1
|
Kim WJ, Bae J, Lee EH, Kim J, Kim PJ, Ma PX, Woo KM. Long noncoding RNA MALAT1 mediates fibrous topography-driven pathologic calcification through trans-differentiation of myoblasts. Mater Today Bio 2024; 28:101182. [PMID: 39205874 PMCID: PMC11357808 DOI: 10.1016/j.mtbio.2024.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/14/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Prosthesis-induced pathological calcification is a significant challenge in biomaterial applications and is often associated with various reconstructive medical procedures. It is uncertain whether the fibrous extracellular matrix (ECM) adjacent to biomaterials directly triggers osteogenic trans-differentiation in nearby cells. To investigate this possibility, we engineered a heterogeneous polystyrene fibrous matrix (PSF) designed to mimic the ECM. Our findings revealed that the myoblasts grown on this PSF acquired osteogenic properties, resulting in mineralization both in vitro and in vivo. Transcriptomic analyses indicated a notable upregulation in the expression of the long noncoding RNA metastsis-associated lung adenocarcinoma transcript 1 (Malat1) in the C2C12 myoblasts cultured on PSF. Intriguingly, silencing Malat1 curtailed the PSF-induced mineralization and downregulated the expression of bone morphogenetic proteins (Bmps) and osteogenic markers. Further, we found that PSF prompted the activation of Yap1 signaling and epigenetic modifications in the Malat1 promoter, crucial for the expression of Malat1. These results indicate that the fibrous matrix adjacent to biomaterials can instigate Malat1 upregulation, subsequently driving osteogenic trans-differentiation in myoblasts and ectopic calcification through its transcriptional regulation of osteogenic genes, including Bmps. Our findings point to a novel therapeutic avenue for mitigating prosthesis-induced pathological calcification, heralding new possibilities in the field of biomaterial-based therapies.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jieun Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hye Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyung Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pil-Jong Kim
- Biomedical Knowledge Engineering Laboratory, Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Peter X. Ma
- Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Pharmacology & Dental Therapeutics, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Habibi E, Miller MR, Schreier A, Campbell MA, Hung TC, Gille D, Baerwald M, Finger AJ. Single generation epigenetic change in captivity and reinforcement in subsequent generations in a delta smelt (Hypomesus transpacificus) conservation hatchery. Mol Ecol 2024; 33:e17449. [PMID: 38967124 DOI: 10.1111/mec.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.
Collapse
Affiliation(s)
- Ensieh Habibi
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Michael R Miller
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Andrea Schreier
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Biological and Agricultural Engineering Department, University of California Davis, Davis, California, USA
| | - Daphne Gille
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Melinda Baerwald
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Amanda J Finger
- Department of Animal Science, University of California Davis, Davis, California, USA
| |
Collapse
|
3
|
Donato L, Scimone C, Alibrandi S, Vadalà M, Castellucci M, Bonfiglio VME, Scalinci SZ, Abate G, D'Angelo R, Sidoti A. The genomic mosaic of mitochondrial dysfunction: Decoding nuclear and mitochondrial epigenetic contributions to maternally inherited diabetes and deafness pathogenesis. Heliyon 2024; 10:e34756. [PMID: 39148984 PMCID: PMC11324998 DOI: 10.1016/j.heliyon.2024.e34756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Aims Maternally inherited diabetes and deafness (MIDD) is a complex disorder characterized by multiorgan clinical manifestations, including diabetes, hearing loss, and ophthalmic complications. This pilot study aimed to elucidate the intricate interplay between nuclear and mitochondrial genetics, epigenetic modifications, and their potential implications in the pathogenesis of MIDD. Main methods A comprehensive genomic approach was employed to analyze a Sicilian family affected by clinically characterized MIDD, negative to the only known causative m.3243 A > G variant, integrating whole-exome sequencing and whole-genome bisulfite sequencing of both nuclear and mitochondrial analyses. Key findings Rare and deleterious variants were identified across multiple nuclear genes involved in retinal homeostasis, mitochondrial function, and epigenetic regulation, while complementary mitochondrial DNA analysis revealed a rich tapestry of genetic diversity across genes encoding components of the electron transport chain and ATP synthesis machinery. Epigenetic analyses uncovered significant differentially methylated regions across the genome and within the mitochondrial genome, suggesting a nuanced landscape of epigenetic modulation. Significance The integration of genetic and epigenetic data highlighted the potential crosstalk between nuclear and mitochondrial regulation, with specific mtDNA variants influencing methylation patterns and potentially impacting the expression and regulation of mitochondrial genes. This pilot study provides valuable insights into the complex molecular mechanisms underlying MIDD, emphasizing the interplay between nucleus and mitochondrion, tracing the way for future research into targeted therapeutic interventions and personalized approaches for disease management.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Maria Vadalà
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Massimo Castellucci
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Vincenza Maria Elena Bonfiglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | | | - Giorgia Abate
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| |
Collapse
|
4
|
Liu X, Pang Y, Shan J, Wang Y, Zheng Y, Xue Y, Zhou X, Wang W, Sun Y, Yan X, Shi J, Wang X, Gu H, Zhang F. Beyond the base pairs: comparative genome-wide DNA methylation profiling across sequencing technologies. Brief Bioinform 2024; 25:bbae440. [PMID: 39256199 PMCID: PMC11387064 DOI: 10.1093/bib/bbae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Deoxyribonucleic acid (DNA) methylation plays a key role in gene regulation and is critical for development and human disease. Techniques such as whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) allow DNA methylation analysis at the genome scale, with Illumina NovaSeq 6000 and MGI Tech DNBSEQ-T7 being popular due to their efficiency and affordability. However, detailed comparative studies of their performance are not available. In this study, we constructed 60 WGBS and RRBS libraries for two platforms using different types of clinical samples and generated approximately 2.8 terabases of sequencing data. We systematically compared quality control metrics, genomic coverage, CpG methylation levels, intra- and interplatform correlations, and performance in detecting differentially methylated positions. Our results revealed that the DNBSEQ platform exhibited better raw read quality, although base quality recalibration indicated potential overestimation of base quality. The DNBSEQ platform also showed lower sequencing depth and less coverage uniformity in GC-rich regions than did the NovaSeq platform and tended to enrich methylated regions. Overall, both platforms demonstrated robust intra- and interplatform reproducibility for RRBS and WGBS, with NovaSeq performing better for WGBS, highlighting the importance of considering these factors when selecting a platform for bisulfite sequencing.
Collapse
Affiliation(s)
- Xin Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Junqi Shan
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunfei Wang
- Hangzhou ShengTing Biotech Co. Ltd, Hangzhou, Zhejiang Province 310018, China
| | - Yanhua Zheng
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Yuhang Xue
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Xuerong Zhou
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Wenjun Wang
- Hangzhou ShengTing Biotech Co. Ltd, Hangzhou, Zhejiang Province 310018, China
| | - Yanlai Sun
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaojing Yan
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| | - Fan Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| |
Collapse
|
5
|
Nguyen J, Win PW, Nagano TS, Shin EH, Newcomb C, Arking DE, Castellani CA. Mitochondrial DNA copy number reduction via in vitro TFAM knockout remodels the nuclear epigenome and transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577835. [PMID: 38352513 PMCID: PMC10862824 DOI: 10.1101/2024.01.29.577835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler Shin Nagano
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elly H. Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles Newcomb
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Children’s Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
6
|
Boddupally K, Rani Thuraka E. Artificial intelligence for prenatal chromosome analysis. Clin Chim Acta 2024; 552:117669. [PMID: 38007058 DOI: 10.1016/j.cca.2023.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
This review article delves into the rapidly advancing domain of prenatal diagnostics, with a primary focus on the detection and management of chromosomal abnormalities such as trisomy 13 ("Patau syndrome)", "trisomy 18 (Edwards syndrome)", and "trisomy 21 (Down syndrome)". The objective of the study is to examine the utilization and effectiveness of novel computational methodologies, such as "machine learning (ML)", "deep learning (DL)", and data analysis, in enhancing the detection rates and accuracy of these prenatal conditions. The contribution of the article lies in its comprehensive examination of advancements in "Non-Invasive Prenatal Testing (NIPT)", prenatal screening, genomics, and medical imaging. It highlights the potential of these techniques for prenatal diagnosis and the contributions of ML and DL to these advancements. It highlights the application of ensemble models and transfer learning to improving model performance, especially with limited datasets. This also delves into optimal feature selection and fusion of high-dimensional features, underscoring the need for future research in these areas. The review finds that ML and DL have substantially improved the detection and management of prenatal conditions, despite limitations such as small sample sizes and issues related to model generalizability. It recognizes the promising results achieved through the use of ensemble models and transfer learning in prenatal diagnostics. The review also notes the increased importance of feature selection and high-dimensional feature fusion in the development and training of predictive models. The findings underline the crucial role of AI and machine learning techniques in early detection and improved therapeutic strategies in prenatal diagnostics, highlighting a pressing need for further research in this area.
Collapse
Affiliation(s)
- Kavitha Boddupally
- JNTUH University, India; CVR College of Engineering, ECE, Hyderabad, India.
| | | |
Collapse
|
7
|
Brown AP, Parameswaran S, Cai L, Elston S, Pham C, Barski A, Weirauch MT, Ji H. TET1 regulates responses to house dust mite by altering chromatin accessibility, DNA methylation, and gene expression in airway epithelial cells. RESEARCH SQUARE 2023:rs.3.rs-3726852. [PMID: 38168374 PMCID: PMC10760239 DOI: 10.21203/rs.3.rs-3726852/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Previous studies have identified TET1 as a potential key regulator of genes linked to asthma. TET1 has been shown to transcriptionally respond to house dust mite extract, an allergen known to directly cause allergic asthma development, and regulate the expression of genes involved in asthma. How TET1 regulates expression of these genes, however, is unknown. TET1 is a DNA demethylase; therefore, most prior research on TET1-based gene regulation has focused on how TET1 affects methylation. However, TET1 can also interact directly with transcription factors and histone modifiers to regulate gene expression. Understanding how TET1 regulates expression to contribute to allergic responses and asthma development thus requires a comprehensive approach. To this end, we measured mRNA expression, DNA methylation, chromatin accessibility and histone modifications in control and TET1 knockdown human bronchial epithelial cells treated or untreated with house dust mite extract. Results Throughout our analyses, we detected strong similarities between the effects of TET1 knockdown alone and the effects of HDM treatment alone. One especially striking pattern was that both TET1 knockdown and HDM treatment generally led to decreased chromatin accessibility at largely the same genomic loci. Transcription factor enrichment analyses indicated that altered chromatin accessibility following the loss of TET1 may affect, or be affected by, CTCF and CEBP binding. TET1 loss also led to changes in DNA methylation, but these changes were generally in regions where accessibility was not changing. Conclusions TET1 regulates gene expression through different mechanisms (DNA methylation and chromatin accessibility) in different parts of the genome in the airway epithelial cells, which mediates inflammatory responses to allergen. Collectively, our data suggest novel molecular mechanisms through which TET1 regulates critical pathways following allergen challenges and contributes to the development of asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Ji
- University of California Davis
| |
Collapse
|
8
|
Mouat JS, Li S, Myint SS, Laufer BI, Lupo PJ, Schraw JM, Woodhouse JP, de Smith AJ, LaSalle JM. Epigenomic signature of major congenital heart defects in newborns with Down syndrome. Hum Genomics 2023; 17:92. [PMID: 37803336 PMCID: PMC10559462 DOI: 10.1186/s40246-023-00540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS), but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. METHODS We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: (1) 45 DS-CHD (27 female, 18 male) and (2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD versus DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell-type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS versus typical development (TD) WGBS NDBS samples. RESULTS We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS versus TD samples. CONCLUSIONS A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy M Schraw
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John P Woodhouse
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
9
|
Rozen EJ, Ozeroff CD, Allen MA. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome. Hum Genomics 2023; 17:83. [PMID: 37670378 PMCID: PMC10481493 DOI: 10.1186/s40246-023-00531-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Christopher D Ozeroff
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave., Boulder, CO, 80309, USA
| | - Mary Ann Allen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
11
|
Liu Y, Zhang Y, Ren Z, Zeng F, Yan J. RUNX1 Upregulation Causes Mitochondrial Dysfunction via Regulating the PI3K-Akt Pathway in iPSC from Patients with Down Syndrome. Mol Cells 2023; 46:219-230. [PMID: 36625318 PMCID: PMC10086551 DOI: 10.14348/molcells.2023.2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023] Open
Abstract
Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.
Collapse
Affiliation(s)
- Yanna Liu
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
| | - Yuehua Zhang
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
| | - Zhaorui Ren
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Fanyi Zeng
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
- Department of Histoembryology, Genetics & Development, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingbin Yan
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| |
Collapse
|
12
|
Miao N, Zeng Z, Lee T, Guo Q, Zheng W, Cai W, Chen W, Wang J, Sun T. Integrative epigenome profiling of 47XXY provides insights into whole genomic DNA hypermethylation and active chromatin accessibility. Front Mol Biosci 2023; 10:1128739. [PMID: 37051325 PMCID: PMC10083376 DOI: 10.3389/fmolb.2023.1128739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Klinefelter syndrome (KS, 47XXY) is a disorder characterized by sex chromosomal aneuploidy, which may lead to changes in epigenetic regulations of gene expression. To define epigenetic architectures in 47XXY, we annotated DNA methylation in euploid males (46XY) and females (46XX), and 47XXY individuals using whole genome bisulfite sequencing (WGBS) and integrated chromatin accessbilty, and detected abnormal hypermethylation in 47XXY. Furthermore, we detected altered chromatin accessibility in 47XXY, in particular in chromosome X, using Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) in cultured amniotic cells. Our results construct the whole genome-wide DNA methylation map in 47XXY, and provide new insights into the early epigenomic dysregulation resulting from an extra chromosome X in 47XXY.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, New York, NY, United States
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wenwei Zheng
- Quanzhou Women and Children’s Hospital, Quanzhou, Fujian, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
- *Correspondence: Tao Sun,
| |
Collapse
|
13
|
Genetics and Molecular Basis of Congenital Heart Defects in Down Syndrome: Role of Extracellular Matrix Regulation. Int J Mol Sci 2023; 24:ijms24032918. [PMID: 36769235 PMCID: PMC9918028 DOI: 10.3390/ijms24032918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Down syndrome (DS), a complex disorder that is caused by the trisomy of chromosome 21 (Hsa21), is a major cause of congenital heart defects (CHD). Interestingly, only about 50% of individuals with Hsa21 trisomy manifest CHD. Here we review the genetic basis of CHD in DS, focusing on genes that regulate extracellular matrix (ECM) organization. The overexpression of Hsa21 genes likely underlies the molecular mechanisms that contribute to CHD, even though the genes responsible for CHD could only be located in a critical region of Hsa21. A role in causing CHD has been attributed not only to protein-coding Hsa21 genes, but also to genes on other chromosomes, as well as miRNAs and lncRNAs. It is likely that the contribution of more than one gene is required, and that the overexpression of Hsa21 genes acts in combination with other genetic events, such as specific mutations or polymorphisms, amplifying their effect. Moreover, a key function in determining alterations in cardiac morphogenesis might be played by ECM. A large number of genes encoding ECM proteins are overexpressed in trisomic human fetal hearts, and many of them appear to be under the control of a Hsa21 gene, the RUNX1 transcription factor.
Collapse
|
14
|
Patt E, Singhania A, Roberts AE, Morton SU. The Genetics of Neurodevelopment in Congenital Heart Disease. Can J Cardiol 2023; 39:97-114. [PMID: 36183910 DOI: 10.1016/j.cjca.2022.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth anomaly, affecting almost 1% of infants. Neurodevelopmental delay is the most common extracardiac feature in people with CHD. Many factors may contribute to neurodevelopmental risk, including genetic factors, CHD physiology, and the prenatal/postnatal environment. Damaging variants are most highly enriched among individuals with extracardiac anomalies or neurodevelopmental delay in addition to CHD, indicating that genetic factors have an impact beyond cardiac tissues in people with CHD. Potential sources of genetic risk include large deletions or duplications that affect multiple genes, such as 22q11 deletion syndrome, single genes that alter both heart and brain development, such as CHD7, and common variants that affect neurodevelopmental resiliency, such as APOE. Increased use of genome-sequencing technologies in studies of neurodevelopmental outcomes in people with CHD will improve our ability to detect relevant genes and variants. Ultimately, such knowledge can lead to improved and more timely intervention of learning support for affected children.
Collapse
Affiliation(s)
- Eli Patt
- Harvard Medical School, Boston, Massachusetts, USA
| | - Asmita Singhania
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
Laufer BI, Hasegawa Y, Zhang Z, Hogrefe CE, Del Rosso LA, Haapanen L, Hwang H, Bauman MD, Van de Water J, Taha AY, Slupsky CM, Golub MS, Capitanio JP, VandeVoort CA, Walker CK, LaSalle JM. Multi-omic brain and behavioral correlates of cell-free fetal DNA methylation in macaque maternal obesity models. Nat Commun 2022; 13:5538. [PMID: 36130949 PMCID: PMC9492781 DOI: 10.1038/s41467-022-33162-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Maternal obesity during pregnancy is associated with neurodevelopmental disorder (NDD) risk. We utilized integrative multi-omics to examine maternal obesity effects on offspring neurodevelopment in rhesus macaques by comparison to lean controls and two interventions. Differentially methylated regions (DMRs) from longitudinal maternal blood-derived cell-free fetal DNA (cffDNA) significantly overlapped with DMRs from infant brain. The DMRs were enriched for neurodevelopmental functions, methylation-sensitive developmental transcription factor motifs, and human NDD DMRs identified from brain and placenta. Brain and cffDNA methylation levels from a large region overlapping mir-663 correlated with maternal obesity, metabolic and immune markers, and infant behavior. A DUX4 hippocampal co-methylation network correlated with maternal obesity, infant behavior, infant hippocampal lipidomic and metabolomic profiles, and maternal blood measurements of DUX4 cffDNA methylation, cytokines, and metabolites. We conclude that in this model, maternal obesity was associated with changes in the infant brain and behavior, and these differences were detectable in pregnancy through integrative analyses of cffDNA methylation with immune and metabolic factors.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Lori Haapanen
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
| | - Judy Van de Water
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Mari S Golub
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - John P Capitanio
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychology, University of California Davis, Davis, CA, 95616, USA
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Cheryl K Walker
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
16
|
Dou JF, Middleton LYM, Zhu Y, Benke KS, Feinberg JI, Croen LA, Hertz-Picciotto I, Newschaffer CJ, LaSalle JM, Fallin D, Schmidt RJ, Bakulski KM. Prenatal vitamin intake in first month of pregnancy and DNA methylation in cord blood and placenta in two prospective cohorts. Epigenetics Chromatin 2022; 15:28. [PMID: 35918756 PMCID: PMC9344645 DOI: 10.1186/s13072-022-00460-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prenatal vitamin use is recommended before and during pregnancies for normal fetal development. Prenatal vitamins do not have a standard formulation, but many contain calcium, folic acid, iodine, iron, omega-3 fatty acids, zinc, and vitamins A, B6, B12, and D, and usually they contain higher concentrations of folic acid and iron than regular multivitamins in the US Nutrient levels can impact epigenetic factors such as DNA methylation, but relationships between maternal prenatal vitamin use and DNA methylation have been relatively understudied. We examined use of prenatal vitamins in the first month of pregnancy in relation to cord blood and placenta DNA methylation in two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk Learning Early Signs (MARBLES) studies. RESULTS In placenta, prenatal vitamin intake was marginally associated with -0.52% (95% CI -1.04, 0.01) lower mean array-wide DNA methylation in EARLI, and associated with -0.60% (-1.08, -0.13) lower mean array-wide DNA methylation in MARBLES. There was little consistency in the associations between prenatal vitamin intake and single DNA methylation site effect estimates across cohorts and tissues, with only a few overlapping sites with correlated effect estimates. However, the single DNA methylation sites with p-value < 0.01 (EARLI cord nCpGs = 4068, EARLI placenta nCpGs = 3647, MARBLES cord nCpGs = 4068, MARBLES placenta nCpGs = 9563) were consistently enriched in neuronal developmental pathways. CONCLUSIONS Together, our findings suggest that prenatal vitamin intake in the first month of pregnancy may be related to lower placental global DNA methylation and related to DNA methylation in brain-related pathways in both placenta and cord blood.
Collapse
Affiliation(s)
- John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Yihui Zhu
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa A Croen
- Kaiser Permanente Northern California, Oakland, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Craig J Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Bhat GR, Sethi I, Rah B, Kumar R, Afroze D. Innovative in Silico Approaches for Characterization of Genes and Proteins. Front Genet 2022; 13:865182. [PMID: 35664302 PMCID: PMC9159363 DOI: 10.3389/fgene.2022.865182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bioinformatics is an amalgamation of biology, mathematics and computer science. It is a science which gathers the information from biology in terms of molecules and applies the informatic techniques to the gathered information for understanding and organizing the data in a useful manner. With the help of bioinformatics, the experimental data generated is stored in several databases available online like nucleotide database, protein databases, GENBANK and others. The data stored in these databases is used as reference for experimental evaluation and validation. Till now several online tools have been developed to analyze the genomic, transcriptomic, proteomics, epigenomics and metabolomics data. Some of them include Human Splicing Finder (HSF), Exonic Splicing Enhancer Mutation taster, and others. A number of SNPs are observed in the non-coding, intronic regions and play a role in the regulation of genes, which may or may not directly impose an effect on the protein expression. Many mutations are thought to influence the splicing mechanism by affecting the existing splice sites or creating a new sites. To predict the effect of mutation (SNP) on splicing mechanism/signal, HSF was developed. Thus, the tool is helpful in predicting the effect of mutations on splicing signals and can provide data even for better understanding of the intronic mutations that can be further validated experimentally. Additionally, rapid advancement in proteomics have steered researchers to organize the study of protein structure, function, relationships, and dynamics in space and time. Thus the effective integration of all of these technological interventions will eventually lead to steering up of next-generation systems biology, which will provide valuable biological insights in the field of research, diagnostic, therapeutic and development of personalized medicine.
Collapse
Affiliation(s)
- Gh. Rasool Bhat
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Soura, India
| | - Itty Sethi
- Institute of Human Genetics, University of Jammu, Jammu, India
| | - Bilal Rah
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Soura, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Dil Afroze
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Soura, India
| |
Collapse
|
18
|
Mordaunt CE, Mouat JS, Schmidt RJ, LaSalle JM. Comethyl: a network-based methylome approach to investigate the multivariate nature of health and disease. Brief Bioinform 2022; 23:bbab554. [PMID: 35037016 PMCID: PMC8921619 DOI: 10.1093/bib/bbab554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022] Open
Abstract
Health outcomes are frequently shaped by difficult to dissect inter-relationships between biological, behavioral, social and environmental factors. DNA methylation patterns reflect such multivariate intersections, providing a rich source of novel biomarkers and insight into disease etiologies. Recent advances in whole-genome bisulfite sequencing enable investigation of DNA methylation over all genomic CpGs, but existing bioinformatic approaches lack accessible system-level tools. Here, we develop the R package Comethyl, for weighted gene correlation network analysis of user-defined genomic regions that generates modules of comethylated regions, which are then tested for correlations with multivariate sample traits. First, regions are defined by CpG genomic location or regulatory annotation and filtered based on CpG count, sequencing depth and variability. Next, correlation networks are used to find modules of interconnected nodes using methylation values within the selected regions. Each module containing multiple comethylated regions is reduced in complexity to a single eigennode value, which is then tested for correlations with experimental metadata. Comethyl has the ability to cover the noncoding regulatory regions of the genome with high relevance to interpretation of genome-wide association studies and integration with other types of epigenomic data. We demonstrate the utility of Comethyl on a dataset of male cord blood samples from newborns later diagnosed with autism spectrum disorder (ASD) versus typical development. Comethyl successfully identified an ASD-associated module containing regions mapped to genes enriched for brain glial functions. Comethyl is expected to be useful in uncovering the multivariate nature of health disparities for a variety of common disorders. Comethyl is available at github.com/cemordaunt/comethyl with complete documentation and example analyses.
Collapse
Affiliation(s)
- Charles E Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, Perinatal Origins of Disparities Center, and MIND Institute, University of California, Davis, CA, USA
| | - Julia S Mouat
- Department of Medical Microbiology and Immunology, Genome Center, Perinatal Origins of Disparities Center, and MIND Institute, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, Perinatal Origins of Disparities Center, and MIND Institute, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, Perinatal Origins of Disparities Center, and MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
19
|
Laufer BI, Neier K, Valenzuela AE, Yasui DH, Schmidt RJ, Lein PJ, LaSalle JM. Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Rep 2022; 38:110442. [PMID: 35235788 PMCID: PMC8941983 DOI: 10.1016/j.celrep.2022.110442] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Zhu Y, Gomez JA, Laufer BI, Mordaunt CE, Mouat JS, Soto DC, Dennis MY, Benke KS, Bakulski KM, Dou J, Marathe R, Jianu JM, Williams LA, Gutierrez Fugón OJ, Walker CK, Ozonoff S, Daniels J, Grosvenor LP, Volk HE, Feinberg JI, Fallin MD, Hertz-Picciotto I, Schmidt RJ, Yasui DH, LaSalle JM. Placental methylome reveals a 22q13.33 brain regulatory gene locus associated with autism. Genome Biol 2022; 23:46. [PMID: 35168652 PMCID: PMC8848662 DOI: 10.1186/s13059-022-02613-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome. RESULTS We use whole genome bisulfite sequencing in placenta samples from prospective ASD studies to discover a previously uncharacterized ASD risk gene, LOC105373085, renamed NHIP. Out of 134 differentially methylated regions associated with ASD in placental samples, a cluster at 22q13.33 corresponds to a 118-kb hypomethylated block that replicates in two additional cohorts. Within this locus, NHIP is functionally characterized as a nuclear peptide-encoding transcript with high expression in brain, and increased expression following neuronal differentiation or hypoxia, but decreased expression in ASD placenta and brain. NHIP overexpression increases cellular proliferation and alters expression of genes regulating synapses and neurogenesis, overlapping significantly with known ASD risk genes and NHIP-associated genes in ASD brain. A common structural variant disrupting the proximity of NHIP to a fetal brain enhancer is associated with NHIP expression and methylation levels and ASD risk, demonstrating a common genetic influence. CONCLUSIONS Together, these results identify and initially characterize a novel environmentally responsive ASD risk gene relevant to brain development in a hitherto under-characterized region of the human genome.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia S Mouat
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Megan Y Dennis
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ria Marathe
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Logan A Williams
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Orangel J Gutierrez Fugón
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Cheryl K Walker
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| | - Sally Ozonoff
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, Davis, CA, USA
| | - Jason Daniels
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Luke P Grosvenor
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Irva Hertz-Picciotto
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
21
|
Quelhas P, Cerski C, Dos Santos JL. Update on Etiology and Pathogenesis of Biliary Atresia. Curr Pediatr Rev 2022; 19:48-67. [PMID: 35538816 DOI: 10.2174/1573396318666220510130259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/16/2022] [Accepted: 02/15/2022] [Indexed: 01/31/2023]
Abstract
Biliary atresia is a rare inflammatory sclerosing obstructive cholangiopathy that initiates in infancy as complete choledochal blockage and progresses to the involvement of intrahepatic biliary epithelium. Growing evidence shows that biliary atresia is not a single entity with a single etiology but a phenotype resulting from multifactorial events whose common path is obliterative cholangiopathy. The etiology of biliary atresia has been explained as resulting from genetic variants, toxins, viral infection, chronic inflammation or bile duct lesions mediated by autoimmunity, abnormalities in the development of the bile ducts, and defects in embryogenesis, abnormal fetal or prenatal circulation and susceptibility factors. It is increasingly evident that the genetic and epigenetic predisposition combined with the environmental factors to which the mother is exposed are potential triggers for biliary atresia. There is also an indication that a progressive thickening of the arterial middle layer occurs in this disease, suggestive of vascular remodeling and disappearance of the interlobular bile ducts. It is suggested that the hypoxia/ischemia process can affect portal structures in biliary atresia and is associated with both the extent of biliary proliferation and the thickening of the medial layer.
Collapse
Affiliation(s)
- Patrícia Quelhas
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Carlos Cerski
- Department of Pathology, University Federal Rio Grande do Sul, 90040-060, Porto Alegre, Brasil
| | - Jorge Luiz Dos Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
22
|
Brown AP, Cai L, Laufer BI, Miller LA, LaSalle JM, Ji H. Long-term effects of wildfire smoke exposure during early life on the nasal epigenome in rhesus macaques. ENVIRONMENT INTERNATIONAL 2022; 158:106993. [PMID: 34991254 PMCID: PMC8852822 DOI: 10.1016/j.envint.2021.106993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Wildfire smoke is responsible for around 20% of all particulate emissions in the U.S. and affects millions of people worldwide. Children are especially vulnerable, as ambient air pollution exposure during early childhood is associated with reduced lung function. Most studies, however, have focused on the short-term impacts of wildfire smoke exposures. We aimed to identify long-term baseline epigenetic changes associated with early-life exposure to wildfire smoke. We collected nasal epithelium samples for whole genome bisulfite sequencing (WGBS) from two groups of adult female rhesus macaques: one group born just before the 2008 California wildfire season and exposed to wildfire smoke during early-life (n = 8), and the other group born in 2009 with no wildfire smoke exposure during early-life (n = 14). RNA-sequencing was also performed on a subset of these samples. RESULTS We identified 3370 differentially methylated regions (DMRs) (difference in methylation ≥ 5%, empirical p < 0.05) and 1 differentially expressed gene (FLOT2) (FDR < 0.05, fold of change ≥ 1.2). The DMRs were annotated to genes significantly enriched for synaptogenesis signaling, protein kinase A signaling, and a variety of immune processes, and some DMRs significantly correlated with gene expression differences. DMRs were also significantly enriched within regions of bivalent chromatin (top odds ratio = 1.46, q-value < 3 × 10-6) that often silence key developmental genes while keeping them poised for activation in pluripotent cells. CONCLUSIONS These data suggest that early-life exposure to wildfire smoke leads to long-term changes in the methylome over genes impacting the nervous and immune systems. Follow-up studies will be required to test whether these changes influence transcription following an immune/respiratory challenge.
Collapse
Affiliation(s)
- Anthony P Brown
- California National Primate Research Center, Davis, CA 95616, USA
| | - Lucy Cai
- California National Primate Research Center, Davis, CA 95616, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - Lisa A Miller
- California National Primate Research Center, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - Hong Ji
- California National Primate Research Center, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
24
|
Naumova OY, Lipschutz R, Rychkov SY, Zhukova OV, Grigorenko EL. DNA Methylation Alterations in Blood Cells of Toddlers with Down Syndrome. Genes (Basel) 2021; 12:genes12081115. [PMID: 34440289 PMCID: PMC8391316 DOI: 10.3390/genes12081115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Recent research has provided evidence on genome-wide alterations in DNA methylation patterns due to trisomy 21, which have been detected in various tissues of individuals with Down syndrome (DS) across different developmental stages. Here, we report new data on the systematic genome-wide DNA methylation perturbations in blood cells of individuals with DS from a previously understudied age group—young children. We show that the study findings are highly consistent with those from the prior literature. In addition, utilizing relevant published data from two other developmental stages, neonatal and adult, we track a quasi-longitudinal trend in the DS-associated DNA methylation patterns as a systematic epigenomic destabilization with age.
Collapse
Affiliation(s)
- Oxana Yu. Naumova
- Vavilov Institute of General Genetics RAS, 119991 Moscow, Russia; (S.Y.R.); (O.V.Z.)
- Department of Psychology, University of Houston, Houston, TX 77204, USA;
- Correspondence: or (O.Y.N.); (E.L.G.)
| | - Rebecca Lipschutz
- Department of Psychology, University of Houston, Houston, TX 77204, USA;
| | - Sergey Yu. Rychkov
- Vavilov Institute of General Genetics RAS, 119991 Moscow, Russia; (S.Y.R.); (O.V.Z.)
| | - Olga V. Zhukova
- Vavilov Institute of General Genetics RAS, 119991 Moscow, Russia; (S.Y.R.); (O.V.Z.)
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, TX 77204, USA;
- Department of Psychology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: or (O.Y.N.); (E.L.G.)
| |
Collapse
|
25
|
Abstract
Children show a higher incidence of leukaemia compared with young adolescents, yet their cells are less damaged because of their young age. Children with Down syndrome (DS) have an even higher risk of developing leukaemia during the first years of life. The presence of a constitutive trisomy of chromosome 21 (T21) in DS acts as a genetic driver for leukaemia development, however, additional oncogenic mutations are required. Therefore, T21 provides the opportunity to better understand leukaemogenesis in children. Here, we describe the increased risk of leukaemia in DS during childhood from a somatic evolutionary view. According to this idea, cancer is caused by a variation in inheritable phenotypes within cell populations that are subjected to selective forces within the tissue context. We propose a model in which the increased risk of leukaemia in DS children derives from higher rates of mutation accumulation, already present during fetal development, which is further enhanced by changes in selection dynamics within the fetal liver niche. This model could possibly be used to understand the rate-limiting steps of leukaemogenesis early in life.
Collapse
|
26
|
The role of DNA methylation in syndromic and non-syndromic congenital heart disease. Clin Epigenetics 2021; 13:93. [PMID: 33902696 PMCID: PMC8077695 DOI: 10.1186/s13148-021-01077-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is a common structural birth defect worldwide, and defects typically occur in the walls and valves of the heart or enlarged blood vessels. Chromosomal abnormalities and genetic mutations only account for a small portion of the pathogenic mechanisms of CHD, and the etiology of most cases remains unknown. The role of epigenetics in various diseases, including CHD, has attracted increased attention. The contributions of DNA methylation, one of the most important epigenetic modifications, to CHD have not been illuminated. Increasing evidence suggests that aberrant DNA methylation is related to CHD. Here, we briefly introduce DNA methylation and CHD and then review the DNA methylation profiles during cardiac development and in CHD, abnormalities in maternal genome-wide DNA methylation patterns are also described. Whole genome methylation profile and important differentially methylated genes identified in recent years are summarized and clustered according to the sample type and methodologies. Finally, we discuss the novel technology for and prospects of CHD-related DNA methylation.
Collapse
|
27
|
Laufer BI, Gomez JA, Jianu JM, LaSalle JM. Stable DNMT3L overexpression in SH-SY5Y neurons recreates a facet of the genome-wide Down syndrome DNA methylation signature. Epigenetics Chromatin 2021; 14:13. [PMID: 33750431 PMCID: PMC7942011 DOI: 10.1186/s13072-021-00387-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00387-7.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA. .,Genome Center, University of California, Davis, CA, 95616, USA. .,MIND Institute, University of California, Davis, CA, 95616, USA.
| |
Collapse
|