1
|
Maestri S, Scalzo D, Damaggio G, Zobel M, Besusso D, Cattaneo E. Navigating triplet repeats sequencing: concepts, methodological challenges and perspective for Huntington's disease. Nucleic Acids Res 2024:gkae1155. [PMID: 39676657 DOI: 10.1093/nar/gkae1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The accurate characterization of triplet repeats, especially the overrepresented CAG repeats, is increasingly relevant for several reasons. First, germline expansion of CAG repeats above a gene-specific threshold causes multiple neurodegenerative disorders; for instance, Huntington's disease (HD) is triggered by >36 CAG repeats in the huntingtin (HTT) gene. Second, extreme expansions up to 800 CAG repeats have been found in specific cell types affected by the disease. Third, synonymous single nucleotide variants within the CAG repeat stretch influence the age of disease onset. Thus, new sequencing-based protocols that profile both the length and the exact nucleotide sequence of triplet repeats are crucial. Various strategies to enrich the target gene over the background, along with sequencing platforms and bioinformatic pipelines, are under development. This review discusses the concepts, challenges, and methodological opportunities for analyzing triplet repeats, using HD as a case study. Starting with traditional approaches, we will explore how sequencing-based methods have evolved to meet increasing scientific demands. We will also highlight experimental and bioinformatic challenges, aiming to provide a guide for accurate triplet repeat characterization for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Simone Maestri
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Davide Scalzo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Gianluca Damaggio
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Martina Zobel
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Street Francesco Sforza, 35, 20122, Milan, Italy
| |
Collapse
|
2
|
Louis JM, Frias JA, Schroader JH, Jones LA, Davey EE, Lennon CD, Chacko J, Cleary JD, Berglund JA, Reddy K. Expression levels of core spliceosomal proteins modulate the MBNL-mediated spliceopathy in DM1. Hum Mol Genet 2024; 33:1873-1886. [PMID: 39180495 PMCID: PMC11540926 DOI: 10.1093/hmg/ddae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/26/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a heterogeneous multisystemic disease caused by a CTG repeat expansion in DMPK. Transcription of the expanded allele produces toxic CUG repeat RNA that sequesters the MBNL family of alternative splicing (AS) regulators into ribonuclear foci, leading to pathogenic mis-splicing. To identify genetic modifiers of toxic CUG RNA levels and the spliceopathy, we performed a genome-scale siRNA screen using an established HeLa DM1 repeat-selective screening platform. We unexpectedly identified core spliceosomal proteins as a new class of modifiers that rescue the spliceopathy in DM1. Modest knockdown of one of our top hits, SNRPD2, in DM1 fibroblasts and myoblasts, significantly reduces DMPK expression and partially rescues MBNL-regulated AS dysfunction. While the focus on the DM1 spliceopathy has centered around the MBNL proteins, our work reveals an unappreciated role for MBNL:spliceosomal protein stoichiometry in modulating the spliceopathy, revealing new biological and therapeutic avenues for DM1.
Collapse
Affiliation(s)
- Jiss M Louis
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jesus A Frias
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Lindsey A Jones
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Emily E Davey
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Claudia D Lennon
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jacob Chacko
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - John D Cleary
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - J Andrew Berglund
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| |
Collapse
|
3
|
Dolzhenko E, English A, Dashnow H, De Sena Brandine G, Mokveld T, Rowell WJ, Karniski C, Kronenberg Z, Danzi MC, Cheung WA, Bi C, Farrow E, Wenger A, Chua KP, Martínez-Cerdeño V, Bartley TD, Jin P, Nelson DL, Zuchner S, Pastinen T, Quinlan AR, Sedlazeck FJ, Eberle MA. Characterization and visualization of tandem repeats at genome scale. Nat Biotechnol 2024; 42:1606-1614. [PMID: 38168995 DOI: 10.1038/s41587-023-02057-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Tandem repeat (TR) variation is associated with gene expression changes and numerous rare monogenic diseases. Although long-read sequencing provides accurate full-length sequences and methylation of TRs, there is still a need for computational methods to profile TRs across the genome. Here we introduce the Tandem Repeat Genotyping Tool (TRGT) and an accompanying TR database. TRGT determines the consensus sequences and methylation levels of specified TRs from PacBio HiFi sequencing data. It also reports reads that support each repeat allele. These reads can be subsequently visualized with a companion TR visualization tool. Assessing 937,122 TRs, TRGT showed a Mendelian concordance of 98.38%, allowing a single repeat unit difference. In six samples with known repeat expansions, TRGT detected all expansions while also identifying methylation signals and mosaicism and providing finer repeat length resolution than existing methods. Additionally, we released a database with allele sequences and methylation levels for 937,122 TRs across 100 genomes.
Collapse
Affiliation(s)
| | - Adam English
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Harriet Dashnow
- Departments of Human Genetics and Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | | | - Tom Mokveld
- Pacific Biosciences of California, Menlo Park, CA, USA
| | | | | | | | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Chengpeng Bi
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Emily Farrow
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Aaron Wenger
- Pacific Biosciences of California, Menlo Park, CA, USA
| | - Khi Pin Chua
- Pacific Biosciences of California, Menlo Park, CA, USA
| | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, Shriner's Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| | - Trevor D Bartley
- Institute for Pediatric Regenerative Medicine, Shriner's Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Aaron R Quinlan
- Departments of Human Genetics and Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | | |
Collapse
|
4
|
Seifert BA, Reddi HV, Kang BE, Bean LJH, Shealy A, Rose NC. Myotonic dystrophy type 1 testing, 2024 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2024; 26:101145. [PMID: 38836869 PMCID: PMC11298302 DOI: 10.1016/j.gim.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a form of muscular dystrophy causing progressive muscle loss and weakness. Although clinical features can manifest at any age, it is the most common form of muscular dystrophy with onset in adulthood. DM1 is an autosomal dominant condition, resulting from an unstable CTG expansion in the 3'-untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. The age of onset and the severity of the phenotype are roughly correlated with the size of the CTG expansion. Multiple methodologies can be used to diagnose affected individuals with DM1, including polymerase chain reaction, Southern blot, and triplet repeat-primed polymerase chain reaction. Recently, triplet repeat interruptions have been described, which may affect clinical outcomes of a fully-variable allele in DMPK. This document supersedes the Technical Standards and Guidelines for Myotonic Dystrophy originally published in 2009 and reaffirmed in 2015. It is designed for genetic testing professionals who are already familiar with the disease and the methods of analysis.
Collapse
Affiliation(s)
- Bryce A Seifert
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Honey V Reddi
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Benjamin E Kang
- Department of Pathology and Pediatrics, University of Michigan Medical School, Ann Arbor, MI; Vanderbilt University Medical Center, Nashville, TN
| | | | - Amy Shealy
- Cleveland Clinic Center for Personalized Genetic Healthcare, Cleveland, OH
| | - Nancy C Rose
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT
| |
Collapse
|
5
|
Serra L, Petrucci A, Bruschini M, Botta A, Campisi C, Caltagirone C, Bozzali M. Different neuropsychological and brain volumetric profiles in a pair of identical twins with myotonic dystrophy type 1 indicate a non-genetic modulation of clinical phenotype. Neuromuscul Disord 2024; 40:24-30. [PMID: 38810327 DOI: 10.1016/j.nmd.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
We report on genetic and environmental modulation of social cognition abilities and brain volume correlates in two monozygotic twins (Twin1 and Twin2) with genetically confirmed myotonic dystrophy-type1 who grew up in different environmental settings. They both underwent neuropsychological assessment (i.e., Intelligent Quotient [IQ], theory of mind, emotion recognition tests), and MRI scanning to evaluate regional brain volumetrics compared to 10 gender and sex-matched healthy controls. Against a normal IQ level in both patients, Twin1 was more impaired in emotional processing and Twin2 in cognitive aspects of social cognition. Both patients showed grey matter (GM) atrophy in Brodmann Areas 23/31 (BA23/31) and BA7 bilaterally, while Twin2 showed additional GM loss in right BA46. Both patients showed a similar pattern of white matter atrophy involving the thalamus, basal ganglia, and uncinate fasciculus. White matter atrophy appeared to be mostly driven by genetics, while grey matter volumes appeared associated with different impairments in social cognition and possibly modulated by environment.
Collapse
Affiliation(s)
- Laura Serra
- Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Via Ardeatina, 306, 00179, Rome, Italy.
| | - Antonio Petrucci
- UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Via Portuense, 332, 00149 Rome, Italy
| | - Michela Bruschini
- Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Corrado Campisi
- Neuroscience Department "Rita Levi Montalcini", University of Turin, Turin Italy
| | - Carlo Caltagirone
- Clinical and Behavioural Neurology Laboratory Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Marco Bozzali
- Neuroscience Department "Rita Levi Montalcini", University of Turin, Turin Italy
| |
Collapse
|
6
|
Laß J, Lüth T, Schlüter K, Schaake S, Laabs BH, Much C, Jamora RD, Rosales RL, Saranza G, Diesta CCE, Pearson CE, König IR, Brüggemann N, Klein C, Westenberger A, Trinh J. Stability of Mosaic Divergent Repeat Interruptions in X-Linked Dystonia-Parkinsonism. Mov Disord 2024; 39:1145-1153. [PMID: 38616406 DOI: 10.1002/mds.29809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND X-Linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by rapidly progressive dystonia and parkinsonism. Mosaic Divergent Repeat Interruptions affecting motif Length and Sequence (mDRILS) were recently found within the TAF1 SVA repeat tract and were shown to associate with repeat stability and age at onset in XDP, specifically the AGGG [5'-SINE-VNTR-Alu(AGAGGG)2AGGG(AGAGGG)n] mDRILS. OBJECTIVE This study aimed to investigate the stability of mDRILS frequencies and stability of (AGAGGG)n repeat length during transmission in parent-offspring pairs. METHODS Fifty-six families (n = 130) were investigated for generational transmission of repeat length and mDRILS. The mDRILS stability of 16 individuals was assessed at two sampling points 1 year apart. DNA was sequenced with long-read technologies after long-range polymerase chain reaction amplification of the TAF1 SVA. Repeat number and mDRILS were detected with Noise-Cancelling Repeat Finder (NCRF). RESULTS When comparing the repeat domain, 51 of 65 children had either contractions or expansions of the repeat length. The AGGG frequency remained stable across generations at 0.074 (IQR: 0.069-0.078) (z = -0.526; P = 0.599). However, the median AGGG frequency in children with an expansion (0.072 [IQR: 0.066-0.076]) was lower compared with children with retention or contraction (0.080 [IQR: 0.073-0.083]) (z = -0.007; P = 0.003). In a logistic regression model, the AGGG frequency predicted the outcome of either expansion or retention/contraction when including repeat number and sex as covariates (β = 80.7; z-score = 2.63; P = 0.0085). The AGGG frequency varied slightly over 1 year (0.070 [IQR: 0.063-0.080] to 0.073 [IQR: 0.069-0.078]). CONCLUSIONS Our results show that a higher AGGG frequency may stabilize repeats across generations. This highlights the importance of further investigating mDRILS as a disease-modifying factor with generational differences. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joshua Laß
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Christoph Much
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Roland Dominic Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Raymond L Rosales
- Department of Neurology and Psychiatry, University of Santo Tomas and the CNS-Metropolitan Medical Center, Manila, Philippines Section of Neurology, Manila, Philippines
| | - Gerard Saranza
- Department of Internal Medicine, Chong Hua Hospital, Cebu, Philippines
| | - Cid Czarina E Diesta
- Department of Neurosciences, Movement Disorders Clinic, Makati Medical Center, Makati City, Philippines
| | | | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Nguyen CDL, Jimenez-Moreno AC, Merker M, Bowers CJ, Nikolenko N, Hentschel A, Müntefering T, Isham A, Ruck T, Vorgerd M, Dobelmann V, Gourdon G, Schara-Schmidt U, Gangfuss A, Schröder C, Sickmann A, Gross C, Gorman G, Stenzel W, Kollipara L, Hathazi D, Spendiff S, Gagnon C, Preusse C, Duchesne E, Lochmüller H, Roos A. Periostin as a blood biomarker of muscle cell fibrosis, cardiomyopathy and disease severity in myotonic dystrophy type 1. J Neurol 2023; 270:3138-3158. [PMID: 36892629 DOI: 10.1007/s00415-023-11633-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND AND PURPOSE Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy and is caused by an repeat expansion [r(CUG)exp] located in the 3' untranslated region of the DMPK gene. Symptoms include skeletal and cardiac muscle dysfunction and fibrosis. In DM1, there is a lack of established biomarkers in routine clinical practice. Thus, we aimed to identify a blood biomarker with relevance for DM1-pathophysiology and clinical presentation. METHODS We collected fibroblasts from 11, skeletal muscles from 27, and blood samples from 158 DM1 patients. Moreover, serum, cardiac, and skeletal muscle samples from DMSXL mice were included. We employed proteomics, immunostaining, qPCR and ELISA. Periostin level were correlated with CMRI-data available for some patients. RESULTS Our studies identified Periostin, a modulator of fibrosis, as a novel biomarker candidate for DM1: proteomic profiling of human fibroblasts and murine skeletal muscles showed significant dysregulation of Periostin. Immunostaining on skeletal and cardiac muscles from DM1 patients and DMSXL mice showed an extracellular increase of Periostin, indicating fibrosis. qPCR studies indicated increased POSTN expression in fibroblasts and muscle. Quantification of Periostin in blood samples from DMSXL mice and two large validation cohorts of DM1 patients showed decreased levels in animals and diseased individuals correlating with repeat expansion and disease severity and presence of cardiac symptoms identified by MRI. Analyses of longitudinal blood samples revealed no correlation with disease progression. CONCLUSIONS Periostin might serve as a novel stratification biomarker for DM1 correlating with disease severity, presence of cardiac malfunction and fibrosis.
Collapse
Affiliation(s)
- Chi D L Nguyen
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | | | - Monika Merker
- Department of Neurology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | | | | | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Thomas Müntefering
- Department of Neurology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Angus Isham
- Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Tobias Ruck
- Department of Neurology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789, Bochum, Germany
| | - Vera Dobelmann
- Department of Neurology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Genevieve Gourdon
- Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- Laboratory CTGDM, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Ulrike Schara-Schmidt
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Andrea Gangfuss
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Charlotte Schröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Claudia Gross
- Institute of Clinical Genetics and Tumor Genetics Bonn, Maximilianstraße 28D, 53111, Bonn, Germany
| | - Grainne Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Cynthia Gagnon
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elise Duchesne
- Department of Health Sciences, Université du Québec à Chicoutimi, Québec, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Andreas Roos
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789, Bochum, Germany.
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany.
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
9
|
Morales F, Corrales E, Vásquez M, Zhang B, Fernández H, Alvarado F, Cortés S, Santamaría-Ulloa C, Initiative-Mmdbdi MMDBD, Krahe R, Monckton DG. Individual-specific levels of CTG•CAG somatic instability are shared across multiple tissues in myotonic dystrophy type 1. Hum Mol Genet 2023; 32:621-631. [PMID: 36099027 DOI: 10.1093/hmg/ddac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 is a complex disease caused by a genetically unstable CTG repeat expansion in the 3'-untranslated region of the DMPK gene. Age-dependent, tissue-specific somatic instability has confounded genotype-phenotype associations, but growing evidence suggests that it also contributes directly toward disease progression. Using a well-characterized clinical cohort of DM1 patients from Costa Rica, we quantified somatic instability in blood, buccal cells, skin and skeletal muscle. Whilst skeletal muscle showed the largest expansions, modal allele lengths in skin were also very large and frequently exceeded 2000 CTG repeats. Similarly, the degree of somatic expansion in blood, muscle and skin were associated with each other. Notably, we found that the degree of somatic expansion in skin was highly predictive of that in skeletal muscle. More importantly, we established that individuals whose repeat expanded more rapidly than expected in one tissue (after correction for progenitor allele length and age) also expanded more rapidly than expected in other tissues. We also provide evidence suggesting that individuals in whom the repeat expanded more rapidly than expected in skeletal muscle have an earlier age at onset than expected (after correction for the progenitor allele length). Pyrosequencing analyses of the genomic DNA flanking the CTG repeat revealed that the degree of methylation in muscle was well predicted by the muscle modal allele length and age, but that neither methylation of the flanking DNA nor levels of DMPK sense and anti-sense transcripts could obviously explain individual- or tissue-specific patterns of somatic instability.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Huberth Fernández
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Fernando Alvarado
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Sergio Cortés
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | | | | | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
10
|
Mohiuddin M, Kooy RF, Pearson CE. De novo mutations, genetic mosaicism and human disease. Front Genet 2022; 13:983668. [PMID: 36226191 PMCID: PMC9550265 DOI: 10.3389/fgene.2022.983668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mosaicism—the existence of genetically distinct populations of cells in a particular organism—is an important cause of genetic disease. Mosaicism can appear as de novo DNA mutations, epigenetic alterations of DNA, and chromosomal abnormalities. Neurodevelopmental or neuropsychiatric diseases, including autism—often arise by de novo mutations that usually not present in either of the parents. De novo mutations might occur as early as in the parental germline, during embryonic, fetal development, and/or post-natally, through ageing and life. Mutation timing could lead to mutation burden of less than heterozygosity to approaching homozygosity. Developmental timing of somatic mutation attainment will affect the mutation load and distribution throughout the body. In this review, we discuss the timing of de novo mutations, spanning from mutations in the germ lineage (all ages), to post-zygotic, embryonic, fetal, and post-natal events, through aging to death. These factors can determine the tissue specific distribution and load of de novo mutations, which can affect disease. The disease threshold burden of somatic de novo mutations of a particular gene in any tissue will be important to define.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| |
Collapse
|
11
|
Yıldız Bölükbaşı E, Karolak JA, Szafranski P, Gambin T, Willard N, Abman SH, Galambos C, Kinsella JP, Stankiewicz P. High-level gonosomal mosaicism for a pathogenic non-coding CNV deletion of the lung-specific FOXF1 enhancer in an unaffected mother of an infant with ACDMPV. Mol Genet Genomic Med 2022; 10:e2062. [PMID: 36124617 PMCID: PMC9651602 DOI: 10.1002/mgg3.2062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) results from haploinsufficiency of the mesenchymal transcription factor FOXF1 gene. To date, only one case of an ACDMPV-causative CNV deletion inherited from a very-low level somatic mosaic mother has been reported. METHODS Clinical, histopathological, and molecular studies, including whole genome sequencing, chromosomal microarray analysis, qPCR, and Sanger sequencing, followed by in vitro fertilization (IVF) with preimplantation genetic testing (PGT) were used to study a family with a deceased neonate with ACDMPV. RESULTS A pathogenic CNV deletion of the lung-specific FOXF1 enhancer in the proband was found to be inherited from an unaffected mother, 36% mosaic for this deletion in her peripheral blood cells. The qPCR analyses of saliva, buccal cells, urine, nail, and hair samples revealed 19%, 18%, 15%, 19%, and 27% variant allele fraction, respectively, indicating a high recurrence risk. Grandparental studies revealed that the deletion arose on the mother's paternal chromosome 16. PGT studies revealed 44% embryos with the deletion, reflecting high-level germline mosaicism. CONCLUSION Our data further demonstrate the importance of parental testing in ACDMPV families and reproductive usefulness of IVF with PGT in families with high-level parental gonosomal mosaicism.
Collapse
Affiliation(s)
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical MicrobiologyPoznan University of Medical SciencesPoznanPoland
| | | | - Tomasz Gambin
- Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland
| | - Nicholas Willard
- Department of Pathology and Laboratory MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven H. Abman
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Csaba Galambos
- Department of Pathology and Laboratory MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA,Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - John P. Kinsella
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Paweł Stankiewicz
- Department of Molecular & Human GeneticsBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
12
|
Identification of a CCG-Enriched Expanded Allele in Patients with Myotonic Dystrophy Type 1 Using Amplification-Free Long-Read Sequencing. J Mol Diagn 2022; 24:1143-1154. [PMID: 36084803 DOI: 10.1016/j.jmoldx.2022.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) exhibits highly heterogeneous clinical manifestations caused by an unstable CTG repeat expansion reaching up to 4000 CTG. The clinical variability depends on CTG repeat number, CNG repeat interruptions, and somatic mosaicism. Currently, none of these factors are simultaneously and accurately determined due to the limitations of gold standard methods used in clinical and research laboratories. An amplicon method for targeting the DMPK locus using single-molecule real-time sequencing was recently developed to accurately analyze expanded alleles. However, amplicon-based sequencing still depends on PCR, and the inherent bias toward preferential amplification of smaller repeats can be problematic in DM1. Thus, an amplification-free long-read sequencing method was developed by using CRISPR/Cas9 technology in DM1. This method was used to sequence the DMPK locus in patients with CTG repeat expansion ranging from 130 to >1000 CTG. We showed that elimination of PCR amplification improves the accuracy of measurement of inherited repeat number and somatic repeat variations, two key factors in DM1 severity and age at onset. For the first time, an expansion composed of >85% CCG repeats was identified by using this innovative method in a DM1 family with an atypical clinical profile. No-amplification targeted sequencing represents a promising method that can overcome research and diagnosis shortcomings, with translational implications for clinical and genetic counseling in DM1.
Collapse
|
13
|
Abstract
Roughly 3% of the human genome consists of microsatellites or tracts of short tandem repeats (STRs). These STRs are often unstable, undergoing high-frequency expansions (increases) or contractions (decreases) in the number of repeat units. Some microsatellite instability (MSI) is seen at multiple STRs within a single cell and is associated with certain types of cancer. A second form of MSI is characterised by expansion of a single gene-specific STR and such expansions are responsible for a group of 40+ human genetic disorders known as the repeat expansion diseases (REDs). While the mismatch repair (MMR) pathway prevents genome-wide MSI, emerging evidence suggests that some MMR factors are directly involved in generating expansions in the REDs. Thus, MMR suppresses some forms of expansion while some MMR factors promote expansion in other contexts. This review will cover what is known about the paradoxical effect of MMR on microsatellite expansion in mammalian cells.
Collapse
|
14
|
Hamel J, Creigh PD, Dekdebrun J, Eichinger K, Thornton CA. Remote assessment of myotonic dystrophy type 1: A feasibility study. Muscle Nerve 2022; 66:336-339. [PMID: 35426155 PMCID: PMC11629705 DOI: 10.1002/mus.27559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION/AIMS Remote study visits (RSVs) are emerging as important tools for clinical research. We tested the feasibility of using RSVs to evaluate patients with myotonic dystrophy type 1 (DM1), including remote quantitative assessment of muscle function, and we assessed correlations of remote assessments with patient-reported function. METHODS Twenty three subjects with DM1 were consented remotely. Toolkits containing a tablet computer, grip dynamometer, and spirometer were shipped to participants. The tablets were loaded with software for video-conferencing and questionnaires about functional impairment, patient experience with technology, and willingness to participate in future remote studies. Grip strength, forced vital capacity, peak cough flow, timed-up-and-go (TUG), and grip myotonia (hand opening time) were determined during RSVs. We assessed correlations of remote assessments with patient-reported outcomes of muscle function and with CTG repeat size. RESULTS All 23 subjects completed RSVs. 95% of participants were able to complete all components of the remote study. All toolkit components were returned upon completion. Grip strength and TUG demonstrated moderate to strong correlations with self-reported inventories of upper and lower extremity impairment, respectively (ρ = 0.7 and ρ = -0.52). A total of 91% of subjects expressed interest in participating in future RSVs. DISCUSSION Results of this study support the feasibility of using portable devices and video-conferencing for remote collection of patient-reported outcomes and quantitative assessment of muscle function in DM1.
Collapse
Affiliation(s)
- Johanna Hamel
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Peter D Creigh
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeanne Dekdebrun
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Katy Eichinger
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
15
|
Hwang YH, Hayward BE, Zafarullah M, Kumar J, Durbin Johnson B, Holmans P, Usdin K, Tassone F. Both cis and trans-acting genetic factors drive somatic instability in female carriers of the FMR1 premutation. Sci Rep 2022; 12:10419. [PMID: 35729184 PMCID: PMC9213438 DOI: 10.1038/s41598-022-14183-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The fragile X mental retardation (FMR1) gene contains an expansion-prone CGG repeat within its 5' UTR. Alleles with 55-200 repeats are known as premutation (PM) alleles and confer risk for one or more of the FMR1 premutation (PM) disorders that include Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-Associated Neuropsychiatric Disorders (FXAND). PM alleles expand on intergenerational transmission, with the children of PM mothers being at risk of inheriting alleles with > 200 CGG repeats (full mutation FM) alleles) and thus developing Fragile X Syndrome (FXS). PM alleles can be somatically unstable. This can lead to individuals being mosaic for multiple size alleles. Here, we describe a detailed evaluation of somatic mosaicism in a large cohort of female PM carriers and show that 94% display some evidence of somatic instability with the presence of a series of expanded alleles that differ from the next allele by a single repeat unit. Using two different metrics for instability that we have developed, we show that, as with intergenerational instability, there is a direct relationship between the extent of somatic expansion and the number of CGG repeats in the originally inherited allele and an inverse relationship with the number of AGG interruptions. Expansions are progressive as evidenced by a positive correlation with age and by examination of blood samples from the same individual taken at different time points. Our data also suggests the existence of other genetic or environmental factors that affect the extent of somatic expansion. Importantly, the analysis of candidate single nucleotide polymorphisms (SNPs) suggests that two DNA repair factors, FAN1 and MSH3, may be modifiers of somatic expansion risk in the PM population as observed in other repeat expansion disorders.
Collapse
Affiliation(s)
- Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Bruce Eliot Hayward
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jay Kumar
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Blythe Durbin Johnson
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Karen Usdin
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA. .,MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
16
|
Koehorst E, Odria R, Capó J, Núñez-Manchón J, Arbex A, Almendrote M, Linares-Pardo I, Natera-de Benito D, Saez V, Nascimento A, Ortez C, Rubio MÁ, Díaz-Manera J, Alonso-Pérez J, Lucente G, Rodriguez-Palmero A, Ramos-Fransi A, Martínez-Piñeiro A, Nogales-Gadea G, Suelves M. An Integrative Analysis of DNA Methylation Pattern in Myotonic Dystrophy Type 1 Samples Reveals a Distinct DNA Methylation Profile between Tissues and a Novel Muscle-Associated Epigenetic Dysregulation. Biomedicines 2022; 10:biomedicines10061372. [PMID: 35740394 PMCID: PMC9220235 DOI: 10.3390/biomedicines10061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive, non-treatable, multi-systemic disorder. To investigate the contribution of epigenetics to the complexity of DM1, we compared DNA methylation profiles of four annotated CpG islands (CpGis) in the DMPK locus and neighbouring genes, in distinct DM1 tissues and derived cells, representing six DM1 subtypes, by bisulphite sequencing. In blood, we found no differences in CpGi 74, 43 and 36 in DNA methylation profile. In contrast, a CTCF1 DNA methylation gradient was found with 100% methylation in congenital cases, 50% in childhood cases and 13% in juvenile cases. CTCF1 methylation correlated to disease severity and CTG expansion size. Notably, 50% of CTCF1 methylated cases showed methylation in the CTCF2 regions. Additionally, methylation was associated with maternal transmission. Interestingly, the evaluation of seven families showed that unmethylated mothers passed on an expansion of the CTG repeat, whereas the methylated mothers transmitted a contraction. The analysis of patient-derived cells showed that DNA methylation profiles were highly preserved, validating their use as faithful DM1 cellular models. Importantly, the comparison of DNA methylation levels of distinct DM1 tissues revealed a novel muscle-specific epigenetic signature with methylation of the CTCF1 region accompanied by demethylation of CpGi 43, a region containing an alternative DMPK promoter, which may decrease the canonical promoter activity. Altogether, our results showed a distinct DNA methylation profile across DM1 tissues and uncovered a novel and dual epigenetic signature in DM1 muscle samples, providing novel insights into the epigenetic changes associated with DM1.
Collapse
Affiliation(s)
- Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Renato Odria
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Júlia Capó
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Andrea Arbex
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Ian Linares-Pardo
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Verónica Saez
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Miguel Ángel Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, 08003 Barcelona, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Agustín Rodriguez-Palmero
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mònica Suelves
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
17
|
Rasmussen A, Hildonen M, Vissing J, Duno M, Tümer Z, Birkedal U. High Resolution Analysis of DMPK Hypermethylation and Repeat Interruptions in Myotonic Dystrophy Type 1. Genes (Basel) 2022; 13:genes13060970. [PMID: 35741732 PMCID: PMC9222588 DOI: 10.3390/genes13060970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular disorder caused by the expansion of a CTG repeat in the 3′-UTR of DMPK, which is transcribed to a toxic gain-of-function RNA that affects splicing of a range of genes. The expanded repeat is unstable in both germline and somatic cells. The variable age at disease onset and severity of symptoms have been linked to the inherited CTG repeat length, non-CTG interruptions, and methylation levels flanking the repeat. In general, the genetic biomarkers are investigated separately with specific methods, making it tedious to obtain an overall characterisation of the repeat for a given individual. In the present study, we employed Oxford nanopore sequencing in a pilot study to simultaneously determine the repeat lengths, investigate the presence and nature of repeat interruptions, and quantify methylation levels in the regions flanking the CTG-repeats in four patients with DM1. We determined the repeat lengths, and in three patients, we observed interruptions which were not detected using repeat-primed PCR. Interruptions may thus be more common than previously anticipated and should be investigated in larger cohorts. Allele-specific analyses enabled characterisation of aberrant methylation levels specific to the expanded allele, which greatly increased the sensitivity and resolved cases where the methylation levels were ambiguous.
Collapse
Affiliation(s)
- Astrid Rasmussen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| | - Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Ulf Birkedal
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| |
Collapse
|
18
|
Zhao X, McHugh C, Coffey SR, Jimenez DA, Adams E, Carroll JB, Usdin K. Stool is a sensitive and noninvasive source of DNA for monitoring expansion in repeat expansion disease mouse models. Dis Model Mech 2022; 15:275011. [PMID: 35403689 PMCID: PMC9118036 DOI: 10.1242/dmm.049453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022] Open
Abstract
Repeat expansion diseases are a large group of human genetic disorders caused by expansion of a specific short tandem repeat tract. Expansion in somatic cells affects age of onset and disease severity in some of these disorders. However, alleles in DNA derived from blood, a commonly used source of DNA, usually show much less expansion than disease-relevant cells in the central nervous system in both humans and mouse models. Here we examined the extent of expansion in different DNA sources from mouse models of the fragile X-related disorders, Huntington's disease, spinocerebellar ataxia type 1 and spinocerebellar ataxia type 2. We found that DNA isolated from stool is a much better indicator of somatic expansion than DNA from blood. As stool is a sensitive and noninvasive source of DNA, it can be useful for studies of factors affecting the risk of expansion, or the monitoring of treatments aimed at reducing expansion in preclinical trials, as it would allow expansions to be examined longitudinally in the same animal and allow significant changes in expansion to be observed much earlier than is possible with other DNA sources. Summary: Stool is a readily available, noninvasive and sensitive source of DNA for monitoring repeat expansion in mouse models of four different repeat expansion diseases.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cassandra McHugh
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Sydney R Coffey
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Diego Antonio Jimenez
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Adams
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Jeffrey B Carroll
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Campion LN, Mejia Maza A, Yadav R, Penney EB, Murcar MG, Correia K, Gillis T, Fernandez-Cerado C, Velasco-Andrada MS, Legarda GP, Ganza-Bautista NG, Lagarde JBB, Acuña PJ, Multhaupt-Buell T, Aldykiewicz G, Supnet ML, De Guzman JK, Go C, Sharma N, Munoz EL, Ang MC, Diesta CCE, Bragg DC, Ozelius LJ, Wheeler VC. Tissue-specific and repeat length-dependent somatic instability of the X-linked dystonia parkinsonism-associated CCCTCT repeat. Acta Neuropathol Commun 2022; 10:49. [PMID: 35395816 PMCID: PMC8994295 DOI: 10.1186/s40478-022-01349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a progressive adult-onset neurodegenerative disorder caused by insertion of a SINE-VNTR-Alu (SVA) retrotransposon in the TAF1 gene. The SVA retrotransposon contains a CCCTCT hexameric repeat tract of variable length, whose length is inversely correlated with age at onset. This places XDP in a broader class of repeat expansion diseases, characterized by the instability of their causative repeat mutations. Here, we observe similar inverse correlations between CCCTCT repeat length with age at onset and age at death and no obvious correlation with disease duration. To gain insight into repeat instability in XDP we performed comprehensive quantitative analyses of somatic instability of the XDP CCCTCT repeat in blood and in seventeen brain regions from affected males. Our findings reveal repeat length-dependent and expansion-based instability of the XDP CCCTCT repeat, with greater levels of expansion in brain than in blood. The brain exhibits regional-specific patterns of instability that are broadly similar across individuals, with cerebellum exhibiting low instability and cortical regions exhibiting relatively high instability. The spectrum of somatic instability in the brain includes a high proportion of moderate repeat length changes of up to 5 repeats, as well as expansions of ~ 20- > 100 repeats and contractions of ~ 20–40 repeats at lower frequencies. Comparison with HTT CAG repeat instability in postmortem Huntington’s disease brains reveals similar brain region-specific profiles, indicating common trans-acting factors that contribute to the instability of both repeats. Analyses in XDP brains of expansion of a different SVA-associated CCCTCT located in the LIPG gene, and not known to be disease-associated, reveals repeat length-dependent expansion at overall lower levels relative to the XDP CCCTCT repeat, suggesting that expansion propensity may be modified by local chromatin structure. Together, the data support a role for repeat length-dependent somatic expansion in the process(es) driving the onset of XDP and prompt further investigation into repeat dynamics and the relationship to disease.
Collapse
|
20
|
de Pontual L, Tomé S. Overview of the Complex Relationship between Epigenetics Markers, CTG Repeat Instability and Symptoms in Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:ijms23073477. [PMID: 35408837 PMCID: PMC8998570 DOI: 10.3390/ijms23073477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Among the trinucleotide repeat disorders, myotonic dystrophy type 1 (DM1) is one of the most complex neuromuscular diseases caused by an unstable CTG repeat expansion in the DMPK gene. DM1 patients exhibit high variability in the dynamics of CTG repeat instability and in the manifestations and progression of the disease. The largest expanded alleles are generally associated with the earliest and most severe clinical form. However, CTG repeat length alone is not sufficient to predict disease severity and progression, suggesting the involvement of other factors. Several data support the role of epigenetic alterations in clinical and genetic variability. By highlighting epigenetic alterations in DM1, this review provides a new avenue on how these changes can serve as biomarkers to predict clinical features and the mutation behavior.
Collapse
Affiliation(s)
| | - Stéphanie Tomé
- Correspondence: ; Tel.: +33-1-42-16-57-16; Fax: +33-1-42-16-57-00
| |
Collapse
|
21
|
Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 23:ijms23010354. [PMID: 35008780 PMCID: PMC8745394 DOI: 10.3390/ijms23010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is one of the most variable monogenic diseases at phenotypic, genetic, and epigenetic level. The disease is multi-systemic with the age at onset ranging from birth to late age. The underlying mutation is an unstable expansion of CTG repeats in the DMPK gene, varying in size from 50 to >1000 repeats. Generally, large expansions are associated with an earlier age at onset. Additionally, the most severe, congenital DM1 form is typically associated with local DNA methylation. Genetic variability of DM1 mutation is further increased by its structural variations due to presence of other repeats (e.g., CCG, CTC, CAG). These variant repeats or repeat interruptions seem to confer an additional level of epigenetic variability since local DNA methylation is frequently associated with variant CCG repeats independently of the expansion size. The effect of repeat interruptions on DM1 molecular pathogenesis is not investigated enough. Studies on patients indicate their stabilizing effect on DMPK expansions because no congenital cases were described in patients with repeat interruptions, and the age at onset is frequently later than expected. Here, we review the clinical relevance of repeat interruptions in DM1 and genetic and epigenetic characteristics of interrupted DMPK expansions based on patient studies.
Collapse
|
22
|
Domogala DD, Gambin T, Zemet R, Wu CW, Schulze KV, Yang Y, Wilson TA, Machol I, Liu P, Stankiewicz P. Detection of low-level parental somatic mosaicism for clinically relevant SNVs and indels identified in a large exome sequencing dataset. Hum Genomics 2021; 15:72. [PMID: 34930489 PMCID: PMC8686574 DOI: 10.1186/s40246-021-00369-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Due to the limitations of the current routine diagnostic methods, low-level somatic mosaicism with variant allele fraction (VAF) < 10% is often undetected in clinical settings. To date, only a few studies have attempted to analyze tissue distribution of low-level parental mosaicism in a large clinical exome sequencing (ES) cohort. METHODS Using a customized bioinformatics pipeline, we analyzed apparent de novo single-nucleotide variants or indels identified in the affected probands in ES trio data at Baylor Genetics clinical laboratories. Clinically relevant variants with VAFs between 30 and 70% in probands and lower than 10% in one parent were studied. DNA samples extracted from saliva, buccal cells, redrawn peripheral blood, urine, hair follicles, and nail, representing all three germ layers, were tested using PCR amplicon next-generation sequencing (amplicon NGS) and droplet digital PCR (ddPCR). RESULTS In a cohort of 592 clinical ES trios, we found 61 trios, each with one parent suspected of low-level mosaicism. In 21 parents, the variants were validated using amplicon NGS and seven of them by ddPCR in peripheral blood DNA samples. The parental VAFs in blood samples varied between 0.08 and 9%. The distribution of VAFs in additional tissues ranged from 0.03% in hair follicles to 9% in re-drawn peripheral blood. CONCLUSIONS Our study illustrates the importance of analyzing ES data using sensitive computational and molecular methods for low-level parental somatic mosaicism for clinically relevant variants previously diagnosed in routine clinical diagnostics as apparent de novo.
Collapse
Affiliation(s)
- Daniel D Domogala
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas at MD Anderson, Houston, TX, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chung Wah Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, USA
| | - Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, USA
| | - Yaping Yang
- AiLife Diagnostics, 1920 Country Place Pkwy Suite 100, Pearland, TX, USA
| | - Theresa A Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Koehorst E, Núñez-Manchón J, Ballester-López A, Almendrote M, Lucente G, Arbex A, Chojnacki J, Vázquez-Manrique RP, Gómez-Escribano AP, Pintos-Morell G, Coll-Cantí J, Ramos-Fransi A, Martínez-Piñeiro A, Suelves M, Nogales-Gadea G. Characterization of RAN Translation and Antisense Transcription in Primary Cell Cultures of Patients with Myotonic Dystrophy Type 1. J Clin Med 2021; 10:jcm10235520. [PMID: 34884222 PMCID: PMC8658563 DOI: 10.3390/jcm10235520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a muscular dystrophy with a multi-systemic nature. It was one of the first diseases in which repeat associated non-ATG (RAN) translation was described in 2011, but has not been further explored since. In order to enhance our knowledge of RAN translation in DM1, we decided to study the presence of DM1 antisense (DM1-AS) transcripts (the origin of the polyglutamine (polyGln) RAN protein) using RT-PCR and FISH, and that of RAN translation via immunoblotting and immunofluorescence in distinct DM1 primary cell cultures, e.g., myoblasts, skin fibroblasts and lymphoblastoids, from ten patients. DM1-AS transcripts were found in all DM1 cells, with a lower expression in patients compared to controls. Antisense RNA foci were found in the nuclei and cytoplasm of a subset of DM1 cells. The polyGln RAN protein was undetectable in all three cell types with both approaches. Immunoblots revealed a 42 kD polyGln containing protein, which was most likely the TATA-box-binding protein. Immunofluorescence revealed a cytoplasmic aggregate, which co-localized with the Golgi apparatus. Taken together, DM1-AS transcript levels were lower in patients compared to controls and a small portion of the transcripts included the expanded repeat. However, RAN translation was not present in patient-derived DM1 cells, or was in undetectable quantities for the available methods.
Collapse
Affiliation(s)
- Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
| | - Alfonsina Ballester-López
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Andrea Arbex
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | | | - Rafael P. Vázquez-Manrique
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Ana Pilar Gómez-Escribano
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Guillem Pintos-Morell
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Reference Unit for Hereditary Metabolic Disorders (MetabERN), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Jaume Coll-Cantí
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Mònica Suelves
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
- Correspondence: ; Tel.: +34-930330530
| |
Collapse
|
24
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
25
|
De Serres-Bérard T, Pierre M, Chahine M, Puymirat J. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021; 160:105532. [PMID: 34655747 DOI: 10.1016/j.nbd.2021.105532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic and heterogeneous disorder caused by the expansion of CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene. There is a congenital form (CDM1) of the disease characterized by severe hypotonia, respiratory insufficiency as well as developmental delays and intellectual disabilities. CDM1 infants manifest important brain structure abnormalities present from birth while, in contrast, older patients with adult-onset DM1 often present neurodegenerative features and milder progressive cognitive deficits. Promising therapies targeting central molecular mechanisms contributing to the symptoms of adult-onset DM1 are currently in development, but their relevance for treating cognitive impairment in CDM1, which seems to be a partially distinct neurodevelopmental disorder, remain to be elucidated. Here, we provide an update on the clinical presentation of CDM1 and review recent in vitro and in vivo models that have provided meaningful insights on its consequences in development, with a particular focus on the brain. We discuss how enhanced toxic gain-of-function of the mutated DMPK transcripts with larger CUG repeats and the resulting dysregulation of RNA-binding proteins may affect the developing cortex in utero. Because the methylation of CpG islets flanking the trinucleotide repeats has emerged as a strong biomarker of CDM1, we highlight the need to investigate the tissue-specific impacts of these chromatin modifications in the brain. Finally, we outline promising potential therapeutic treatments for CDM1 and propose future in vitro and in vivo models with great potential to shed light on this disease.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Marion Pierre
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
26
|
Morales F, Corrales E, Zhang B, Vásquez M, Santamaría-Ulloa C, Quesada H, Sirito M, Estecio MR, Monckton DG, Krahe R. Myotonic dystrophy type 1 (DM1) clinical sub-types and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent. Hum Mol Genet 2021; 31:262-274. [PMID: 34432028 DOI: 10.1093/hmg/ddab243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex disease with a wide spectrum of symptoms. The exact relationship between mutant CTG repeat expansion size and clinical outcome remains unclear. DM1 congenital patients (CDM) inherit the largest expanded alleles, which are associated with abnormal and increased DNA methylation flanking the CTG repeat. However, DNA methylation at the DMPK locus remains understudied. Its relationship to DM1 clinical subtypes, expansion size and age-at-onset is not yet completely understood. Using pyrosequencing-based methylation analysis on 225 blood DNA samples from Costa Rican DM1 patients, we determined that the size of the estimated progenitor allele length (ePAL) is not only a good discriminator between CDM and non-CDM cases (with an estimated threshold at 653 CTG repeats), but also for all DM1 clinical subtypes. Secondly, increased methylation at both CTCF sites upstream and downstream of the expansion was almost exclusively present in CDM cases. Thirdly, levels of abnormal methylation were associated with clinical subtype, age and ePAL, with strong correlations between these variables. Fourthly, both ePAL and the intergenerational expansion size were significantly associated with methylation status. Finally, methylation status was associated with ePAL and maternal inheritance, with almost exclusively maternal transmission of CDM. In conclusion, increased DNA methylation at the CTCF sites flanking the DM1 expansion could be linked to ePAL, and both increased methylation and the ePAL could be considered biomarkers for the CDM phenotype.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carolina Santamaría-Ulloa
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Hazel Quesada
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| |
Collapse
|
27
|
Mangin A, de Pontual L, Tsai YC, Monteil L, Nizon M, Boisseau P, Mercier S, Ziegle J, Harting J, Heiner C, Gourdon G, Tomé S. Robust Detection of Somatic Mosaicism and Repeat Interruptions by Long-Read Targeted Sequencing in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:2616. [PMID: 33807660 PMCID: PMC7962047 DOI: 10.3390/ijms22052616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most complex and variable trinucleotide repeat disorder caused by an unstable CTG repeat expansion, reaching up to 4000 CTG in the most severe cases. The genetic and clinical variability of DM1 depend on the sex and age of the transmitting parent, but also on the CTG repeat number, presence of repeat interruptions and/or on the degree of somatic instability. Currently, it is difficult to simultaneously and accurately determine these contributing factors in DM1 patients due to the limitations of gold standard methods used in molecular diagnostics and research laboratories. Our study showed the efficiency of the latest PacBio long-read sequencing technology to sequence large CTG trinucleotides, detect multiple and single repeat interruptions and estimate the levels of somatic mosaicism in DM1 patients carrying complex CTG repeat expansions inaccessible to most methods. Using this innovative approach, we revealed the existence of de novo CCG interruptions associated with CTG stabilization/contraction across generations in a new DM1 family. We also demonstrated that our method is suitable to sequence the DM1 locus and measure somatic mosaicism in DM1 families carrying more than 1000 pure CTG repeats. Better characterization of expanded alleles in DM1 patients can significantly improve prognosis and genetic counseling, not only in DM1 but also for other tandem DNA repeat disorders.
Collapse
Affiliation(s)
- Antoine Mangin
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
- Dementia Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Laure de Pontual
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Yu-Chih Tsai
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Laetitia Monteil
- Genetics Department of the Hospital of Toulouse, F-31059 Toulouse, France;
| | - Mathilde Nizon
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Pierre Boisseau
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Sandra Mercier
- CHU Nantes, Service de Génétique Médicale, Centre de Référence des Maladies Neuromusculaires AOC, F-44000 Nantes, France;
| | - Janet Ziegle
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - John Harting
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Cheryl Heiner
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Geneviève Gourdon
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Stéphanie Tomé
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| |
Collapse
|
28
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
29
|
Leddy S, Serra L, Esposito D, Vizzotto C, Giulietti G, Silvestri G, Petrucci A, Meola G, Lopiano L, Cercignani M, Bozzali M. Lesion distribution and substrate of white matter damage in myotonic dystrophy type 1: Comparison with multiple sclerosis. NEUROIMAGE-CLINICAL 2021; 29:102562. [PMID: 33516936 PMCID: PMC7848627 DOI: 10.1016/j.nicl.2021.102562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
The supratentorial distribution of lesions is similar in DM1 and MS. Patients with DM1 do not show infratentorial lesions. Quantitative magnetization transfer supports the presence of demyelination in DM1 lesions, but not in the NAWM. Anterior temporal lobe lesions in DM1 might have a different substrate than periventricular ones.
Myotonic Dystrophy type 1 (DM1) is an autosomal dominant condition caused by expansion of the CTG triplet repeats within the myotonic dystrophy protein of the kinase (DMPK) gene. The central nervous system is involved in the disease, with multiple symptoms including cognitive impairment. A typical feature of DM1 is the presence of widespread white matter (WM) lesions, whose total volume is associated with CTG triplet expansion. The aim of this study was to characterize the distribution and pathological substrate of these lesions as well as the normal appearing WM (NAWM) using quantitative magnetization transfer (qMT) MRI, and comparing data from DM1 patients with those from patients with multiple sclerosis (MS). Twenty-eight patients with DM1, 29 patients with relapsing-remitting MS, and 15 healthy controls had an MRI scan, including conventional and qMT imaging. The average pool size ratio (F), a proxy of myelination, was computed within lesions and NAWM for every participant. The lesion masks were warped into MNI space and lesion probability maps were obtained for each patient group. The lesion distribution, total lesion load and the tissue-specific mean F were compared between groups. The supratentorial distribution of lesions was similar in the 2 patient groups, although mean lesion volume was higher in MS than DM1. DM1 presented higher prevalence of anterior temporal lobe lesions, but none in the cerebellum and brainstem. Significantly reduced F values were found within DM1 lesions, suggesting a loss of myelin density. While F was reduced in the NAWM of MS patients, it did not differ between DM1 and controls. Our results provide further evidence for a need to compare histology and imaging using new MRI techniques in DM1 patients, in order to further our understanding of the underlying disease process contributing to WM disease.
Collapse
Affiliation(s)
- Sara Leddy
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; Brighton and Sussex University Hospital Trust, Brighton, United Kingdom
| | - Laura Serra
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Davide Esposito
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Camilla Vizzotto
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Gabriella Silvestri
- Department of Neuroscience, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Rome, Italy
| | - Antonio Petrucci
- UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy; Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Leonardo Lopiano
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Marco Bozzali
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy.
| |
Collapse
|
30
|
Hildonen M, Knak KL, Dunø M, Vissing J, Tümer Z. Stable Longitudinal Methylation Levels at the CpG Sites Flanking the CTG Repeat of DMPK in Patients with Myotonic Dystrophy Type 1. Genes (Basel) 2020; 11:genes11080936. [PMID: 32823742 PMCID: PMC7465187 DOI: 10.3390/genes11080936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystem disorder mainly characterized by gradual muscle loss, weakness, and delayed relaxation after muscle contraction. It is caused by an expanded CTG repeat in the 3′ UTR of DMPK, which is transcribed into a toxic gain-of-function mRNA that affects the splicing of a range of other genes. The repeat is unstable, with a bias towards expansions both in somatic cells and in the germline, which results in a tendency for earlier onset with each generation, as longer repeat lengths generally correlate with earlier onset. Previous studies have found hypermethylation in the regions flanking the repeat in congenital onset DM1 and in some patients with non-congenital DM1. We used pyrosequencing to investigate blood methylation levels in 68 patients with non-congenital DM1, compare the methylation levels between the blood and muscle, and assess whether methylation levels change over time in the blood. We found higher methylation levels in the blood of DM1 patients than in healthy controls and especially in the patients who had inherited the disease allele maternally. The methylation levels remained relatively stable over time and are a strong biomarker of the disease, as well as of the maternal inheritance of the disease.
Collapse
Affiliation(s)
- Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Kirsten Lykke Knak
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.L.K.); (J.V.)
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - John Vissing
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.L.K.); (J.V.)
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-2920-4855
| |
Collapse
|