercher MJ, Urrutia AO, Hurst LD. Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat Genet 2002; 31:180-3. [PMID: 11992122 DOI: 10.1038/ng887] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is often supposed that, except for tandem duplicates, genes are randomly distributed throughout the human genome. However, recent analyses suggest that when all the genes expressed in a given tissue (notably placenta and skeletal muscle) are examined, these genes do not map to random locations but instead resolve to clusters. We have asked three questions: (i) is this clustering true for most tissues, or are these the exceptions; (ii) is any clustering simply the result of the expression of tandem duplicates and (iii) how, if at all, does this relate to the observed clustering of genes with high expression rates? We provide a unified model of gene clustering that explains the previous observations. We examined Serial Analysis of Gene Expression (SAGE) data for 14 tissues and found significant clustering, in each tissue, that persists even after the removal of tandem duplicates. We confirmed clustering by analysis of independent expressed-sequence tag (EST) data. We then tested the possibility that the human genome is organized into subregions, each specializing in genes needed in a given tissue. By comparing genes expressed in different tissues, we show that this is not the case: those genes that seem to be tissue-specific in their expression do not, as a rule, cluster. We report that genes that are expressed in most tissues (housekeeping genes) show strong clustering. In addition, we show that the apparent clustering of genes with high expression rates is a consequence of the clustering of housekeeping genes.
Collapse
Affiliation(s)
- Martin J Lercher
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | |
Collapse
|
45
|
Abstract
There is new and convincing evidence that the mammalian X chromosome, as well as the Y chromosome, contains an atypically high proportion of genes involved in sex and reproduction (SRR genes). Here we consider alternative explanations for this concentration. One possibility is that a particularly well-endowed autosome was "chosen" for a career as a sex chromosome. Alternatively, the high concentration of SRR genes may have resulted from the accumulation of these genes on the X after the degradation of the Y, either by transposition of autosomal SRR genes to a "selfish X", or by acquisition of SRR functions by widely expressed genes on the X. We suggest experiments to distinguish these possibilities, and speculate on the implications of gathering evidence that genes with other functions, too, are not distributed uniformly over the genome.
Collapse
Affiliation(s)
- J A Graves
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| | | |
Collapse
|
46
|
Robb L, Tarrant J, Groom J, Ibrahim M, Li R, Borobakas B, Wright MD. Molecular characterisation of mouse and human TSSC6: evidence that TSSC6 is a genuine member of the tetraspanin superfamily and is expressed specifically in haematopoietic organs. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:31-41. [PMID: 11718897 DOI: 10.1016/s0167-4781(01)00306-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous analyses of the murine and human TSSC6 (also known as Phemx) proteins were not carried out using the full length sequence. Using 5'-RACE and cDNA library screening, we identified an additional 5' sequence for both the murine Tssc6 cDNA and its human homologue TSSC6. This novel sequence encodes a 5' exon encoding an in frame, upstream start codon, an N-terminal cytoplasmic domain and a transmembrane domain. The deduced, and now full length, murine and human TSSC6 proteins contained four hydrophobic regions together with other features characteristic of the tetraspanin superfamily. Computational analyses of the full length sequences show that TSSC6 is a genuine, albeit relatively divergent member of this superfamily. Using RNA from a number of mouse tissues, we identified seven splice variants of Tssc6. Splice variants of the human gene were also detected. Tssc6 expression was detected early in embryogenesis in primitive blood cells and was confined to haematopoietic organs in the adult mouse. Tssc6 expression was detected in many haematopoietic cell lines and was highest in cell lines of the erythroid lineage.
Collapse
Affiliation(s)
- L Robb
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Vic, Autralia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Hemberger M, Cross JC, Ropers HH, Lehrach H, Fundele R, Himmelbauer H. UniGene cDNA array-based monitoring of transcriptome changes during mouse placental development. Proc Natl Acad Sci U S A 2001; 98:13126-31. [PMID: 11698681 PMCID: PMC60835 DOI: 10.1073/pnas.231396598] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The placenta is a highly specialized organ essential for embryonic growth and development. Here, we have applied cDNA subtraction between extraembryonic tissues of early- (day 7.5 of gestation) and late-stage embryos (day 17.5) to generate stage-specific cDNA pools that were used for screening of high-density mouse UniGene cDNA arrays containing 25,000 clones. A total of 638 clones were identified, 488 with the e7.5-specific probe and 150 with the e17.5-specific probe. Importantly, 363/638 (56.9%) of the hybridizing clones were not known to be expressed during placental development before. Differential regulation was confirmed by Northern blot and in situ hybridization for a total of 44/44 of positive clones. Thus, this combination of cDNA subtraction and array hybridization was highly successful for identification of genes expressed and regulated during placental development. These included growth factors and receptors, components of the transcriptional and translational machinery, cell cycle regulators, molecular chaperones, and cytoskeletal elements. The extensive in situ hybridization analysis revealed extraembryonic structures with a high density of differentially expressed genes, most strikingly the ectoplacental cone and the spongiotrophoblast. This large-scale identification of genes regulated during placentogenesis is extremely useful to further elucidate the molecular basis of extraembryonic development.
Collapse
Affiliation(s)
- M Hemberger
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada T2N 4N1.
| | | | | | | | | | | |
Collapse
|
48
|
Sano Y, Shimada T, Nakashima H, Nicholson RH, Eliason JF, Kocarek TA, Ko MS. Random monoallelic expression of three genes clustered within 60 kb of mouse t complex genomic DNA. Genome Res 2001; 11:1833-41. [PMID: 11691847 PMCID: PMC311134 DOI: 10.1101/gr.194301] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammals achieve gene dosage control by (1) random X-chromosome inactivation in females, (2) parental origin-specific imprinting of selected autosomal genes, and (3) random autosomal inactivation. Genes belonging to the third category of epigenetic phenomenon are just now emerging, with only six identified so far. Here we report three additional genes, Nubp2, Igfals, and Jsap1, that show 50%-methylated CpG sites by Southern blot analyses and primarily monoallelic expression in single-cell allele-specific RT-PCR analysis of bone marrow stromal cells and hepatocytes. Furthermore, we show that, in contrast to X inactivation, alleles can switch between active and inactive states during the formation of daughter cells. These three genes are the first in their category to exist as a tight cluster, in the proximal region of mouse chromosome 17, providing a thus far unique example of a region of autosomal random monoallelic expression.
Collapse
Affiliation(s)
- Y Sano
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- J Schimenti
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| |
Collapse
|
50
|
Hudson TJ, Church DM, Greenaway S, Nguyen H, Cook A, Steen RG, Van Etten WJ, Castle AB, Strivens MA, Trickett P, Heuston C, Davison C, Southwell A, Hardisty R, Varela-Carver A, Haynes AR, Rodriguez-Tome P, Doi H, Ko MS, Pontius J, Schriml L, Wagner L, Maglott D, Brown SD, Lander ES, Schuler G, Denny P. A radiation hybrid map of mouse genes. Nat Genet 2001; 29:201-5. [PMID: 11586302 DOI: 10.1038/ng1001-201] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A comprehensive gene-based map of a genome is a powerful tool for genetic studies and is especially useful for the positional cloning and positional candidate approaches. The availability of gene maps for multiple organisms provides the foundation for detailed conserved-orthology maps showing the correspondence between conserved genomic segments. These maps make it possible to use cross-species information in gene hunts and shed light on the evolutionary forces that shape the genome. Here we report a radiation hybrid map of mouse genes, a combined project of the Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, the Medical Research Council UK Mouse Genome Centre, and the National Center for Biotechnology Information. The map contains 11,109 genes, screened against the T31 RH panel and positioned relative to a reference map containing 2,280 mouse genetic markers. It includes 3,658 genes homologous to the human genome sequence and provides a framework for overlaying the human genome sequence to the mouse and for sequencing the mouse genome.
Collapse
Affiliation(s)
- T J Hudson
- Center for Genome Research, Whitehead Institute/Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|