1
|
Locubiche S, Ordóñez V, Abad E, Scotto di Mase M, Di Donato V, De Santis F. A Zebrafish-Based Platform for High-Throughput Epilepsy Modeling and Drug Screening in F0. Int J Mol Sci 2024; 25:2991. [PMID: 38474238 DOI: 10.3390/ijms25052991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The zebrafish model has emerged as a reference tool for phenotypic drug screening. An increasing number of molecules have been brought from bench to bedside thanks to zebrafish-based assays over the last decade. The high homology between the zebrafish and the human genomes facilitates the generation of zebrafish lines carrying loss-of-function mutations in disease-relevant genes; nonetheless, even using this alternative model, the establishment of isogenic mutant lines requires a long generation time and an elevated number of animals. In this study, we developed a zebrafish-based high-throughput platform for the generation of F0 knock-out (KO) models and the screening of neuroactive compounds. We show that the simultaneous inactivation of a reporter gene (tyrosinase) and a second gene of interest allows the phenotypic selection of F0 somatic mutants (crispants) carrying the highest rates of mutations in both loci. As a proof of principle, we targeted genes associated with neurodevelopmental disorders and we efficiently generated de facto F0 mutants in seven genes involved in childhood epilepsy. We employed a high-throughput multiparametric behavioral analysis to characterize the response of these KO models to an epileptogenic stimulus, making it possible to employ kinematic parameters to identify seizure-like events. The combination of these co-injection, screening and phenotyping methods allowed us to generate crispants recapitulating epilepsy features and to test the efficacy of compounds already during the first days post fertilization. Since the strategy can be applied to a wide range of indications, this study paves the ground for high-throughput drug discovery and promotes the use of zebrafish in personalized medicine and neurotoxicity assessment.
Collapse
Affiliation(s)
- Sílvia Locubiche
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
- Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
| | - Víctor Ordóñez
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| | - Elena Abad
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| | | | - Vincenzo Di Donato
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| | - Flavia De Santis
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| |
Collapse
|
2
|
Manoubi W, Mahdouani M, Hmida D, Kdissa A, Rouissi A, Turki I, Gueddiche N, Soyah N, Saad A, Bouwkamp C, Elgersma Y, Mougou-Zerelli S, Gribaa M. Genetic investigation of the ubiquitin-protein ligase E3A gene as putative target in Angelman syndrome. World J Clin Cases 2024; 12:503-516. [PMID: 38322471 PMCID: PMC10841941 DOI: 10.12998/wjcc.v12.i3.503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Angelman syndrome (AS) is caused by maternal chromosomal deletions, imprinting defects, paternal uniparental disomy involving chromosome 15 and the ubiquitin-protein ligase UBE3A gene mutations. However the genetic basis remains unclear for several patients. AIM To investigate the involvement of UBE3A gene in AS and identifying new potential genes using exome sequencing. METHODS We established a cohort study in 50 patients referred to Farhat Hached University Hospital between 2006 and 2021, with a strong suspicion of AS and absence of chromosomal aberrations. The UBE3A gene was screened for mutation detection. Two unrelated patients issued from consanguineous families were subjected to exome analysis. RESULTS We describe seven UBE3A variants among them 3 none previously described including intronic variants c.2220+14T>C (intron14), c.2507+43T>A (Exon15) and insertion in Exon7: c.30-47_30-46. The exome sequencing revealed 22 potential genes that could be involved in AS-like syndromes that should be investigated further. CONCLUSION Screening for UBE3A mutations in AS patients has been proven to be useful to confirm the diagnosis. Our exome findings could rise to new potential alternative target genes for genetic counseling.
Collapse
Affiliation(s)
- Wiem Manoubi
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse 4000, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 3000, Tunisia
| | - Marwa Mahdouani
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse 4000, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 3000, Tunisia
| | - Dorra Hmida
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse 4000, Tunisia
| | - Ameni Kdissa
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse 4000, Tunisia
| | - Aida Rouissi
- Department of Neuropediatry, La Rabta Hospital, Tunis 2000, Tunisia
| | - Ilhem Turki
- Department of Neuropediatry, La Rabta Hospital, Tunis 2000, Tunisia
| | - Neji Gueddiche
- Department of Pediatric, Fattouma Bourguiba Hospital Monastir, Monastir 2003, Tunisia
| | - Najla Soyah
- Department of Pediatric, Farhat Hached University Hospital, Sousse 4000, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse 4000, Tunisia
| | - Christian Bouwkamp
- Department of Neuroscience, Erasmus MC, the Netherlands, Rotterdam 3112 td, Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC, the Netherlands, Rotterdam 3112 td, Netherlands
| | - Soumaya Mougou-Zerelli
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse 4000, Tunisia
| | - Moez Gribaa
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse 4000, Tunisia
| |
Collapse
|
3
|
Fan L, Liu L, Rao X, Wang X, Luo H, Gan J. The 100 most-cited manuscripts in epilepsy epigenetics: a bibliometric analysis. Childs Nerv Syst 2023; 39:3111-3122. [PMID: 37340273 PMCID: PMC10643235 DOI: 10.1007/s00381-023-06032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE The top citation article reflects the developmental milestone of a given field. The purpose of this bibliometric analysis was to identify and assess the 100 most-cited (T100) articles on the epigenetics mechanism of epilepsy. METHODS The Web of Science Core Collection (WoSCC) database was used to investigate, and search terms related to epilepsy epigenetics were compiled. Results were ranked according to citation number. The publication year, citation density, authorship, journal, country, institution, manuscript type, theme, and clinical topics were further evaluated. RESULTS The Web of Science search returned a total of 1231 manuscripts. The number of citations for a manuscript ranges from 739 to 75. The greatest number of manuscripts in the top 100 was published in the Human Molecular Genetics and Neurobiology of Disease (n = 4). The journal with the highest 2021 impact factor was Nature Medicine (IF = 87.244). The most-cited paper by Aid et al. reported a new nomenclature for mouse and rat BDNF gene and its expression profiles. Most manuscripts were original articles (n = 69), of which 52 (75.4%) report findings of basic scientific work. The most prevalent theme was microRNA (n = 29), and the most popular clinical topic was temporal lobe epilepsy (n = 13). CONCLUSIONS The research on the epigenetics mechanism of epilepsy was in its infancy but full of potential. The developmental history and current achievements of hot themes, including microRNA, DNA methylation, and temporal lobe epilepsy, were overviewed. This bibliometric analysis provides useful information and insight for researchers when launching new projects.
Collapse
Affiliation(s)
- Lijuan Fan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Lu Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China
| | - Xueyi Rao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaoqian Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Huan Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Chuong P, Statsyuk A. Selective Smurf1 E3 ligase inhibitors that prevent transthiolation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562361. [PMID: 37873387 PMCID: PMC10592800 DOI: 10.1101/2023.10.14.562361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Smurf1 is a HECT E3 ligase that is genetically micro-duplicated in human patients and is associated with osteoporosis. Smurf1 -/- mice on the other hand show an increase in bone density as they age, while being viable and fertile. Therefore, Smurf1 is a promising drug target to treat osteoporosis. This paper reports the discovery, synthesis, and biochemical characterization of highly selective Smurf1 inhibitors. We show that these compounds inhibit the catalytic HECT domain of Smurf1 with 500 nM IC 50 , but they do not inhibit closely related Smurf2 ligase, which is 80% identical to Smurf1. We show that Smurf1 inhibitors act by preventing the trans-thiolation reaction between Smurf1 and E2∼Ub thioesters. Our preliminary studies show that the C-lobe of Smurf1 alone does not contribute to the observed high selectivity of Smurf1 inhibitors.
Collapse
|
5
|
McKnight D, Bean L, Karbassi I, Beattie K, Bienvenu T, Bonin H, Fang P, Chrisodoulou J, Friez M, Helgeson M, Krishnaraj R, Meng L, Mighion L, Neul J, Percy A, Ramsden S, Zoghbi H, Das S. Recommendations by the ClinGen Rett/Angelman-like expert panel for gene-specific variant interpretation methods. Hum Mutat 2022; 43:1097-1113. [PMID: 34837432 PMCID: PMC9135956 DOI: 10.1002/humu.24302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 11/11/2022]
Abstract
The genes MECP2, CDKL5, FOXG1, UBE3A, SLC9A6, and TCF4 present unique challenges for current ACMG/AMP variant interpretation guidelines. To address those challenges, the Rett and Angelman-like Disorders Variant Curation Expert Panel (Rett/AS VCEP) drafted gene-specific modifications. A pilot study was conducted to test the clarity and accuracy of using the customized variant interpretation criteria. Multiple curators obtained the same interpretation for 78 out of the 87 variants (~90%), indicating appropriate usage of the modified guidelines the majority of times by all the curators. The classification of 13 variants changed using these criteria specifications compared to when the variants were originally curated and as present in ClinVar. Many of these changes were due to internal data shared from laboratory members however some changes were because of changes in strength of criteria. There were no two-step classification changes and only 1 clinically relevant change (Likely pathogenic to VUS). The Rett/AS VCEP hopes that these gene-specific variant curation rules and the assertions provided help clinicians, clinical laboratories, and others interpret variants in these genes but also other fully penetrant, early-onset genes associated with rare disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Chrisodoulou
- Murdoch Childrens Research Institute and the University of Melbourne,University of Sydney
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Agostino M, McKenzie F, Buck C, Woodward KJ, Atkinson VJ, Azmanov DN, Heng JIT. Studying Disease-Associated UBE3A Missense Variants Using Enhanced Sampling Molecular Simulations. ACS OMEGA 2022; 7:25039-25045. [PMID: 35910155 PMCID: PMC9330222 DOI: 10.1021/acsomega.2c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Missense variants in UBE3A underlie neurodevelopmental conditions such as Angelman Syndrome and Autism Spectrum Disorder, but the underlying molecular pathological consequences on protein folding and function are poorly understood. Here, we report a novel, maternally inherited, likely pathogenic missense variant in UBE3A (NM_000462.4(UBE3A_v001):(c.1841T>C) (p.(Leu614Pro))) in a child that presented with myoclonic epilepsy from 14 months, subsequent developmental regression from 16 months, and additional features consistent with Angelman Syndrome. To understand the impact of p.(Leu614Pro) on UBE3A, we used adiabatic biased molecular dynamics and metadynamics simulations to investigate conformational differences from wildtype proteins. Our results suggest that Leu614Pro substitution leads to less efficient binding and substrate processing compared to wildtype. Our results support the use of enhanced sampling molecular simulations to investigate the impact of missense UBE3A variants on protein function that underlies neurodevelopment and human disorders.
Collapse
Affiliation(s)
- Mark Agostino
- Curtin
Health Innovation Research Institute, Curtin
University, Kent Street, Bentley, Perth, Western Australia 6102, Australia
- Curtin
Institute for Computation, Curtin University, Kent Street, Bentley, Perth, Western Australia 6102, Australia
| | - Fiona McKenzie
- Genetic
Services of Western Australia, King Edward
Memorial Hospital, 374
Bagot Road, Subiaco, Perth, Western Australia 6008, Australia
- School
of Paediatrics and Child Health, University
of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | - Chloe Buck
- School
of Allergy and Clinical Immunology, University
of Cape Town, Cape Town 7925, South Africa
| | - Karen J. Woodward
- Diagnostic
Genomics, PathWest Laboratory Medicine, QEII Medical Centre E Block, Perth, Western Australia 6009, Australia
- School
of Biomedical Sciences, University of Western
Australia, 35 Stirling
Highway, Crawley, Perth, Western Australia 6009, Australia
| | - Vanessa J. Atkinson
- Diagnostic
Genomics, PathWest Laboratory Medicine, QEII Medical Centre E Block, Perth, Western Australia 6009, Australia
| | - Dimitar N. Azmanov
- Diagnostic
Genomics, PathWest Laboratory Medicine, QEII Medical Centre E Block, Perth, Western Australia 6009, Australia
| | - Julian Ik-Tsen Heng
- Curtin
Health Innovation Research Institute, Curtin
University, Kent Street, Bentley, Perth, Western Australia 6102, Australia
- Curtin
Medical School, Curtin University, Kent Street, Bentley, Perth, Western Australia 6102, Australia
| |
Collapse
|
7
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
8
|
Weston KP, Gao X, Zhao J, Kim KS, Maloney SE, Gotoff J, Parikh S, Leu YC, Wu KP, Shinawi M, Steimel JP, Harrison JS, Yi JJ. Identification of disease-linked hyperactivating mutations in UBE3A through large-scale functional variant analysis. Nat Commun 2021; 12:6809. [PMID: 34815418 PMCID: PMC8635412 DOI: 10.1038/s41467-021-27156-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
The mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels. Mice carrying the Q588E mutation exhibit aberrant early-life motor and communication deficits, and individuals possessing hyperactivating UBE3A variants exhibit affected phenotypes that are distinguishable from Angelman syndrome. Additional structure-function analysis reveals that Q588 forms a regulatory site in UBE3A that is conserved among HECT domain ubiquitin ligases and perturbed in various neurodevelopmental disorders. Together, our study indicates that excessive UBE3A activity increases the risk for neurodevelopmental pathology and suggests that functional variant analysis can help delineate mechanistic subtypes in monogenic disorders. UBE3A gene dysregulation is associated with neurodevelopmental disorders, but predicting the function of UBE3A variants remains difficult. The authors use a high-throughput assay to categorize variants by functional activity, and show that UBE3A hyperactivity increases the risk of neurodevelopmental disease.
Collapse
Affiliation(s)
- Kellan P Weston
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyi Gao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jinghan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kwang-Soo Kim
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jill Gotoff
- Department of Pediatrics, Geisinger Medical Center, Danville, PA, 17822, USA
| | - Sumit Parikh
- Department of Neurogenetics, Neurosciences Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Yen-Chen Leu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua P Steimel
- Deparment of Mechanical Engineering, University of the Pacific, Stockton, CA, 95211, USA
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, CA, 95211, USA
| | - Jason J Yi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Pandya NJ, Wang C, Costa V, Lopatta P, Meier S, Zampeta FI, Punt AM, Mientjes E, Grossen P, Distler T, Tzouros M, Martí Y, Banfai B, Patsch C, Rasmussen S, Hoener M, Berrera M, Kremer T, Dunkley T, Ebeling M, Distel B, Elgersma Y, Jagasia R. Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology. Cell Rep Med 2021; 2:100360. [PMID: 34467244 PMCID: PMC8385294 DOI: 10.1016/j.xcrm.2021.100360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.
Collapse
Affiliation(s)
- Nikhil J. Pandya
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Congwei Wang
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Veronica Costa
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Paul Lopatta
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sonja Meier
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - F. Isabella Zampeta
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A. Mattijs Punt
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Edwin Mientjes
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Philip Grossen
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tania Distler
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Manuel Tzouros
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Yasmina Martí
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Balazs Banfai
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Patsch
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Soren Rasmussen
- Therapeutic Modalities, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche, Copenhagen, Denmark
| | - Marius Hoener
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marco Berrera
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Thomas Kremer
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tom Dunkley
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Martin Ebeling
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ben Distel
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ype Elgersma
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ravi Jagasia
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
10
|
Abstract
Autism is a common and complex neurologic disorder whose scientific underpinnings have begun to be established in the past decade. The essence of this breakthrough has been a focus on families, where genetic analyses are strongest, versus large-scale, case-control studies. Autism genetics has progressed in parallel with technology, from analyses of copy number variation to whole-exome sequencing (WES) and whole-genome sequencing (WGS). Gene mutations causing complete loss of function account for perhaps one-third of cases, largely detected through WES. This limitation has increased interest in understanding the regulatory variants of genes that contribute in more subtle ways to the disorder. Strategies combining biochemical analysis of gene regulation, WGS analysis of the noncoding genome, and machine learning have begun to succeed. The emerging picture is that careful control of the amounts of transcription, mRNA, and proteins made by key brain genes-stoichiometry-plays a critical role in defining the clinical features of autism.
Collapse
Affiliation(s)
- Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA;
| |
Collapse
|
11
|
Copping NA, McTighe SM, Fink KD, Silverman JL. Emerging Gene and Small Molecule Therapies for the Neurodevelopmental Disorder Angelman Syndrome. Neurotherapeutics 2021; 18:1535-1547. [PMID: 34528170 PMCID: PMC8608975 DOI: 10.1007/s13311-021-01082-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Angelman syndrome (AS) is a rare (~1:15,000) neurodevelopmental disorder characterized by severe developmental delay and intellectual disability, impaired communication skills, and a high prevalence of seizures, sleep disturbances, ataxia, motor deficits, and microcephaly. AS is caused by loss-of-function of the maternally inherited UBE3A gene. UBE3A is located on chromosome 15q11-13 and is biallelically expressed throughout the body but only maternally expressed in the brain due to an RNA antisense transcript that silences the paternal copy. There is currently no cure for AS, but advancements in small molecule drugs and gene therapies offer a promising approach for the treatment of the disorder. Here, we review AS and how loss-of-function of the maternal UBE3A contributes to the disorder. We also discuss the strengths and limitations of current animal models of AS. Furthermore, we examine potential small molecule drug and gene therapies for the treatment of AS and associated challenges faced by the therapeutic design. Finally, gene therapy offers the opportunity for precision medicine in AS and advancements in the treatment of this disorder can serve as a foundation for other single-gene neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nycole A Copping
- School of Medicine, Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Research II Building 96, 4625 2nd Avenue, Suite 1001B, Davis, Sacramento, CA, 95817, USA
- Stem Cell Program and Gene Therapy Center, Department of Neurology, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | | | - Kyle D Fink
- Stem Cell Program and Gene Therapy Center, Department of Neurology, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Jill L Silverman
- School of Medicine, Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Research II Building 96, 4625 2nd Avenue, Suite 1001B, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
12
|
Moreira-de-Sá A, Gonçalves FQ, Lopes JP, Silva HB, Tomé ÂR, Cunha RA, Canas PM. Motor Deficits Coupled to Cerebellar and Striatal Alterations in Ube3a m-/p+ Mice Modelling Angelman Syndrome Are Attenuated by Adenosine A 2A Receptor Blockade. Mol Neurobiol 2021; 58:2543-2557. [PMID: 33464534 DOI: 10.1007/s12035-020-02275-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/28/2020] [Indexed: 01/22/2023]
Abstract
Angelman syndrome (AS) is a neurogenetic disorder involving ataxia and motor dysfunction, resulting from the absence of the maternally inherited functional Ube3a protein in neurons. Since adenosine A2A receptor (A2AR) blockade relieves synaptic and motor impairments in Parkinson's or Machado-Joseph's diseases, we now tested if A2AR blockade was also effective in attenuating motor deficits in an AS (Ube3am-/p+) mouse model and if this involved correction of synaptic alterations in striatum and cerebellum. Chronic administration of the A2AR antagonist SCH58261 (0.1 mg/kg/day, ip) promoted motor learning of AS mice in the accelerating-rotarod task and rescued the grip strength impairment of AS animals. These motor impairments were accompanied by synaptic alterations in cerebellum and striatum typified by upregulation of synaptophysin and vesicular GABA transporters (vGAT) in the cerebellum of AS mice along with a downregulation of vGAT, vesicular glutamate transporter 1 (vGLUT1) and the dopamine active transporter in AS striatum. Notably, A2AR blockade prevented the synaptic alterations found in AS mice cerebellum as well as the downregulation of striatal vGAT and vGLUT1. This provides the first indications that A2AR blockade may counteract the characteristic motor impairments and synaptic changes of AS, although more studies are needed to unravel the underlying mechanisms.
Collapse
Affiliation(s)
- Ana Moreira-de-Sá
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
| | - João P Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
| | - Henrique B Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ângelo R Tomé
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Paula M Canas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal.
| |
Collapse
|
13
|
Bossuyt SNV, Punt AM, de Graaf IJ, van den Burg J, Williams MG, Heussler H, Elgersma Y, Distel B. Loss of nuclear UBE3A activity is the predominant cause of Angelman syndrome in individuals carrying UBE3A missense mutations. Hum Mol Genet 2021; 30:430-442. [PMID: 33607653 PMCID: PMC8101352 DOI: 10.1093/hmg/ddab050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by deletion (~75%) or mutation (~10%) of the ubiquitin E3 ligase A (UBE3A) gene, which encodes a HECT type E3 ubiquitin protein ligase. Although the critical substrates of UBE3A are unknown, previous studies have suggested a critical role of nuclear UBE3A in AS pathophysiology. Here, we investigated to what extent UBE3A missense mutations disrupt UBE3A subcellular localization as well as catalytic activity, stability and protein folding. Our functional screen of 31 UBE3A missense mutants revealed that UBE3A mislocalization is the predominant cause of UBE3A dysfunction, accounting for 55% of the UBE3A mutations tested. The second major cause (29%) is a loss of E3-ubiquitin ligase activity, as assessed in an Escherichia coli in vivo ubiquitination assay. Mutations affecting catalytic activity are found not only in the catalytic HECT domain, but also in the N-terminal half of UBE3A, suggesting an important contribution of this N-terminal region to its catalytic potential. Together, our results show that loss of nuclear UBE3A E3 ligase activity is the predominant cause of UBE3A-linked AS. Moreover, our functional analysis screen allows rapid assessment of the pathogenicity of novel UBE3A missense variants which will be of particular importance when treatments for AS become available.
Collapse
Affiliation(s)
- Stijn N V Bossuyt
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - A Mattijs Punt
- Department of Clinical Genetics and Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015, 3015 CN, Rotterdam, The Netherlands
| | - Ilona J de Graaf
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Janny van den Burg
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Mark G Williams
- Mater Research Institute, Faculty of Medicine, The University of Queensland, 4101, South Brisbane, Queensland, Australia
| | - Helen Heussler
- Mater Research Institute, Faculty of Medicine, The University of Queensland, 4101, South Brisbane, Queensland, Australia.,Child Development Program, Queensland Children's Hospital, 4101, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, 4101, South Brisbane, Queensland, Australia
| | - Ype Elgersma
- Department of Clinical Genetics and Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015, 3015 CN, Rotterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Department of Clinical Genetics and Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Keute M, Miller MT, Krishnan ML, Sadhwani A, Chamberlain S, Thibert RL, Tan WH, Bird LM, Hipp JF. Angelman syndrome genotypes manifest varying degrees of clinical severity and developmental impairment. Mol Psychiatry 2021; 26:3625-3633. [PMID: 32792659 PMCID: PMC8505254 DOI: 10.1038/s41380-020-0858-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/18/2022]
Abstract
Angelman Syndrome (AS) is a severe neurodevelopmental disorder due to impaired expression of UBE3A in neurons. There are several genetic mechanisms that impair UBE3A expression, but they differ in how neighboring genes on chromosome 15 at 15q11-q13 are affected. There is evidence that different genetic subtypes present with different clinical severity, but a systematic quantitative investigation is lacking. Here we analyze natural history data on a large sample of individuals with AS (n = 250, 848 assessments), including clinical scales that quantify development of motor, cognitive, and language skills (Bayley Scales of Infant Development, Third Edition; Preschool Language Scale, Fourth Edition), adaptive behavior (Vineland Adaptive Behavioral Scales, Second Edition), and AS-specific symptoms (AS Clinical Severity Scale). We found that clinical severity, as captured by these scales, differs between genetic subtypes: individuals with UBE3A pathogenic variants and imprinting defects (IPD) are less affected than individuals with uniparental paternal disomy (UPD); of those with UBE3A pathogenic variants, individuals with truncating mutations are more impaired than those with missense mutations. Individuals with a deletion that encompasses UBE3A and other genes are most impaired, but in contrast to previous work, we found little evidence for an influence of deletion length (class I vs. II) on severity of manifestations. The results of this systematic analysis highlight the relevance of genomic regions beyond UBE3A as contributing factors in the AS phenotype, and provide important information for the development of new therapies for AS. More generally, this work exemplifies how increasing genetic irregularities are reflected in clinical severity.
Collapse
Affiliation(s)
- Marius Keute
- grid.417570.00000 0004 0374 1269Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland ,grid.5807.a0000 0001 1018 4307Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Meghan T. Miller
- grid.417570.00000 0004 0374 1269Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Michelle L. Krishnan
- grid.417570.00000 0004 0374 1269Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Anjali Sadhwani
- grid.2515.30000 0004 0378 8438Department of Psychiatry, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Stormy Chamberlain
- grid.63054.340000 0001 0860 4915Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT USA
| | - Ronald L. Thibert
- grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| | - Wen-Hann Tan
- grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA ,grid.2515.30000 0004 0378 8438Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA USA
| | - Lynne M. Bird
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,grid.286440.c0000 0004 0383 2910Department of Genetics/Dysmorphology, Rady Children’s Hospital, San Diego, CA USA
| | - Joerg F. Hipp
- grid.417570.00000 0004 0374 1269Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
15
|
Zhao X, Zhang R, Yu S. Mutation screening of the UBE3A gene in Chinese Han population with autism. BMC Psychiatry 2020; 20:589. [PMID: 33308194 PMCID: PMC7733270 DOI: 10.1186/s12888-020-03000-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 15q11-13 region is one of the most complex chromosomal regions in the human genome. UBE3A is an important candidate gene of autism spectrum disorder (ASD), which located at the 15q11-13 region and encodes ubiquitin-protein ligase E3A. Previous studies about UBE3A gene and ASD have shown inconsistent results and few studies were performed in Chinese population. This study aimed to detect the genetic mutations of UBE3A gene in Chinese Han population with ASD and analyze genetic association between these variants and ASD. METHODS The samples consisted of 192 patients with autism according to the DSM-IV diagnostic criteria and 192 healthy controls. We searched for mutations at coding sequence (CDS) regions and their adjacent non-coding regions of UBE3A gene using the high resolution melting (HRM) and Sanger sequencing methods. We further increased sample size to validate the detected variants using HRM and conducted association analysis between case and control groups. RESULTS A known single nucleotide polymorphism (T > C, rs150331504) located at the CDS4 and a known 5 bp insertion/deletion variation (AACTC+/-, rs71127053) located at the intron region of the upstream 288 bp of the CDS2 of UBE3A gene were detected using Sanger sequencing method. The ASD samples of case group were 391 for rs71127053, 384 for rs150331504 and 384 healthy controls, which were used to make an association analysis. The results of association analysis suggested that there were no significant difference about the allele and genotype frequencies of rs71127053 and rs150331504 between case and control groups after extending the sample size. Besides, rs150331504 is a synonymous mutation and we compared the secondary structure and minimum free energy (MFE) of mRNA harboring the allele T or C of rs150331504 using RNAfold software. We found that the centroid secondary structure apparently differs along with the polymorphisms of rs150331504 T > C, the results suggested that this variant might change the secondary structure of mRNA of UBE3A gene. We did not detect mutations in other coding regions of UBE3A gene. CONCLUSIONS These findings showed that UBE3A gene might not be a major disease gene in Chinese ASD cases.
Collapse
Affiliation(s)
- Xue Zhao
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai, 200030 China
| | - Ran Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai, 200030 China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai, 200030, China.
| |
Collapse
|
16
|
Geerts‐Haages A, Bossuyt SNV, den Besten I, Bruggenwirth H, van der Burgt I, Yntema HG, Punt AM, Brooks A, Elgersma Y, Distel B, Valstar M. A novel UBE3A sequence variant identified in eight related individuals with neurodevelopmental delay, results in a phenotype which does not match the clinical criteria of Angelman syndrome. Mol Genet Genomic Med 2020; 8:e1481. [PMID: 32889787 PMCID: PMC7667313 DOI: 10.1002/mgg3.1481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Loss of functional UBE3A, an E3 protein ubiquitin ligase, causes Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, speech impairment, epilepsy, movement or balance disorder, and a characteristic behavioral pattern. We identified a novel UBE3A sequence variant in a large family with eight affected individuals, who did not meet the clinical AS criteria. METHODS Detailed clinical examination and genetic analysis was performed to establish the phenotypic diversity and the genetic cause. The function of the mutant UBE3A protein was assessed with respect to its subcellular localization, stability, and E3 ubiquitin ligase activity. RESULTS All eight affected individuals showed the presence of a novel maternally inherited UBE3A sequence variant (NM_130838.4(UBE3A):c.1018-1020del, p.(Asn340del), which is in line with a genetic AS diagnosis. Although they presented with moderate to severe intellectual disability, the phenotype did not match the clinical criteria for AS. In line with this, functional analysis of the UBE3A p.Asn340del mutant protein revealed no major deficits in UBE3A protein localization, stability, or E3 ubiquitin ligase activity. CONCLUSION The p.(Asn340del) mutant protein behaves distinctly different from previously described AS-linked missense mutations in UBE3A, and causes a phenotype that is markedly different from AS. This study further extends the range of phenotypes that are associated with UBE3A loss, duplication, or mutation.
Collapse
Affiliation(s)
- Amber Geerts‐Haages
- Intellectual Disability MedicineDepartment of General PracticeErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Stijn N. V. Bossuyt
- Department of Medical BiochemistryAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Inge den Besten
- Intellectual Disability MedicineDepartment of General PracticeErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Hennie Bruggenwirth
- Department of Clinical GeneticsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Ineke van der Burgt
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Helger G. Yntema
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - A. Mattijs Punt
- Department of NeuroscienceErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Alice Brooks
- Department of Clinical GeneticsErasmus MC University Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Ype Elgersma
- Department of NeuroscienceErasmus MC University Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Ben Distel
- Department of Medical BiochemistryAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of NeuroscienceErasmus MC University Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Marlies Valstar
- Intellectual Disability MedicineDepartment of General PracticeErasmus MC University Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
- ASVZ, Medical DepartmentCare and Service Centre for People with Intellectual DisabilitiesSliedrechtThe Netherlands
| |
Collapse
|
17
|
An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT 1A and Dopamine Pathway Activation as Potential Therapies. Biol Psychiatry 2020; 88:698-709. [PMID: 32507391 PMCID: PMC7554174 DOI: 10.1016/j.biopsych.2020.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Duplication 15q (Dup15q) syndrome is a rare neurogenetic disorder characterized by autism and pharmacoresistant epilepsy. Most individuals with isodicentric duplications have been on multiple medications to control seizures. We recently developed a model of Dup15q in Drosophila by elevating levels of fly Dube3a in glial cells using repo-GAL4, not neurons. In contrast to other Dup15q models, these flies develop seizures that worsen with age. METHODS We screened repo>Dube3a flies for approved compounds that can suppress seizures. Flies 3 to 5 days old were exposed to compounds in the fly food during development. Flies were tested using a bang sensitivity assay for seizure recovery time. At least 40 animals were tested per experiment, with separate testing for male and female flies. Studies of K+ content in glial cells of the fly brain were also performed using a fluorescent K+ indicator. RESULTS We identified 17 of 1280 compounds in the Prestwick Chemical Library that could suppress seizures. Eight compounds were validated in secondary screening. Four of these compounds regulated either serotonergic or dopaminergic signaling, and subsequent experiments confirmed that seizure suppression occurred primarily through stimulation of serotonin receptor 5-HT1A. Additional studies of K+ levels showed that Dube3a regulation of the Na+/K+ exchanger ATPα (adenosine triphosphatase α) in glia may be modulated by serotonin/dopamine signaling, causing seizure suppression. CONCLUSIONS Based on these pharmacological and genetic studies, we present an argument for the use of 5-HT1A agonists in the treatment of Dup15q epilepsy.
Collapse
|
18
|
The identification of two pathogenic variants in a family with mild and severe forms of developmental delay. J Hum Genet 2020; 66:445-448. [PMID: 33037390 DOI: 10.1038/s10038-020-0809-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 11/08/2022]
Abstract
Intellectual disability (ID) accounts for 1% of the general population, and it is caused by the interplay between the genetic and/or environmental factors. The genetic components responsible for the development of ID are highly heterogeneous, and the phenotype and severity of the disease vary in patients even if they have an identical pathological variant and/or belong to the same family. Herein, we reported two male siblings with ID in an Iranian family. By means of the whole-exome sequencing method, elder brother affected by a moderate form of ID exhibited a de novo missense variant in the KCNQ3 gene, while another sibling afflicted with a severe form of the disease exhibited a de novo in-frame deletion in the UBE3A gene. Both variants have been previously ascribed to similar clinical phenotypes. In addition, a genetic variant in the KCNQ3 gene was transmitted to his son, who had a mild form of ID. To our knowledge, all individuals with KCNQ3-related developmental delay show de novo variants in the KCNQ3 gene. Thus, this familial case exhibit milder phenotype that might extend the clinical spectrum of KCNQ3 pathogenic variants. In addition, the current report highlights the significance of the clinical evaluation and non-biased assessment of the genetic analysis.
Collapse
|
19
|
Beasley SA, Kellum CE, Orlomoski RJ, Idrizi F, Spratt DE. An Angelman syndrome substitution in the HECT E3 ubiquitin ligase C-terminal Lobe of E6AP affects protein stability and activity. PLoS One 2020; 15:e0235925. [PMID: 32639967 PMCID: PMC7343168 DOI: 10.1371/journal.pone.0235925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023] Open
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by speech impairment, intellectual disability, ataxia, and epilepsy. AS is caused by mutations in the maternal copy of UBE3A located on chromosome 15q11-13. UBE3A codes for E6AP (E6 Associated Protein), a prominent member of the HECT (Homologous to E6AP C-Terminus) E3 ubiquitin ligase family. E6AP catalyzes the posttranslational attachment of ubiquitin via its HECT domain onto various intracellular target proteins to regulate DNA repair and cell cycle progression. The HECT domain consists of an N-lobe, required for E2~ubiquitin recruitment, while the C-lobe contains the conserved catalytic cysteine required for ubiquitin transfer. Previous genetic studies of AS patients have identified point mutations in UBE3A that result in amino acid substitutions or premature termination during translation. An AS transversion mutation (codon change from ATA to AAA) within the region of the gene that codes for the catalytic HECT domain of E6AP has been annotated (I827K), but the molecular basis for this loss of function substitution remained elusive. Here, we demonstrate that the I827K substitution destabilizes the 3D fold causing protein aggregation of the C-terminal lobe of E6AP using a combination of spectropolarimetry and nuclear magnetic resonance (NMR) spectroscopy. Our fluorescent ubiquitin activity assays with E6AP-I827K show decreased ubiquitin thiolester formation and ubiquitin discharge. Using 3D models in combination with our biochemical and biophysical results, we rationalize why the I827K disrupts E6AP-dependent ubiquitylation. This work provides new insight into the E6AP mechanism and how its malfunction can be linked to the AS phenotype.
Collapse
Affiliation(s)
- Steven A. Beasley
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| | - Chloe E. Kellum
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| | - Rachel J. Orlomoski
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| | - Feston Idrizi
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| |
Collapse
|
20
|
Kumar V, Joshi T, Vatsa N, Singh BK, Jana NR. Simvastatin Restores HDAC1/2 Activity and Improves Behavioral Deficits in Angelman Syndrome Model Mouse. Front Mol Neurosci 2019; 12:289. [PMID: 31849603 PMCID: PMC6901934 DOI: 10.3389/fnmol.2019.00289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/12/2019] [Indexed: 01/25/2023] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder categorized by severe disability in intellectual functions and affected by the loss of function of maternally inherited UBE3A gene. Mice deficient for the maternal Ube3a recapitulates many distinguishing behavioral features of the AS and is used as a typical model system to understand the disease pathogenic mechanism. Here, we first show a significant increase in HDAC1 and HDAC2 activities in AS mice brain from as early as embryonic day 16(E16). In depth study further reveals that the deficiency of Ube3a leads to transcriptional up-regulation of both HDAC1 and HDAC2. Restoration of HDAC1 and HDAC2 activities (as evident from the increased acetylation of histones H3 and H4) using simvastatin significantly improves the cognitive deficit and social interaction behavior in AS mice. Simvastatin treatment also restores the reduced level of BDNF in AS mice brain. Finally, we demonstrate that the treatment of simvastatin to primary cortical neuronal culture prepared from AS mice embryo also rescues altered acetylation of histones H3 and H4 and the level of BDNF. These results suggest that simvastatin could be a promising drug for the treatment of AS.
Collapse
Affiliation(s)
- Vipendra Kumar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India
| | - Tripti Joshi
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India
| | - Naman Vatsa
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India
| | - Brijesh Kumar Singh
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India.,School of Bioscience, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
21
|
Iakoucheva LM, Muotri AR, Sebat J. Getting to the Cores of Autism. Cell 2019; 178:1287-1298. [PMID: 31491383 PMCID: PMC7039308 DOI: 10.1016/j.cell.2019.07.037] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/07/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
The genetic architecture of autism spectrum disorder (ASD) is itself a diverse allelic spectrum that consists of rare de novo or inherited variants in hundreds of genes and common polygenic risk at thousands of loci. ASD susceptibility genes are interconnected at the level of transcriptional and protein networks, and many function as genetic regulators of neurodevelopment or synaptic proteins that regulate neural activity. So that the core underlying neuropathologies can be further elucidated, we emphasize the importance of first defining subtypes of ASD on the basis of the phenotypic signatures of genes in model systems and humans.
Collapse
Affiliation(s)
- Lilia M Iakoucheva
- University of California San Diego, Department of Psychiatry, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92093, USA; University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, La Jolla, CA 92093, USA; University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA
| | - Jonathan Sebat
- University of California San Diego, Department of Psychiatry, La Jolla, CA 92093, USA; University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92093, USA; University of California San Diego, Beyster Center for Psychiatric Genomics, La Jolla, CA 92093.
| |
Collapse
|
22
|
Vatsa N, Kumar V, Singh BK, Kumar SS, Sharma A, Jana NR. Down-Regulation of miRNA-708 Promotes Aberrant Calcium Signaling by Targeting Neuronatin in a Mouse Model of Angelman Syndrome. Front Mol Neurosci 2019; 12:35. [PMID: 30814928 PMCID: PMC6381399 DOI: 10.3389/fnmol.2019.00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
The expression of ubiquitin ligase UBE3A is paternally imprinted in neurons and loss of function of maternally inherited UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe intellectual disability and motor disturbances. Over activation of UBE3A is also linked with autism. Mice deficient for maternal Ube3a (AS mice) exhibit various behavioral features of AS including cognitive and motor deficits although the underlying molecular mechanism is poorly understood. Here, we investigated possible involvement of miRNA in AS pathogenesis and identified miR-708 as one of the down-regulated miRNA in the brain of AS mice. This miR-708 targets endoplasmic reticulum resident protein neuronatin (a developmentally regulated protein in the brain) leading to decrease in intracellular Ca2+. Suppression of miR-708 or ectopic expression of neuronatin increased the level of intracellular Ca2+ and phosphorylation of CaMKIIα at Thr286. Neuronatin level was significantly increased in various brain regions of AS mice during embryonic and early postnatal days as well as in parvalbumin-positive GABAergic neurons during adulthood with respect to age-matched wild type controls. Differentiated cultured primary cortical neurons obtained from AS mice brain also exhibited higher expression of neuronatin, increased intracellular basal Ca2+ along with augmented phosphorylation of CaMKIIα at Thr286. These results indicate that miR-708/neuronatin mediated aberrant calcium signaling might be implicated in AS pathogenesis.
Collapse
Affiliation(s)
- Naman Vatsa
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Vipendra Kumar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Brijesh Kumar Singh
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Shashi Shekhar Kumar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Ankit Sharma
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India.,School of Bioscience, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
23
|
Kühnle S, Martínez-Noël G, Leclere F, Hayes SD, Harper JW, Howley PM. Angelman syndrome-associated point mutations in the Zn 2+-binding N-terminal (AZUL) domain of UBE3A ubiquitin ligase inhibit binding to the proteasome. J Biol Chem 2018; 293:18387-18399. [PMID: 30257870 PMCID: PMC6254356 DOI: 10.1074/jbc.ra118.004653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
Deregulation of the HECT ubiquitin ligase UBE3A/E6AP has been implicated in Angelman syndrome as well as autism spectrum disorders. We and others have previously identified the 26S proteasome as one of the major UBE3A-interacting protein complexes. Here, we characterize the interaction of UBE3A and the proteasomal subunit PSMD4 (Rpn10/S5a). We map the interaction to the highly conserved Zn2+-binding N-terminal (AZUL) domain of UBE3A, the integrity of which is crucial for binding to PSMD4. Interestingly, two Angelman syndrome point mutations that affect the AZUL domain show an impaired ability to bind PSMD4. Although not affecting the ubiquitin ligase or the estrogen receptor α-mediated transcriptional regulation activities, these AZUL domain mutations prevent UBE3A from stimulating the Wnt/β-catenin signaling pathway. Taken together, our data indicate that impaired binding to the 26S proteasome and consequential deregulation of Wnt/β-catenin signaling might contribute to the functional defect of these mutants in Angelman syndrome.
Collapse
Affiliation(s)
- Simone Kühnle
- From the Departments of Microbiology and Immunobiology and
| | | | | | | | - J Wade Harper
- Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Peter M Howley
- From the Departments of Microbiology and Immunobiology and.
| |
Collapse
|
24
|
Hur JH, Lee SH, Kim AY, Koh YH. Regulation of synaptic architecture and synaptic vesicle pools by Nervous wreck at Drosophila Type 1b glutamatergic synapses. Exp Mol Med 2018; 50:e462. [PMID: 29568072 PMCID: PMC5898900 DOI: 10.1038/emm.2017.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023] Open
Abstract
Nervous wreck (Nwk), a protein that is present at Type 1 glutamatergic synapses that contains an SH3 domain and an FCH motif, is a Drosophila homolog of the human srGAP3/MEGAP protein, which is associated with mental retardation. Confocal microscopy revealed that circles in Nwk reticulum enclosed T-shaped active zones (T-AZs) and partially colocalized with synaptic vesicle (SV) markers and both exocytosis and endocytosis components. Results from an electron microscopic (EM) analysis showed that Nwk proteins localized at synaptic edges and in SV pools. Both the synaptic areas and the number of SVs in the readily releasable (RRPs) and reserve (RPs) SV pools in nwk2 were significantly reduced. Synergistic, morphological phenotypes observed from eag1;nwk2 neuromuscular junctions suggested that Nwk may regulate synaptic plasticity differently from activity-dependent Hebbian plasticity. Although the synaptic areas in eag1;nwk2 boutons were not significantly different from those of nwk2, the number of SVs in the RRPs was similar to those of Canton-S. In addition, three-dimensional, high-voltage EM tomographic analysis demonstrated that significantly fewer enlarged SVs were present in nwk2 RRPs. Furthermore, Nwk formed protein complexes with Drosophila Synapsin and Synaptotagmin 1 (DSypt1). Taken together, these findings suggest that Nwk is able to maintain synaptic architecture and both SV size and distribution at T-AZs by interacting with Synapsin and DSypt1.
Collapse
Affiliation(s)
- Joon Haeng Hur
- ILSONG Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Bio-Medical Gerontology, Hallym University Graduate School, Chuncheon, Republic of Korea
| | - Sang-Hee Lee
- BioMedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - A-Young Kim
- ILSONG Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Bio-Medical Gerontology, Hallym University Graduate School, Chuncheon, Republic of Korea
| | - Young Ho Koh
- ILSONG Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Bio-Medical Gerontology, Hallym University Graduate School, Chuncheon, Republic of Korea
| |
Collapse
|
25
|
Urraca N, Hope K, Victor AK, Belgard TG, Memon R, Goorha S, Valdez C, Tran QT, Sanchez S, Ramirez J, Donaldson M, Bridges D, Reiter LT. Significant transcriptional changes in 15q duplication but not Angelman syndrome deletion stem cell-derived neurons. Mol Autism 2018; 9:6. [PMID: 29423132 PMCID: PMC5787244 DOI: 10.1186/s13229-018-0191-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/15/2018] [Indexed: 01/09/2023] Open
Abstract
Background The inability to analyze gene expression in living neurons from Angelman (AS) and Duplication 15q (Dup15q) syndrome subjects has limited our understanding of these disorders at the molecular level. Method Here, we use dental pulp stem cells (DPSC) from AS deletion, 15q Duplication, and neurotypical control subjects for whole transcriptome analysis. We identified 20 genes unique to AS neurons, 120 genes unique to 15q duplication, and 3 shared transcripts that were differentially expressed in DPSC neurons vs controls. Results Copy number correlated with gene expression for most genes across the 15q11.2-q13.1 critical region. Two thirds of the genes differentially expressed in 15q duplication neurons were downregulated compared to controls including several transcription factors, while in AS differential expression was restricted primarily to the 15q region. Here, we show significant downregulation of the transcription factors FOXO1 and HAND2 in neurons from 15q duplication, but not AS deletion subjects suggesting that disruptions in transcriptional regulation may be a driving factor in the autism phenotype in Dup15q syndrome. Downstream analysis revealed downregulation of the ASD associated genes EHPB2 and RORA, both genes with FOXO1 binding sites. Genes upregulated in either Dup15q cortex or idiopathic ASD cortex both overlapped significantly with the most upregulated genes in Dup15q DPSC-derived neurons. Conclusions Finding a significant increase in both HERC2 and UBE3A in Dup15q neurons and significant decrease in these two genes in AS deletion neurons may explain differences between AS deletion class and UBE3A specific classes of AS mutation where HERC2 is expressed at normal levels. Also, we identified an enrichment for FOXO1-regulated transcripts in Dup15q neurons including ASD-associated genes EHPB2 and RORA indicating a possible connection between this syndromic form of ASD and idiopathic cases.
Collapse
Affiliation(s)
- Nora Urraca
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
| | - Kevin Hope
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
- IPBS Program, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - A. Kaitlyn Victor
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
- IPBS Program, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - T. Grant Belgard
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX UK
| | - Rawaha Memon
- Department of Pediatric Dentistry, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Sarita Goorha
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
| | - Colleen Valdez
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
| | - Quynh T. Tran
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Silvia Sanchez
- Instituto Nacional de Pediatria, 04530 Mexico City, Mexico
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, University of Basque Country, Bilbao, Spain
| | - Martin Donaldson
- Department of Pediatric Dentistry, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - Lawrence T. Reiter
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
26
|
Jamal I, Kumar V, Vatsa N, Shekhar S, Singh BK, Sharma A, Jana NR. Rescue of altered HDAC activity recovers behavioural abnormalities in a mouse model of Angelman syndrome. Neurobiol Dis 2017; 105:99-108. [PMID: 28576709 DOI: 10.1016/j.nbd.2017.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/29/2017] [Indexed: 11/24/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe intellectual and developmental disabilities. The disease is caused by the loss of function of maternally inherited UBE3A, a gene that exhibits paternal-specific imprinting in neuronal tissues. Ube3a-maternal deficient mice (AS mice) display many classical features of AS, although, the underlying mechanism of these behavioural deficits is poorly understood. Here we report that the absence of Ube3a in AS mice brain caused aberrant increase in HDAC1/2 along with decreased acetylation of histone H3/H4. Partial knockdown of Ube3a in cultured neuronal cells also lead to significant up-regulation of HDAC1/2 and consequent down-regulation of histones H3/H4 acetylation. Treatment of HDAC inhibitor, sodium valproate, to AS mice showed significant improvement in social, cognitive and motor impairment along with restoration of various proteins linked with synaptic function and plasticity. Interestingly, HDAC inhibitor also significantly increased the expression of Ube3a in cultured neuronal cells and in the brain of wild type mice but not in AS mice. These results indicate that anomalous HDAC1/2 activity might be linked with synaptic dysfunction and behavioural deficits in AS mice and suggests that HDAC inhibitors could be potential therapeutic molecule for the treatment of the disease.
Collapse
Affiliation(s)
- Imran Jamal
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon - 122 051, India
| | - Vipendra Kumar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon - 122 051, India
| | - Naman Vatsa
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon - 122 051, India
| | - Shashi Shekhar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon - 122 051, India
| | - Brijesh Kumar Singh
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon - 122 051, India
| | - Ankit Sharma
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon - 122 051, India
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon - 122 051, India.
| |
Collapse
|
27
|
Fang H, Wu Y, Yang H, Yoon M, Jiménez-Barrón LT, Mittelman D, Robison R, Wang K, Lyon GJ. Whole genome sequencing of one complex pedigree illustrates challenges with genomic medicine. BMC Med Genomics 2017; 10:10. [PMID: 28228131 PMCID: PMC5322674 DOI: 10.1186/s12920-017-0246-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Human Phenotype Ontology (HPO) has risen as a useful tool for precision medicine by providing a standardized vocabulary of phenotypic abnormalities to describe presentations of human pathologies; however, there have been relatively few reports combining whole genome sequencing (WGS) and HPO, especially in the context of structural variants. Methods We illustrate an integrative analysis of WGS and HPO using an extended pedigree, which involves Prader–Willi Syndrome (PWS), hereditary hemochromatosis (HH), and dysautonomia-like symptoms. A comprehensive WGS pipeline was used to ensure reliable detection of genomic variants. Beyond variant filtering, we pursued phenotypic prioritization of candidate genes using Phenolyzer. Results Regarding PWS, WGS confirmed a 5.5 Mb de novo deletion of the parental allele at 15q11.2 to 15q13.1. Phenolyzer successfully returned the diagnosis of PWS, and pinpointed clinically relevant genes in the deletion. Further, Phenolyzer revealed how each of the genes is linked with the phenotypes represented by HPO terms. For HH, WGS identified a known disease variant (p.C282Y) in HFE of an affected female. Analysis of HPO terms alone fails to provide a correct diagnosis, but Phenolyzer successfully revealed the phenotype-genotype relationship using a disease-centric approach. Finally, Phenolyzer also revealed the complexity behind dysautonomia-like symptoms, and seven variants that might be associated with the phenotypes were identified by manual filtering based on a dominant inheritance model. Conclusions The integration of WGS and HPO can inform comprehensive molecular diagnosis for patients, eliminate false positives and reveal novel insights into undiagnosed diseases. Due to extreme heterogeneity and insufficient knowledge of human diseases, it is also important that phenotypic and genomic data are standardized and shared simultaneously. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0246-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Fang
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, USA.,Simons Center for Quantitative Biology, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yiyang Wu
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, USA
| | - Hui Yang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Margaret Yoon
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Laura T Jiménez-Barrón
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, MX, Mexico
| | | | - Reid Robison
- Tute, Genomics Inc., 150 S 100 W, Provo, UT, USA.,Utah Foundation for Biomedical Research, Salt Lake City, UT, USA
| | - Kai Wang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA.,Department of Psychiatry, University of Southern California, Los Angeles, CA, USA.,Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.,Present Address: Department of Biomedical Informatics and Institute for Genomic Medicine, Columbia University Medical Center, New York, 10032, NY, USA
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, USA. .,Utah Foundation for Biomedical Research, Salt Lake City, UT, USA.
| |
Collapse
|
28
|
Kuslansky Y, Sominsky S, Jackman A, Gamell C, Monahan BJ, Haupt Y, Rosin-Arbesfeld R, Sherman L. Ubiquitin ligase E6AP mediates nonproteolytic polyubiquitylation of β-catenin independent of the E6 oncoprotein. J Gen Virol 2016; 97:3313-3330. [DOI: 10.1099/jgv.0.000624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yael Kuslansky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Sominsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Jackman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Cristina Gamell
- Research Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Brendon J. Monahan
- Division of Systems Biology and Personalized Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
| | - Ygal Haupt
- Research Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Levana Sherman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
LaSalle JM, Reiter LT, Chamberlain SJ. Epigenetic regulation of UBE3A and roles in human neurodevelopmental disorders. Epigenomics 2015; 7:1213-28. [PMID: 26585570 DOI: 10.2217/epi.15.70] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The E3 ubiquitin ligase UBE3A, also known as E6-AP, has a multitude of ascribed functions and targets relevant to human health and disease. Epigenetic regulation of the UBE3A gene by parentally imprinted noncoding transcription within human chromosome 15q11.2-q13.3 is responsible for the maternal-specific effects of 15q11.2-q13.3 deletion or duplication disorders. Here, we review the evidence for diverse and emerging roles for UBE3A in the proteasome, synapse and nucleus in regulating protein stability and transcription as well as the current mechanistic understanding of UBE3A imprinting in neurons. Angelman and Dup15q syndromes as well as experimental models of these neurodevelopmental disorders are highlighted as improving understanding of UBE3A and its complex regulation for improving therapeutic strategies.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology & Immunology, Genome Center & MIND Institute, University of California, Davis, CA 95616, USA
| | - Lawrence T Reiter
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stormy J Chamberlain
- Department of Genetics & Developmental Biology & Stem Cell Institute, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
30
|
Sadikovic B, Fernandes P, Zhang VW, Ward PA, Miloslavskaya I, Rhead W, Rosenbaum R, Gin R, Roa B, Fang P. Mutation Update for UBE3A variants in Angelman syndrome. Hum Mutat 2015; 35:1407-17. [PMID: 25212744 DOI: 10.1002/humu.22687] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/25/2014] [Indexed: 11/07/2022]
Abstract
Angelman syndrome is a neurodevelopmental disorder caused by a deficiency of the imprinted and maternally expressed UBE3A gene. Although de novo genetic and epigenetic imprinting defects of UBE3A genomic locus account for majority of Angelman diagnoses, approximately 10% of individuals affected with Angelman syndrome are a result of UBE3A loss-of-function mutations occurring on the expressed maternal chromosome. The variants described in this manuscript represent the analysis of 2,515 patients referred for UBE3A gene sequencing at our institution, along with a comprehensive review of the UBE3A mutation literature. Of these, 267 (10.62%) patients had a report issued for detection of a UBE3A gene nucleotide variant, which in many cases involved family studies resulting in reclassification of variants of unknown clinical significance (VUS). Overall, 111 (4.41%) probands had a nucleotide change classified as pathogenic or strongly favored to be pathogenic, 29 (1.15%) had a VUS, and 126 (5.0%) had a nucleotide change classified as benign or strongly favored to be benign. All variants and their clinical interpretations are submitted to NCBI ClinVar, a freely accessible human variation and phenotype database.
Collapse
Affiliation(s)
- Bekim Sadikovic
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Venhoranta H, Pausch H, Flisikowski K, Wurmser C, Taponen J, Rautala H, Kind A, Schnieke A, Fries R, Lohi H, Andersson M. In frame exon skipping in UBE3B is associated with developmental disorders and increased mortality in cattle. BMC Genomics 2014; 15:890. [PMID: 25306138 PMCID: PMC4203880 DOI: 10.1186/1471-2164-15-890] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022] Open
Abstract
Background Inherited developmental diseases can cause severe animal welfare and economic problems in dairy cattle. The use of a small number of bulls for artificial insemination (AI) carries a risk that recessive defects rapidly enrich in the population. In recent years, an increasing number of Finnish Ayrshire calves have been identified with signs of ptosis, intellectual disability, retarded growth and mortality, which constitute an inherited disorder classified as PIRM syndrome. Results We established a cohort of nine PIRM-affected calves and 38 unaffected half-siblings and performed a genome-wide association study (GWAS) to map the disease to a 700-kb region on bovine chromosome 17 (p = 1.55 × 10-9). Whole genome re-sequencing of an unaffected carrier, its affected progeny and 43 other unaffected animals from another breed identified a G > A substitution mutation at the last nucleotide of exon 23 in the ubiquitin protein ligase E3B encoding gene (UBE3B). UBE3B transcript analysis revealed in-frame exon skipping in the affected animals resulting in an altered protein lacking 40 amino acids, of which 20 are located in the conserved HECT-domain, the catalytic site of the UBE3B protein. Mutation screening in 129 Ayrshire AI bulls currently used in Finland indicated a high carrier frequency (17.1%). We also found that PIRM syndrome might be connected to the recently identified AH1 haplotype, which has a frequency of 26.1% in the United States Ayrshire population. Conclusion We describe PIRM syndrome in cattle, which is associated with the mutated UBE3B gene. The bovine phenotype resembles human Kaufman oculocerebrofacial syndrome, which is also caused by mutations in UBE3B. PIRM syndrome might be connected with the recently identified AH1 haplotype, which is associated with reduced fertility in the US Ayrshire population. This study enables the development of a genetic test to efficiently reduce the high frequency of mutant UBE3B in Ayrshires, significantly improving animal health and reducing economic loss. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-890) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heli Venhoranta
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Martinez ME, Charalambous M, Saferali A, Fiering S, Naumova AK, St Germain D, Ferguson-Smith AC, Hernandez A. Genomic imprinting variations in the mouse type 3 deiodinase gene between tissues and brain regions. Mol Endocrinol 2014; 28:1875-86. [PMID: 25232934 PMCID: PMC4213365 DOI: 10.1210/me.2014-1210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Dio3 gene, which encodes for the type 3 deiodinase (D3), controls thyroid hormone (TH) availability. The lack of D3 in mice results in tissue overexposure to TH and a broad neuroendocrine phenotype. Dio3 is an imprinted gene, preferentially expressed from the paternally inherited allele in the mouse fetus. However, heterozygous mice with paternal inheritance of the inactivating Dio3 mutation exhibit an attenuated phenotype when compared with that of Dio3 null mice. To investigate this milder phenotype, the allelic expression of Dio3 was evaluated in different mouse tissues. Preferential allelic expression of Dio3 from the paternal allele was observed in fetal tissues and neonatal brain regions, whereas the biallelic Dio3 expression occurred in the developing eye, testes, and cerebellum and in the postnatal brain neocortex, which expresses a larger Dio3 mRNA transcript. The newborn hypothalamus manifests the highest degree of Dio3 expression from the paternal allele, compared with other brain regions, and preferential allelic expression of Dio3 in the brain relaxed in late neonatal life. A methylation analysis of two regulatory regions of the Dio3 imprinted domain revealed modest but significant differences between tissues, but these did not consistently correlate with the observed patterns of Dio3 allelic expression. Deletion of the Dio3 gene and promoter did not result in significant changes in the tissue-specific patterns of Dio3 allelic expression. These results suggest the existence of unidentified epigenetic determinants of tissue-specific Dio3 imprinting. The resulting variation in the Dio3 allelic expression between tissues likely explains the phenotypic variation that results from paternal Dio3 haploinsufficiency.
Collapse
Affiliation(s)
- M Elena Martinez
- Department of Molecular Medicine (M.E.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Centre for Endocrinology (M.C.), William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 1BB, United Kingdom; Department of Obstetrics and Gynecology and Human Genetics (A.S., A.K.N.), McGill University, Montréal, Québec, Canada H9X 3V9; Department of Microbiology and Immunology (S.F.), Dartmouth Medical School, Lebanon, New Hampshire 03756; and Department of Genetics (A.C.F.-S.), University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
"Angelman syndrome" (AS) is a neurodevelopmental disorder whose main features are intellectual disability, lack of speech, seizures, and a characteristic behavioral profile. The behavioral features of AS include a happy demeanor, easily provoked laughter, short attention span, hypermotoric behavior, mouthing of objects, sleep disturbance, and an affinity for water. Microcephaly and subtle dysmorphic features, as well as ataxia and other movement disturbances, are additional features seen in most affected individuals. AS is due to deficient expression of the ubiquitin protein ligase E3A (UBE3A) gene, which displays paternal imprinting. There are four molecular classes of AS, and some genotype-phenotype correlations have emerged. Much remains to be understood regarding how insufficiency of E6-AP, the protein product of UBE3A, results in the observed neurodevelopmental deficits. Studies of mouse models of AS have implicated UBE3A in experience-dependent synaptic remodeling.
Collapse
Affiliation(s)
- Lynne M Bird
- Department of Pediatrics, University of California, Division of Genetics, Rady Children’s Hospital, San Diego, California, USA
| |
Collapse
|
34
|
Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet 2013; 9:e1004039. [PMID: 24385930 PMCID: PMC3873245 DOI: 10.1371/journal.pgen.1004039] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by maternal deficiency of the imprinted gene UBE3A. Individuals with AS suffer from intellectual disability, speech impairment, and motor dysfunction. Currently there is no cure for the disease. Here, we evaluated the phenotypic effect of activating the silenced paternal allele of Ube3a by depleting its antisense RNA Ube3a-ATS in mice. Premature termination of Ube3a-ATS by poly(A) cassette insertion activates expression of Ube3a from the paternal chromosome, and ameliorates many disease-related symptoms in the AS mouse model, including motor coordination defects, cognitive deficit, and impaired long-term potentiation. Studies on the imprinting mechanism of Ube3a revealed a pattern of biallelic transcription initiation with suppressed elongation of paternal Ube3a, implicating transcriptional collision between sense and antisense polymerases. These studies demonstrate the feasibility and utility of unsilencing the paternal copy of Ube3a via targeting Ube3a-ATS as a treatment for Angelman syndrome. Angelman syndrome (AS) is a devastating neurodevelopmental disorder diagnosed in young children, currently with no effective treatments. It is characterized by absence of speech, ataxia, intellectual disability, epilepsy, and a characteristic behavior of frequent laughter and smiling. The disease is caused by loss of the maternal allele of UBE3A, which is preferentially silenced on the paternal chromosome and expressed on the maternal chromosome in neurons due to genomic imprinting. It has been long proposed that by activating the originally silenced paternal allele of UBE3A, the disease may be cured. Here in our research, we demonstrated the feasibility of activating paternal Ube3a in mice by terminating the transcription of its antisense RNA Ube3a-ATS genetically. In the AS mouse model who additionally receives the terminated Ube3a-ATS allele from the paternal side, we observed restoration of Ube3a expression, amelioration of behavioral defects and reversal of the impaired long-term potentiation. We further studied the imprinting mechanisms of Ube3a and proposed a novel transcriptional collision model. These results provide solid in vivo evidence for a key regulatory role of Ube3a-ATS in the disease and open up an exciting possibility of a gene-specific treatment for Angelman syndrome.
Collapse
Affiliation(s)
- Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard Erwin Person
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ronchi VP, Klein JM, Edwards DJ, Haas AL. The active form of E6-associated protein (E6AP)/UBE3A ubiquitin ligase is an oligomer. J Biol Chem 2013; 289:1033-48. [PMID: 24273172 DOI: 10.1074/jbc.m113.517805] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Employing 125I-polyubiquitin chain formation as a functional readout of ligase activity, biochemical and biophysical evidence demonstrates that catalytically active E6-associated protein (E6AP)/UBE3A is an oligomer. Based on an extant structure previously discounted as an artifact of crystal packing forces, we propose that the fully active form of E6AP is a trimer, analysis of which reveals a buried surface of 7508Å2 and radially symmetric interacting residues that are conserved within the Hect (homologous to E6AP C terminus) ligase superfamily. An absolutely conserved interaction between Phe(727) and a hydrophobic pocket present on the adjacent subunit is critical for trimer stabilization because mutation disrupts the oligomer and decreases kcat 62-fold but fails to affect E2 ubiquitin binding or subsequent formation of the Hect domain Cys(820) ubiquitin thioester catalytic intermediate. Exogenous N-acetylphenylalanylamide reversibly antagonizes Phe(727)-dependent trimer formation and catalytic activity (Ki12 mM), as does a conserved-helical peptide corresponding to residues 474–490 of E6A Pisoform 1 (Ki22M) reported to bind the hydrophobic pocket of other Hect ligases, presumably blocking Phe(727) intercalation and trimer formation. Conversely, oncogenic human papillomavirus-16/18 E6 protein significantly enhances E6AP catalytic activity by promoting trimer formation (Kactivation 1.5 nM) through the ability of E6 to form homodimers. Recombinant E6 protein additionally rescues the kcat defect of the Phe(727) mutation and that of a specific loss-of-function Angelman syndrome mutation that promotes trimer destabilization. The present findings codify otherwise disparate observations regarding the mechanism of E6AP and related Hect ligases in addition to suggesting therapeutic approaches for modulating ligase activity.
Collapse
|
36
|
Tzagkaraki E, Sofocleous C, Fryssira-Kanioura H, Dinopoulos A, Goulielmos G, Mavrou A, Kitsiou-Tzeli S, Kanavakis E, Sofia KT, Kanavakis E. Screening of UBE3A gene in patients referred for Angelman Syndrome. Eur J Paediatr Neurol 2013; 17:366-73. [PMID: 23416059 DOI: 10.1016/j.ejpn.2012.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 01/05/2023]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder characterized by severe developmental delay, speech impairment and unique behaviors including inappropriate laughter and happy disposition. AS is related to deficient maternal UBE3A gene expression caused either by chromosomal deletions, uniparental disomy, molecular defects of the imprinted 15q11-q13 critical region or by loss of function mutations in the maternally inherited UBE3A. In the present study, screening UBE3A was performed in 43 patients who were referred for AS but whom previous molecular diagnostic tests failed to provide a diagnosis. Two causative mutations--one of them novel--and four polymorphic variants one of which is also novel were revealed. Further investigation of 7 patients disclosed defects in other genes involved in clinical phenotypes mimicking AS. A typical EEG pattern and microcephaly in patients with developmental delay prompt for AS investigation while wide genetic screening should be applied to help resolution of the complex phenotypes characterized by developmental delay.
Collapse
Affiliation(s)
- Evmorfia Tzagkaraki
- Department of Medical Genetics, University of Athens School of Medicine, Choremeio Research Laboratory, Aghia Sophia Children's Hospital, Thivon and Levadeias str, 11527 Goudi, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc. Proc Natl Acad Sci U S A 2013; 110:8888-93. [PMID: 23671107 DOI: 10.1073/pnas.1302792110] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inactivation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with development of the Angelman syndrome. Recently, it was reported that in mice, loss of E6AP expression results in increased levels of the synaptic protein Arc and a concomitant impaired synaptic function, providing an explanation for some phenotypic features of Angelman syndrome patients. Accordingly, E6AP has been shown to negatively regulate activity-regulated cytoskeleton-associated protein (Arc) and it has been suggested that E6AP targets Arc for ubiquitination and degradation. In our study, we provide evidence that Arc is not a direct substrate for E6AP and binds only weakly to E6AP, if at all. Furthermore, we show that down-regulation of E6AP expression stimulates estradiol-induced transcription of the Arc gene. Thus, we propose that Arc protein levels are controlled by E6AP at the transcriptional rather than at the posttranslational level.
Collapse
|
38
|
Jensen L, Farook MF, Reiter LT. Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One 2013; 8:e61952. [PMID: 23626758 PMCID: PMC3633955 DOI: 10.1371/journal.pone.0061952] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/15/2013] [Indexed: 12/19/2022] Open
Abstract
The molecular defects associated with Angelman syndrome (AS) and 15q duplication autism are directly correlated to expression levels of the E3 ubiquitin ligase protein UBE3A. Here we used Drosophila melanogaster to screen for the targets of this ubiquitin ligase under conditions of both decreased (as in AS) or increased (as in dup(15)) levels of the fly Dube3a or human UBE3A proteins. Using liquid phase isoelectric focusing of proteins from whole fly head extracts we identified a total of 50 proteins that show changes in protein, and in some cases transcriptional levels, when Dube3a fluctuates. We analyzed head extracts from cytoplasmic, nuclear and membrane fractions for Dube3a regulated proteins. Our results indicate that Dube3a is involved in the regulation of cellular functions related to ATP synthesis/metabolism, actin cytoskeletal integrity, both catabolism and carbohydrate metabolism as well as nervous system development and function. Sixty-two percent of the proteins were >50% identical to homologous human proteins and 8 have previously be shown to be ubiquitinated in the fly nervous system. Eight proteins may be regulated by Dube3a at the transcript level through the transcriptional co-activation function of Dube3a. We investigated one autism-associated protein, ATPα, and found that it can be ubiquitinated in a Dube3a dependent manner. We also found that Dube3a mutants have significantly less filamentous actin than wild type larvae consistent with the identification of actin targets regulated by Dube3a. The identification of UBE3A targets is the first step in unraveling the molecular etiology of AS and duplication 15q autism.
Collapse
Affiliation(s)
- Laura Jensen
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - M. Febin Farook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lawrence T. Reiter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
39
|
Bai JL, Qu YJ, Jin YW, Wang H, Yang YL, Jiang YW, Yang XY, Zou LP, Song F. Molecular and clinical characterization of Angelman syndrome in Chinese patients. Clin Genet 2013; 85:273-7. [PMID: 23551092 DOI: 10.1111/cge.12155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023]
Abstract
Angelman syndrome (AS) is a neurobehavioral disorder caused by lack of function of the maternal copy of the ubiquitin-protein ligase E3A (UBE3A) gene. In our study, 49 unrelated patients with classic AS phenotypes were confirmed by methylation-specific PCR (MS-PCR) analysis, short tandem repeat linkage analysis, and mutation screening of the UBE3A gene. Among the Chinese AS patients, 83.7% (41/49) had deletions on maternal chromosome 15q11.2-13. Paternal uniparental disomy, imprinting defects, and UBE3A gene mutations each accounted for 4.1% (2/49). Two AS patients were confirmed by MS-PCR analysis, but the pathogenic mechanism was unknown because their parents' samples were unavailable. Of the two described UBE3A gene mutations, that is, p.Pro400His (c.1199C>A) and p.Asp563Gly (c.1688A>G), the latter has not been reported previously. Mutation transmission analysis showed that the p.Pro400His and p.Asp563Gly mutations originated from asymptomatic mothers. The patients with the maternal deletion showed AS clinical manifestations that were consistent with other studies. However, the incidence of microcephaly (36.7%, 11/30) was lower than that in the Caucasian population (approximately 80%), but similar to that of the Japanese population (34.5%). Our study demonstrated that the occurrence of microcephaly in AS may vary among different populations.
Collapse
Affiliation(s)
- J-L Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Scheffner M, Kumar S. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:61-74. [PMID: 23545411 DOI: 10.1016/j.bbamcr.2013.03.024] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/18/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
Members of the HECT family of E3 ubiquitin-protein ligases are characterized by a C-terminal HECT domain that catalyzes the covalent attachment of ubiquitin to substrate proteins and by N-terminal extensions of variable length and domain architecture that determine the substrate spectrum of a respective HECT E3. Since their discovery in 1995, it has become clear that deregulation of distinct HECT E3s plays an eminent role in human disease or disease-related processes including cancer, cardiovascular and neurological disorders, viral infections, and immune response. Thus, a detailed understanding of the structure-function aspects of HECT E3s as well as the identification and characterization of the substrates and regulators of HECT E3s is critical in developing new approaches in the treatment of respective diseases. In this review, we summarize what is currently known about mammalian HECT E3s, with a focus on their biological functions and roles in pathophysiology.This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Martin Scheffner
- Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
41
|
Al-Maawali A, Machado J, Fang P, Dupuis L, Faghfoury H, Mendoza-Londono R. Angelman syndrome due to a termination codon mutation of the UBE3A gene. J Child Neurol 2013; 28:392-5. [PMID: 22566713 DOI: 10.1177/0883073812443591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Angelman syndrome is a neurodevelopmental disorder characterized by global developmental delay, mental retardation, seizures, microcephaly, and severe speech delay. It may be caused by deletion of chromosome region 15q11.2 of the maternally inherited chromosome, mutations in the UBE3A gene, uniparental disomy, or imprinting defects. Most patients with this diagnosis have a severe phenotype, and a few have a mild form of the disease. We report a patient with a novel mutation in the UBE3A gene that consists of a deletion of the termination codon (c.2556-*+6del GTAAAACAAA) and results in an elongated protein E3 ubiquitin-protein ligase. Our patient has a mild phenotype compared with other patients in general and specifically to patients with UBE3A mutations. He has mild developmental delay, moderate speech delay, and no seizures. Recognition of this genotype-phenotype correlation will allow better genetic counseling to other patients with similar stop codon mutations.
Collapse
Affiliation(s)
- Almundher Al-Maawali
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
42
|
De Molfetta GA, Ferreira CA, Vidal DO, Giuliani LDR, Maldonado MJ, Silva WA. 1031-1034delTAAC (Leu125Stop): a novel familial UBE3A mutation causing Angelman syndrome in two siblings showing distinct phenotypes. BMC MEDICAL GENETICS 2012; 13:124. [PMID: 23256887 PMCID: PMC3543165 DOI: 10.1186/1471-2350-13-124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/13/2012] [Indexed: 11/23/2022]
Abstract
Background More than 50 mutations in the UBE3A gene (E6-AP ubiquitin protein ligase gene) have been found in Angelman syndrome patients with no deletion, no uniparental disomy, and no imprinting defect. Case Presentation We here describe a novel UBE3A frameshift mutation in two siblings who have inherited it from their asymptomatic mother. Despite carrying the same UBE3A mutation, the proband shows a more severe phenotype whereas his sister shows a milder phenotype presenting the typical AS features. Conclusions We hypothesized that the mutation Leu125Stop causes both severe and milder phenotypes. Potential mechanisms include: i) maybe the proband has an additional problem (genetic or environmental) besides the UBE3A mutation; ii) since the two siblings have different fathers, the UBE3A mutation is interacting with a different genetic variant in the proband that, by itself, does not cause problems but in combination with the UBE3A mutation causes the severe phenotype; iii) this UBE3A mutation alone can cause either typical AS or the severe clinical picture seen in the proband.
Collapse
|
43
|
Smith DG, Ehlers MD. Mining and modeling human genetics for autism therapeutics. Curr Opin Neurobiol 2012; 22:902-910. [PMID: 22483267 DOI: 10.1016/j.conb.2012.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/09/2012] [Indexed: 11/22/2022]
Abstract
A growing understanding of the genetic origins of autism spectrum disorders (ASDs) and the impact of ASD risk genes on synaptic function presents new opportunities for drug discovery. Large-scale human genetics studies have begun to reveal molecular pathways and potential therapeutic drug targets. Subsequent validation and characterization of ASD risk genes in mouse models holds promise for defining relevant cellular mechanisms and brain circuits associated with the core behavioral symptoms of autism. Here we review recent advances in the molecular therapeutics in ASDs and discuss opportunities and obstacles for converting emerging biology into new medicines. We present emerging concepts on the impact of risk genes during development and adulthood that define points of intervention. We further highlight ongoing clinical trials in patients with syndromic forms of autism. These clinical studies will be an important test of the utility of human genetics as a starting point for drug discovery in ASDs.
Collapse
Affiliation(s)
- Daniel G Smith
- Pfizer Worldwide Research and Development, Neuroscience Research Unit, Groton, CT 06340, USA.
| | | |
Collapse
|
44
|
Farook MF, DeCuypere M, Hyland K, Takumi T, LeDoux MS, Reiter LT. Altered serotonin, dopamine and norepinepherine levels in 15q duplication and Angelman syndrome mouse models. PLoS One 2012; 7:e43030. [PMID: 22916201 PMCID: PMC3420863 DOI: 10.1371/journal.pone.0043030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/16/2012] [Indexed: 01/18/2023] Open
Abstract
Childhood neurodevelopmental disorders like Angelman syndrome and autism may be the result of underlying defects in neuronal plasticity and ongoing problems with synaptic signaling. Some of these defects may be due to abnormal monoamine levels in different regions of the brain. Ube3a, a gene that causes Angelman syndrome (AS) when maternally deleted and is associated with autism when maternally duplicated has recently been shown to regulate monoamine synthesis in the Drosophila brain. Therefore, we examined monoamine levels in striatum, ventral midbrain, frontal cerebral cortex, cerebellar cortex and hippocampus in Ube3a deficient and Ube3a duplication animals. We found that serotonin (5HT), a monoamine affected in autism, was elevated in the striatum and cortex of AS mice. Dopamine levels were almost uniformly elevated compared to control littermates in the striatum, midbrain and frontal cortex regardless of genotype in Ube3a deficient and Ube3a duplication animals. In the duplication 15q autism mouse model, paternal but not maternal duplication animals showed a decrease in 5HT levels when compared to their wild type littermates, in accordance with previously published data. However, maternal duplication animals show no significant changes in 5HT levels throughout the brain. These abnormal monoamine levels could be responsible for many of the behavioral abnormalities observed in both AS and autism, but further investigation is required to determine if any of these changes are purely dependent on Ube3a levels in the brain.
Collapse
Affiliation(s)
- M. Febin Farook
- Department of Neurology, UTHSC, Memphis, Tennessee, United States of America
| | - Michael DeCuypere
- Department of Neurosurgery, UTHSC, Memphis, Tennessee, United States of America
| | - Keith Hyland
- Medical Neurogenetics, LCC, Atlanta, Georgia, United States of America
| | - Toru Takumi
- Hiroshima University, School of Medicine, Hiroshima, Japan
| | - Mark S. LeDoux
- Department of Neurology, UTHSC, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, UTHSC, Memphis, Tennessee, United States of America
| | - Lawrence T. Reiter
- Department of Neurology, UTHSC, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, UTHSC, Memphis, Tennessee, United States of America
- Department of Pediatrics, UTHSC, Memphis, Tennessee, United States of America
| |
Collapse
|
45
|
Godavarthi SK, Dey P, Maheshwari M, Jana NR. Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome. Hum Mol Genet 2012; 21:1824-34. [PMID: 22215440 DOI: 10.1093/hmg/ddr614] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused due to deletions or loss-of-function mutations in maternally inherited UBE3A. Ube3a functions as an ubiquitin ligase as well as a transcriptional coactivator of steroid hormone receptors. However, the mechanisms by which maternal Ube3a deficiency gives rise to phenotypic features of AS are not clear. We report here that Ube3a regulates glucocorticoid receptor (GR) transactivation and GR signaling pathway is disrupted in Ube3a-maternal-deficient mice brain. The expression of several GR-dependent genes is down-regulated in multiple brain regions of Ube3a-maternal-deficient mice. AS mice show significantly higher level of blood corticosterone, selective loss of GR and reduced number of parvalbumin-positive inhibitory interneurons in their hippocampus that could ultimately lead to increased stress. These mice also exhibit increased anxiety-like behavior, which could be due to chronic stress. Altogether, our findings suggest that chronic stress due to altered GR signaling might lead to anxiety-like behavior in a mouse of model of AS.
Collapse
Affiliation(s)
- Swetha K Godavarthi
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | | | | | | |
Collapse
|
46
|
Hung CC, Lin SY, Lin SP, Chen CP, Chen LY, Lee CN, Su YN. Quantitative and qualitative analyses of the SNRPN gene using real-time PCR with melting curve analysis. J Mol Diagn 2011; 13:609-13. [PMID: 21889609 DOI: 10.1016/j.jmoldx.2011.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/06/2011] [Accepted: 06/22/2011] [Indexed: 11/26/2022] Open
Abstract
Prader-Willi syndrome and Angelman syndrome are distinct neurodevelopmental disorders that are associated with the deletion of the chromosomal 15q11-13 region or uniparental disomy of chromosome 15. In this article, we applied SYBR Green I-based real-time PCR and melting curve analysis assay for rapid genotyping of the small nuclear ribonucleoprotein polypeptide N (SNRPN) gene methylation status and for detecting aberrations in copy number in a single tube. A single pair of primers was designed to create a 357 bp fragment containing the cytosine phosphodiester guanine islands in the SNRPN promoter and to amplify both unmethylated and methylated sequences. Genotypes were identified based on the TC value for copy number changes and the characteristic melting temperature of methylated cytosine phosphodiester guanine. Genotyping of SNRPN was performed on blood samples of 20 individuals with Prader-Willi syndrome, 3 individuals with Angelman syndrome, and 20 unaffected individuals. The promoter methylation status and the copy number changes were successfully determined and compared with standard methylation-specific PCR, and were validated by multiplex ligation-dependent probe amplification. This single-tube, SYBR Green I, real-time PCR with melting curve assay is rapid, reliable, sensitive, and easy to perform. It is suitable for high-throughput analysis as an alternative technique for quantitative and qualitative analysis of target genes.
Collapse
Affiliation(s)
- Chia-Cheng Hung
- Graduate Institutes of Clinical Genomics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
GRIM-19 disrupts E6/E6AP complex to rescue p53 and induce apoptosis in cervical cancers. PLoS One 2011; 6:e22065. [PMID: 21765936 PMCID: PMC3134474 DOI: 10.1371/journal.pone.0022065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/14/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Our previous studies showed a down-regulation of GRIM-19 in primary human cervical cancers, and restoration of GRIM-19 induced tumor regression. The induction of tumor suppressor protein p53 ubiquitination and degradation by E6 oncoportein of high risk-HPV through forming a stable complex with E6AP is considered as a critical mechanism for cervical tumor development. The aims of this study were to determine the potential role of GRIM-19 in rescuing p53 protein and inducing cervical cancer cell apoptosis. METHODOLOGY/PRINCIPAL FINDINGS The protein levels of GRIM-19 and p53 were detected in normal cervical tissues from 45 patients who underwent hysterectomy for reasons other than neoplasias of either the cervix or endometrium, and cervical cancer tissues from 60 patients with non-metastatic squamous epithelial carcinomas. Coimmunoprecipitation and GST pull-down assay were performed to examine the interaction of GRIM-19 with 18E6 and E6AP in vivo and in vitro respectively. The competition of 18E6 with E6AP in binding GRIM-19 by performing competition pull-down assays was designed to examine the disruption of E6/E6AP complex by GRIM-19. The augment of E6AP ubiquitination by GRIM-19 was detected in vivo and in vitro ubiquitination assay. The effects of GRIM-19-dependent p53 accumulation on cell proliferation, cell cycle, apoptosis were explored by MTT, flow cytometry and transmission electron microscopy respectively. The tumor suppression was detected by xenograft mouse model. CONCLUSION/SIGNIFICANCE The levels of GRIM-19 and p53 were concurrently down regulated in cervical cancers. The restoration of GRIM-19 can induce ubiquitination and degradation of E6AP, and disrupt the E6/E6AP complex through the interaction of N-terminus of GRIM-19 with both E6 and E6AP, which protected p53 from degradation and promoted cell apoptosis. Tumor xenograft studies also revealed the suppression of p53 degradation in presence of GRIM-19. These data suggest that GRIM-19 can block E6/E6AP complex; and synergistically suppress cervical tumor growth with p53.
Collapse
|
48
|
Guffanti G, Strik Lievers L, Bonati MT, Marchi M, Geronazzo L, Nardocci N, Estienne M, Larizza L, Macciardi F, Russo S. Role of UBE3A and ATP10A genes in autism susceptibility region 15q11-q13 in an Italian population: a positive replication for UBE3A. Psychiatry Res 2011; 185:33-8. [PMID: 20609483 DOI: 10.1016/j.psychres.2010.04.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/15/2010] [Accepted: 04/30/2010] [Indexed: 01/23/2023]
Abstract
The aetiology of autism is still largely unknown despite analyses from family and twin studies demonstrating substantial genetic role in the aetiology of the disorder. Data from linkage studies and analyses of chromosomal abnormalities identified 15q11-q13 as a region of particular aetiopathogenesis interest. We screened a set of markers spanning two known imprinted, maternally expressed genes, UBE3A and ATP10A, harboured in this candidate region. We replicated evidence of linkage disequilibrium (LD) at marker D15S122, located at the 5' end of UBE3A and originally reported by Nurmi et al. (2001). The potential role of UBE3A in our family-based association study is further supported by the association of two haplotypes that include one of the alleles of D15S122 and by the transmission disequilibrium test (TDT) evidence of the same allele in a parent of origin effect analysis. In a secondary analysis, we provided the first evidence of a significant association between first word delay and psychomotor regression with the 15q11-q13 region. Our data support a potential role of UBE3A in the complex pathogenic mechanisms of autism.
Collapse
|
49
|
Mulherkar SA, Jana NR. Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiol Dis 2010; 40:586-92. [DOI: 10.1016/j.nbd.2010.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 07/16/2010] [Accepted: 08/01/2010] [Indexed: 01/25/2023] Open
|
50
|
Abstract
Angelman syndrome is characterized by severe developmental delay, speech impairment, gait ataxia and/or tremulousness of the limbs, and a unique behavioral phenotype that includes happy demeanor and excessive laughter. Microcephaly and seizures are common. Developmental delays are first noted at 3 to 6 months age, but the unique clinical features of the syndrome do not become manifest until after age 1 year. Management includes treatment of gastrointestinal symptoms, use of antiepileptic drugs for seizures, and provision of physical, occupational, and speech therapy with an emphasis on nonverbal methods of communication. The diagnosis rests on a combination of clinical criteria and molecular and/or cytogenetic testing. Analysis of parent-specific DNA methylation imprints in the 15q11.2-q13 chromosome region detects approximately 78% of individuals with lack of maternal contribution. Less than 1% of individuals have a visible chromosome rearrangement. UBE3A sequence analysis detects mutations in an additional 11% of individuals. The remaining 10% of individuals with classic phenotypic features of Angelman syndrome have a presently unidentified genetic mechanism and thus are not amenable to diagnostic testing. The risk to sibs of a proband depends on the genetic mechanism of the loss of the maternally contributed Angelman syndrome/Prader-Willi syndrome region: typically <1% for probands with a deletion or uniparental disomy; as high as 50% for probands with an imprinting defect or a mutation of UBE3A. Members of the mother's extended family are also at increased risk when an imprinting defect or a UBE3A mutation is present. Chromosome rearrangements may be inherited or de novo. Prenatal testing is possible for certain genetic mechanisms.
Collapse
|